
C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 S
A

S
 *

 A

rtif
act * A

E
C

An Efficient Abstract Domain
for Not Necessarily Closed Polyhedra

Anna Becchi1 and Enea Zaffanella2

1 University of Udine, Italy
becchi.anna@spes.uniud.it
2 University of Parma, Italy
enea.zaffanella@unipr.it

Abstract. We present a construction of the abstract domain of NNC
(not necessarily topologically closed) polyhedra based on a recently in-
troduced variant of the double description representation and conversion
procedure. We describe the implementation of the operators needed to in-
terface the new abstract domain with commonly available static analysis
tools, highlighting the efficiency gains enabled by the new representation.
We also reconsider the widening operator for NNC polyhedra, proposing
a more appropriate specification based on the semantics of the domain
elements, rather than their low level representation details. Finally, we
provide an experimental evaluation comparing the efficiency of the new
abstract domain with respect to more classical implementations.

1 Introduction

When developing or configuring a program analysis or verification tool based
on Abstract Interpretation, the choice of the underlying abstract domain is a
critical design decision. For numerical properties, many possible alternatives are
available, each one characterized by a different tradeoff between the precision of
the properties that can be expressed and the corresponding computational cost.

The abstract domain of convex polyhedra [24] is often positively consid-
ered as far as precision is concerned, but deemed unfeasible due to well-known
results on its worst case exponential complexity. On the other hand, the do-
main of intervals [22] is definitely one of the most efficient choices, but quite
often leads to insufficient precision. Many weakly-relational domains have been
proposed (bounded differences [38,44], bounded logahedra [33], octagons [39],
octahedra [19], parallelotopes [1], pentagons [37], subpolyhedra [36], template
polyhedra [43], two variables per inequality [45], weighted hexagons [25], . . .),
each one providing its own contribution to a whole spectrum of options. In many
cases, analysis tools are based on a suitable combination of several domains [15].

The recent years have witnessed significant progress in the implementation of
some of these abstract domains. Sometimes, efficiency gains have been obtained
by strictly algorithmic improvements: this is the case, for instance, for the imple-
mentation of the octagon domain optimized for dense representations [46], or for
the adoption of more efficient adjacency tests [26,49] in the conversion procedures

of convex polyhedra. In other cases, the progress resulted from the application of
generic techniques that allow for a scalable use of the precise abstract domains,
such as the careful adoption of variable packing, either computed statically [15]
or dynamically [28,29,47,48]. As a result, analyses that were previously dismissed
as unfeasible turn out to be affordable and surprisingly effective.

In this paper, building on a recent result [13] on the representation of NNC
(not necessarily topologically closed) convex polyhedra in the DD (double de-
scription) framework, we describe the development of an alternative implemen-
tation for the corresponding abstract domain. We reconsider all of the operators
that are needed for the definition of a classical static analysis based on Abstract
Interpretation, stressing on the efficiency gains that are triggered by the adop-
tion of the new representation. In particular, by exploiting the availability of an
efficiently computable canonical representation for NNC polyhedra, we propose
a more appropriate, semantics-based specification for the widening operator.

All the proposed algorithms have been implemented in the PPLite library,
a new C++ library derived from the PPL (Parma Polyhedra Library, [8,9]). In
order to compare the new domain with respect to some of the available alter-
natives, we first interface the PPLite library with Apron [34] and then use it in
the static analyzer PAGAI [32]. This experimental evaluation allows for com-
paring both the precision and the efficiency of the analysis, showing significant
speedups with respect to the more classical implementations of the domain of
NNC polyhedra on a wide range of benchmarks.

The paper is structured as follows: Section 2 introduces the required notation
and background concepts; Section 3 summarizes the new representation for NNC
polyhedra [13]; Section 4 shows how to implement on the new representation
the operators needed for the development of a static analysis tool; Section 5
summarizes the results of the experimental evaluation; we conclude in Section 6.

2 Preliminaries

We write Rn to denote the Euclidean topological space of dimension n > 0 and
R+ for the set of non-negative reals; for S ⊆ Rn, cl(S) and relint(S) denote the
topological closure and the relative interior of S, respectively.

A not necessarily topologically closed convex polyhedron (for short, NNC
polyhedron) is defined as the set of solutions of a finite system C = 〈C=, C≥, C>〉
of linear equality, non-strict inequality and strict inequality constraints, i.e.,

P = con(C) def
=
{
p ∈ Rn

∣∣ ∀β = (aTx ./ b) ∈ C, ./ ∈ {=,≥, >} . aTp ./ b
}
.

The set Pn of all NNC polyhedra on the vector space Rn, partially ordered
by set inclusion, is a lattice3 〈Pn,⊆, ∅,Rn,∩,] 〉, where the emptyset and Rn
are the bottom and top elements, the binary meet operator is set intersection
and the binary join operator ‘]’ is the convex polyhedral hull. We write CPn to
denote the lattice of closed polyhedra on Rn, which is a sublattice of Pn.

3 We assume some familiarity with the basic notions of lattice theory [14].

2

A constraint β = (aTx ./ b) is said to be valid for P ∈ Pn if all the points
in P satisfy β. We write Hβ to denote the hyperplane induced by β; the set
F = Hβ ∩ P is a face of P. We write nncFacesP to denote the finite set of faces
of P ∈ Pn. Note that P =

⋃{
relint(F)

∣∣ F ∈ nncFacesP
}

.
A vector r ∈ Rn such that r 6= 0 is a ray of a non-empty polyhedron P ⊆ Rn

if, ∀p ∈ P and ∀ρ ∈ R+, it holds p + ρr ∈ P. The empty polyhedron has no
rays. If both r and −r are rays of P, then r is a line of P. A vector c ∈ Rn
is a closure point of a non-empty polyhedron P ⊆ Rn if, ∀p ∈ P and ∀λ ∈ R
such that 0 < λ < 1, it holds λp + (1 − λ)c ∈ P. The set P ⊆ Rn is an NNC
polyhedron if there exist finite sets L,R,C, P ⊆ Rn such that 0 /∈ (L ∪ R) and
P = gen

(
〈L,R,C, P 〉

)
, where

gen
(
〈L,R,C, P 〉

) def
=

Lλ+Rρ+ Cγ + Pπ ∈ Rn

∣∣∣∣∣∣∣
λ ∈ R`,ρ ∈ Rr+,
γ ∈ Rc+,π ∈ Rp+,π 6= 0,∑c
i=1 γi +

∑p
i=1 πi = 1

.
We say that P 6= ∅ is described by the generator system G = 〈L,R,C, P 〉 [6,11].

For a constraint β and a generator system G, we write sat(β,G) to denote the
generator system composed by those elements of G saturating β (i.e., satisfying
the corresponding equality constraint). For a constraint system C, we define
sat(C,G) =

⋂{
sat(β,G)

∣∣ β ∈ C }.4 We define sat(g, C) and sat(G, C) similarly.
The DD method [41] combines the constraints and the generators of a poly-

hedron into a DD pair (C,G): we write P ≡ (C,G) when P = con(C) = gen(G).
For topologically closed polyhedra (i.e., those polyhedra that can be described

by a constraint system where C> = ∅ and a generator system where C = ∅), there
exist conversion procedures [17] that can compute each description starting from
the other one. When converting from constraints to generators,5 the procedure
starts from a DD pair (C0,G0) representing the whole vector space and adds, one
at a time, the elements β0, . . . , βm of the input constraint system producing a
sequence of DD pairs

{
(Ck,Gk)

}
0≤k≤m+1

representing the polyhedra

Rn = P0
β0−→ . . .

