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Abstract. Stability is a fundamental requirement of dynamical systems.
Most of the works concentrate on verifying stability for a given stabil-
ity region. In this paper we tackle the problem of synthesizing P-stable
abstractions. Intuitively, the P-stable abstraction of an open dynamical
system characterizes the transitions between stability regions in response
to external inputs. The stability regions are not given - rather, they are
synthesized as the tightest representation with respect to a given set
of relevant predicates P. A P-stable abstraction is enriched by timing
information derived from the duration of stabilization.
We implement a synthesis algorithm in the framework of Abstract Inter-
pretation, that allows different degrees of approximation. We show the
representational power of P-stable abstractions, that provide a high-level
account of the behavior of the system with respect to stability, and we
experimentally evaluate the effectiveness of a compositional approach,
that allows synthesizing P-stable abstractions for significant systems.

1 Introduction

Context. Reactive systems are often designed to operate in some stable condition
(in absence of external stimuli), and to reach a possibly different stable condition
(in response to some external stimulus). Stability may be reached after variable
amounts of time, possibly depending on the physical dynamics being controlled.
Notable examples are HVAC systems and relay-based circuits, built out of elec-
tromechanical components, pervasively adopted in the railways domain for the
control of stations.

System stability is hard to assess. Stability is not to be confused with a com-
pletely still situation (i.e. a zero-derivative point) and partly oscillating or limit
behaviors may be considered stable. Furthermore, a system may exhibit a large
number of stable conditions, which may be difficult to characterize by inspec-
tion, especially for legacy systems. Finally, the intended discrete logical behavior
depends crucially on the physical status: a light may be on or off depending on
the current in a lamp resistor; an engine may be powered or not depending on
whether the magnetic field induced by a coil is sufficient to close a switch.

In the context of analyzing legacy systems, one is interested in characterizing
the specification of a set of controlling actions in terms of their effects on the
system state. These inputs may trigger a sequence of complex internal changes,
both discrete (like relay interactions) and continuous (like the charging process
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Fig. 1. A circuit regulating a lamp L, based on a switch S and a relay RL, and an
automaton that describes the effects of the external actions on the lamp state.

of a capacitor) before reaching the next stable state. The duration of these
evolutions is also important: after an action, it may be necessary to wait some
time before evaluating the state of the system or before accepting a new input.

As an example, consider the simple circuit represented on the left-hand side
of Figure 1. It receives external inputs corresponding to actions on the switch
S: when the delayed relay RL receives enough current (i.e., if the switch stays
closed for a sufficient time for its charging process) it closes the corresponding
switches RLS 1 and RLS2. We consider the problem of extracting the relation
between some evaluations of interest, e.g., the lamp L being on or off, and the
sequence of performed actions, in a formalism that allows formal verification.

Contribution. In this paper we investigate the problem of characterizing the
effects of events on a hybrid system by analyzing where the triggered behaviors
stabilize. We define the notion of P-stable abstraction as the automaton that
captures the essence of stabilization following each external input.

The granularity of the abstraction is induced by a given set of relevant predi-
cates P. Intuitively, an (abstract) state is associated to predicate valuations, and
identifies the (concrete) states that are stable in the corresponding region. The
transitions between abstract states describe the stabilization process of the con-
crete system when responding to an external stimulus. The abstraction is made
accurate by requiring the stability regions to be minimal : the stability of a tra-
jectory is defined in terms of the smallest P-representable region in which the
trajectory eventually converges. The synthesis of P-stable abstractions directly
results in a set of temporal properties that are satisfied by the concrete system,
and can therefore be used in reverse-engineering and migrating to new technol-
ogy. In order to capture the duration of stabilizations, a P-stable abstraction
is enriched with timing information characterizing the time spent in unstable
states. This information can be used to synthesize the correct value to impose a
slow-switching hypothesis on the external environment of the system [17].

Second, we prove that the problem can be recast in the framework of Ab-
stract Interpretation (AI) [14] and propose a synthesis algorithm based on the
exploration of the abstract state space. At the core of the algorithm is the com-
putation of sufficient conditions for stability. The AI framework is fundamental
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to seamlessly approximate P-stable abstractions by reducing the precision of
the abstract domain. A compositional approach is possible where the analysis
algorithm is applied to the individual components of a complex network, later
combining their P-stable abstractions. This approach is sound and, in the practi-
cally relevant case of discrete interaction of components, it may obtain the same
result as obtained by the P-stable abstraction to the complex network.

The proposed algorithm has been implemented in a symbolic analysis tool
leveraging the PPLite library [5] for convex polyhedra. An experimental eval-
uation, focusing on a set of parametric benchmarks representing circuits with
run-to-completion behaviors, shows that the proposed techniques can obtain
abstractions of rather complex hybrid systems, also providing evidence for the
need of adopting the compositional analysis approach in order to improve on
scalability.

Structure of the paper. In Section 2 we discuss related work. In Section 3 we
introduce some background. In Section 4 we introduce P-stable abstraction. In
Section 5 we cast the problem in the AI framework. In Section 6 we discuss the
implementation and we experimentally evaluate the approach. In Section 7 we
draw some conclusions and outline directions for future work.

