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Abstract. Thanks to significant progress in the adopted implementa-
tion techniques, the recent years have witnessed a renewed interest in
the development of analysis tools based on the domain of convex poly-
hedra. In this paper we revisit the application of this abstract domain
to the case of reachability analysis for hybrid systems, focusing on the
lesson learned during the development of the tool PHAVerLite. In par-
ticular, we motivate the implementation of specialized versions of several
well known abstract operators, as well as the adoption of a heuristic tech-
nique (boxed polyhedra) for the handling of finite collections of polyhedra,
showing their impact on the efficiency of the analysis tool.

1 Introduction

Hybrid automata model dynamic systems exhibiting both discrete and continu-
ous behaviors. Due to the intrinsic complexity of these systems, soon after their
introduction several approaches have been put forward to apply formal meth-
ods, so as to support the developer when reasoning about their correctness. Most
notably, in [21,22] it was shown how abstract interpretation [9] based on the do-
main of convex polyhedra [12] can be used to compute correct approximations
of the reachable states for the class of linear hybrid automata.

During the following years, many tools for the automatic analysis of hybrid
systems have been implemented. In particular, PHAVer (Polyhedral Hybrid Au-
tomaton Verifier, [13,14]) represented a significant progress with respect to its
predecessor HyTech [23]. The applicability of the approach was extended from
the piecewise constant to the affine class of automata, by on-the-fly overapprox-
imation of the continuous dynamics tailored by a systematic partitioning of the
state space. Building on the PPL (Parma Polyhedra Library [4,5]), PHAVer fea-
tures a robust and relatively efficient backend for computing on the domain of
NNC (not necessarily closed) polyhedra. Moreover, it is characterized by the
systematic adoption of heuristic techniques meant to overcome the inherent lim-
itations affecting the implemented analysis: the excessive complexity of oper-
ators based on convex polyhedra; the loss of accuracy caused by the convex
approximation; and the slow convergence of the fixpoint computation, in partic-
ular when relying on partitioning techniques while using exact arithmetic. Since
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2011, PHAVer is included as a plug-in (PHAVer/SX) in SpaceEx [17]. Several
other verification tools for hybrid systems that are based on different abstract
domains and/or approximation algorithms have been developed [31]. Here we
only mention another SpaceEx plug-in, the LGG scenario [17,18], based on a
domain of template polyhedra, which however sacrifices formal soundness due
to the adoption of floating point computations.

In recent years, we are witnessing new momentum in the development of
efficient algorithms for the domain of convex polyhedra:

– by revisiting the Cartesian factoring technique proposed in [19,20], it was
shown that a static analysis tool based on convex polyhedra [32] is able
to obtain impressive speedups when analyzing benchmarks taken from the
software verification competition SV-COMP;

– a constraint-only version of the domain of convex polyhedra has been im-
plemented in the VPL (Verimag Polyhedra Library), exploiting Parametric
Linear Programming to quickly identify and remove redundancies [26];

– a new conversion algorithm has been proposed in [6] for the domain of NNC
polyhedra, improving upon the previous approaches [2,21]; this lead to the
development of the PPLite library [7], which is shown to obtain remarkable
efficiency improvements on the static analysis of C programs.

This progress motivated new interest in revisiting the application of poly-
hedral computations in the context of the analysis and verification of hybrid
systems. In particular, choosing PHAVer/SX as a starting point, a new plug-in
PHAVer-lite/SX [16] has been implemented for the SpaceEx platform, mainly
characterized by the replacement of the PPL backend with the newly developed
library PPLite [7]. Building on the encouraging efficiency results obtained by
PHAVer-lite/SX, in this paper we describe the new tool PHAVerLite [15].

While providing the same formal soundness guarantees, PHAVerLite differs
from PHAVer-lite/SX in that it is designed as a stand-alone tool, like the original
PHAVer. The independence from the SpaceEx platform simplifies the applica-
tion of more significant changes to the underlying algorithm for reachability
analysis, so as to easily experiment with novel computational heuristics, design
tradeoffs and specialized operators on the underlying domain of NNC polyhedra.
In Figure 1 we summarize the efficiency improvements obtained, with respect to
both PHAVer/SX and PHAVer-lite/SX, when analyzing the benchmarks coming
from the HPWC (hybrid systems with piecewise constant dynamics) category of
the ARCH-COMP friendly competition [15,16]. In the 2019 edition, the HPWC
category had a total of 25 tests: 15 ‘safe’ tests (aiming at proving a safety prop-
erty, so that a reachability analysis is permitted to compute overapproximations)
and 10 ‘unsafe’ tests (aiming at disproving a safety property, meaning that no
overapproximation is permitted). For the 13 tests on which PHAVer/SX is able
to terminate3 the average speedup factor obtained by PHAVerLite is ∼ 337;
moreover, PHAVerLite is able to complete the analysis (successfully proving

3 The tests on PHAVer-lite/SX and PHAVerLite have been executed on an Intel Core
i7-3632QM CPU; the tests on PHAVer/SX were executed on a faster CPU (∼ 25%).
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or disproving the corresponding property as required) of all but one of the 25
benchmarks in ∼ 224 seconds.
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Fig. 1. Comparing the tools PHAVer/SX, PHAVer-lite/SX and PHAVerLite on the
ARCH-COMP HPWC benchmarks.

The main contribution of this paper, however, is not the presentation of
the tool itself: rather, we describe in detail a few of the specific improvements
implemented in PHAVerLite, highlighting their impact on the overall efficiency.
In particular,

– we propose specialized implementations for several “common” abstract op-
erators on the domain of convex polyhedra: the computation of affine images
(Section 3.1); the approximation of the convex polyhedral hull (Section 3.2);
and the splitting of a polyhedron according to a constraint (Section 5);

– we propose a novel heuristic approach (boxed polyhedra) for a more efficient
handling of finite collections of polyhedra (Section 4.2), which can also be
viewed as an instance of an online meta-analysis [11].