βk−1−−−→ Pk βk−→ Pk+1
βk+1−−−→ . . .

βm−−→ Pm+1 = P.
When adding the constraint βk to polyhedron Pk = gen(Gk), the generator
system Gk is partitioned into the three components G+k , G0k, G−k , according to
the sign of the scalar products of the generators with βk (those in G0k are the
saturators of βk); the new generator system for polyhedron Pk+1 is computed

as Gk+1
def
= G+k ∪ G0k ∪ G?k , where G?k = comb adjβk

(G+k ,G−k) and

comb adjβk
(G+k ,G−k)

def
=
{

combβk
(g+, g−)

∣∣ g+ ∈ G+k , g− ∈ G−k , adjPk
(g+, g−)

}
.

Function ‘combβk
’ computes a linear combination of its arguments, yielding a

generator that saturates the constraint βk; predicate ‘adjPk
’ is used to select only

4 Note that we abuse notation by adopting the usual set operator and relation symbols
to denote the corresponding component-wise extensions on systems.

5 The opposite conversion works in the same way, exploiting duality.

3

those pairs of generators that are adjacent in Pk. The conversion procedure can
also simplify systems, putting them in minimal form: C (resp., G) is in minimal
form if it contains a maximal set of equalities (resp., lines) and no redundancies.6

The classical approach for the extension of the DD method to the case of NNC
polyhedra, put forward in [30,31] and studied in more detail in [6,11], is the one
adopted in both the NNC Polyhedra domain of the PPL [9] and the NewPolka do-
main of the Apron library [34]. It is based on an indirect representation, whereby
each NNC polyhedron P ∈ Pn is mapped into a closed polyhedron R ∈ CPn+1.
The mapping encodes the strict inequality constraints by means of an additional
space dimension (playing the role of a slack variable) usually denoted as ε, which
needs to be non-negative and bounded from above. While allowing for reusing
the same conversion procedures implemented for closed polyhedra, this approach
is known to suffer from a few issues (which have been described in full detail
in [13]), leading to avoidable inefficiencies.

3 The New Representation for NNC Polyhedra

To the best of our knowledge, the algorithms described in [13] are the first
proposals of conversion procedures working on a direct DD representation for
NNC polyhedra. In this section we summarize the results presented in [13], which
lay the foundations for the development of a new implementation of the abstract
domain of NNC polyhedra.

The new representation of [13] stems from the observation that some of the
constraints and generators describing an NNC polyhedron need not be provided
with a fully geometrical description. This can be seen for the polyhedron shown7

on the left hand side of Figure 1: there is no need to know the exact slope of the
strict inequality constraint β1, as it can be replaced by any other strict inequality
satisfied by all of the points of the polyhedron and saturated by closure point
c0; similarly, there is no need to know the precise position of point p1, which can
be replaced by any other point on the open segment (c0, c1).

Hence, the new representation distinguishes between the skeleton compo-
nent, which is described geometrically, and the non-skeleton component, which
is instead provided with a combinatorial description. For constraints, the non-
skeleton component is a collection of strict inequality constraints behaving as
face cutters: they remove some of the faces from the polyhedron described by
the skeleton constraint system. For generators, the non-skeleton consists of gen-
erating points behaving as face fillers: they add to the polyhedron described by
the skeleton generator system (the relative interior of) some of its faces.

For exposition purposes and without loss of generality, in the following we
focus on the constraint representation. As usual, by duality arguments, all defi-
nitions and results can be extended to the case of generators [13].

6 β ∈ C is redundant in C if con(C) = con(C \ {β}); similarly for generators.
7 In the figures, the (strict) inequality constraints are denoted by (dashed) lines and

the (closure) points are denoted by (unfilled) circles.

4

x

y

β1

p0

c0 c1

c2

β2

p1
x

y

β

×

p0

×

c0 c1

c2c4

c3 ns⋆1

ns⋆2

Fig. 1. On the left hand side, an NNC polyhedron having no “canonical” geometric
representations; on the right hand side, the same polyhedron, after the strict inequality
β has been (incrementally) processed by procedure skel-conv.

A non-empty face can be uniquely identified by the set of skeleton constraints
that it saturates: thus, a cutter for such a face can be represented in a combina-
torial way using the same set, called its support.

Definition 1 (Skeleton and non-skeleton of a constraint system). Let
P = con(C) ∈ Pn and Q = cl(P), where C = 〈C=, C≥, C>〉 is a constraint system
in minimal form; let SC ⊆ C> be the set of strict inequalities β> whose non-
strict version β≥ cannot be obtained by a combination of the other constraints

in C. The skeleton of C is SK = skel(C) def
= 〈C=, C≥ ∪ SC, ∅〉. The support of a

face F of Q is SKF def
= {β ∈ SK | F ⊆ Hβ }. The non-skeleton of C is the set

NS
def
= ↑{ SKF | ∃β ∈ C> . F = Hβ ∩ Q}.8

Note that the skeleton has no strict inequalities, so that con(SK) = cl(P).
If F ′ ⊆ F are two faces of Q = cl(P), then SKF ⊆ SKF ′ ; also, the set of
faces of Q that are cut (i.e., not included) in P is downward closed, hence
the non-skeleton NS is upward closed. Thus, polyhedron P can be obtained by
removing from its topological closure those faces encoded by the non-skeleton:

namely, P = con(〈SK,NS 〉) def
= con(SK) \⋃{F | SKF ∈ NS }. Given a support

ns = SKF ∈ NS , we write ns ≡ β> to denote that β> is a materialization of ns,
i.e., a geometric cutter for face F , obtained by combining the constraints in ns.

Several optimizations can be applied at the implementation level. Since every
ns ∈ NS always includes all the equalities in C=, these can be left implicit, i.e.,
removed from the support. When this is done, the supports that happen to be
singletons correspond to the combinatorial encoding of the constraints in SC
(see Definition 1). Since their geometric position is uniquely identified, these can
be promoted, i.e., removed from the non-skeleton component NS and directly
included as strict inequalities in SK; namely, the skeleton SK = 〈C=, C≥∪SC, ∅〉
is actually represented as SK = 〈C=, C≥,SC〉. Finally, the upward closed set NS
is represented by encoding only its minimal elements; a support ns ∈ NS can
be identified as redundant (and removed) when ns ∩ SC 6= ∅ or there exists
ns ′ ∈ NS such that ns ′ ⊂ ns. In the rest of the paper, when referring to a pair
〈SK,NS 〉, it is assumed that these optimizations are applied.

8 ↑S denotes the smallest upward closed set containing S.