2 Related works

State of the art. Stability is an important property of dynamical and hybrid sys-
tems which has been widely studied from different perspectives. Classic stability
is defined by requiring that all the trajectories are asymptotically attracted by
an equilibrium point xe [9,17]. Since classical asymptotic stability excludes oscil-
lating behaviors, region stability [21,22] requires that the trajectories eventually
remain inside a given invariant region, intuitively corresponding to the temporal
property AFAGR, for a given region R, even if no single equilibrium point exists.
The alternative notion of strong attractor also requires that all the trajectories
of the system never leave the region once entered, i.e A¬RUAGR.

The problem is typically to verify the global stability of a given system,
i.e. proving that every trajectory satisfies the required stability criterion (be it
asymptotic or region stability). When global stability does not hold, an addi-
tional task is to compute the region of attraction, i.e. the set of states whose
outgoing trajectories are stable.

Asymptotic stability can be proven by providing a Lyapunov function as
a certificate that the energy of the system is decreasing (in its domain) until
the equilibrium point is reached. Several methods have been proposed to this
aim, with different levels of automation, soundness and scalability [10,16,20,24].
Region stability verification cannot be directly tackled as a reachability problem.
It is proved by reduction to liveness checking with combinations of reachability
and SMT solving, or based on the use of (cartesian) predicate abstraction [21,22].

Interestingly, in the case of switching systems, stability of the whole system
is not implied by the stability of each modality. Some works (e.g. [6,23]) aim
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at finding conditions on switching sequences in order to ensure the stability of
the composed system. Another approach to achieve global stability is to impose
a slow-switching condition, i.e. there must be a sufficiently high time interval
between subsequent inputs. [8,19] prove the adequacy of such a time interval by
analyzing the average dwell time of the system.

Novelty. This work differs from the works mentioned above in several ways.
First, in contrast to verifying stability with respect to a given region, we syn-
thesize a P-stable abstraction that characterizes all the system behaviors with
respect to stabilization. Notice that we do not rely on a single convergence re-
gion being given. We explore the space of possible convergence regions induced
by the set P of predicates, and find the tightest representations. Second, the
synthesized region is not a simple invariant of the system: rather, it is possi-
bly, eventually invariant only for the trajectories triggered by the event under
consideration. Hence we simulate hybrid evolutions with a relation of possible
attraction between two stable conditions: we want to express the existence of
an eventually convergent trajectory (intuitively corresponding to an EFAGR
property, for a given region R), rather than requiring stabilization for all paths
(as in AFAGR). Another key difference is that the aforementioned approaches
are mainly related to purely dynamical or closed hybrid systems. We adopt a
more expressive framework, considering switched systems, open to autonomous
events. Specifically, our aim is to analyze the stabilization effects for external
inputs, by considering the “closed” dynamic of the system. Finally, we take into
account timing information.

This work is also quite distinct from predicate abstraction for hybrid sys-
tems [1,2]: the main difference is that predicates are not evaluated in transient
states, i.e., “abstract” transitions will connect predicates evaluated only in stable
conditions. Consider, for example, that the length of the traces is not retained.

In terms of techniques, this is the first work exploiting the Abstract Inter-
pretation framework [14,15] in the field of stability analysis. We trade precision
for efficiency and propose an approximated analysis that can be implemented
using known techniques.

3 Background

We write R≥ for the set of non-negative reals. Given a sequence σ and an index
i ∈ N, let σ[i] denote the i-th element of σ. We adopt a logic notation derived
by SMT, using a fragment of first-order logic and the theory of Linear Real
Arithmetic (LRA). Given a set of Boolean variables L, let Ψ(L) define the set of
boolean combinations over L. Given a set of real-valued variables V , let LPredV
define finite conjunctions of LRA predicates with free variables in V . We write
Ψ(L, V ) to denote SMT(LRA) formulae obtained by boolean combinations of
Boolean variables in L and linear predicates over V .

Finite and timed automata. A finite state automaton is a tuple 〈Q,Q0, A,R〉
where Q is a finite set of states, Q0 ⊆ Q is the set of initial states, A is a finite set
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of labels and R ⊆ (Q×A×Q) is the labeled transition relation between states. A
timed automaton [3] 〈Q,Q0, C,A, inv, R〉 is an automaton equipped with a finite
set of clocks C, with state invariants inv : Q→ LPredC associating each state q ∈
Q with its clock constraints inv(q)3 and with R ⊆ (Q×A×LPredC×℘(C)×A),
where: edge (q, a, g, r, q′) ∈ R represents the transition from state q to q′, labeled
with a and guarded by clock constraints g; the set r ⊆ C gives the set of clocks

to be reset with this transition. We adopt notation q
a,g,r−−−→ q′.

In a timed automaton with a single clock variable c, whenever a state q is

involved only in the untimed transitions qi
a,c:=0−−−−→ q

ε,c≥m−−−−→ qj and inv(q) =

(c ≤M), we omit it from the set of states in the tuple and write qi
a,[m,M ]−−−−−→→ qj ,

meaning that qi reaches qj with a transition labeled with a in a time between
m and M . When clear from context we also omit the ‘inv’ component from the
tuple.