In summary, our investigation shows that, when adopting an abstract domain
sacrificing some performance to favor precision, a good portion of the inefficien-
cies can often be eliminated by the identification of suitable heuristic techniques.

The paper is structured as follows. Section 2 briefly recalls some prelim-
inary concepts. Section 3 reconsiders the implementation of affine images for
convex polyhedra and discusses ways to overapproximate the expensive convex
polyhedral hull. Section 4 tackles the problem of the efficient handling of finite
collections of polyhedra, showing the effectiveness of a new heuristics. Section 5
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proposes a new operator for polyhedra libraries based on the Double Descrip-
tion framework, motivated by the usage of location partitioning techniques. We
conclude in Section 6.

2 Preliminaries

A non-trivial, non-strict linear inequality constraint β defines a closed half-space
con({β}) of the vector space Rn; we write ¬β to denote the complement of β,
i.e., the open half-space con({¬β}) = Rn \ con({β}). A not necessarily closed
(NNC) convex polyhedron φ = con(C) ⊆ Rn is defined as the set of solutions of a
finite system C of (strict or non-strict) linear inequality constraints; equivalently,
φ = gen(G) can be defined as the set obtained by suitably combining the elements
(lines, rays, points and closure points) of a generator system G. The Double
Description framework [28] exploits both representations; we write φ ≡ (C,G)
to denote that φ = con(C) = gen(G). The set Pn of all NNC polyhedra on
Rn, partially ordered by set inclusion, is a lattice 〈Pn,⊆, ∅,Rn,∩,] 〉, where the
emptyset and Rn are the bottom and top elements, the binary meet operator is
set intersection and the binary join operator ‘]’ is the convex polyhedral hull.

The use of the domain of convex polyhedra for static analyses based on ab-
stract interpretation has been introduced in [12]. The semantics of the analyzed
system is modeled by suitably combining the lattice operators mentioned above
with other operators that approximate the concrete behavior of the system. For
instance, the effect of a conditional guard described by linear constraints can
be modeled by the meet of the lattice, whereas the convex polyhedral hull can
be used to approximate the merging of control flow paths. The effect of affine
assignments on state variables can be modeled by computing the image of a
domain element under an affine transformation; the addition of k new state
variables is modeled by operator add dimsk : Pn → Pn+k, embedding the input
polyhedron in a higher dimension space, where the newly added dimensions are
unconstrained; similarly, the removal of a set V of state variables, where |V | = k,
can be modeled by a projection operator rem dimsV : Pn+k → Pn.

The set CPn of closed polyhedra on the vector space Rn is a sublattice
of Pn; CBn denotes the set of closed boxes on Rn, i.e., those polyhedra that
can be defined by inequality constraints having the form ±xi ≤ k. Note that
〈CBn,⊆, ∅,Rn,∩〉 is a meet-sublattice of CPn.

For a set S, ℘(S) denotes the powerset of S; we will write ℘f(S) to denote the
finite powerset of S, i.e., the set of all the finite subsets of S. The cardinality of
S is denoted by |S|. The finite powerset construction [3] is a domain refinement
similar to disjunctive completion [10]. It can be used to lift a base-level abstract
domain to model disjunctions by explicit (hence, finite) collections of base-level
elements. In the following, we instantiate the finite powerset construction by
fixing Pn as the base-level abstract domain, thereby trading some generality for
concreteness and readability. The reader interested in obtaining more details
and some links to the relevant literature is referred to [3]. For efficiency, it is
important that these finite collections of elements do not contain redundancies.
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A set S ∈ ℘f(Pn) is non-redundant (with respect to the base-level partial order
⊆) if and only if ∅ /∈ S and ∀φ1, φ2 ∈ S : φ1 ⊆ φ2 =⇒ φ1 = φ2. The set of
finite non-redundant subsets of Pn is denoted ℘fn(Pn). The reduction function
Ω: ℘f(Pn)→ ℘fn(Pn) is defined, for each S ∈ ℘f(Pn) by

Ω(S)
def
= S \ {φ1 ∈ S | φ1 = ∅ ∨ ∃φ2 ∈ S . φ1 ⊂ φ2 }.

Definition 1 (Finite powerset over Pn.). The finite powerset domain over
Pn is the join-semilattice 〈℘fn(Pn),`,⊥,⊕Ω〉, where the bottom element is ⊥ = ∅
and the binary join operator is defined by S1⊕Ω S2

def
= Ω(S1 ∪ S2).

Note that S1 ` S2 if and only if ∀φ1 ∈ S1 : ∃φ2 ∈ S2 . φ1 ⊆ φ2 (i.e., ‘`’ is the
Hoare powerdomain partial order).

We adopt a tailored definition for hybrid automata. In particular, we assume
that: initial states and state invariants are modeled by NNC polyhedra having
a fixed space dimension n; the discrete post operator is modeled by a linear
relation on pre-state and post-state variables (hence, having space dimension
2n); and the continuous flow operator is modeled by linear constraints on the
first-order derivatives of the variables (i.e., piecewise constant dynamics).

Definition 2. Let Loc, Lab and Var be finite sets of locations, synchronization
labels and state variables, respectively, where n = |Var |. A hybrid automaton
H = 〈Loc,Lab,Var , init, inv,−→,flow〉 is defined by:

– initial states init : Loc → Pn and invariant states inv : Loc → Pn, satisfying
init(`) ⊆ inv(`);

– a finite set −→ ⊆ (Loc × Lab × P2n × Loc) of discrete transitions between

locations; we write `1
a,µ−→ `2 to denote that (`1, a, µ, `2) ∈ −→;

– a continuous flow relation flow: Loc → Pn specifying the constraints on the
first order derivatives of the state variables.

