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Abstract

The classical technique for proving termination of a generic sequential com-
puter program involves the synthesis of a ranking function for each loop of the
program. Linear ranking functions are particularly interesting because many
terminating loops admit one and algorithms exist to automatically synthesize it.
In this paper we present two such algorithms: one based on work dated 1991 by
Sohn and Van Gelder; the other, due to Podelski and Rybalchenko, dated 2004.
Remarkably, while the two algorithms will synthesize a linear ranking function
under exactly the same set of conditions, the former is mostly unknown to the
community of termination analysis and its general applicability has never been
put forward before the present paper. In this paper we thoroughly justify both
algorithms, we prove their correctness, we compare their worst-case complexity
and experimentally evaluate their efficiency, and we present an open-source im-
plementation of them that will make it very easy to include termination-analysis
capabilities in automatic program verifiers.

Keywords: Static analysis, computer-aided verification, termination analysis.

1. Introduction

Termination analysis of computer programs (a term that here we interpret
in its broadest sense) consists in attempting to determine whether execution
of a given program will definitely terminate for a class of its possible inputs.
The ability to anticipate the termination behavior of programs (or fragments
thereof) is essential to turn assertions of partial correctness (if the program
reaches a certain control point, then its state satisfies some requirements) into
assertions of total correctness (the program will reach that point and its state
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will satisfy those requirements). It is worth observing that the property of
termination of a program fragment is not less important than, say, properties
concerning the absence of run-time errors. For instance, critical reactive systems
(such as fly-by-wire avionics systems) must maintain a continuous interaction
with the environment: failure to terminate of some program components can
stop the interaction the same way as if an unexpected, unrecoverable run-time
error occurred.

Developing termination proofs by hand is, as any other program verification
task, tedious, error-prone and, to keep it short, virtually impossible to conduct
reliably on programs longer than a few dozens of lines. For this reason, auto-
mated termination analysis has been a hot research topic for more than two
decades. Of course, due to well-known limitative results of computation theory,
any automatic termination analysis can only be expected to give the correct an-
swer (“the program does —or does not— terminate on these inputs”) for some
of the analyzed programs and inputs: for the other programs and inputs the
analysis will be inconclusive (“don’t know”). It is worth noticing that there is
no need to resort to the halting problem to see how hard proving termination
can be. A classical example is the 3x+ 1 problem,1 whose termination for any
n has been a conjecture for more than 70 years:

while n > 1 do

if (nmod 2) 6= 0 then n := 3n+ 1
else n := n div 2

The classical technique for proving termination of a generic sequential com-
puter program consists in selecting, for each loop w of the program:

1. a set Sw that is well-founded with respect to a relation Rw;2

2. a function fw from the set of program states that are relevant for w (e.g.,
those concerning the head of the loop and that are reachable from a des-
ignated set of initial states) to the set Sw, such that the values of fw
computed at any two subsequent iterations of w are in relation Rw.

The function fw is called ranking function, since it ranks program states ac-
cording to their “proximity” to the final states. Let us focus on deterministic
programs, and consider a loop w and a set of initial states ΣI

w for w. Assume
further that the body of w always terminates when w is initiated in a state
σ ∈ ΣI

w and that ΣF
w is a set of final states for w, that is, w immediately ter-

minates when it is initiated in a state σ ∈ ΣF
w. If we fix any enumeration of

ΣI
w = {σ0

0 , σ
0
1 , . . .}, then the computations of w we are interested in can be

1Also known as the Collatz problem, the Syracuse problem, Kakutani’s problem, Hasse’s
algorithm, and Ulam’s problem: see, e.g., [1].

2A set S is well-founded with respect to a relation R ⊆ S × S if, for each U ⊆ S such that
U 6= ∅, there exists v ∈ U such that (u, v) /∈ R for each u ∈ U \ {v}.
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represented by the (possibly infinite) sequence of (possibly infinite) sequences

σ0
0 σ1

0 . . .
...

...
. . .

σ0
i σ1

i . . .
...

...
. . .

(1)

Let Σw be the set of all states that occur in (1). Suppose that we succeed
in finding a ranking function fw : Σw → Sw, where Sw is well-founded with
respect to Rw and, for each m,n ∈ N, if σnm and σn+1

m occur in (1), then(
fw(σn+1

m ), fw(σnm)
)
∈ Rw. In this case we know that all the sequences in (1),

and hence all the computations they represent, are finite.

Example 1.1. Consider the following loop, where x takes values in Z:

while x 6= 0 do

x := x− 1

Here the state at the loop head can be simply characterized by an integer num-
ber: the value of x. If we take ΣI := N then the computation sequences of
interest are

0
1 0
...

...
. . .

n n− 1 . . . 0
...

...
. . .

We thus have Σ = N and ΣF = {0}. If we define S := N, f as the identity
function over N, and R :=

{
(h, k)

∣∣ h, k ∈ N, h < k
}

, then S is well founded
with respect to R and f is a ranking function (with respect to Σ, S and R).

Observe that, in the example above, taking R as the predecessor relation would
have worked anyway; f could have been defined as the function mapping h
to 2h, in which case S could have been left as before or defined as the set of
even nonnegative integers. . . . In general, if a ranking function exists, an infinite
number of them do exist.

The next example shows that freedom in the choice of the well-founded
ordering can be used to obtain simpler ranking functions.

Example 1.2. Consider the following program, where variables take values
in N and comments in braces describe the behavior of deterministic program
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fragments that are guaranteed to terminate and whose details are unimportant:

var a : array[1 .. n] of unsigned integer;
{ all elements of a are written }
while a[1] > 0 do

{ i takes a value between 1 and n such that a[i] 6= 0 }
a[i] := a[i]− 1
{ positions i+ 1, i+ 2, . . . , n of a are possibly modified }

Here we can take ΣI = Σ = Nn and ΣF = {0} × Nn−1. If we define S := Nn, f
as the identity function over Nn, and R ⊂ Nn×Nn as the lexicographic ordering
over Nn, then f is a ranking function with respect to Σ, S and R. Finding a
ranking function having N as codomain would have been much more difficult
and could not be done without a complete knowledge of the program fragments
we have summarized with the comments between braces.