Hybrid Systems. Let v̇ denote the time derivative dv/dt. A linear hybrid system
with piecewise affine dynamics is a tuple H = 〈Loc,Var ,A, inv, init,flow,disc〉
where [25]: Loc is a finite set of locations; Var = {v1, . . . , vn} is a finite set of
continuous state variables; A is a finite set of synchronization labels; init : Loc →
LPredVar defines initial conditions for each location; inv : Loc → LPredVar de-
fines invariant conditions for each location; flow: Loc → LPredVar∪ ˙Var defines
the continuous transition relation; disc ⊆ (Loc × A× Loc × LPredVar∪Var ′) de-
fines the labeled discrete transition relation. A state of a hybrid system H is a
tuple 〈`,x〉 where ` ∈ Loc and x ∈ Rn. Let Σ denote the state space of H and
init(H) denote the set of states s = 〈`,x〉 such that x |= (inv(`) ∧ init(`)). A

run of hybrid system H is a path ρ = (s0
δ1−→ s1

a2−→ s2
δ3−→ s3

a4−→ . . . ) where
δi ∈ R≥, ai ∈ A, si = 〈`i,xi〉 ∈ Σ, s0 ∈ init(H) and each step corresponds to
either a continuous transition

δ ∈ R≥ f : [0, δ]→ Rn ḟ : (0, δ)→ Rn f(0) = x f(δ) = x′

∀ε ∈ [0, δ] : f(ε) |= inv(`) ∀ε ∈ (0, δ) : (f(ε), ḟ(ε)) |= flow(`)

〈`,x〉 δ−→ 〈`,x′〉

or a discrete transition

(`, a, `′, µ) ∈ disc (x,x′) |= µ x′ |= inv(`′)

〈`,x〉 a−→ 〈`′,x′〉
.

We write Run(H) for the set of all runs of H. A run ρ diverges if ρ is infinite and
the sum

∑
i≥0 δi diverges.4 We consider systems without Zeno behaviors, i.e.,

every finite run ofH is a prefix of some divergent run ofH. If Run(H) ⊆ Run(H′),
then H′ is a relaxation of H and H is a refinement of H′ [8].

3 A clock predicate is a linear predicate over a clock variable c of the form c ./ k,
where k is constant. A clock constraint is a finite conjunction of clock predicates.

4 We let δi = 0 whenever the i-th transition is a discrete one.
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In hybrid automata, as well as in a switched systems [17], discrete behaviors
can be distinguished between controlled (internal) events, for logic-based mecha-
nism, and autonomous (external) events, modeling unpredictable environmental
influences. The set of labels for discrete interaction of H is therefore partitioned
in A = I ∪ E, denoting internal and external events respectively. Given a hy-
brid automaton H = 〈Loc,Var ,A, inv, init,flow,disc〉, we denote with Hc the
corresponding closed system, i.e., Hc .

= 〈Loc,Var , I, inv, init,flow,discc〉 with

discc = {(`, i, `′, µ) ∈ disc | i ∈ I}. Let ‘
c
 ’ denote the reflexive and transitive

closure of the transition relation of Hc. When clear from the context, we also
use ‘s

c
 s′’ to denote the corresponding run from s to s′ in the closed system.

Time of a run and slow switching. For each run ρ = (s0
δ1−→ s1

a2−→ s2 . . . )
and index m, the time spent to complete the prefix of length m of ρ is τm(ρ)

.
=∑m

i=1 δi. For a finite run of length n, τ(ρ) is a shortcut for τn(ρ). Let ε be the
ordered sequence of indices for the external events of ρ. The sequence of external
switching time points of ρ is a sequence t of elements in R≥ such that t[0] = 0
and t[i] = τε[i](ρ) for all i. For each hybrid automaton H and time d ∈ R≥, Hd
is a refinement of H such that every run of Hd is associated with a sequence t
of external switching time points satisfying (t[i+ 1]− t[i]) > d for all i.

Abstract Interpretation. We assume some familiarity with the basic notions of
lattice theory [7] and Abstract Interpretation [14,15]. Given a poset (L,�) and
a set S ⊆ L, its downward closure is ↓S .

= {x ∈ L | ∃s ∈ S . x � s}; the set
S ⊆ L is downward closed if S = ↓S. The notation for upward closure is similar.
Given two posets (L,�) and (L],�]) and two monotonic functions α : L → L]

and γ : L] → L, the pair (α, γ) is a Galois connection [14], denoted L −−−→←−−−α
γ

L], if

for all x ∈ L, x] ∈ L] it holds that α(x) �] x] if and only if x � γ(x]). For each
concrete function F : L→ L, its most precise sound abstraction in L] according
to this Galois connection is F ]

.
= α ◦ F ◦ γ.

Temporal Logic. In the rest of this paper, we adopt a notation inspired to model
checking for specific patterns of computation-tree logic formulae. In particular,
H, s |= AGφ means that for all ρ ∈ Run(H) outgoing from s (i.e. such that
ρ[0] = s), for all i ∈ N, ρ[i] |= φ. Similarly H, s |= EFAGφ means that there
exists a run ρ ∈ Run(H) outgoing from s, and a j ∈ N such that ρ[j] |= AGφ.