Note that we consider the case where all initial states and invariants are convex.
Finite disjunctions can still be modeled by splitting locations; as an alternative,
one may explicitly choose ℘f(Pn) as the codomain of ‘init’ and/or ‘inv’.

The goal of reachability analysis is to compute or overapproximate the reach-
able set of configurations for the automaton. The reachable set is defined as the
fixpoint of a system of semantic equations, one for each location of the automa-
ton, having the following form [21]:

reach(`)
def
=

init(`) ∪
⋃

`′
a,µ−→`

dpost
(
reach(`′), µ, inv(`)

)↗flow(`)

 ∩ inv(`)

Informally, this equation means that the reachable state at location ` satisfies its
invariant predicate inv(`) and is obtained by letting the state evolve according
to the continuous relation flow(`) (using the time-elapse operator ↗), starting
from either an initial state in init(`) or from a state that can reach ` through
any incoming transition, via the discrete post operator dpost.
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Depending on the desired precision/efficiency tradeoff, on the domain of NNC
polyhedra the set reach(`) can be modeled by using either a single polyhedron or
a finite set of polyhedra: analysis tools such as PHAVer let the user choose the
approach. Convergence may be enforced by using widening operators [1,3,12,21],
but it is often the case that no widening is applied (e.g., when overapproximations
are not permitted), thereby obtaining a potentially non-terminating analysis.

3 Improving polyhedra operators

An approximation of the reachable set of a hybrid automaton can be computed
by iterating a suitable composition of well known operators on the domain of
NNC polyhedra [21,22]. In this section we focus our attention on the efficient
(exact or approximated) implementation of some of these operators.

3.1 Computing the discrete post operator

The discrete post operator models the effect of a transition `1
a,µ−→ `2 mapping the

automaton state from the source location `1 to the target location `2. Namely,
if S1 = {φ1, . . . , φm1

} is the current reachable state at `1, each disjunctive com-
ponent φi ∈ Pn is mapped by µ ∈ P2n to a disjunctive component ψj ∈ Pn,
contributing to the formation of the reachable state S2 = {ψ1, . . . , ψm2} of the
target location `2.4

Focusing now on a single disjunctive component φ ∈ Pn, the relational ap-
proach to compute the corresponding target component ψ ∈ Pn is by a straight-
forward application of the relational constraints in µ, which amounts to the
following abstract domain operations:

– state φ ∈ Pn is embedded in space P2n, by adding n unconstrained primed
variables V ′, yielding µ1 = add dimsn(φ);

– the constraints in µ are added to µ1 ∈ P2n, obtaining µ2 = µ1 ∩ µ;
– µ2 is brought back to Pn, by projecting away the n unprimed variables V ,

obtaining ψ2 = rem dimsV (µ2);
– finally, ψ2 is intersected with the target invariant, yielding ψ = ψ2 ∩ inv(`2).

While generally applicable, this relational approach may incur a high compu-
tational overhead, due to the temporary doubling of the number of variables. As
a consequence, most analysis tools provide optimized implementations for those
special cases when the relational constraints in µ happen to encode a rather
simple relation between the pre- and post- values of state variables. A common
approach is to classify the constraints in µ as follows:

– guard constraints: these are constraints that mention unprimed (i.e., source-
state) variables only; they are meant to filter the source state, possibly dis-
abling the transition altogether;

4 The synchronization label a ∈ Lab only plays a role when a hybrid automaton is
defined as the parallel composition of several smaller automata.
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– identity relations: these are constraints having the form x′i = xi, modeling
the fact that state variable xi is not affected by the transition;

– simple resets and increments: these have the form x′i = k and x′i = xi ± k,
respectively.

If all the constraints defining µ have one of the forms above, then the discrete
transition can be implemented rather efficiently, without the addition of new
variables. However, there are cases escaping from the given classification.

Example 1. The Dutch Railway Network benchmark (DRNW) is one of the test
in the HPWC category of the ARCH-COMP competition [15]. The automaton
specified in this benchmark is rather peculiar: being derived from a MPL (max-
plus-linear) system specified using difference-bound constraints, it happens to
be a purely discrete automaton (i.e., it has a trivial continuous flow dynamics).
The automaton tracks the value of 14 variables Var = {x1, . . . , x14}, each one
representing the departure time of trains from given railway stations. It has a
single location, featuring 12 self-loop discrete transitions, each one corresponding
to a different “region”. An example of linear relation µ ∈ P28 (modeling the
discrete transition for Region 1) is described by the following constraint system
where xi and x′i denote the pre- and post- values of state variable xi, respectively:

40 + x1 ≥ 72 + x6, 55 + x7 ≥ 54 + x8,
55 + x7 ≥ 37 + x5, 90 + x11 ≥ 93 + x12,
x′1 = 38 + x6, x′2 = 40 + x1,
x′3 = 50 + x2, x′4 = 41 + x3,
x′5 = 41 + x4, x′6 = 53 + x5,
x′7 = 38 + x14, x′8 = 36 + x14,
x′9 = 55 + x7, x′10 = 35 + x9,
x′11 = 54 + x10, x′12 = 58 + x10,
x′13 = 90 + x11, x′14 = 16 + x13.

The first 4 constraints describing µ, mentioning unprimed variables only, form
the transition guard. The remaining 14 constraints of µ bind a distinct primed
variable to a linear expression on unprimed variables only; these can be seen
as implementing a (non-simple) reset of all the state variables. Note that these
resets are meant to be computed simultaneously: in particular, due to the pres-
ence of circular dependencies (e.g., x1 → x6 → x5 → x4 → x3 → x2 → x1), the
semantics of the overall parallel reset operation is not equivalent to a sequential
composition of the individual resets.

Due to the problem with variable dependencies, tools such as PHAVer/SX

implement the discrete transition `1
a,µ−→ `2 following the relational approach.