We have seen that, if there exists a ranking function, then all computations
summarized by (1) terminate. What is interesting is that the argument works
also the other way around: if all the computations summarized by (1) do ter-
minate, then there exists a ranking function (actually, there exists an infinite
number of them). In fact, suppose all the sequences in (1) are finite. Since the
program is deterministic, any state occurs only once in every sequence. More-
over, if a state σ occurs in more than one sequence, then the suffixes of these
sequences that immediately follow σ are all identical (since the future of any
computation is completely determined by its current state). The function map-
ping each σ in Σw to the natural number representing the length of such suffixes
is thus well defined and is a ranking function with respect to Σw and N with the
well-founded ordering given by the ‘<’ relation. It is worth observing that the
above argument implies that if any ranking function exists, then there exists
a ranking function over (N, <). This observation can be generalized to pro-
grams having bounded nondeterminism [2]: therefore, ranking functions on the
naturals are sufficient, for instance, when modeling the input of values for com-
monly available built-in data types. However, as illustrated by Example 1.2,
the use of more general well-founded orderings can simplify the search for a
ranking function. Moreover, such a generalization is mandatory when dealing
with unbounded nondeterminism [2] (see also [3, Section 10]).

The termination of a set of computations and the existence of a ranking
function for such a set are thus completely equivalent. On the one hand, this
means that trying to prove that a ranking function exists is, at least in principle,
not less powerful than any other method we may use to prove termination.
On the other hand, undecidability of the termination problem implies that the
existence of a ranking function is also undecidable. An obvious way to prove
the existence of a ranking function is to synthesize one from the program text
and a description of the initial states: because of undecidability, there exists no
algorithm that can do that in general.
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The use of ranking functions as a tool to reason about termination can be
traced back to the seminal work of R. W. Floyd in [4], where they are introduced
under the name of W -functions. Since then, several variations of the method
have been proposed so as to extend its applicability from the realm of classical
sequential programs to more general constructs (e.g., concurrency). In particu-
lar, in [3], seven different ‘à la Floyd ’ induction principles for nondeterministic
transition systems are formally shown to be sound, semantically complete and
equivalent. For instance, it is shown that it is sufficient to consider a single,
global ranking function, instead of a different ranking function for each pro-
gram control point, as originally proposed in [4]; and that the decrease of such
a global ranking function need not be verified at all program control points, but
it is enough to consider a minimal set of loop cut-points; moreover, when trying
to prove properties that only depend on the current state of the system (e.g.,
termination of a deterministic program), it is always possible to find a ranking
function depending on the current state only, i.e., independent of the initial
state of the system. Note that these results have been implicitly exploited in
the examples above so as to simplify the presentation of the method.

In this paper we present, in very general terms so as to encompass any pro-
gramming paradigm, the approach to termination analysis based on the explicit
search of ranking functions. We then restrict attention to linear ranking func-
tions obtained from linear approximations of the program’s semantics. For this
restriction, we present and fully justify two methods to prove the existence of lin-
ear ranking functions: one, based on work dated 1991 by Sohn and Van Gelder,
that is almost unknown outside the field of logic programming even though, as
we demonstrate in the present paper, it is completely general; the other, due
to Podelski and Rybalchenko, dated 2004, was proved correct by the authors
but the reasons why it works were never presented. We then provide a proof of
equivalence of the two methods, thus providing an independent assessment of
their correctness and relative completeness. We also compare their theoretical
complexity and practical efficiency on three related problems:

1. proving that one linear ranking function exists;
2. exhibiting one such function;
3. computing the space of all linear ranking functions.

The experimental evaluation is based on the implementation of the two meth-
ods provided by the Parma Polyhedra Library [5], a free software library of
numerical abstraction targeted at software/hardware analysis and verification.
These implementations are, to the best of our knowledge, the first ones that are
being made available, in source form, to the community. For this reason, the
implementations should be regarded as complementary to the present paper in
the common aim of making the automatic synthesis of linear ranking functions
known outside programming language barriers, understandable and accessible.

The plan of the paper is as follows: Section 2 recalls preliminary notions
and introduces the notation used throughout the paper; Section 3 introduces
the problem of automatic termination analysis of individual loops and its solu-
tion technique based on the synthesis of ranking functions; Section 4 presents
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a simple generalization of the approach of [6] that is generally applicable to
termination analysis of any language; Section 5 shows and fully justifies the
approach of [7]; Section 6 proves the two methods are equivalent and compares
them from the point of view of computational complexity; Section 7 presents the
implementation of the two approaches offered by the Parma Polyhedra Library
and the corresponding experimental evaluation, providing a comparison of their
practical efficiency; Section 8 concludes.

2. Preliminaries

2.1. Set Theory
The set of all finite sequences of elements of S is denoted by S∗. The empty

sequence is denoted by ε and the length of a sequence w is denoted by |w|.
The set of non-negative integers, rationals and reals are denoted by N, Q+

and R+, respectively.

2.2. Linear Algebra
For each i ∈ {1, . . . , n}, vi denotes the i-th component of the real (column)

vector v = 〈v1, . . . , vn〉 ∈ Rn. A vector v ∈ Rn can also be interpreted as
a matrix in Rn×1 and manipulated accordingly with the usual definitions for
addition, multiplication (both by a scalar and by another matrix), and transpo-
sition, which is denoted by vT, so that 〈v1, . . . , vn〉 = (v1, . . . , vn)T. If v ∈ Rn
and w ∈ Rm, we will write 〈v,w〉 to denote the column vector in Rn+m ob-
tained by “concatenating” v and w, so that 〈v,w〉 = 〈v1, . . . , vn, w1, . . . , wm〉.
The scalar product of v,w ∈ Rn is the real number vTw =

∑n
i=1 viwi. The

identity matrix in Rn×n is denoted by In. We write 0 to denote a matrix in
Rn×m having all of its components equal to zero; the dimensions n and m will
be clear from context. We sometimes treat scalars as vectors in R1 or matrices
in R1×1.

For any relational operator ./ ∈ {<,≤,=,≥, >}, we write v ./ w to de-
note the conjunctive proposition

∧n
i=1(vi ./ wi). Moreover, v 6= w will denote

the proposition ¬(v = w). We will sometimes use the convenient notation
a ./1 b ./2 c to denote the conjunction a ./1 b ∧ b ./2 c and we will not distin-
guish conjunctions of propositions from sets of propositions. The same notation
applies to vectors defined over other numeric fields and, for the supported op-
erations, to vectors defined over numeric sets such as N and Q+.