5

Example 1. Consider the polyhedron on the left hand side of Figure 1, defined
by constraint system C = {2 ≤ x < 7, 1 ≤ y ≤ 3, x + y > 3}. The constraint
system is split into the skeleton component

SKc =
〈
∅, {2 ≤ x, 1 ≤ y ≤ 3}, {x < 7}

〉
and the non-skeleton component NS c = {nsc}, where nsc = {2 ≤ x, 1 ≤ y}. Note
that β1 = (x+ y > 3) is one of the materializations of the support nsc and the
strict inequality β2 = (x < 7) has been promoted into the skeleton component.
Similarly, the generator system is split into SKg =

〈
∅, ∅, {c0, c1, c2}, {p0}

〉
and

NS g = {nsg}, where nsg = {c0, c1}. Point p0 has been promoted into the skeleton
component and point p1 is a materialization of nsg.

Conversion algorithm. Consider the conversion from constraints to gener-
ators, which incrementally adds a set of geometric constraints SKc

in to a DD
pair (Cdst ,Gdst). The new procedure [13], recalled in Pseudocode 1, handles each
β ∈ SKc

in in two phases, one for each of the components of Gdst = 〈SK,NS 〉.
The skeleton phase follows the same pattern of the conversion procedure for

closed polyhedra. Namely, SK is partitioned in SK+, SK0, SK− according to the
sign of the scalar products with β, and the set SK? is computed by combining
the generators in SK+ with those in SK−. Being restricted to the skeleton, the
combination can safely apply the adjacency tests, which are crucial for efficiency.

The non-skeleton phase is where the new algorithm really differs from the
classical one. Due to space constraints, we only provide here a high level, intuitive
view of this phase, which is described in full detail in [13]. The NS component
is partitioned in NS+, NS 0, NS− and NS±, according to the already computed
partition for the skeleton. These sets are then processed to produce NS? by
helper procedures move-ns and create-ns. Each support ns ∈ NS± (i.e., those
whose materializations lie on both sides of Hβ) is updated by move-ns so as
to saturate (resp., satisfy) the non-strict (resp., strict) inequality constraint β.
Each other support (i.e., those whose materializations lie on only one of the
half-spaces induced by β) is processed by create-ns, which “combines” it with
the supports on the other side of β. This combination step includes a partial
enumeration of the face lattice (enumerate-faces). In lines 8 to 12 NS? is
non-redundantly merged (using operator ‘⊕’) with the remaining supports. It
should be stressed that the non-skeleton phase of the algorithm only performs
set-theoretic operations on supports, i.e., no further linear combinations need to
be computed. It uses two basic helper functions, to compute support closure [35]
and project it on the correct side of constraint β:

supp.cl(ns)
def
= sat

(
sat(ns,SKc),SKg

)
\ L,

projβ(ns)
def
=

{
ns \ SK−, if β is a strict inequality;

ns ∩ SK0, otherwise.

6

Pseudocode 1 Conversion from geometric constraints to generators.

function skel-conversion(SKc
in , 〈SK,NS〉)

2: for all β ∈ SKc
in do

skel partition(β, SK);
4: nonskel partition(〈SK,NS〉);

SK? ← comb adjβ(SK+,SK−); SK0 ← SK0 ∪ SK?;
6: NS? ← move-ns(β, 〈SK,NS〉);

NS? ← NS? ∪ create-ns(β, 〈SK,NS〉);
8: if is equality(β) then 〈SK,NS〉 ← 〈SK0,NS0 ⊕NS?〉;

else if is strict ineq(β) then
10: SK0 ← points become closure points(SK0);

〈SK,NS〉 ← 〈SK+ ∪ SK0,NS+ ⊕NS?〉;
12: else 〈SK,NS〉 ← 〈SK+ ∪ SK0, (NS+ ∪ NS0)⊕NS?〉;

promote-singletons(〈SK,NS〉);
14: return 〈SK,NS〉;

function move-ns(β, 〈SK,NS〉)
16: NS? ← ∅;

for all ns ∈ NS± do NS? ← NS? ∪ {projβ(supp.cl(ns))};
18: return NS?;

function create-ns(β, 〈SK,NS〉)
20: NS? ← ∅;

let SK = 〈L,R,C,SP〉;
22: for all ns ∈ NS− ∪ {{p} | p ∈ SP−} do

NS? ← NS? ∪ enumerate-faces(β, ns, SK+, SK);

24: if is strict ineq(β) then
for all ns ∈ NS0 ∪ {{p} | p ∈ SP0} do

26: NS? ← NS? ∪ enumerate-faces(β, ns, SK+, SK);

else
28: for all ns ∈ NS+ ∪ {{p} | p ∈ SP+} do

NS? ← NS? ∪ enumerate-faces(β, ns, SK−, SK);

30: return NS?;

function enumerate-faces(β, ns, SK′, SK)
32: NS? ← ∅; let SK′ = 〈L′, R′, C′,SP ′〉;

for all g ∈ (R′ ∪ C′) do NS? ← NS? ∪ {projβ(supp.cl(ns ∪ {g}))};
34: return NS?;

procedure promote-singletons(〈SK,NS〉)
36: let SK = 〈L,R,C,SP〉;

for all ns ∈ NS such that ns = 〈∅, ∅, {c}, ∅〉 do
38: NS ← NS \ {ns}; C ← C \ {c}; SP ← SP ∪ {c};

7

Example 2. Consider again the polyhedron P shown on the left hand side of
Figure 1, already described in Example 1. On the right hand side of the figure,
we show the effect of adding to P the strict inequality β = (4 < x).

The skeleton component SKg is partitioned in SK+ = {c1, c2}, SK0 = ∅ and
SK− = {p0, c0}; thus, NS+ = NS 0 = NS− = ∅ and NS± = NS = {nsg}.9 In the
skeleton phase, the set SK? = {c3, c4} is obtained combining adjacent skeleton
generators (c0 with c1 and p0 with c2, respectively). In the non-skeleton phase,
move-ns processes nsg ∈ NS±, obtaining

ns?1 = projβ(supp.cl(nsg)) = {c0, c1, c3} \ {p0, c0} = {c1, c3}.

We have intuitively moved the materializations for nsg to the correct side of β.
Function create-ns processes the skeleton point p0, which is a filler for (the
relative interior of) point p0 itself, the segments [p0, c2], [p0, c0] and the whole
polyhedron P: enumerate-faces explores this set of faces and projects them
in NS+, obtaining the new supports ns?2 = {c2, c4} and ns?3 = {c1, c2, c3, c4}.
After removing redundancies (i.e., dropping the non-minimal support ns?3), we
obtain

SKg =
〈
∅, ∅, {c1, c2, c3, c4}, ∅

〉
, NS g =

{
ns?1,ns?2

}
.

4 Operators on the New Representation

In principle, when adopting the new representation recalled in the previous sec-
tion, each operator on the abstract domain of NNC polyhedra could be im-
plemented indirectly, by first materializing the non-skeleton elements and then
applying the operator on the fully geometrical descriptions obtained. In this sec-
tion we show that such a materialization step (and its computational overhead)
is not really needed: all of the classical operators required for static analysis
can be directly computed on the new representation, by distinguishing their ef-
fects on the geometrical and the combinatorial components, also exploiting this
division to simplify some of the procedures.

Emptiness, inclusion and equality. P = gen(〈SKg,NS g〉) is empty if and
only if it has no point, i.e., SKg contains no point and NS g = ∅.