4 P-stable Abstraction

In this section we characterize the stabilizing executions of a closed hybrid system
with respect to the truth values of a given set of predicates. Namely, we build
an abstract timed automaton whose transitions simulate the stabilizing runs of
the closed system following the occurrence of an external event.
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4.1 Region stability

Given a hybrid system H = 〈Loc,Var ,A, inv, init,flow,disc〉, where the discrete
interactions A are partitioned into the sets of the internal and external events,
we call closed evolution (for short evolution) of a state s ∈ Σ a hybrid run of
the closed system Hc starting from s. Given a region R ⊆ Σ of the state space,
we say that a state s ∈ Σ is internally stable in R (for short, stable in R) if and
only if R is invariant for all closed evolutions of s; state s is said to be possibly
attracted by R (for short, attracted by R) if there exists a closed evolution of s
reaching a state internally stable in R. More formally:

Definition 1 (Stability and attraction). For each s ∈ Σ and R ⊆ Σ,

stable(s,R) ⇐⇒ (s |=c AGR);

attr(s,R) =⇒ (s |=c EFAGR).

Different definitions can be provided for relation ‘attr’: for instance, one could
impose the stronger constraint that the trajectory does not oscillate inside and
outside R before stabilizing, hence attr(s,R)

.
= (s |=c E(¬RUAGR)).5 Nonethe-

less, the results stated in the following will also hold for the weaker definition
attr(s,R)

.
= (s |=c EFAGR).

The “run-to-completion” closed evolutions of a state s ∈ Σ are described by
the regions that possibly attract it: due to the non-determinism of the closed sys-
tem, taken into account by the existential path quantification, this can be a set
of different regions, each of them representing a possible future stable condition.
The most precise characterization of these behaviors could be given by the set of
minimal regions for which attr(s,R) holds. The synthesis of such a set presents
us with the problem of minimality. In fact, it is common to find trajectories that
exhibit asymptotic behaviors to an equilibrium condition: for instance, the dis-
charging process of a capacitor is described by an exponential flow that, ideally,
never reaches a null charge, so that a minimal region of convergence does not
exists. Nonetheless, under a certain threshold the capacitor can be assumed to
be discharged and the following decay of voltage has no impact on its behavior
in the circuit. In other words, within a certain stable region of interest, the exact
trajectories may not be relevant for the analysis of the system. This suggests to
fix a priori a finite set of predicates P representing the properties we want to
observe: hence, the run-to-completion behaviors will be described as the minimal
attracting areas chosen from the (finite) set of regions induced by P.

4.2 Untimed P-stable abstraction

Given a finite set of predicates P ⊆ Ψ(Loc,Var) we denote with ΦP the set
of their (finite) boolean combinations, omitting the subscript when clear from
context. We say that P induces a grid in the state space, since every formula
φ ∈ Φ defines a P-expressible region as the set of its models in Σ. Both relations

5 This can be seen as the “existential” version of the strong attractor definition [21].
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‘stable’ and ‘attr’ defined in Section 4.1 can be evaluated on such regions.
Note that, given a state s, the set of formulae in Φ such that stable(s, φ) holds
is upward closed (i.e., for all φ, φ′ ∈ Φ such that φ ⇒ φ′, if stable(s, φ) then
stable(s, φ′)). Having fixed a finite set of P-representable regions, we can now
define the minimal version of relations stable and attr.

Definition 2 (Minimal P-stability). For each s ∈ Σ and φ ∈ Φ, let

no stronger attr(s, φ)
.
= @φ′ ∈ Φ . ((φ′ ⇒ φ) ∧ (φ′ 6= φ) ∧ attr(s, φ′));

stablemin(s, φ)
.
= stable(s, φ) ∧ no stronger attr(s, φ);

attrmin(s, φ)
.
= attr(s, φ) ∧ no stronger attr(s, φ).

Namely, relation ‘stablemin’ links a state s ∈ Σ with a formula φ ∈ Φ if φ
is invariant for the evolutions of s in the closed system and if there are no
smaller P-representable regions in which s can converge. If such a φ exists, it is
unique (modulo logical equivalence) and state s is said to be minimally P-stable
(or simply stable). If a state has no formula in Φ such that ‘stablemin’ holds,
then it is said to be transient, since there exists an evolution attracted by a
smaller P-region that does not contain it. In the following we use the notation
transient(s). Observe that, by definition, the relation ‘attrmin’ is a subset of
relation ‘attr’ and, like the latter, it is non-deterministic: ‘attrmin’ links a state
with the minimal regions in which one of its closed evolution stabilizes.

We say that a system H has a well-defined run-to-completion semantics for
the set of predicates P, written wd-rtc(H,P) for short, if a state of H cannot de-
lay indefinitely its reaching a P-stable condition. In other words, if attrmin(s, φ),

not only there exists a path s
c
 s′ with stablemin(s′, φ), but also, there is no

path that satisfies Gtransient. This requirement expresses that the system
reaction to an event must be reliable and there must exist a finite time after
which the system has completed the process.

As an example, consider an automaton with states Q = {q0, q1, q2} and tran-
sition relation R(q0, q1), R(q1, q1), R(q1, q2), R(q2, q2). The runs starting from
q0 are attracted by predicate {q2}, but are allowed to stay in the transient state
q1 for an unbounded number of steps before reaching q2. Hence, the stabiliza-
tion process with respect to {q2} is not well-defined. Nevertheless, for the same
system wd-rtc holds with predicate {q1 ∨ q2}.

Definition 3 (P-stable abstraction). Let H = 〈Loc,Var ,A, inv, init,flow,disc〉
be a hybrid automaton, and E ⊆ A a set of external events. Let P ⊆ Ψ(Loc,Var)
be a set of predicates. The (untimed) P-stable abstraction of H is the finite state
automaton A .