2.3. First-Order Logic
A triple Σ = (S, F,R) is a signature if S is a set of sort symbols, F :=

(Fw,s)w∈S∗,s∈S is a family of sets of function symbols and R := (Rw)w∈S∗ is
a family of sets of relation symbols (or predicate symbols). If Fs1···sn,s 3 f we
use the standard notation for functions and write F 3 f : s1 × · · · × sn → s.
Similarly, if Rs1···sn

3 p we use the standard notation for relations and write
R 3 p ⊆ s1 × · · · × sn. A Σ-structure A = (SA, FA, RA) consists of: a set SA

containing one arbitrary set sA for each sort symbol s ∈ S; a family FA of sets of
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functions such that, for each f : s1×· · ·×sn → s, a function fA : sA1 ×· · ·×sAn →
sA belongs to FA; a family RA of sets of relations defined similarly.

Let X be a denumerable set of variable symbols. The set of (Σ, X)-terms
(or, briefly, terms) is inductively defined as usual: elements of X are terms;
elements of Fε,s are terms; and for each f ∈ Fw,s with |w| = k, if t1, . . . , tk are
terms, then f(t1, . . . , tk) is a term. If p ∈ Rw with |w| = k and t1, . . . , tk are
terms, then p(t1, . . . , tk) is an atomic (Σ, X)-formula. (Σ, X)-formulas are built
as usual from atomic formulas and logical connectives and quantifiers. The first-
order language L(Σ, X) is the set of all (Σ, X)-formulas. The notion of bound
and free variable occurrence in a formula are also defined in the standard way.
We will routinely confuse a tuple of variables with the set of its components. So,
if φ is a (Σ, X)-formula, we will write φ[x̄] to denote φ itself, yet emphasizing
that the set of free variables in φ is included in x̄. Let x̄, ȳ ∈ X∗ be of the same
length and let φ be a (Σ, X)-formula: then φ[ȳ/x̄] denotes the formula obtained
by simultaneous renaming of each free occurrence in φ of a variable in x̄ with
the corresponding variable in ȳ, possibly renaming bound variable occurrences
as needed to avoid variable capture. Notice that φ[x̄] implies

(
φ[ȳ/x̄]

)
[ȳ], for

each admissible ȳ ∈ X∗.
A formula with no free variable occurrences is termed closed or called a

sentence. If φ is a closed (Σ, X)-formula and A is a Σ-structure, we write
A |= φ if φ is satisfied when interpreting each symbol in Σ as the corresponding
object in A. A set T of closed (Σ, X)-formulas is called a (Σ, X)-theory. We
write A |= T if A |= φ for each φ ∈ T . If φ is a closed (Σ, X)-formula and T
is a (Σ, X)-theory, we write T |= φ if, for each Σ-structure A, A |= T implies
A |= φ. In this case we say that φ is a logical consequence of T .

3. Termination Analysis of Individual Loops

We will start by restricting our attention to individual loops of the form

{ I } while B do C (2)

where

• I is a loop invariant that a previous analysis phase has determined to hold
just before any evaluation of B;

• B is a Boolean guard expressing the condition on the state upon which
iteration continues;

• C is a command that, in the context set by (2), is known to always ter-
minate.

Notice that, for maximum generality, we do not impose any syntactic restriction
on I, B and C and will only observe their interaction with the program state:
I and B express conditions on the state, and C is seen as a state transformer,
that is, a condition constraining the program states that correspond to its initial
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and final states. We assume that such conditions are expressed in a fragment of
some first-order language L = L(Σ, X) that is closed under finite conjunction
and implication. We assume further that the meaning of the sentences in L
is given by some theory T for which we are given a sound inference procedure
denoted by ‘`’, that is, for each sentence φ ∈ L, if T ` φ then T |= φ. Finally,
we fix a Σ-structure D such that D |= T , which captures the domain over which
computation and program reasoning take place. Let x̄ be the tuple of variables
containing (among possible others) all the free variables of (2). The effect of
C within the loop can be captured by stipulating that x̄ characterizes the state
before execution of C, introducing a tuple of new variables x̄′ that characterizes
the state after C’s execution, and by imposing restrictions on the combined
tuple x̄x̄′. Our last assumption is that we are given formulas of L that correctly
express the semantics of I, B, and C: let us call these formulas φI , φB and φC ,
respectively. With these definitions and assumptions, the behavior of loop (2)
is correctly approximated as follows:

1. whenever the loop guard B is evaluated, φI [x̄] holds;
2. if φI [x̄] ∧ φB [x̄] is inconsistent, iteration of the loop terminates;
3. just before execution of C, φI [x̄] ∧ φB [x̄] holds;
4. just after execution of C, φI [x̄] ∧ φB [x̄] ∧ φC [x̄x̄′] holds.

It is worth observing that the presence of the externally-generated invariant
I is not restrictive: on the one hand, φI [x̄] can simply be the “true” formula,
when nothing better is available; on the other hand, non trivial invariants are
usually a decisive factor for the precision of termination analysis. As observed in
[8], the requirement that I must hold before any evaluation of B can be relaxed
by allowing I not to hold finitely many times.3 The same kind of approximation
can be applied to φI , φB and φC by only requesting that they eventually hold.

We would like to stress that, at this stage, we have not lost generality.
While the formalization of basic iteration units in terms of while loops has an
unmistakable imperative flavor, it is general enough to capture iteration in other
programming paradigms. To start with, recall that a reduction system is a pair
(R,→), where R is a set and → ⊆ R×R. A term-rewrite system is a reduction
system where R is a set of terms over some signature and ‘→’ is encoded by a
finite set of rules in such a way that, for each term s, the set of terms t such
that s→ t is finitely computable from s and from the system’s rules. Maximal
reduction sequences of a term-rewrite system can be expressed by the following
algorithm, for each starting term s:

term := s

while { t | term→ t } 6= ∅ do

choose u ∈ { t | term→ t };
term := u

3Such an invariant is called tail invariant in [8].
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Here, the choose construct encodes the rewriting strategy of the system. Let
R = { t | s →? t } denote the set of terms that can be obtained by any finite
number of rewritings of the initial term s. Then, the algorithm above can
be transformed into the form (2) by considering, as the invariant I, a property
expressing that variable ‘term’ can take values in any over-approximation S ⊇ R
of all the possible rewritings. Namely,

{ term ∈ S }
while { t | term→ t } 6= ∅ do

choose u ∈ { t | term→ t };
term := u

Termination of the rewritten while loop implies termination of the original one;
the reverse implication holds if S = R.