An alternative, parallel approach, which can be adopted whenever µ is a com-
bination of linear guard and reset constraints as in Example 1, relies on poly-
hedra libraries implementing the parallel affine image operator. In this case,
after intersecting the source state φ with the guard constraints, this specific op-
erator is applied, avoiding the intermediate changes of space dimension. While
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being more efficient than the relational approach, even in this case the compu-
tational overhead may be significant; this is due to the fact that, in libraries
based on the Double Description method, the parallel affine image operator is
often implemented by rewriting the generator system: in order to obtain the con-
straint description, a non-incremental application of the conversion algorithm
by Chernikova is required.5

To avoid the problem above, we propose the compiled parallel approach, based
on an alternative implementation of the parallel affine image operator (available
in PPLite 0.4), only requiring incremental applications of the Chernikova algo-
rithm. To this end, we “compile” the set of parallel bindings into a carefully
chosen sequence of calls to the non-parallel affine image operator (whose incre-
mental computation is simple). We initially build a dependency graph where
each arc xi → xj means that the new value of xi depends on xj (hence, a bind-
ing resetting xj can be processed only after having processed the binding for xi).
Using the graph, we process those bindings having no dependencies, keeping the
graph up-to-date. When identifying a circular dependency (i.e., a cycle in the
graph), we break it by introducing a minimal number of primed variables, so as
to allow continuing with the sequential processing of the bindings. The unprimed
versions of these additional variables are later projected away. By following this
technique, all of the bindings can be processed by adding only a few variables,
thereby better exploiting the incremental nature of Chernikova algorithm.

Example 2. Considering Example 1, the new approach to compute the discrete
post operator starts, as before, by adding to φ the guard constraints. Then we
compute the dependency graph for the reset constraints, identifying cycles

x1 → x6 → x5 → x4 → x3 → x2 → x1,

x14 → x13 → x11 → x10 → x9 → x7 → x14,

as well as the non-circular dependencies x8 → x14 and x12 → x14.
Since x8 and x12 have no entering arcs, the corresponding bindings x′8 =

36 +x14 and x′12 = 58 +x10 can be processed (in any order). After that no other
binding can be processed, since we are left with the two cycles. Considering the
first cycle, we add a new space dimension for variable x′1; as a consequence, we
can process the sequence of bindings x′1 = 38 + x6, x′6 = 53 + x5, x′5 = 41 + x4,
x′4 = 41+x3, x′3 = 50+x2, x′2 = 40+x1 (in this order) and then project away the
unprimed variable x1. The bindings forming the other cycle are handled similarly,
for instance adding (and then projecting away) a single space dimension for x′14.

In Table 1 we show the time spent in PHAVerLite when computing the
reachable states for the specific benchmark DRNW-BDR01, when adopting the
classical relational and the compiled parallel approaches. As said before, since
this benchmark has a trivial continuous dynamics, almost all of the analysis
time is actually spent in the 96 calls to the discrete post operator. By exploiting
incrementality, the new approach is able to obtain a significant speedup factor

5 This is the case for the Apron library [24] and for PPLite up to version 0.3.
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(column ‘ratio’). It is worth stressing that, even though the relational constraints
µ ∈ P28 of Example 1 are all difference-bound constraints, the approach we are
proposing is more general, as it can handle all kinds of affine constraints.

discrete post overall analysis

implementation calls time time ratio

relational 96 129.28 129.60 11.86
compiled parallel 96 10.64 10.93 1.00

Table 1. Efficiency of the discrete post operator for the DRNW-BDR01 benchmark.

3.2 Approximating the convex polyhedral hull

As briefly recalled in Section 2, in principle the computation of reach(`) re-
quires to compute the set union of the initial states and the contributes of in-
coming transitions. Since this may incur high computational costs, the classical
approach [21,22] maintains a single polyhedron per location and systematically
overapproximates set unions using the convex polyhedral hull ‘]’.

As a matter of fact, there are cases when even the computation of the convex
polyhedral hull can be regarded as an overkill, so that more aggressive approx-
imations are applied. One approach is to replace the abstract domain of NNC
polyhedra with some further abstraction (such as octagons [27] or even boxes).
Another possibility is to keep computing on the domain of NNC polyhedra,
but use an approximate version of the convex polyhedral hull operator. Letting
φ1 = con(C1) and φ2 = con(C2), there are several options:

– the envelope φ1 tenv φ2, proposed in [8], is defined by keeping only those
constraints β ∈ C1 ∪ C2 that are valid for both φ1 and φ2;

– the weak join φ1 tw φ2, formalized in [30], is the smallest polyhedron con-
taining φ1 ∪ φ2 which is defined by constraints sharing the same slope with
the ones occurring in C1 ∪ C2;

– the inversion join φ1 tinv φ2 [30] further improves on the weak join by also
inferring some constraint slopes not occurring in C1 ∪ C2.

Note that (φ1 ∪ φ2) ⊆ (φ1 ] φ2) ⊆ (φ1 tinv φ2) ⊆ (φ1 tw φ2) ⊆ (φ1 tenv φ2).
In the following we consider the operator adopted in the original PHAVer,

named constraint hull, which happens to be equivalent to the weak join of [30].
Given a constraint β1 ∈ C1, the problem of finding the tightest constraint β2

having the same slope of β1 and satisfying φ2 ⊆ con(β2) can be addressed either
as a Linear Programming problem or, if the chosen representation allows it, by
enumerating the generators defining φ2. In both cases, we can obtain a significant
efficiency improvement with respect to the computation of the convex polyhedral
hull, which may either require a high number of iterations of the Chernikova
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conversion algorithm or a high number of redundancy checks when adopting a
constraint-only approach.