= 〈Φ,Φ0, E, ↪−→〉, where

Φ0 = {φ ∈ Φ | ∃s0 ∈ init(H), s ∈ Σ . s0
c
 s ∧ stablemin(s, φ) }

and φ ↪
e−→ φ′ if and only if there exist s, s1, s

′ ∈ Σ such that

stablemin(s, φ), s
e−→ s1

c
 s′, stablemin(s′, φ′).
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Intuitively, the runs of A represent the evolution of the truth values of the
predicates in P in response to external events once stabilization is reached, upon
“absorption” of the transient states. Notice that initial states Φ0 are defined
following the same intuition, and represent the possible initial P-stable regions,
since H may start in a transient condition.

The definition of P-stable abstraction captures the fact that we are studying
the effects of the external inputs when H is in a stable condition: we disre-
gard runs where external inputs are received in transient states. This “stable-
switching” paradigm can be intuitively thought of as the qualitative counterpart
of the slow-switching hypothesis used as sufficient condition for reasoning about
global stability in switched systems [17]. We informally define the restriction of
H under stable switching as the hybrid automaton Hss obtained by applying
the guard ¬transient to every external transition of H.

The P-stable abstraction of H is a weak simulation [18] of Hss . The precision
depends on the choice of P. In fact, two states that are stable in the same region φ
are not necessarily connected by a concrete run: when distinct areas of attraction
are represented with the same formula, spurious behaviors may be introduced.

We compare the definition of P-stable abstraction with “classic” predicate
abstraction [1,2]. In our setting, the concretization of an abstract state φ is
the set of states in Σ that are stable in φ. Similarly, the abstract transitions
represent concrete transitions of the form s

e−→ s1
c
 s′, i.e., a single external

event possibly followed by internal transitions. Thus, differently from predicate
abstraction, a path in the abstraction may be significantly shorter than the
corresponding concrete ones.

For each φ ↪
e−→ φ′ in A, let Γ (φ ↪

e−→ φ′) be the set of the simulated hybrid runs:

Γ (φ ↪
e−→ φ′)

.
=
{
s

e−→ s1
c
 s′

∣∣∣ stablemin(s, φ), stablemin(s′, φ′)
}
.

The Γ operator is naturally extended to runs of A 6 by concatenation of its
applications to single transitions, and to set of runs.

Proposition 1. If wd-rtc(H,P) holds, the stable-switching runs of H are sim-
ulated by the runs of A, i.e., Run(Hss) ⊆ Γ (Run(A)).

Example 1. Consider the circuit on the left-hand side of Figure 1, where external
events include the opening/closing of switch S and the property of interest is the
condition of lamp L: letting iL (resp., iRL) denote the intensity of the current
passing through the lamp (resp., the relay), we choose P = {(−c ≤ iL ≤ c)}, so
that the state space is partitioned into Loff

.
= (−c ≤ iL ≤ c) and Lon

.
= ¬Loff .

Initially all the switches are open and neither the relay coil RL nor the lamp L
receives current. Hence, the system is (internally) stable in Loff .

Starting from a condition stable in Loff , if the external event Sclose is re-
ceived, iRL increases with a continuous dynamics implementing the delay of its

6 For each φ0 ∈ Φ0 operator Γ applies to initial transitions as Γ (↪→ φ0)
.
= {s c

 s′ |
s ∈ init(H), stablemin(s′, φ0)}.
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Fig. 2. States of trace s0
Sclose−−−→ s1

δ1−→ s2
i−→ s3

δ3−→ s4
Sopen−−−→ s5 projected on iRL, the

state of the switch S and of lamp L with respect to time t.

activation. After δ1 time, iRL reaches the activation threshold a (state s2) and
it closes the corresponding switches with an internal discrete transition (labeled
i). The closing of RLS 2 turns on the lamp L. The system is now stable in Lon.

The hybrid system run s0
Sclose−−−→ s1

δ1−→ s2
i−→ s3 (with stablemin(s0, Loff ),

attrmin(s1, Lon), attrmin(s2, Lon) and stablemin(s3, Lon)) corresponds to a

single transition Loff ↪
Sclose−−−→ Lon in the P-stable abstraction.

Since RLS 1 has been closed, RL receives current even if the switch S gets
opened. It follows that when later receiving the external event Sopen in state s4
(with stablemin(s4, Lon)), the system switches to state s5 and the lamp stays
on (namely, stablemin(s5, Lon)). In the P-stable abstraction we will have the

transition Lon ↪
Sopen−−−→ Lon.

4.3 Timed P-stable abstraction

We now characterize the time needed to reach a stable condition after receiving
an external input.

Definition 4 (Convergence time of φ ↪
e−→ φ′). For each abstract transition

φ ↪
e−→ φ′ its convergence time is the interval in R≥ ct(φ ↪

e−→ φ′)
.
= [lb, ub], where

lb = inf
{
τ(ρ)

∣∣ ρ ∈ Γ (φ ↪
e−→ φ′)

}
,

ub = sup
{
τm(ρ)

∣∣ ρ ∈ Γ (φ ↪
e−→ φ′),¬stablemin(ρ[m], φ′)

}
.