The inclusion P1 ⊆ P2 holds if and only if each generator of P1 satisfies all of
the constraints of P2. Note that the lines, rays and closure points of P1 need to be
checked only against the skeleton constraints of P2; only the points of P1 need to
be checked against the non-skeleton strict inequalities of P2. Also, when checking
a non-skeleton element, no additional scalar product needs to be computed: the
result of the check is derived from the saturation information already computed
(and cached) for skeleton elements. For instance, a skeleton point p1 ∈ SKg

1

violates a non-skeleton constraint ns2 ∈ NS c
2 when p1 ∈ sat(ns2,SKg

1).

9 Recall that nsg = {c0, c1} is the support describing the materialization p1.

8

Equivalence P1 = P2 can be checked by performing two inclusion tests. Since
the new representations satisfy a stronger form of normalization,10 optimizations
are possible: for instance, the test can be quickly answered negatively when the
cardinalities of the minimized representations do not match.

Conditional and “forget”. A conditional test checking an affine predicate on
program variables is modeled by adding the corresponding constraint to the poly-
hedron defining the program state. Similarly, a non-deterministic (or non-linear)
assignment can be modeled by “forgetting” all the constraints mentioning the
variable assigned to, i.e., by adding the corresponding line as a generator. Hence,
these two operators can be directly implemented by a call to the incremental
conversion procedure of [13].

Meet and join. From a high level point of view, when a conversion procedure is
available the computation of meets (i.e., set intersections) and joins (i.e., convex
polyhedral hulls) on the domain of convex polyhedra is straightforward. Namely,
if P1 ≡ (C1,G1) and P2 = (C2,G2), then the DD pair for P = P1 ∩ P2 is obtained
by incrementally adding to (C1,G1) the constraints in C2; similarly, the DD pair
for P = P1] P2 is obtained by adding to (C1,G1) the generators in G2.

Without loss of generality, consider the case of set intersection. When incre-
mentally adding the constraints in C2 = 〈SKc

in ,NS c
in〉 to the DD pair for P1, we

first apply the algorithm in Pseudocode 1 to the skeleton constraints in SKc
in ;

then, in order to avoid materializations, we process each non-skeleton constraint
ns ∈ NS c

in using the procedure shown in Pseudocode 2 (this extension of the
conversion procedure was not considered in [13]).

Note that, in lines 3 to 4, the constraint ns always partitions the generators
so that SK− = NS− = NS± = ∅. Hence, we can avoid all the scalar prod-
ucts that would have been computed in the case of a geometric input; also,
saturation information is not affected, so that SK0 (and consequently NS 0) are
easily computed by intersecting the generators saturating the support. As a
consequence, the non-skeleton conversion procedure can directly call the helper
strict-on-eq-points(ns, SK, NS) defined in [13], which is a tailored version
of the create-ns function, also including the final update of SK and NS .11

At the implementation level, a little additional care has to be taken when pro-
cessing the skeleton component: if a geometric constraint β ∈ SKc

in is detected
to be redundant, it cannot be eagerly dropped, because it might occur in a sup-
port ns ∈ NS c

in and hence be needed to compute the corresponding partition;
thus, the removal of β is delayed till completion of nonskel-conversion.

10 It is meant, with respect to those available for ε-representations.
11 The first parameter β of strict-on-eq-points seems to require a geometrical con-

straint, but this is not really the case; the parameter is only used to check the
constraint kind (equality, non-strict inequality or strict inequality): in the special
case of a non-skeleton element ns, we always have a strict inequality.

9

Pseudocode 2 Conversion from combinatorial constraints to generators.

function nonskel-conversion(NS c
in , 〈SK,NS〉)

2: for all ns ∈ NS c
in do

SK− = ∅; SK0 = sat(ns,SK); SK+ = SK \ SK0;
4: nonskel partition(〈SK,NS〉);

strict-on-eq-points(ns, 〈SK,NS〉);
6: return 〈SK,NS〉;

procedure strict-on-eq-points(β, 〈SK,NS〉)
8: NS? ← ∅; let SK0 = 〈L0, R0, C0,SP0〉;

for all ns ∈ NS0 ∪ {{p} | p ∈ SP0} do
10: NS? ← NS? ∪ enumerate-faces(β, ns, SK+, SK);

SK0 ← points-become-closure-points(SK0);
12: 〈SK,NS〉 ← 〈SK+ ∪ SK0,NS+ ⊕NS?〉;

The extension of the conversion procedure that incrementally adds non-
skeleton generators (used when computing joins) is similar and can be derived,
as usual, by exploiting duality arguments.

Assignment of an affine expression. The assignment xi := aTx+ b is mod-
eled by computing the image the polyhedron under the affine map f : Rn → Rn,
where q = f(p) is such that qi = aTp+ b and qj = pj , when i 6= j. If f is invert-
ible (i.e., ai 6= 0), then the image and its inverse f−1 can be easily applied to
the skeleton components of the generator and constraint representations, respec-
tively; the non-skeleton components are not affected at all. If f is not invertible
(i.e., ai = 0), then it is computed by first “forgetting” the constraints on xi,
adding the corresponding line, and then adding constraint β = (xi = aTx+ b).
In both cases, the minimal form of the input DD pair is incrementally maintained
(i.e., there is no need to invoke the full conversion procedure).

4.1 A semantic widening for NNC polyhedra

The design of appropriate widening operators is considered both a key compo-
nent and a main challenge in the development of abstract domains [5,7,20,21,23],
in particular when targeting numerical properties [3,4,42], because their accuracy
mostly depends on the particular context of application. For ease of exposition,
in the following we will only consider the well known standard widening [27].12

Definition 2 (Standard widening on CPn). Let P1,P2 ∈ CPn be such that
Pi = con(Ci), where P1 6= ∅ and C1 is in minimal form. Let also Ii = ineqs(Ci);13

12 For all widenings ‘∇’, we implicitly specify that ∅∇P2 = P2 .
13 We write ineqs(C) to denote the constraint system obtained by splitting each equality

in C into a pair of non-strict inequalities.

10

then P1∇CP2
def
= con(I ′1 ∪ I ′2), where

I ′1 =
{
β1 ∈ I1

∣∣ P2 ⊆ con({β1})
}
,

I ′2 =
{
β2 ∈ I2

∣∣ ∃β1 ∈ I1 . P1 = con(I1 \ {β1} ∪ {β2})
}
.

When P1 ⊆ P2, the following is an equivalent specification (see [3, Theo-
rem 5]), more appropriate for implementations based on the DD method.

Definition 3. Let P1,P2 ∈ CPn be such that P1 ≡ (C1,G1), P2 = con(C2),

∅ 6= P1 ⊆ P2 and C1 is in minimal form. Then P1∇CP2
def
= con(C), where

C =
{
β2 ∈ C2

∣∣ ∃β1 ∈ C1 . sat(β1,G1) = sat(β2,G1)
}
.