Example 3. The Fischer protocol benchmark (FISC) is one of the tests from
the HPWC category of the ARCH-COMP competition [15]; it models a time
based protocol for mutual exclusion between processes described in [25]. For the
instance FISCS06, whose composed automaton has 6 variables and 28672 loca-
tions, the verification goal is to prove that, during the interaction of 6 processes,
no two processes can be in the critical section at the same time. In order to
prove this property it is sufficient to keep a single polyhedron for each location.
In Table 2 we compare the overall analysis time obtained when using different
implementations to compute (exact or approximated) unions of NNC polyhedra.
Column ‘iters’ reports the number of iterations of the fixpoint computation; col-
umn ‘poly’ reports the number of polyhedra in the reachable set (which equals
the number of reachable locations when using ‘]’ or ‘tw’). The analysis exceeds
a 20 minutes timeout threshold when adopting exact unions (i.e., when com-
puting on the finite powerset domain of NNC polyhedra); the “constraint hull”
approach performs significantly better than the convex polyhedral hull, also be-
cause it causes the analysis to converge after fewer iterations. Note that the one
reported is the total time spent by PHAVerLite, including the parsing phase
and the generation of the automaton by parallel composition of its components;
together, these consume almost 40% of the 11.42 seconds spent on FISCS06.

implementation iters poly time time ratio

∪ > 184040 > 137072 > 1200.00 > 100.0
] 27289 2378 261.00 22.9
tw 8738 2378 11.42 1.0

Table 2. Comparing exact and approximated unions for the FISCS06 benchmark.

The results above have been obtained after replacing the original constraint
hull implementation in PHAVer with a specialized operator (based on the enu-
meration of generators) made available in version 0.4 of the PPLite library. While
this change has a negligible effect on the FISCS06 benchmark itself, we have
observed impressive speedups on those benchmarks characterized by a higher
number of state variables. For example, the time to compute the 917 applica-
tions of the constraint hull operator for the DISC04 benchmark (having 17 state
variables) dropped from 675.50 to 2.14 seconds.

When using PHAVerLite on the experiments of Figure 1, 3 of the 15 ‘safe’
tests require the full precision of the set union operator; for 11 tests the overap-
proximation provided by the constraint hull operator is precise enough to prove
the property of interest; for the remaining test, a timeout is obtained no matter
the considered approach.
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4 Handling sets of polyhedra

As discussed in the previous section, when the analyzed system can be veri-
fied by approximating disjunctions using a single polyhedron (either by apply-
ing the convex polyhedral hull or by more aggressive forms of approximation),
then this is usually the most efficient approach. There are however cases (e.g.,
when disproving the safety property in an ‘unsafe’ test) when in order to com-
plete successfully the verification task at hand the analysis needs to (explicitly
or implicitly) maintain a collection of elements of the chosen abstract domain.
Therefore, in this section we consider an analysis that models disjunctions using
explicit, finite collections of polyhedra in Pn.

In this context, it can be seen that most of the operators defining the se-
mantics of the system happens to be additive, so that they can be modeled by
an element-wise application of the corresponding approximation operator de-
fined on the base-level domain Pn. For instance, the meet (i.e., set intersection)
operator on Pn can be lifted on finite sets S1, S2 of polyhedra as follows:

S1 u S2
def
= {φ1 ∩ φ2 | φ1 ∈ S1, φ2 ∈ S2 }. (1)

If n1 = |S1| and n2 = |S2|, this approach requires n1 · n2 applications of the
base-level meet operator. In order to keep efficiency under control, it is there-
fore important that these finite collections of elements do not encode redundant
information.

4.1 On redundancy removal

The intuitive notion of “redundancy” needs some clarification. In the context
of reachability analysis, the concrete semantics of a finite set S ∈ ℘f(Pn) is
defined by the set union operator [[S]] =

⋃
S. Hence, strictly speaking, S may

be encoding redundant information in several, distinct ways:

1. an element φ ∈ S can be said to be redundant in S when it can be simply
dropped without affecting the semantics, so that [[S]] = [[S \ {φ}]];

2. if there exists φ1, φ2 ∈ S such that φ1 ∩ φ2 6= ∅, then φ1 and/or φ2 could
be partitioned in sets S′1 and S′2 of smaller, pairwise disjoint polyhedra such
that [[S]] = [[S \ {φ1, φ2} ∪ S′1 ∪ S′2]]; after partitioning, some of the elements
in S′1 ∪ S′2 may become redundant according to 1 and hence removed;

3. a subset S′ ⊆ S, where |S′| > 1, could be merged into a single polyhedron
φ =

⊎
S′ such that [[S]] = [[S \ S′ ∪ {φ}]], decreasing the cardinality of the

finite collection.

Note that the first form of redundancy listed above corresponds to the one
used when introducing the finite powerset construction (see Section 2). Since
maintaining non-redundancy has its own computational cost, most analysis tools
usually choose this lighter definition.

As a matter of fact, the original code in PHAVer was sometimes adopting
an even weaker form of redundancy removal when joining two finite sets of
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polyhedra; namely, S1⊕w S2
def
= S1 ∪ {φ2 ∈ S2 | @φ1 ∈ S1 . φ2 ⊆ φ1 }. Note

that ‘⊕w’ is not symmetric: thus, it may fail to remove some elements in S1

that are made redundant by elements coming from S2. On the other hand, the
application of the symmetric operator ‘⊕Ω’ requires a higher number of inclusion
tests: in the worst case, which is always attained when φ is not redundant in S,
S⊕w{φ} requires |S| inclusion tests, whereas S⊕Ω{φ} requires 2 · |S| tests.