The convergence time represents the time spent in the transient states. If the
system is stable in φ and an external event e is received, after max ct(φ ↪

e−→ φ′)

time the system will certainly be stable in φ′; before min ct(φ ↪
e−→ φ′), the system

is certainly still in a transient state so that it is not safe to evaluate the truth
value of the predicates. Similar considerations apply to initial conditions: each
φ ∈ Φ0 is associated with a convergence time ct(↪→ φ), that represents the time
needed to stabilize at start up.
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Note that, since we are assuming wd-rtc(H,P), the convergence time of
Definition 4 is always bounded from above (i.e., ub < +∞). An unbounded
convergence time would imply the existence of a path starting from φ that can
indefinitely postpone its stabilization in φ′, which is probably an undesirable
system behavior. Hence, the computation of convergence time is a practical way
to detect the violation of the wd-rtc(H,P) hypothesis, and obtain diagnostic
information to either debug the model or change the set of predicates P.

On the basis of these considerations, we can define a timed automaton that
simulates the P-stable runs of the hybrid system H.

Definition 5 (Timed P-stable abstraction). Given a P-stable abstraction
A = 〈Φ,Φ0, E, ↪−→〉 the corresponding timed abstraction is a timed automaton
having as initial state an additional state ? and having

– transition ? ↪
ε,[m,M ]−−−−−→→ φ, for each φ ∈ Φ0, with [m,M ] = ct(↪→ φ);

– transition φ ↪
e,[m,M ]−−−−−→→ φ′, for each φ ↪

e−→ φ′, with [m,M ] = ct(φ ↪
e−→ φ′).

Starting from the additional state ?, each path reaches the first stable condi-
tion φ in the corresponding initialization time ct(↪→ φ). Then, after an external
event e, it non-deterministically jumps to the next stable condition within the
interval imposed by the associated convergence time.

The convergence time information can be used to define the runs we are
abstracting with a slow -switching characterization, rather than a (possibly un-

computable) stable-switching one. Let ct = max{M | φ ↪e,[m,M ]−−−−−→→ φ′ in A}; then
the refinement Hct (see Section 3), allowing external inputs with a delay of (at
least) ct , ensures that the system has always sufficient time to reach stability.
It follows that Run(Hct) ⊆ Run(Hss), hence, Hct defines a concrete semantics
compliant with A.

Example 2. Reconsider the circuit of Figure 1, whose P-stable abstraction has
been analyzed in Example 1. We can compute the timing information of the sta-

bilization processes, obtaining ct(Loff ↪
Sclose−−−→ Lon) = [δ1, δ1]; the other abstract

transitions are instantaneous (i.e., their convergence time is 0, as they have no
transient states). By waiting δ1 after each external event, the system Hδ1 follows
the behaviors described by the P-stable abstraction: namely, we know how long
switch S must stay closed in order to turn on (and keep on) the lamp.

5 P-stable Abstraction via Abstract Interpretation

The simulation presented in Section 4 may not be computable when dealing with
complex hybrid systems. In this section we formulate the same concepts in an
Abstract Interpretation framework: this provides a formal setting to search for
a balance between precision and efficiency.

In order to abstract the semantics of Hss (i.e, the stable switching semantics
of H), we consider as concrete domain the powerset of hybrid states (℘(Σ),⊆)
and as concrete function the post-image operator of an external event subject to a
stability constraint: postss(S, e)

.
= {s′ ∈ Σ | ∃s ∈ S . ¬transient(s)∧s e−→ s′}.
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P-stable abstraction as Galois connection. The simulation of Definition 3 can
be seen as the abstraction of function postss . Consider functions (α1, γ1), with
α1(S)

.
= {φ ∈ Φ | ∃s ∈ S . attrmin(s, φ)} for each S ⊆ Σ, and γ1(F )

.
= {s ∈

Σ | ∀φ ∈ Φ : attrmin(s, φ) =⇒ φ ∈ F} for each F ⊆ Φ: this couple forms

the Galois connection (℘(Σ),⊆) −−−→←−−−
α1

γ1
(℘(Φ),⊆). The use of the powerset of

formulae Φ as abstract domain allows for representing a disjunction of regions
and describe precisely the non deterministic behavior of the concrete function.
The following proposition states that this abstraction defines exactly the same
relation introduced in Definition 3.

Proposition 2. Let A be the P-stable abstraction of H. For φ, φ′ ∈ Φ and e ∈ E,
φ ↪

e−→ φ′ in A if and only if φ′ ∈ α1(postss(γ1({φ}), e)); also, Φ0 = α1(init(H)).

Approximating the P-stable abstraction. A first simplification step can be to
overapproximate disjunctive stable regions with their join: this lets us obtain
a deterministic abstract system based on a conservative abstraction of all the
possible behaviors of the concrete system. To this aim, we can consider Φ instead
of its powerset. In addition, we can further approximate this domain using its
cartesian relaxation.