The semantics of logic programs, functional programs, concurrent programs
and so forth can be (and often are) formalized in terms of rewriting of goals and
various kinds of expressions: hence no generality is lost by considering generic
while loops of the form (2).

The approach to termination analysis based on ranking functions requires
that:

1. a set O and a binary relation ≺ ⊆ O × O are selected so that O is well-
founded with respect to ‘≺’;

2. a term δ[ȳ] of L is found such that

T ` ∀
((
φI [x̄] ∧ φB [x̄] ∧ φC [x̄x̄′]

)
→ ω

(
δ[x̄′/ȳ], δ[x̄/ȳ]

))
, (3)

where the interpretation of ω over D corresponds to ‘≺’; the function
associated to δ in D is called ranking function for the loop (2).

Termination of (2) follows by the correctness of φI , φB , φC and ‘`’, and by
well-foundedness of O with respect to ‘≺’. To see this, suppose, towards a
contradiction, that loop (2) does not terminate. The mentioned soundness con-
ditions would imply the existence of an infinite sequence of elements of O

o0 � o1 � o2 � · · · (4)

Let U ⊆ O be the (nonempty) set of elements in the sequence. Since O is well
founded with respect to ‘≺’, there exists j ∈ N such that, for each i ∈ N with
i 6= j, oi ⊀ oj . But this is impossible, as, for each j ∈ N, oj+1 ≺ oj . This means
that the infinite chain (4) cannot exist and loop (2) terminates.

Example 3.1. Let Σ = (S, F,R) with S = {i}, F = Fε,i ∪ Fi,i, Fε,i = {0},
Fi,i = {s} and R = Ri·i = {=, <}. Let also D =

(
{Z}, {0, s}, {e, l}

)
be a

Σ-structure where s = { (n, n + 1) | n ∈ Z }, e = { (n, n) | n ∈ Z } and
l = { (n,m) | n,m ∈ Z, n < m }. Let X be a denumerable set of variable
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symbols and let T be the theory of arithmetic restricted to L(Σ, X). Consider
now the loop

{x ≥ 0}
while x 6= 0 do

x := x− 1

We have φI = (x = 0∨0 < x), φB = ¬(x = 0) and φC =
(
s(x′) = x

)
. If we take

(O,≺) = (N, l ∩N2), δ[y] = y, and ω(τ, υ) = (0 < υ ∧ τ < υ), we can substitute
into (3) and obtain

T ` ∀x, x′ :
(
(x = 0 ∨ 0 < x) ∧ ¬(x = 0) ∧ s(x′) = x

)
→ (0 < x ∧ x′ < x),

which simplifies to

T ` ∀x, x′ :
(
0 < x ∧ s(x′) = x

)
→ (0 < x ∧ x′ < x),

which a reasonable inference engine can easily check to be true.

This general view of the ranking functions approach to termination analysis
allows us to compare the methods in the literature on a common ground and
focusing on what, besides mere presentation artifacts, really distinguishes them
from one another. Real differences have to do with:

• the choice of the well-founded ordering (O,≺);

• the class of functions in which the method “searches” for the ranking
functions;

• the choice of the signature Σ, the domain D and theory T ; this has to
accommodate the programming formalism at hand, the semantic charac-
terization upon which termination reasoning has to be based, the axiom-
atization of (O,≺), and the representation of ranking functions;

• the class of algorithms that the method uses to conduct such a search.

We now briefly review these aspects.
The most natural well-founded ordering is, of course, (N, <). This is espe-

cially indicated when the termination arguments are based on quantities that
can be expressed by natural numbers. This is the case, for instance, of the
work by Sohn and Van Gelder for termination analysis of logic programs [6, 9].
Orderings based on Q+ or R+ can be obtained by imposing over them rela-
tions like those defined, for each ε > 0, by <ε :=

{
(h, k) ∈ S2

+

∣∣ h + ε ≤ k
}

,
where ε ∈ S+ and S+ = Q+ or S+ = R+, respectively. Of course, this is
simply a matter of convenience: a ranking function f with codomain (R+, <ε)
can always be converted into a ranking function g with codomain (N, <) by
taking g(ȳ) = bf(ȳ)ε−1c. Similarly, any ranking function over (R+, <ε) can be
converted into a ranking function over (R+, <1). On tuples, the lexicographic
ordering is the most common choice for a well-founded relation: given a finite
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number of well-founded relations ≺i for i = 1, . . . , n over a set S, the lexico-
graphic ordering over Sn is induced by saying that s ≺ t if and only if si ≺i ti for
an index i and sj = tj for all indices j < i. The termination analyzer of the Mer-
cury programming language [10, 11] first attempts an analysis using the (N, <)
ordering; if that fails then it resorts to lexicographic orderings. Lexicographic
orderings on Cartesian products of (R+, <ε) are also used in [12].

The synthesis of ranking functions is easily seen to be a search problem. All
techniques impose limits upon the universe of functions that is the domain of
the search. For instance, in the logic programming community, [13, 11, 14, 10]
use ranking functions of the form f(x1, . . . , xn) =

∑n
i=1 µixi, where, for i = 1,

. . . , n, µi ∈ {0, 1} and the variable xi takes values in N. The method of Sohn and
Van Gelder [6, 9] is restricted to linear functions of the form f(x1, . . . , xn) =∑n
i=1 µixi, where, for i = 1, . . . , n, µi ∈ N and the variable xi takes values

in N. The generalization by Mesnard and Serebrenik [15, 16] obtains affine
functions of the form f(x1, . . . , xn) = µ0 +

∑n
i=1 µixi, where µi ∈ Z and xi

take values in Q or R, for i = 0, . . . , n. Recently, Nguyen and De Schreye
[17] proposed, in the context of logic programming and following a thread of
work in termination of term rewrite systems that can be traced back to [18], to
use polynomial ranking functions. These are of the basic form f(x1, . . . , xn) =
µ0 +