Example 4. The Distributed Controller (DISC) is one of the tests coming from
the HPWC category of the ARCH-COMP competition [15]; it models the dis-
tributed controller for a robot that reads and processes data from a number of
sensors having different priorities. In Table 3 we show some statistics collected
during the analysis of instance DISC03 of the benchmark (i.e., using 3 sensors,
so that the automaton is defined on 11 variables and 258 locations), where we
have prevented PHAVerLite from computing the poly hull approximation and
rather maintain a finite set of polyhedra for each location.6 Distinguishing be-
tween those calls that actually add φ to S and those calls that detect φ to be
redundant, we report the total number of calls to the semantic operator S⊕{φ},
the resulting total number of inclusion tests performed, as well as their average
number and the average size of S. By detecting and removing redundant ele-
ments in S, operator ‘⊕Ω’ is able to significantly reduce the average size of S;
moreover, since some of the removed elements were in the “waiting list”, they no
longer need to be processed by the reachability algorithm, resulting in a signifi-
cant decrease of the number of calls to S⊕Ω{φ}. As a result, the total number
of inclusion tests is reduced by a factor of more than 20.

φ not redundant (added) φ redundant (not added)

⊕w ⊕Ω ratio ⊕w ⊕Ω ratio

calls to S ⊕ {φ} 63738 15131 4.2 109827 14945 7.3
total ⊆ tests 79312223 4112746 19.3 11613424 331650 35.0
avg |S| 1244.3 135.9 9.2 792.0 113.1 7.0
avg ⊆ tests 1244.3 271.8 4.6 105.7 22.2 4.8
total rem from S 0 9692 — 0 0 —

Table 3. The effectiveness of operators ‘⊕w’ and ‘⊕Ω’ on the DISC03 benchmark.

4.2 Improving efficiency of the inclusion tests

As seen in the previous section, Ω-reduction can significantly decrease the num-
ber of inclusion tests that need to be performed. In our quest for efficiency, the
next step is to try and improve the efficiency of the inclusion test itself.

6 This was done for exposition purposes, since this specific benchmark can be success-
fully verified, more efficiently, by using a single polyhedron for each location.
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Assuming that we are computing on a polyhedra library based on the Double
Description approach, the inclusion test φ1 ⊆ φ2 on polyhedra φ1, φ2 ∈ Pn is
usually implemented by checking that all the generators of φ1 = gen(G1) sat-
isfy all the constraints of φ2 = con(C2). In the worst case, this amounts to the
computation of |G1| · |C2| scalar products, each one requiring n + 1 multiplica-
tions and n additions of (arbitrary precision) integral coefficients, where n is the
dimension of the vector space.

By observing again the data in Table 3, we can see that most of the inclusion
tests are failing : for instance, in order to detect that φ is redundant in S (last
but one column in the table), we perform 331650 inclusion tests, among which
the successful ones are 14945, i.e., only 4.5%; things are even worse when φ is
not redundant (3rd column of the table), since in this case we perform 4112746
inclusion tests, among which the successful ones are 9692, i.e., only 0.24%. There-
fore, in order to improve efficiency, we look for heuristic procedures that allow
to quickly identify cases when the polyhedra inclusion test will necessarily fail.
To this end, we associate further abstractions to our polyhedra.

Definition 3. The bounding box function bbox: Pn → CBn is defined, for each
polyhedron φ ∈ Pn, as follows:

bbox(φ) =
⋂
{B ∈ CBn | φ ⊆ B }.

Note that the bounding box is required to be tight, i.e., it is the most precise
box in CBn containing φ.

Lemma 1. Let φ1, φ2 ∈ Pn. If bbox(φ1) 6⊆ bbox(φ2), then φ1 6⊆ φ2.

Thus, a correct (but incomplete) test for non-inclusion on Pn can be obtained by
checking non-inclusion of the bounding boxes. Since non-inclusion on boxes can
be checked by performing at most 2 · n (arbitrary precision) extended rational
comparisons, the efficiency gain with respect to the test on Pn may be significant.

The same approach can be iterated by further abstracting the bounding box
information into an even lighter approximation.

Definition 4. For each 1-dimensional box B ∈ CB1, the pseudo volume and
the number of rays of B are defined as

pvol(B)
def
=


0, if B is empty;

1 + (ub − lb), if B = [lb, ub] 6= ∅ is bounded;

+∞, otherwise;

nrays(B)
def
=


0, if B = [lb, ub] is bounded;

2, if B = R;

1, otherwise.

These are extended to n-dimensional boxes B ∈ CBn as follows:

pvol(B)
def
=

n∏
i=1

pvol(πi(B)), nrays(B)
def
=

n∑
i=1

nrays(πi(B)),
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where πi(B) is the projection of box B on the i-th coordinate of the vector space.

Note that, in the definition of ‘pvol’, the systematic addition of 1 to the length
of each 1-dimensional box is meant to force the computation of a positive pseudo
volume even for those boxes having some projections of length zero.

Lemma 2. Let B1, B2 ∈ CBn. If pvol(B1) > pvol(B2) or nrays(B1) > nrays(B2),
then B1 6⊆ B2.

Hence, a correct (but incomplete) test for non-inclusion on CBn can be obtained
by performing a constant number of comparisons.

This is the main idea behind the boxed polyhedra domain, where each poly-
hedron φ ∈ Pn in the finite collection is matched by information on the corre-
sponding bounding box. Note that the approach we are proposing can also be
viewed as the application of a dynamic meta-analysis [11].

Definition 5. A boxed polyhedron is a tuple 〈v, r, B, φ〉 such that φ ∈ Pn,
B = bbox(φ), r = nrays(B) and v = pvol(B). The set of boxed polyhedra is
partially ordered by the lexicographic composition of the orders defined on its
components.

In Table 4 we evaluate the effectiveness of Lemmas 1 and 2 in reducing the
number of polyhedra inclusion tests for the DISC03 benchmark. Note that we are
using the ‘⊕Ω’ operator, so that the total number of inclusion tests has already
been reduced from 90.9M to 4.4M, as reported in Table 3. It can be seen that,
for the considered benchmark, the semi-decision procedures are effective on more
than 95% of the inclusion tests performed. Also note that the non-inclusion tests
based on the number of rays never succeeds: this is due to the fact that, in test
DISC03, all polyhedra happen to be polytopes.