We denote with (K,v) the cartesian abstraction [4] of (Φ,⇒). This can
be formally defined considering the lattice of knowledge values for each pred-
icate Pi ∈ P, namely Pi = ({⊥i, pi, pi,>i},vi) with ⊥i @i pi @i >i and
⊥i @i pi @i >i; then, (K,v) =

(
⊗Pi∈PPi

)
, where ‘⊗’ denotes the smash prod-

uct operator. Hence, every k ∈ K, with k 6= ⊥, is a vector (k1, . . . , kp), with
ki ∈ {pi, pi,>i}. Every k ∈ K represents a formula in Φ: while ⊥ is ‘false’,
(k1, . . . , kp) is (

∧
ki=pi

Pi ∧
∧
ki=pi

¬Pi). We will use k ∈ K meaning the corre-

sponding formula in Φ. Note that (K,v) is a meet sublattice of (Φ,⇒): joins are
not preserved since the cartesian abstraction cannot express precisely disjunc-
tions between predicates.

We build an abstraction as composition of Galois connections:

(℘(Σ),⊆) −−−→←−−−
α1

γ1
(℘(Φ),⊆) −−−→←−−−

α2

γ2
(Φ,⇒) −−−→←−−−

α3

γ3
(K,v),

where α2 is the join operator on Φ, i.e., α2(F )
.
= ∨(F ), γ2 is the downward

closure, i.e., γ2(φ)
.
= ↓{φ}, and (α3, γ3) is the cartesian abstraction, i.e., α3(φ)

.
=

u{k ∈ K | φ⇒ k} and γ3(k) = k. Let α
.
= α3 ◦ α2 ◦ α1, and γ

.
= γ1 ◦ γ2 ◦ γ3.

Definition 6 (Approximated P-stable abstraction). The approximated P-
stable abstraction of hybrid system H with external events E is the finite state
automaton A] .

= 〈K, {k0}, E, ↪−→〉, with initial state k0
.
= α(init(H)) and k ↪

e−→ k′

if and only if k′ = α(postss(γ(k), e)).

In other words, in the approximated P-stable abstraction we have transition
k ↪

e−→ k′ if every trajectory starting from a state that is stable in k with the
external event e will eventually have k′ as invariant, provided that no other
external events are accepted meanwhile.

12



By definition, γ ◦ α is an approximation of γ1 ◦ α1: since all the concrete
functions we are dealing with are monotone, A] of Definition 6 is a sound overap-
proximation of the P-stable abstraction A of Definition 3. Spurious behaviors can
be introduced mainly because non deterministic trajectories are conservatively
abstracted with a single transition. Function ‘α’ loses the ability to distinguish
between states that are stable in a region with the ones that are stable in a
greater one, therefore losing part of the minimality of the stable predicates. As
an example, given two formulae φ1, φ2 ∈ Φ, for Definition 3 the set of states
that are considered stable in φ1 ∨φ2, are disjoint from the states that are stable
in φ1 or in φ2, because minimality is required. Instead, using ‘α2’, we consider
stable in φ1 ∨ φ2 also all the states that are stable in smaller regions, therefore
recovering the monotonicity of the concretization function.

Finally, the use of the cartesian structure K overapproximates disjunctions.
Extending the same reasoning done in Section 4.2, for each k ↪

e−→ k′ in A], let
Γ ](k ↪

e−→ k′) be the set of runs abstracted by it:

Γ ](k ↪
e−→ k′)

.
=
{
s

e−→ s1
c
 s′

∣∣∣ stable(s, k), stable(s′, k′)
}
.

Since the stabilization criterion is more slack, Γ (Run(A)) ⊆ Γ ](Run(A])). The
computation of convergence time information can be extended as well: the time
needed by the approximated system to stabilize after an external input will be

lower than the one computed forA. Letting ct] = max{M | k ↪e,[m,M ]−−−−−→→ k′ in A]},
we have that Hct] is a relaxation of Hct and Run(Hct]) ⊆ Γ ](Run(A])). Namely,
Hct] defines a new concrete semantics that is compliant with A]. Moreover, for
each t ≥ ct], we know that the abstraction soundly analyzes the evolution of
predicates along the runs of Ht.

6 Implementation and Experimental Evaluation

A possible approach for the computation of the approximation A] of the ab-
stract system A is outlined in Pseudocode 1. Here, a reachability driven fixpoint
computation incrementally adds (P-stable) states and transitions to A]; to this
end, each abstract state k ∈ K being processed is paired with a corresponding
reached set of states S, such that stable(s, k) holds for every s ∈ S.

The procedure abstracts the initial state and then enters the main loop.
Function ‘postH’ computes the image of an external discrete transition. The key
processing step is the computation of a conservative evolution of a source set
S in the closed system, which is performed within internal evolveH(S,P).
Here, we exploit the cartesian approximation to build the vector k′ with a linear
number of calls to a region-stability check : for each Pi ∈ P we test whether the
evolution of S is eventually invariant in it or in its negation. The stabilization
check is based on the search of abstract lasso-shaped traces, disregarding diver-
gent variables like the global clock. Finally, the addition of abstract locations
may call a widening operator, possibly incurring further overapproximations but
ensuring the convergence of the procedure.