∑m
j=1 µj

∏n
i=1 x

kij

i where, for i = 1, . . . , n and j = 1, . . . , m, µj ∈ Z,
kij ∈ N and the variable xi takes values in Z [19]. Several further restriction
are usually imposed: first a domain A ⊆ N is selected; then it is demanded
that, for each x1, . . . , xn ∈ A, f(x1, . . . , xn) ∈ A and that f is strictly monotone
over A on all its arguments. The set of all such polynomials is itself well-
founded with respect to ‘<A’: f <A g if and only if, for each x1, . . . , xn ∈ A,
f(x1, . . . , xn) < g(x1, . . . , xn). The condition of strict monotonicity, namely,
for each x1, . . . , xn ∈ A, each i = 1, . . . , n, and each y, z ∈ A with y < z,
f(x1, . . . , xi−1, y, xi+1, . . . , xn) < f(x1, . . . , xi−1, z, xi+1, . . . , xn), is ensured if,
for each j = 1, . . . , m, we have µj ∈ N and, for each i = 0, . . . , n, there exists
j such that µj 6= 0 and kij 6= 0. Choosing A 6= N brings some advantages. For
example, if A ⊆ {n ∈ N | n ≥ 2 } then multiplication of polynomials is strictly
monotone on both its arguments (i.e., f <A f · g and g <A f · g). Further
restrictions are usually imposed in order to make the search of ranking functions
tractable: both the maximum degree of polynomials and their coefficients —the
µj ’s above— can be severely limited (an upper bound of 2 both on degrees and on
coefficients is typical). Quadratic ranking functions of the form f(x1, . . . , xn) =
〈x1, . . . , xn, 1〉TM〈x1, . . . , xn, 1〉 are considered in [20], where the variables xi
and the unknown coefficients µij of the (n+ 1)× (n+ 1) symmetric matrix M
take values in R. [12] considers a search space of tuples of (up to a fixed number
of) linear functions.

The logic used in most papers about the synthesis of linear (or affine) ranking
functions (such as [21, 6, 7]) is restricted to finite conjunctions of linear equalities
or inequalities. In [12] this logic is extended to include disjunction, so as to
capture precisely the effect of the loop body.
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Concerning algorithms, the restriction to conjunctions of linear equalities
or inequalities allows the use of the simplex algorithm (or other algorithms for
linear programming) to prove the existence of linear ranking functions in [6, 7]
or to synthesize one of them. When a space of ranking functions is sought, these
can be obtained by projecting the systems of constraints onto a designated set of
variables using, for instance, Fourier-Motzkin elimination. In these approaches,
standard algorithms from linear programming work directly on an abstraction
of the loop to be analyzed and are able to decide the existence of linear ranking
functions for that abstraction. The algorithms used in other approaches belong
to the category of “generate and test” algorithms: the “generate” phase consists
in the selection, possibly guided by suitable heuristics, of candidate functions,
while the “test” phase amounts to prove that a candidate is indeed a ranking
function. This is the case, for instance, of [12], where generation consists in the
instantiation of template functions and testing employs an algorithm based on a
variant of Farkas’ Lemma. Non-linear constraints generated by the method de-
scribed in [20] are handled by first resorting to semidefinite programming solvers
and then validating the results obtained by using some other tools, since these
solvers are typically based on interior point algorithms and hence may incur into
unsafe rounding errors. Note that, in principle, the very same observation would
apply to the case of linear constraints, if the corresponding linear programming
problem is solved using an interior point method or even a floating-point based
implementation of the simplex algorithm; however, there exist implementations
of the simplex algorithm based on exact arithmetic, so that linear programming
problems can be numerically solved incurring no rounding errors at all and with
a computational overhead that is often acceptable.4

It should be noted that the fact that in this paper we only consider simple
while loops is not restrictive. In fact, the Size-Change Principle, introduced by
[22] (see also [23]), implies that one can safely trade the existence of a poten-
tially complex global ranking function for the whole program for the existence
of elementary local ranking functions of some selected individual simple loops
appearing in a transformation of the whole program. Moreover, in a general-
ization of this work presented in [24], the authors prove that, under a certain
hypothesis,5 linear ranking functions are a large enough class of local rank-
ing functions for a sound and complete termination criterion that encompasses
global lexicographic ranking functions.

4. The Approach of Sohn and Van Gelder, Generalized

As far as we know, the first approach to the automatic synthesis of ranking
functions is due to Kirack Sohn and Allen Van Gelder [9, 6]. Possibly due to

4In contrast, an exact solver for non-linear constraints would probably require a truly
symbolic computation, incurring a much more significant computational overhead.

5Namely, that the program is approximated by monotonicity constraints, constraints of
the form x ≤ y or x < y.
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the fact that their original work concerned termination of logic programs, Sohn
and Van Gelder did not get the recognition we believe they deserve. In fact, as
we will show, some key ideas of their approach can be applied, with only rather
simple modifications, to the synthesis of ranking functions for any programming
paradigm.

In this section we present the essentials of the work of Sohn and Van Gelder
in a modern setting: we will first see how the termination of logic programs can
be mapped onto the termination of binary CLP(N) programs; then we will show
how termination of these programs can be mapped to linear programming; we
will then review the generalization of Mesnard and Serebrenik to CLP(Q) and
CLP(R) programs and, finally, its generalization to the termination analysis of
generic loops.

4.1. From Logic Programs to Binary CLP(N) Programs
Consider a signature Σt =

(
{t}, F,R

)
and a denumerable set X of variable

symbols. Let Tt be the set of all (Σt, X)-terms. A substitution θ is a total
function θ : X → Tt that is the identity almost everywhere; in other words, the
set
{
x ∈ X

∣∣ θ(x) 6= x
}

is finite. The application of θ to t ∈ Tt gives the term
θ(t) ∈ Tt obtained by simultaneously replacing all occurrences of a variable x in
t with θ(x). Consider a system of term equations E = {t1 = u1, . . . , tk = uk}: a
substitution θ is a unifier of E if θ(ti) = θ(ui) for i = 1, . . . , n. A substitution
θ is a most general unifier (mgu) of E if it is a unifier for E and, for any unifier
η of E, there exists a substitution ξ such that η = ξ ◦ θ. Let t and u be terms:
we say that t and u are variants if there exist substitutions θ and η such that
t = θ(u) and u = η(t).