Lemma 2 Lemma 1

v1 > v2 r1 > r2 B1 6⊆ B2 φ1 6⊆ φ2

num tests 4444396 2274428 2274428 212357
⊆ decided 2169968 0 2062071 212357

% 48.82 0.00 46.40 4.78

Table 4. The effectiveness of the semi-decision procedures for inclusion tests on boxed
polyhedra 〈vi, ri, Bi, φi〉 for the DISC03 benchmark.

When implementing the inclusion test on boxed polyhedra, an optimization
can be obtained even when Lemma 1 fails to apply.7 In fact, by exploiting the
knowledge that bbox(φ1) ⊆ bbox(φ2), we can replace the full inclusion test
φ1 ⊆ φ2 with a lighter one, where we avoid to check the interval constraints of
φ2 against the generators of φ1. The effect of this heuristics can be significant: for

7 Note that this implies that neither Lemma 2 applies.
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instance, when computing the inclusion tests φ1 ⊆ φ2 for the DISC03 benchmark,
about 70% of the constraints are interval constraints.

A further improvement can be obtained if the finite collections are sorted ac-
cording to a suitable variant of the partial order relation defined on boxed poly-
hedra: this enables the application of binary search (rather than linear search) to
quickly detect the subrange of boxed polyhedra that actually need to be checked
for inclusion. In our experiments, we sorted these lists in increasing order of the
vi component (the bounding box pseudo-volume). For the DISC03 benchmark,
this reduces the total number of tests for applicability of Lemma 2 by more than
90% (from 4444396 to 314722).

reduction num iter boxing time ratio

⊕w 63805
unboxed 1492.79 141.77
boxed 108.76 10.33

⊕Ω 9625
unboxed 93.28 8.86
boxed 10.53 1.00

Table 5. Comparing efficiency for the DISCS03 benchmark.

In Table 5 we report the timings obtained for the DISC03 benchmark when
varying the reduction strategy and the choice of the powerset element (boxed or
unboxed polyhedra). The improvements provided by the two techniques carry
over to computation times; moreover, the two techniques provide almost orthog-
onal efficiency improvements.

In our implementation of boxed polyhedra, the bounding box information is
computed on-demand and cached. Some care has to be taken to invalidate these
caches after applying semantic operators that change the polyhedra.

4.3 Improving other operators

When adopting the finite powerset of boxed polyhedra, we can improve the
efficiency of other semantic operators. For instance, consider the implementation
of the lattice meet: as discussed before (see Equation 1), after the element-
wise application of the polyhedra intersections, the resulting powerset needs to
be checked for redundancies; in particular, some of the computed intersections
φ1 ∩ φ2 may be empty. In principle, the generation of these empty elements
could be avoided by checking if the two arguments φ1 and φ2 are disjoint, but
on the domain of polyhedra Pn this check happens to be as expensive as the
computation of the intersection itself. With boxed polyhedra, the following result
applies.

Lemma 3. Let φ1, φ2 ∈ Pn. If bbox(φ1) ∩ bbox(φ2) = ∅, then φ1 ∩ φ2 = ∅.

Lemma 3 can be used, for instance, to quickly detect that φ1 ∈ reach(`1) is

disjoint from the guard component of an outgoing transition `1
a,µ−→ `2 (i.e., the
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transition is disabled). For the DISC03 benchmark this happens in about 34%
of cases (15374 times on a total of 45514 checks). However, the efficiency gain
obtained is negligible.

5 Splitting polyhedra

In Sections 3.2 and 4 we revisited different ways to model, in the abstract seman-
tic construction, the merging of different execution paths. The efficient handling
of this merge operator is quite often one of the main concerns when designing a
static analysis tool. In this section, we turn our attention to the “dual” semantic
operator, which intuitively splits an execution path in two branches.

In a classical (forward semantics) program static analysis, splitting typically
occurs when approximating the effect of conditional branching: for instance, the
analysis of an if-then-else statement splits the current approximation into
a then-component (satisfying the conditional guard) and an else-component
(satisfying its complement). In the context of the verification of hybrid systems,
a similar semantic operator may be needed when a location state is partitioned
according to some constraints, so as to better approximate a continuous flow
relation which is not piecewise constant. Similarly, the split operator can be
used in the abstract solving of a geometric CSP [29], where the current search
space is partitioned into subdomains, refining the following propagation steps.
Splits are also relevant for powerset domains: for instance, given two sets of
polyhedra S1, S2 ∈ ℘f(Pn), the algorithm checking whether S1 is geometrically
covered by S2, i.e., (∪ S1) ⊆ (∪ S2), typically requires the splitting of those
polyhedra in S1 that are not included in a polyhedron in S2.

Depending on the application and the underlying abstract domain, different
variants of this operator may be defined.

Definition 6. Let β be a non-strict linear inequality constraint on Rn and β′

be the non-strict version of its (strict) complement ¬β. The strict and the non-
strict split operators are defined, for each φ ∈ Pn, as splits

β(φ) = (φ1, φ2) and
splitns

β (φ) = (φ1, φ
′
2), where φ1 = φ ∩ con({β}), φ2 = φ ∩ con({¬β}) and

φ′2 = φ ∩ con({β′}).

Note that φ = φ1 ∪ φ2 = φ1 ∪ φ′2; also, φ1 ∩ φ2 = ∅, while φ1 and φ′2 may
overlap. The non-strict operator ‘splitns

β ’ can also be defined on the domain of
topologically closed polyhedra CPn.

Available polyhedra libraries do not provide a direct implementation for the
split operator: it is typically implemented by the user, by first cloning the input
polyhedron and then separately adding the constraint β and its (strict or non-
strict) complement to the constraint systems of the two polyhedra. Such an
approach, however, easily results in a duplication of the computational work.