More often than desired, the specification of widening operators relies on
the “syntactic” representations of the abstract domain elements, rather than
their “semantics”; thus, when a canonical representation is missing (or deemed
too expensive to compute), the result of the widening depends on low level
representation details. This was the case for the original proposal of widening
on closed polyhedra [24], which was refined into a “semantic” widening in [27].
Similarly, the widenings defined in [40] for the graph-based representations of
bounded differences and octagons were refined into semantic widenings in [2,10].
Available implementations of the domain of NNC polyhedra based on the DD
method are affected by the same issue, because they compute the widening
of the underlying ε-representations, which are not canonical. This happens for
all of the widening variants defined on polyhedra, including the one proposed
in [3,4], as well as the improved versions that can be obtained by applying generic
techniques, such as the widening up-to [31].

x

ǫ ǫ ≤ 1

R1

x

ǫ ǫ ≤ 1

R2

x

ǫ ǫ ≤ 1

R3

Fig. 2. Widening NNC polyhedra delegating to widening on ε-representations.

Example 3. Consider the ε-representation polyhedra in Figure 2. The two poly-
hedra R1,R2 ∈ CP2 on the left hand side and the middle of the figure are encod-
ing the same NNC polyhedron P = con(C) ∈ P1, where C = {0.5 ≤ x, x < 2}.
Both representations encode no redundant constraint; they only differ in the
slope of the facet representing the strict inequality constraint. As a consequence,
when computing R3 = R1∇CR2, shown on the right hand side of the figure, the
standard widening operator on the ε-representations fails to detect the stability
of the strict inequality constraint, which is dropped. R3 represents the NNC

11

polyhedron P ′ = con({0.5 ≤ x}): even though correct from a theoretical point
of view, the widening depends on the syntactic encoding of strict inequalities.
As a side note, the user of the abstract domain might reasonably expect that a
property such as P∇CP = P always holds, but this is not the case.

When implementing the widening on NNC polyhedra by delegating to the
underlying widening on closed polyhedra, some precautions are required too:

– Definition 3 assumes that P1 ⊆ P2; note however that, for NNC polyhedra,
P1 ⊆ P2 does not automatically imply that property R1 ⊆ R2 holds for the
corresponding ε-representations;

– the implementation has to make sure that the result of the widening is still
a valid ε-representation, i.e., the bounds for ε cannot be dropped;

– in order to ensure the finite convergence guarantee, the first argument P1

should be described by a constraint system encoding no redundant elements;
however, a non-redundant description for the ε-representation R1 can still
encode many redundant constraints; these have to be removed by applying
the strong minimization procedures defined in [6,11].

As a consequence, the overall approach may also incur a significant overhead.
In contrast, when adopting the direct encoding of Section 3, we can adopt a

variant of Definition 3 to obtain a semantic widening on NNC polyhedra, because
all of the materializations of a non-skeleton strict inequality constraint share the
same saturation information, no matter for the variation in their slopes.

Definition 4 (Widening on Pn). Let P1,P2 ∈ Pn be such that P1 ≡ (C1,G1),
P2 = con(C2), ∅ 6= P1 ⊆ P2, each Ci = 〈SKc

i ,NS c
i 〉 is in minimal form and

G1 = 〈SKg
1,NS g

1〉. Then P1∇NP2
def
= con(〈SKc,NS c〉), where

SKc =
{
β2 ∈ SKc

2

∣∣ ∃β1 ∈ SKc
1 . sat(β1,SKg

1) = sat(β2,SKg
1)
}

;

NS c = {ns2 ∈ NS c
2 | ns2 ⊆ SKc }.

The next two lemmas show that ‘∇N’ is a well-defined widening operator on Pn.

Lemma 1. Definition 4 specifies a binary operator on Pn.

Proof. We need to show that the result computed by ‘∇N’ is not affected by a
change of representation for the two input arguments.

For P1,P2 ∈ Pn, where P1 6= ∅ and P1 ⊆ P2, let P1∇NP2 be computed
according to Definition 4; in particular, let P1 ≡ (C1,G1) and P2 = con(C2),
where Ci = 〈SKc

i ,NS c
i 〉 are arbitrary constraint representations for Pi satisfying

the minimality hypothesis and G1 = 〈SKg
1,NS g

1〉.
Note that, due to the inclusion hypothesis P1 ⊆ P2, all of the equality con-

straints in SKc
2 are detected as stable. Let β1 ∈ SKc

1 be a skeleton (strict or non-
strict) inequality constraint and β2 ∈ SKc

2 be a skeleton inequality constraint
such that sat(β1,SKg

1) = sat(β2,SKg
1) holds; that is, β2 ∈ SKc

2 is detected to
be stable due to β1 ∈ SKc

1. Being a skeleton constraint and due to the mini-
mality assumption, β1 identifies a facet F1 of cl(P1); thus, any other constraint

12

system representation for P1 will always contain a constraint β′1 (identifying
the same facet F1) such that sat(β1,SKg

1) = sat(β′1,SKg
1). The same reasoning

can be repeated for β2 and F2. Hence, the computed skeleton component SKc

does not depend on the chosen representations for P1 and P2. As a side note, if
P1 = cl(P1) then no strict inequality in SKc

2 can be detected as stable. When
working on closed polyhedra, Definition 4 becomes equivalent to Definition 3
and we have:

cl(P1)∇N cl(P2) = cl(P1)∇C cl(P2), (1)

where ‘∇C’ is known to be well-defined on CPn [3, Theorem 5].

Finally, consider the non-skeleton component and let ns2 ∈ NS c, so that
ns2 ∈ NS c

2 and ns2 ⊆ SKc. Support ns2 identifies a face (not a facet) F2 of
cl(P2) which is cut from P2, i.e., F2 ∩ P2 = ∅. Let F = {Fβ | β ∈ ns2 }
be the set of facets identified by the constraints in ns2, so that F2 =

⋂F .
Note that, since ns2 is non-redundant, all the facets in F have a non-empty
intersection with P2 (i.e., they correspond to non-strict inequalities); moreover,
all the facets in F are stable and, as observed in the previous paragraph, the
set of stable facets does not depend on the chosen constraint representations.
Therefore, in any other minimal representation for P2, there will be a set ns ′2
(i.e., a support) of non-strict skeleton constraints that identifies the same set
of stable facets F ; namely, ns ′2 identifies the same cut face F2 identified by
ns2. Hence, the computed non-skeleton component NS c does not depend on the
chosen representations for P1 and P2. ut

Lemma 2. ∇N : Pn × Pn → Pn is a widening operator.

Proof. For P1,P2 ∈ Pn, where P1 6= ∅ and P1 ⊆ P2, let P ′ = P1∇NP2 be
computed according to Definition 4.

First we show that ‘∇N’ is an upper bound operator, i.e., it satisfies both
P1 ⊆ P ′ and P2 ⊆ P ′. By Definition 4, it can be seen that P ′ = con(SKc,NS c),
P2 = con(SKc

2,NS c
2) and both SKc ⊆ SKc

2 and NS c ⊆ NS c
2 hold; hence, the

inclusion P2 ⊆ P ′ follows from the anti-monotonicity of function ‘con’; the other
inclusion P1 ⊆ P ′ follows from the hypothesis P1 ⊆ P2.