A formula of the form r(t1, . . . , tn), where r ∈ R and t1, . . . , tn ∈ Tt is called
an atom. A goal is a formula of the form B1, . . . , Bn, where n ∈ N and B1,
. . . , Bn are atoms. The goal where n = 0, called the empty goal, is denoted by
�. A logic program is a finite set of clauses of the form H :− G, where H is
an atom, called the head of the clause, and G is a goal, called its body. The
notions of substitution, mgu and variant are generalized to atoms, goals and
clauses in the expected way. For example, θ is an mgu for atoms r(t1, . . . , tn)
and s(u1, . . . , um) if r = s, n = m and θ is an mgu for {t1 = u1, . . . , tn = un}.

Left-to-right computation for logic programs can be defined in terms of
rewriting of goals. Goal B1, . . . , Bn can be rewritten to C ′1, . . . , C

′
m, B

′
2, . . . , B

′
n

if there exists a variant of program clause H :− C1, . . . , Cm with no variables
in common with B1, . . . , Bn, the atoms H and B1 are unifiable with mgu θ,
and C ′i = θ(Ci), for i = 1, . . . , m, B′j = θ(Bj), for j = 2, . . . , n. Computation
terminates if and when rewriting produces the empty goal. Notice that the
computation, due to the fact that there may be several clauses that can be used
at each rewriting step, is nondeterministic.

Let nil, cons ∈ F , perm, select ∈ R and v, w, x, y, z ∈ X. The following
logic program defines relations over lists inductively defined by the constant
nil, the empty list, and the binary constructor cons, which maps a term t and
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a list l to the list whose first element is t and the remainder is l:

list(nil) :− �;
list(cons(x, y)) :− list(y);

select(x, cons(x, y), y) :− list(y);
select(x, cons(y, z), cons(y, w)) :− select(x, z, w);

perm(nil, nil) :− �;
perm(x, cons(v, z)) :− select(v, x, y), perm(y, z).

(5)

The program defines the unary relation list to be the set of such lists. The
ternary relation select contains all (x, y, z) such that x appears in the list y,
and z is y minus one occurrence of x. The binary relation perm contains all the
pairs of lists such that one is a permutation of the other.

A computation of a logic program starting from some initial goal can: termi-
nate with success, when rewriting ends up with the empty goal; terminate with
failure, when rewriting generates a goal whose first atom is not unifiable with
the head of any (variant of) program clause; loop forever, when the rewriting
process continues indefinitely. Because of nondeterminism, the same program
and initial goal can give rise to computations that succeed, fail or do not ter-
minate. A goal G enjoys the universal termination property with respect to a
program P if all the computations starting from G in P do terminate, either
with success or failure.6

The idea behind this approach to termination analysis of logic programs
is that termination is often ensured by the fact that recursive “invocations”
involve terms that are “smaller”. Rewriting of list(cons(t1, cons(t2, nil))),
for example, results in list(cons(t2, nil)) and then list(nil). Various notions
of “smaller term” can be captured by linear symbolic norms [6, 26]. Consider
the signature Σe =

(
{e}, {0, 1,+}, P ∪ {=,≤}

)
. The set Te of (Σe, X)-terms

contains affine expressions with natural coefficients. A linear symbolic norm is
a function of the form ‖ · ‖ : Tt → Te such that

‖t‖ :=

{
t, if t ∈ X,
c+

∑n
i=1 ai‖ti‖, if t = f(t1, . . . , tn),

where c and a1, . . . , an are natural numbers that only depend on f and n. The
term-size norm, for example, is characterized by c = 0 for each f ∈ Fε,t and by
c = 1 and ai = 1 for each f ∈ Fw,t ⊆ F \Fε,t and i = 1, . . . , |w|.7 The list-length
norm is, instead, characterized by c = 0 and ai = 0 for each f 6= cons ∈ Ftt,t,
and by c = a2 = 1 and a1 = 0 for the cons binary constructor.

Once a linear symbolic norm has been chosen, a logic program can be con-
verted by replacing each term with its image under the norm. For example,

6The related concept of existential termination has a number of drawbacks and will not
be considered here. See [25] for more information.

7The variant used in [6], called structural term size, can be obtained by letting, for each
f ∈ Fw,t, c = |w| and ai = 1 for i = 1, . . . , |w|.
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using the list-length norm the above program becomes:

list(0) :− �; (6)
list(1 + y) :− list(y); (7)

select(x, 1 + y, y) :− list(y); (8)
select(x, 1 + z, 1 + w) :− select(x, z, w); (9)

perm(0, 0) :− �; (10)
perm(x, 1 + z) :− select(v, x, y), perm(y, z). (11)

The program obtained by means of this abstraction process—we have replaced
terms by an expression of their largeness—is a CLP(N) program. In the CLP
(Constraint Logic Programming) framework [27], the notion of unifiability is
generalized by the one of solvability in a given structure. The application of
most general unifiers is, in addition, generalized by the collection of constraints
into a set of constraints called constraint store.8 In CLP(N), the constraints are
equalities between affine expressions in Te and computation proceeds by rewrit-
ing a goal and augmenting a constraint store Γ, which is initially empty, with new
constraints. Goal B1, B2, . . . , Bn can be rewritten to C1, . . . , Cm, B2, . . . , Bn if
there exists a variant H :− C1, . . . , Cm of some program clause with no variables
in common with B1, . . . , Bn such that H = p(t1, . . . , tn), B1 = p(u1, . . . , un)
and Γ′ := Γ∪{t1 = u1, . . . , tn = un} is satisfiable over the Σe-structure given by
the naturals, the functions given by the constants 0 and 1 and the binary sum
operation, and the identity relation over the naturals. In this case Γ′ becomes
the new constraint store.

The interesting thing about the abstract CLP(N) program—let us denote
it by α(P )—is that the following holds: if an abstract goal α(G) universally
terminates with respect to α(P ), then the original goal G universally terminates
with respect to the original program P , and this for each linear symbolic norm
that is used in the abstraction (see [29, Section 6.1] for a very general proof of
this fact). The converse does not hold because of the precision loss abstraction
involves.

We will now show, appealing to intuition, that the ability to approximate
the termination behavior of programs constituted by a single binary CLP(N)
clause, that is, of the form

p(x̄) :− c[x̄, x̄′], p(x̄′), (12)

where p is a predicate symbol, gives a technique to approximate the termination
behavior of any CLP(N) program.