13



Pseudocode 1 Build the P-stable abstraction of H.
function build abstraction(H, P)

2: 〈A],waiting〉 ← 〈∅, ∅〉;
〈k0, S0, ct0〉 ← internal evolveH(init(H), P);

4: 〈A],waiting〉 ← add init state(A], 〈k0, S0〉, ct0,waiting);
while waiting 6= ∅ do

6: 〈k, S〉 ← pop(waiting);
for all e ∈ E such that e enabled in S do

8: Se ← postH(S, e);
〈k′, S′, ct〉 ← internal evolveH(Se, P);

10: 〈A],waiting〉 ← add state(A], 〈k′, S′〉,waiting);
〈A],waiting〉 ← add trans(A], 〈k, e, ct , k′〉,waiting);

return A];

We implemented the abstraction with a symbolic LRA-BDD based approach,
built on the PPLite library for convex polyhedra [5], and evaluated it on a set
of benchmarks representing circuits, shown in Table 1. External events close or
open switches and trigger a run-to-completion process given by the activation of
relays. Delayed elements are modeled either with their pragmatic approximation
in timed components or by following the continuous dynamics of the internal
process of charge/discharge. The predicates of interest focus on the state of
some lamps. The abstraction is able to highlight the stabilization process of the
signal in a still situation as well as in an oscillating one, e.g., in the periodic
flashing of some lamps. The temporal properties extracted from the resulting
abstract automata have been checked with the nuXmv model checker [11,13].

H A]

test locs vars #E #P locs trans time
s3 512 21 2 6 2 4 0.152
s4 4096 28 2 8 2 4 2.708
s5 32768 35 2 10 2 4 67.570
r3 1024 29 6 6 7 42 2.060
s1 1 128 18 2 1 2 4 0.042
s1 2 2048 25 2 1 2 4 0.374
s1 3 24576 32 2 1 2 4 5.444
s1 4 262144 39 2 1 2 4 99.190
s2 1 1024 25 2 3 2 4 0.356
s2 2 16384 32 2 3 2 4 4.983
s2 3 196608 39 2 3 2 4 96.412
s3 1 8192 32 2 5 2 4 4.743
s3 2 131072 39 2 5 2 4 96.528
s4 1 65536 39 2 7 2 4 101.797
r2 1 512 29 4 3 4 16 1.662
r2 2 2048 36 4 3 4 16 24.592
r3 1 4096 40 6 5 7 42 62.653

H A]

test locs vars #E #P locs trans time
s1 8 7 2 2 2 4 0.001

2×s1 64 14 4 4 4 16 0.061
3×s1 512 21 6 6 8 48 1.448
4×s1 4096 28 8 8 16 128 115.886
5×s1 32768 35 10 10 32 320 –

s2 64 14 2 4 2 4 0.013
2×s2 4096 28 4 8 4 16 13.784
3×s2 262144 42 6 12 8 48 –

r2 128 18 4 4 4 16 0.073
2×r2 16384 36 8 8 8 64 –

h2 4 16 2 2 2 4 0.037
2×h2 16 32 4 4 4 16 13.581
3×h2 64 48 6 6 8 48 –

h3 8 24 2 2 2 4 2.582
2×h3 64 48 4 4 4 16 –

of 16 24 4 1 2 6 0.501
2×of 256 48 8 2 4 24 –

Table 1. P-stable abstraction of models with run-to-completion behaviors.
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Compositional reasoning. The current implementation is based on the explo-
ration of a single, monolithic automaton, which may result in reduced scalabil-
ity. When the concrete system is the composition of multiple subsystems having
no practical discrete interaction between them (or when the predicates in P are
influenced only by details that are local to the subsystems), then the P-stable
abstraction can be approached compositionally. The right-hand side of Table 1
shows an exponential growth in computation time for the analysis of the paral-
lel composition of several independent, identical circuits. In all the tests whose
analysis completes without incurring the timeout threshold (150s), the abstract
automaton for the composed system is exactly the cartesian product of the ab-
straction of its components, so it corresponds – without loss of precision – to the
composition of the single abstractions. Hence, the analysis of the overall system
can be factorized into the analysis of the subsystems, whose computation and
composition are much more efficient. Clearly, in more general cases the predi-
cates may involve relational constraints on the variables of different subsystems,
or their internal interaction may have impact on their stability. Hence, the com-
position of the single abstractions is generally expected to be less precise than
the abstraction of the network (but still guaranteed to be an overapproxima-
tion). When precision is not enough to verify the target property, a refinement
step can be applied, based for example on considering larger subsystems, doing
some compositions at the concrete level and hence reducing spurious behaviors.

7 Conclusions

In this paper we tackled the problem of synthesizing an abstract representation
of the stabilizing behavior of hybrid automata. We defined P-stable abstractions
that have two key distinguishing features: first, they provide the most precise
account – with respect to the given set of predicates – of the evolution between
stable conditions in response to external events; second, they include timing
information derived from the duration of the stabilization process, which pro-
vides suitable values for slow-switching control. We proved that the problem
of synthesizing P-stable abstractions can be cast in the framework of Abstract
Interpretation, and presented a general synthesis algorithm which allows approx-
imating P-stable abstractions with precision depending on the abstract domain
being adopted. We show that P-stable abstractions are very informative from
a representational standpoint. The experimental evaluation demonstrates that
substantial performance improvements can be obtained by a compositional ap-
proach, leveraging the structure of hybrid automata networks.

In the future, we will investigate the use of symbolic techniques such as
SMT to complement Abstract Interpretation and further improve the scalability
and the precision of the engine. On the application side, the synthesis of P-
stable abstraction is currently being integrated within a industrial tool chain
of the Italian Railway Network [12]. Specifically, the aim is to reverse-engineer
legacy relay-based railways interlocking systems, using the P-stable abstraction
as reference specification for a computed-based equivalent solution.
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