Next we show that the systematic application of ‘∇N’ forces the upward
iteration sequence to stabilize after a finite number of iterates. To this end, we
define a ranking function rank: Pn → N2+n, mapping a polyhedron into the
well-founded set (N2+n,�), where ‘�’ denotes the strict lexicographic ordering.
For each P = con(C) ∈ Pn such that P 6= ∅ and C = 〈SKc,NS c〉 is in minimal

form, we define rank(P)
def
= (e, s, fn−1, . . . , fj , . . . , f0), where e is the number of

equality constraints in SKc, s is the total number of constraints in SKc and,
for each j ∈ {0, . . . , n − 1}, fj is the number of strict inequality constraints
in C cutting a face of cl(P) having affine dimension j.14 Note that ‘rank’ is
well-defined, because C is in minimal form.

14 As an example, f0 is the number of strict inequality constraints cutting only a vertex
from the topological closure of the polyhedron.

13

To complete the proof we have to show that, whenever P1 ⊂ P ′ = P1∇NP2,
i.e., when the increasing sequence has not stabilized yet, the ranking function is
decreasing, i.e., rank(P ′)� rank(P1).

Let rank(P1) = (e, s, fn−1, . . . , f0) and rank(P ′) = (e′, s′, f ′n−1, . . . , f
′
0).

Since the constraint systems are in minimal form and ‘∇N’ is an upper bound
operator on Pn, for the equality constraints we always have e′ ≤ e. If e′ < e,
then the ranking function is decreasing; thus, in the rest of the proof, we assume
that e′ = e. Namely, we assume that P1, P2 and P ′ all have the same affine
dimension k = n− e.

Observe now that, by Definition 4, for the skeleton constraints we have s′ ≤ s.
Namely, each skeleton (strict or non-strict) inequality constraint β2 ∈ SKc

2 that is
selected to enter SKc has a unique corresponding skeleton constraint β1 ∈ SKc

1,
which identifies the same facet of cl(P ′) (recall that P1 and P ′ both have affine
dimension k). Again, if s′ < s, then the ranking function is decreasing; thus,
in the rest of the proof, we assume both e′ = e and s′ = s. Under such an
assumption, by Definition 4, we obtain a one-to-one correspondence between the
facets of cl(P1) and those of cl(P ′): this implies cl(P1) = cl(P2) = cl(P ′).

Consider now the tuples t = (fk−1, . . . , f0) and t′ = (f ′k−1, . . . , f
′
0), where as

said above k = n− e is the affine dimension of the polyhedra.15 By hypothesis,
cl(P) = cl(P ′) but P1 ⊂ P ′; hence we obtain t 6= t′. Moreover, we cannot have
t � t′, since this would mean that there exists a strict inequality in P ′ cutting
a face which is not cut from P1, contradicting P1 ⊂ P ′. Therefore t′ � t, which
implies rank(P ′)� rank(P1). ut

The new widening satisfies both P∇NP = P and P∇N cl(P) = cl(P), which
is not the case for the widening based on the ε-dimension approach. Also, equa-
tion (1) means that operator ‘∇N’ is indeed an extension on the domain Pn of
the standard widening ‘∇C’ defined on CPn.

Example 4. Reconsider polyhedron P = con({0.5 ≤ x, x < 2}), for which a cou-
ple of possible ε-representations were shown in Figure 2. When directly encoding
the strict inequalities and applying Definition 4, constraint β = (x < 2) is de-
tected to be stable, so that P∇NP = P. Moreover, letting β′ = (x ≤ 2), we also
have P∇N cl(P) = cl(P), because sat(β,SKg

1) = sat(β′,SKg
1).

In Definition 4, the non-skeleton constraints and generators in NS c
1 and NS g

1

play no role in the computation of the widening, simplifying its implementation.
As shown in Example 4, a non-strict inequality in β2 ∈ SKc

2 can be detected as
stable (i.e., enter the result SKc) even when it weakens a corresponding strict
inequality in SKc

1; this is not the case when blindly extending Definition 2. Also
note that a stable non-skeleton constraint ns ∈ NS c is only supported by stable
skeleton constraints.

Example 5. Consider P1 = con({0 ≤ x < 4, 0 ≤ y, 0 < x + 4y ≤ 8}) and
P2 = con({0 ≤ x ≤ 4, 0 ≤ y ≤ 2, 0 < 2x + y}), shown on the left and middle of

15 Note that for all k ≤ j ≤ n− 1, we have fj = f ′j = 0.

14

P1

ns1

β1

x

y

P2ns2
β2

x

y

Pns2
β2

x

y

Fig. 3. From left to right: P1, P2 and P = P1∇NP2.

Figure 3, respectively. Constraint β2 = (x ≤ 4) is stable, as it shares on P1 the
same saturation information of β1 = (x < 4). Support ns2 = {x ≥ 0, y ≥ 0} ≡
(0 < 2x + y) is stable, no matter if the shown materialization differs from the
one chosen for ns1 ≡ (0 < x + 4y), because the skeleton constraints defining it
are both stable. Thus, P1∇NP2 = con({0 ≤ x ≤ 4, 0 ≤ y, 0 < 2x + y}), shown
on the right hand side of the figure. An implementation based on Definition 2
would drop β2 and, depending on the chosen materializations, maybe also ns2.

In the next example we show that a blind extension of Definition 3 to the
case of NNC polyhedra, where the non-skeleton component NS c

2 is treated the
same of the skeleton component SKc

2, would not result in a proper widening,
since the finite convergence guarantee is compromised.

Example 6. For each i ∈ N\{0}, let βi = (x+iy ≤ i), Ci = {0 ≤ x, 0 ≤ y < 1, βi}
and Pi = con(Ci); note that Pi ⊂ Pi+1. Polyhedra P1 and P2 are shown on
the left hand side and middle of Figure 4. Note that Ci = 〈SKc

i ,NS c
i 〉, where

SKc
i = {0 ≤ x, 0 ≤ y, βi}, NS c

i = {nsi} and nsi = {0 ≤ x, βi} ≡ (y < 1).
By using Definition 3 as is, we would obtain Pi∇CPi+1 = Pi+1; namely, the
skeleton constraint βi+1 and the non-skeleton constraint nsi+1 are detected to
be stable, since in Pi they share the same saturation information of nsi (they are
only saturated by closure point (0, 1)). Hence, {Pi}i∈N would form an infinite
increasing chain. In contrast, when using Definition 4 to compute P1∇NP2, shown
on the right of the figure, constraints β2 and ns2 are both dropped.

P1

ns1

β1

x

y

P2

ns2

β2 β3

x

y

P

x

y

Fig. 4. An increasing chain in P2 where Definition 3 is not stabilizing; P = P1∇NP2 is
the result obtained when using Definition 4.

The ranking function defined in the proof of Lemma 2 may be decreasing
even though the number of non-redundant constraints is increasing.

15

Example 7. For i = 1, 2, consider Pi = con(Ci) ∈ P2, where

C1 = {0 < x < 1, 0 < y < 1},
C2 = {0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 < x+ y < 2,−1 < x− y < 1},

so that P1 is a topologically open square and P2 (which is neither closed nor
open) is obtained from cl(P1) by cutting away its four vertices. It is easy to
observe that P1∇NP2 = P2, because all of the skeleton constraints are stable.
Note that both constraint systems are in minimal form and their cardinalities are
increasing: |C2| = 8 > 4 = |C1|. Nonetheless, the ranking function is decreasing:

rank(P2) = (e′, s′, f ′1, f
′
0) = (0, 4, 0, 4)� (0, 4, 4, 0) = (e, s, f1, f0) = rank(P1).