The first step is to compute affine relations that correctly approximate the
success set of the CLP(N) program. For our program, we can obtain (e.g., by

8We offer a self-contained yet very simplified view of the CLP framework. The interested
reader is referred to [27, 28].
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standard abstract interpretation techniques [30, 31])

list(x) succeeds =⇒ true;
select(x, y, z) succeeds =⇒ z = y − 1;

perm(x, y) succeeds =⇒ x = y.

We now consider the clauses of the CLP(N) program one by one. Clause (6) does
not pose any termination problem. Clause (7) is already of the form (12): we
can call the engine described in the next section and obtain the ranking function
f(x) = x for list(x), meaning that the argument of list strictly decreases in
the recursive call. We thus note that

list(x) terminates if called with x ∈ N. (13)

Consider now clauses (8) and (9): for the former we simply have to note that
we need to satisfy (13) in order to guarantee termination; for the latter, which
is of the form (12), we can obtain an infinite number of ranking functions for
select(x, y, z), among which are f(x, y, z) = y (the second argument decreases)
and f(x, y, z) = z (the third argument decreases). Summing up, for the select
predicate we have

select(x, y, z) terminates if called with y ∈ N and/or z ∈ N. (14)

Now, clause (10) does not pose any termination problem, but clause (11) is not
of the form (12). However we can use the computed model to “unfold” the
invocation to select and obtain

perm(x, 1 + z) :− y = x− 1, perm(y, z), (11’)

which has the right shape and, as far as the termination behavior of the entire
program is concerned, is equivalent to (11) [32]. From (11’) we obtain, for
perm(x, y), the ranking functions f(x, y) = x and f(x, y) = y. We thus note:

perm(x, y) terminates if called with x ∈ N and/or y ∈ N
and the call to select in (11) terminates.

(15)

Summarizing, we have that goals of the form perm(k, y), where k ∈ N, sat-
isfy (15); looking at clause (11) it is clear that they also satisfy (14); in turn,
inspection of clause (8) reveals that also (13) is satisfied. As a result, we have
proved that any invocation in the original logic program (5) of perm(x, y) with
x bound to an argument whose list-length norm is constant, universally termi-
nates. It may be instructive to observe that this implementation of perm is not
symmetric: goals of the form perm(x, k), where k ∈ N, fail to satisfy (15) and,
indeed, it is easy to come up with goals perm(x, y) with y bound to a complete
list that do not universally terminate in the original program.

The procedure outlined in the previous example can be extended (in different
ways) to any CLP(N) programs. As the precise details are beyond the scope
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of this paper, we only illustrate the basic ideas and refer the interested reader
to the literature. The methodology is simpler for programs that are directly
recursive, i.e., such that all “recursive calls” to p only happen in clauses for p.9

Consider a directly recursive clause. This has the general form

p(x̄) :− c, β0, p(x̄1), β1, p(x̄2), β2, . . . , p(x̄k), βk,

where the goals β0, β1, . . . , βk do not contain atoms involving p. The computed
model is used to “unfold” β0 obtaining a sound approximation, in the form of
a conjunction of linear arithmetic constraints, of the conditions upon which the
first recursive call, p(x̄1) takes place. If we call c1 the conjunction of c with
the constraint arising from the unfolding of β0, we obtain the binary, directly
recursive clause

p(x) :− c1, p(x1).

We can now use the model to unfold the goals p(x̄1) and β1 and obtain a
constraint that, conjoined with c1, gives us c2, a sound approximation of the
“call pattern” for the second recursive call. Repeating this process we will obtain
the binary clauses

p(x) :− c2, p(x2),
...

p(x) :− ck, p(xk).

We repeat this process for each clause defining p and end up with a set of
binary clauses, for which a set of ranking functions is computed, using the
technique to be presented in the next section. The same procedure is applied
to each predicate symbol in the program. A final pass over the original CLP(N)
program is needed to ensure that each body atom is called within a context that
ensures the termination of the corresponding computation. This can be done as
follows:

1. A standard global analysis is performed to obtain, for each predicate that
can be called in the original CLP(N) program, possibly approximated but
correct information about which arguments are known to be definite, i.e.,
constrained to take a unique value, in each call to that predicate (see, e.g.,
[33]).

9For a CLP(N) program P , let ΠP be the set of predicate symbols appearing in P . On the
set ΠP , we define the relation ‘→’ such that p → q if and only if P contains a clause with p
as the predicate symbol of its head and q as the predicate symbol of at least one body atom.
Let ‘→?’ be the reflexive and transitive closure of ‘→’. The relation defined by p ' q if and
only if p→? q and q →? p is an equivalence relation; we denote by [p]' the equivalence class
including p. A program P is directly recursive if and only if, for each p ∈ ΠP , [p]' = {p}. A
program P is mutually recursive if it is not directly recursive.
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2. For each recursive predicate that may be called, it is checked that, for each
possible combination of definite and not-known-to-be-definite arguments,
there is at least one ranking function that depends only on the definite
arguments.

The overall methodology can be adapted to mutually recursive programs, either
by a direct extension of the above approach (see, e.g., [9]) or by more advanced
program transformations (see, e.g., [34]).

4.2. Ranking Functions for Binary, Directly Recursive CLP(N) Programs
In order to show how ranking functions can be computed from directly re-

cursive binary CLP(N) clauses, we deal first with a single clause

p(x̄) :− c[x̄, x̄′], p(x̄′),

where p is a predicate symbol, x̄ and x̄′ are disjoint n-tuples of variables, and
c[x̄, x̄′] is a linear constraint involving variables in x̄∪ x̄′.10 The meaning of such
a clause is that, if p is called on some tuple of integers x̄, then there are two
cases:

• c[x̄, x̄′] is unsatisfiable (i.e., there does not exist a tuple of integers x̄′ that,
together with x̄, satisfies it), in which case the computation will fail, and
thus terminate;

• there exists x̄′ such that c[x̄, x̄′] holds, in which case the computation
proceeds with the (recursive) calls p(x̄′), for each x̄′ such that c[x̄, x̄′].

The question is now to see whether that recursive procedure is terminating,
that is whether, for each x̄ ∈ Nn, the call p(x̄) will only give rise to chains of
recursive calls of finite length. The approach of Sohn and Van Gelder allows to
synthesize a function fp : Nn → N such that

∀x̄, x̄′ ∈ Nn : c[x̄, x̄′] =⇒ fp(x̄) > fp(x̄′). (16)

This means that the measure induced by fp strictly decreases when passing from
a call of p to its recursive call. Since the naturals are well founded, this entails
that p, as defined in (12), is terminating.