To see this, consider an implementation based on the Double Description
method8 and, for ease of exposition, consider the non-strict split operator applied

8 To some extent, the reasoning should also apply to constraint-only representations,
if the implementation attempts to identify and remove redundant constraints.
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to a closed polyhedron φ ≡ 〈C,G〉 ∈ CPn. The addition of β to constraint system
C requires a call to the incremental Chernikova conversion algorithm. The core of
this procedure partitions the generator system G into G+, G0 and G−, according
to the sign of the scalar product of each generator with β, and then linearly
combines G+ and G− to produce G?; the resulting polyhedron φ1 ≡ 〈C ∪ {β},G1〉
is defined by the new generator system G1 = G+ ∪ G0 ∪ G?. Since β and β′ only
differ in the sign of their coefficients, when adding β′ to C (so as to obtain φ′2)
we end up recomputing the same partition of G, modulo exchanging the roles of
G+ and G−; also, the previously computed set G? can be reused as is, since the
linear combination procedure is symmetric. Hence, φ′2 ≡ 〈C ∪ {β′},G′2〉 is easily
obtained by reusing the computation done before, letting G′2 = G− ∪ G0 ∪ G?,
with no additional scalar products or linear combinations.

When encoding NNC polyhedra using the direct representation proposed
in [6], the implementation of the strict operator ‘splits

β ’ is more complicated,but
it essentially preserves all of the computational savings mentioned above. This
is not the case when the NNC polyhedra are encoded by using an additional
slack variable [2,21], which is the classical approach implemented in Apron and
PPL. In such a case, the NNC polyhedron φ ∈ Pn would be encoded by a
closed representation ψ ∈ CPn+1, violating a basic assumption underlying our
optimization. The following example describes the problem in more detail.

x

ǫ

ψ

φ

ρρ′

β
x

ǫ ψ2

ψ1

φ2 φ1

Fig. 2. When using the ε-representation approach, the complementary constraints β
and ¬β are encoded by ρ and ρ′, which are not complementary in R2.

Example 5. On the upper left portion of Figure 2 we shown the topologically
closed ε-representation ψ ∈ CP2 for the 1-dimensional, half-open interval φ =
con({1 ≤ x < 6}) ∈ P1, which is depicted below ψ. The (closure) points of the
polyhedra are denoted by (unfilled) circles. Consider the constraint β ≡ (x ≥ 4),
so that ¬β ≡ (x < 4) and splits

β(P) = (φ1, φ2), where φ1 = con({4 ≤ x < 6})
and φ2 = con({1 ≤ x < 4}), represented on the lower right portion of the
figure. Working on the ε-representations though, the two (non-strict and strict)
inequalities β and ¬β are respectively encoded by ρ ≡ (4 ≤ x + 0 · ε) and
ρ′ ≡ (x + ε ≤ 4), which are both non-strict and not complementary on R2.
Hence, a proper computation of the split operator on the ε-representation ψ
(shown on the upper right portion of Figure 2) requires two distinct calls to the
incremental conversion procedure to obtain ψ1 and ψ2.
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In Table 6 we show the efficiency of different implementations of the split
operation: we compare the ‘standard’, user-defined implementation (on both the
PPL and the PPLite libraries) with the newly defined abstract operator (only
available in PPLite). The polyhedron chosen for the test is a half-open hypercube
H ∈ P12, defined by constraints of the form −1 < xi ≤ 1; for the tests on CP12

we use its topological closure cl(H); we also perform a test on H′ ∈ P12, which is
obtained fromH by adding three non-skeleton points [6] (that is,H′ also contains
the relative interior of three of the facets that are disjoint from H). In all cases,
the polyhedron is split by constraint β ≡ (x0 + 2x1 − 2x10 − x11 ≥ 0); when
splitting H, we test both the strict and non-strict variant of the split operation.

splitns
β (H) splits

β(H) splitns
β (cl(H)) splits

β(H′)
library impl time vec sat time vec sat time vec sat time vec sat

PPL standard 0.450 244 43.65 0.457 245 43.66 0.167 10 9.45 7.823 283 1742.13

PPLite
standard 0.068 10 4.73 0.069 10 4.73 0.066 10 4.73 0.070 10 4.81
split 0.035 5 2.36 0.036 5 2.37 0.035 5 2.36 0.038 5 2.44

Table 6. Splitting H, cl(H) and H′ using β. Units: time (s), vec (K), sat (M).

In columns ‘vec’ and ‘sat’ we report the number of operations performed on
vectors (scalar products and linear combinations) and saturation rows (popula-
tion counts, unions and tests for inclusion on bit-vectors): it can be seen that the
newly implemented operator systematically halves the values of these counters.
Note that, since this test is characterized by low magnitude coefficients, the ef-
ficiency gain on vector operations is probably underestimated. The comparison
with the PPL implementation confirms that libraries based on the ε-dimension
approach are significantly less efficient, in particular when the input polyhedron
contains non-skeleton constraints/generators.

6 Conclusion

Starting from PHAVer, we have developed a new tool PHAVerLite for the anal-
ysis of hybrid systems characterized by piecewise constant continuous dynamics.
While revisiting the application of the domain of NNC polyhedra to the prob-
lem of computing or overapproximating the reachable states, we focused our
attention on several well known abstract operators, showing that remarkable ef-
ficiency improvements can be obtained by providing implementations that are
specialized for the considered context. For a more efficient handling of sets of
polyhedra, we have proposed a new heuristic approach, where we couple each
polyhedron in the set with information corresponding to further approximations
(bounding box and pseudo volume). As future work, we plan to extend our in-
vestigation to other semantic operators, including those that are needed when
extending the analysis to more general classes of hybrid systems.
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