5 Experimental Evaluation

The new representation for NNC polyhedra, the conversion algorithms and the
operators presented in the previous sections are implemented in PPLite, a new
software library developed at the Department of Mathematical, Physical and
Computer Sciences of the University of Parma. Derived from the Parma Poly-
hedra Library, PPLite is written in modern C++ and has a different goal: to
provide a simpler framework for experimenting with new ideas and algorithms
in the context of polyhedral computations, for both researchers and students. In
particular, it is not aimed at implementing the full range of abstract domains
(and operators) made available by the PPL. Other main characteristics are: (a)
both closed and NNC rational polyhedra are supported; (b) arithmetic compu-
tations are based on FLINT (http://www.flintlib.org/); (c) encapsulation
is not fully enforced, so that a knowledgeable user can directly change the con-
tents of data structures, e.g., to experiment with alternative implementations of
domain operators; (d) while performance and portability are deemed important,
priority is given to ease of implementation and readability.

A preliminary experimental evaluation of the new representation and conver-
sion algorithms for (closed and NNC) polyhedra was reported in [13], showing
impressive efficiency gains with respect to the PPL. Those results were obtained
inside the PPL framework, hence they were orthogonal with respect to many of
the PPLite’s implementation choices (e.g., the use of FLINT).16

In the following paragraphs we summarize the results of a more thorough ex-
perimental evaluation,17 where the PPLite library is used in a program analysis
based on Abstract Interpretation. To this end, we have interfaced the PPLite’s
NNC polyhedra domain to the Apron library [34], so as to make it available to
PAGAI [32], a static analyzer for invariant generation built on top of the LLVM
infrastructure. When using PAGAI, it is possible to choose between several ab-
stract domains, including boxes (box), octagons (oct), the native Apron domain

16 The efficiency gains have been confirmed when adopting the PPLite implementation.
17 All experiments have been performed on a laptop with an Intel Core i7-3632QM

CPU, 16 GB of RAM and running GNU/Linux 4.13.0-36.

16

http://www.flintlib.org/

for polyhedra (pk) and the Apron layer for the PPL’s polyhedra (ppl poly);
we added support for the new domain pplite poly. In Table 1 we report the
time spent by PAGAI in calls to the operators of these abstract domains (column
‘size’ shows the size of the LLVM bitcode file) when analyzing some C source files
distributed with PAGAI; most of these are variants of benchmarks taken from
the SNU real-time benchmark suite for worst-case execution time analysis.18

size Apron’s time

test KB box oct pplite ppl pk

decompress 549 6.64 41.04 40.83 101.08 211.04
filter 15 1.08 5.77 19.02 88.02 82.32
adpcm 67 0.75 3.12 5.08 14.31 21.78
decompress-opt 71 0.59 9.97 3.02 7.85 13.42
nsichneu 527 0.51 0.49 1.55 3.06 2.33
cover 33 0.35 0.38 1.25 2.09 1.61
fft1 20 0.16 0.51 0.82 1.74 2.02
edn 57 0.17 0.32 0.73 1.57 1.71
compress 30 0.15 0.67 0.69 1.84 2.64
ndes 45 0.17 0.25 0.64 1.27 1.20
minver 30 0.15 0.24 0.52 1.02 1.10

Table 1. Efficiency comparison for PAGAI’s domains.

The new domain performs significantly better than the other polyhedra do-
mains, being also competitive with respect to the domain of octagons on the
biggest benchmarks. It is worth stressing that these efficiency gains have been
obtained even if PAGAI makes a quite limited use of strict inequalities, which
are only used to model floating point values: among the tests reported in Table 1,
only ‘fft1’ and ‘minver’ declare floating point variables. Moreover, the “classic”
static analysis implemented in PAGAI applies no variable packing technique at
all: hence, all the relational domains incur avoidable overheads [47,49], which
are orthogonal with respect to the chosen implementation of NNC polyhedra.

In order to assess correctness, we also performed a different experimental
evaluation where, after each and every invocation of an abstract operator, the
result computed by the new domain pplite poly is systematically compared
with the result computed by ppl poly: the only differences were recorded when
computing widenings, where the semantic widening ‘∇N’ used by PPLite was
sometimes more precise than the syntactic one used by PPL.

6 Conclusion

By leveraging on a new DD representation and conversion algorithm, we have
presented the corresponding implementation of the abstract domain of NNC

18 We only show those tests where the time spent by pplite poly is above 0.5 seconds.

17

polyhedra. In particular, we focused our work on the specification of the opera-
tors needed for defining a static analysis based on Abstract Interpretation, here
included a semantics-based widening operator. The experimental evaluation con-
ducted shows that the new domain systematically outperforms the more classical
implementations. As future work, we plan to extend the abstract domain so as
to also support operators needed in other contexts. For instance, in the analysis
and verification of hybrid systems, strict inequalities usually play a more impor-
tant role: we reasonably expect that the adoption of our new implementation for
the domain of NNC polyhedra may result in even larger efficiency gains.

References

1. G. Amato and F. Scozzari. The abstract domain of parallelotopes. Electr. Notes
Theor. Comput. Sci., 287:17–28, 2012.

2. R. Bagnara, P. M. Hill, E. Mazzi, and E. Zaffanella. Widening operators for
weakly-relational numeric abstractions. In Static Analysis: Proceedings of the 12th
International Symposium, vol. 3672 of LNCS, pp. 3–18, London, UK, 2005.

3. R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators
for convex polyhedra. In Static Analysis: Proceedings of the 10th International
Symposium, vol. 2694 of LNCS, pp. 337–354, San Diego, USA, 2003.

4. R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for
convex polyhedra. Science of Computer Programming, 58(1–2):28–56, 2005.

5. R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset do-
mains. In Verification, Model Checking and Abstract Interpretation: Proceedings of
the 5th International Conference (VMCAI 2004), vol. 2937 of LNCS, pp. 135–148,
Venice, Italy, 2003.

6. R. Bagnara, P. M. Hill, and E. Zaffanella. Not necessarily closed convex polyhedra
and the double description method. Formal Asp. Comput., 17(2):222–257, 2005.

7. R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset do-
mains. Software Tools for Technology Transfer, 8(4/5):449–466, 2006.

8. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming, 72(1–2):3–21, 2008.

9. R. Bagnara, P. M. Hill, and E. Zaffanella. Applications of polyhedral computations
to the analysis and verification of hardware and software systems. Theoretical
Computer Science, 410(46):4672–4691, 2009.

10. R. Bagnara, P. M. Hill, and E. Zaffanella. Weakly-relational shapes for numeric
abstractions: Improved algorithms and proofs of correctness. Formal Methods in
System Design, 35(3):279–323, 2009.

11. R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex
polyhedra and the Parma Polyhedra Library. In Static Analysis: Proceedings of
the 9th International Symposium, vol. 2477 of LNCS, pp. 213–229, Madrid, 2002.

12. A. Becchi and E. Zaffanella. A conversion procedure for NNC polyhedra. CoRR,
abs/1711.09593, 2017.

13. A. Becchi and E. Zaffanella. A direct encoding for NNC polyhedra. To appear
in Computer Aided Verification: Proceedings of the 30th International Conference
(CAV 2018), 2018. An extended version with proofs is available as [12].

14. G. Birkhoff. Lattice Theory, volume XXV of Colloquium Publications. American
Mathematical Society, Providence, USA, 1967.

18

15. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In Proceedings
of the ACM SIGPLAN 2003 Conference on Programming Language Design and
Implementation (PLDI’03), pp. 196–207, San Diego, USA, 2003.

16. N. V. Chernikova. Algorithm for finding a general formula for the non-negative
solutions of system of linear equations. U.S.S.R. Computational Mathematics and
Mathematical Physics, 4(4):151–158, 1964.

17. N. V. Chernikova. Algorithm for finding a general formula for the non-negative
solutions of system of linear inequalities. U.S.S.R. Computational Mathematics
and Mathematical Physics, 5(2):228–233, 1965.

18. N. V. Chernikova. Algorithm for discovering the set of all solutions of a linear
programming problem. U.S.S.R. Computational Mathematics and Mathematical
Physics, 8(6):282–293, 1968.

19. R. Clarisó and J. Cortadella. The octahedron abstract domain. Science of Com-
puter Programming, 64(1):115–139, 2007.

20. A. Cortesi. Widening operators for abstract interpretation. In Sixth IEEE Inter-
national Conference on Software Engineering and Formal Methods (SEFM 2008),
pp. 31–40, Cape Town, South Africa, 2008.

21. A. Cortesi and M. Zanioli. Widening and narrowing operators for abstract inter-
pretation. Computer Languages, Systems & Structures, 37(1):24–42, 2011.

22. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the Fourth Annual ACM Symposium on Principles of Programming Languages,
pp. 238–252, Los Angeles, USA, 1977.

23. P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In Proceedings of the 4th
International Symposium on Programming Language Implementation and Logic
Programming, vol. 631 of LNCS, pp. 269–295, Leuven, Belgium, 1992.

24. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Conference Record of the Fifth Annual ACM Symposium
on Principles of Programming Languages, pp. 84–96, Tucson, USA, 1978.

25. J. Fulara, K. Durnoga, K. Jakubczyk, and A. Schubert. Relational abstract domain
of weighted hexagons. Electr. Notes Theor. Comput. Sci., 267(1):59–72, 2010.

26. B. Genov. The Convex Hull Problem in Practice: Improving the Running Time
of the Double Description Method. PhD thesis, University of Bremen, Germany,
2014.

27. N. Halbwachs. Détermination Automatique de Relations Linéaires Vérifiées par
les Variables d’un Programme. Thèse de 3ème cycle d’informatique, Université
scientifique et médicale de Grenoble, Grenoble, France, 1979.

28. N. Halbwachs, D. Merchat, and L. Gonnord. Some ways to reduce the space dimen-
sion in polyhedra computations. Formal Methods in System Design, 29(1):79–95,
2006.

29. N. Halbwachs, D. Merchat, and C. Parent-Vigouroux. Cartesian factoring of poly-
hedra in linear relation analysis. In Static Analysis: Proceedings of the 10th Inter-
national Symposium, vol. 2694 of LNCS, pp. 355–365, San Diego, USA, 2003.

30. N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems
by means of convex approximations. In Static Analysis: Proceedings of the 1st
International Symposium, vol. 864 of LNCS, pp. 223–237, Namur, Belgium, 1994.

31. N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design, 11(2):157–185,
1997.

19

32. J. Henry, D. Monniaux, and M. Moy. PAGAI: A path sensitive static analyser.
Electr. Notes Theor. Comput. Sci., 289:15–25, 2012.

33. J. M. Howe and A. King. Logahedra: A new weakly relational domain. In Au-
tomated Technology for Verification and Analysis, 7th International Symposium
(ATVA 2009), pp. 306–320, Macao, China, 2009.

34. B. Jeannet and A. Miné. Apron: A library of numerical abstract domains for static
analysis. In Computer Aided Verification, Proceedings of the 21st International
Conference (CAV 2009), vol. 5643 of LNCS, pp. 661–667, Grenoble, France, 2009.

35. V. Kaibel and M. E. Pfetsch. Computing the face lattice of a polytope from its
vertex-facet incidences. Computational Geometry, 23(3):281–290, 2002.

36. V. Laviron and F. Logozzo. Subpolyhedra: A (more) scalable approach to infer lin-
ear inequalities. In Verification, Model Checking, and Abstract Interpretation: Pro-
ceedings of the 10th International Conference (VMCAI 2009), vol. 5403 of LNCS,
pp. 229–244, Savannah, USA, 2009.

37. F. Logozzo and M. Fähndrich. Pentagons: A weakly relational abstract domain
for the efficient validation of array accesses. In Proceedings of the 2008 ACM
Symposium on Applied Computing, pp. 184–188, Fortaleza, Brazil, 2008.

38. A. Miné. A new numerical abstract domain based on difference-bound matrices.
In Proceedings of the 2nd Symposium on Programs as Data Objects (PADO 2001),
vol. 2053 of LNCS, pp. 155–172, Aarhus, Denmark, 2001.

39. A. Miné. The octagon abstract domain. In Proceedings of the Eighth Working
Conference on Reverse Engineering, pp. 310–319, Stuttgart, Germany, 2001.

40. A. Miné. Weakly Relational Numerical Abstract Domains. PhD thesis, École Poly-
technique, Paris, France, 2005.

41. T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double descrip-
tion method. In Contributions to the Theory of Games – Volume II, number 28 in
Annals of Mathematics Studies, pp. 51–73. Princeton, USA, 1953.

42. V. Notani and R. Giacobazzi. Learning based widening. 8th Workshop on Tools
for Automatic Program Analysis (TAPAS’17), New York, USA, 2017.

43. S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Scalable analysis of linear
systems using mathematical programming. In Verification, Model Checking and
Abstract Interpretation: Proceedings of the 6th International Conference (VMCAI
2005), vol. 3385 of LNCS, pp. 25–41, Paris, France, 2005.

44. R. Shaham, E. K. Kolodner, and S. Sagiv. Heap profiling for space-efficient java.
In Proceedings of the 2001 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pp. 104–113, Snowbird, USA, 2001.

45. A. Simon, A. King, and J. M. Howe. Two variables per linear inequality as an
abstract domain. In Logic Based Program Synthesis and Transformation, 12th
International Workshop, vol. 2664 of LNCS, pp. 71–89, Madrid, Spain, 2002.

46. G. Singh, M. Püschel, and M. T. Vechev. Making numerical program analysis fast.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 303–313, Portland, USA, 2015.

47. G. Singh, M. Püschel, and M. T. Vechev. Fast polyhedra abstract domain. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, pp. 46–59, Paris, France, 2017.

48. G. Singh, M. Püschel, and M. T. Vechev. A practical construction for decomposing
numerical abstract domains. PACMPL, 2(POPL):55:1–55:28, 2018.

49. E. Zaffanella. On the efficiency of convex polyhedra. Electr. Notes Theor. Comput.
Sci., 334:31–44, 2018.

20

	An Efficient Abstract Domain for Not Necessarily Closed Polyhedra