A very important contribution of Sohn and Van Gelder consists in the algo-
rithm they give to construct a class of functions that satisfy (16). The class is
constituted by linear functions of the form

fp(y1, . . . , yn) =
n∑
i=1

µiyi, (17)

10We abuse notation by confusing a tuple with the set of its elements.
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where µi ∈ N, for i = 1, . . . , n. For this class of functions and by letting
µ̄ = (µ1, . . . , µn), condition (16) can be rewritten as

∃µ̄ ∈ Nn . ∀x̄, x̄′ ∈ Nn : c[x̄, x̄′] =⇒
n∑
i=1

µixi −
n∑
i=1

µix
′
i ≥ 1. (18)

Given that c[x̄, x̄′] is a linear constraint, for any choice of µ̄ ∈ Nn we can easily
express (18) as an optimization problem over the naturals. In order to move
from tuple notation to the more convenient vector notation, assume without
loss of generality that, for some m ∈ N, Ac ∈ Zm×2n and bc ∈ Zm are such that
Ac〈x,x′〉 ≥ bc is logically equivalent to c[x̄, x̄′] under the obvious, respective
interpretations. Then, for any candidate choice of µ ∈ Nn, condition (18) is
equivalent to imposing that the optimization problem

minimize θ = 〈µ,−µ〉T〈x,x′〉
subject to Ac〈x,x′〉 ≥ bc

x,x′ ∈ Nn
(19)

is either unsolvable or has an optimal solution whose cost θ̂ is such that θ̂ ≥ 1. If
this is the case, then µ induces, according to (17), a function fp satisfying (16).
Notice that, for any fixed choice of µ ∈ Nn, θ is a linear expression and hence
(19) is an integer linear programming (ILP) problem. This gives us an expensive
way (since ILP is an NP-complete problem [35]) to test whether a certain µ ∈ Nn
is a witness for termination of (12), but gives us no indication about where to
look for such a tuple of naturals.

A first step forward consists in considering the relaxation of (19) obtained by
replacing the integrality constraints x,x′ ∈ Nn with x,x′ ∈ Qn+. This amounts
to trading precision for efficiency. In fact, since any feasible solution of (19) is
also feasible for the relaxed problem, if the optimum solution of the latter has a
cost greater than or equal to 1, then either (19) is unfeasible or θ̂ ≥ 1. However,
we may have θ̂ ≥ 1 even if the optimum of the relaxation is less than 1.11

On the other hand, the relaxed problem is a linear problem: so by giving up
completeness we have passed from an NP-complete problem to a problem in
P for which we have, in addition, quite efficient algorithms. Furthermore, we
observe that although the parameters µ are naturals in (18), this condition can
be relaxed as well: if µ ∈ Qn+ gives a relaxed problem with optimum greater
than 1, then we can multiply this vector by a positive natural so as to obtain a
tuple of naturals satisfying (18). The relaxation can now be written using the
standard linear programming (LP) notation:

minimize 〈µ,−µ〉T〈x,x′〉
subject to Ac〈x,x′〉 ≥ bc

〈x,x′〉 ≥ 0
(20)

11Let us consider the clause: p(x) :− 2x ≥ 2x′ + 1, p(x′) with µ = 1. The optimization over

the integers leads to θ̂ = 1, whereas the optimization for the relaxation has θ̂ = 1
2

.
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We still do not know how to determine the vector of parameters µ so that
the optimum of (20) is at least 1, but here comes one of the brilliant ideas of
Sohn and Van Gelder: passing to the dual. It is a classical result of LP theory
that every LP problem can be converted into an equivalent dual problem. The
dual of (20) is

maximize bT
cy

subject to AT
cy ≤ 〈µ,−µ〉

y ≥ 0
(21)

where y is an m-column vector of (dual) unknowns. Duality theory ensures that
if both (20) and (21) have bounded feasible solutions, then both of them have
optimal solutions and these solutions have the same cost. More formally, for
every choice of the parameters µ ∈ Qn+, if 〈x̂, x̂′〉 ∈ Q2n is an optimal solution
for (20) and ŷ ∈ Qm is an optimal solution for (21), then 〈µ,−µ〉T〈x̂, x̂′〉 =
bT
c ŷ. Moreover, if one of (20) and (21) is unfeasible, then the other is either

unbounded or unfeasible. In contrast, if one of (20) and (21) is unbounded,
then the other is definitely unfeasible.

Thus, thanks to duality theory, the LP problems (20) and (21) are equivalent
for our purposes and we can consider any one of them. Suppose we analyze the
dual problem (21):

• If (21) is unfeasible then either (20) is unfeasible, which implies trivial
termination of (12), or (20) is unbounded, in which case—since we are
working on relaxations—nothing can be concluded about whether µ de-
fines a ranking function for (12).

• If (21) is feasible and unbounded then (20) is unfeasible and (12) trivially
terminates.

• If (21) is feasible and bounded, then we have proved termination (µ in-
duces a ranking function) if the cost of the optimal solution is at least 1
(actually, any positive rational could be used instead of 1). The analysis
is inconclusive otherwise.

The crucial point is that, in (21), the parameters µ occur linearly, whereas
in (20) they are multiplied by 〈x,x′〉. So we can treat µ as a vector of variables
and transform (21) into the new LP problem in m+ n variables

maximize 〈bc,0〉T〈y,µ〉

subject to
(
AT
c
−In
In

)
〈y,µ〉 ≤ 0

〈y,µ〉 ≥ 0

(22)

The requirement that, in order to guarantee termination of (12), the optimal
solutions of (20) and (21) should not be less than 1 can now be captured by
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incorporating bT
cy ≥ 1 into the constraints of (22), yielding

maximize 〈bc,0〉T〈y,µ〉

subject to

AT
c
−In
In

−bT
c 0T

 〈y,µ〉 ≤ ( 0
−1

)
〈y,µ〉 ≥ 0

(23)

There are several possibilities:

1. If (23) is unfeasible, then:
(a) If (22) is unfeasible, then, for each µ ∈ Qn+, (21) is unfeasible and:

i. If (20) is unfeasible, then (12) trivially terminates;
ii. otherwise (20) is unbounded and we can conclude nothing about

the termination of (12).
(b) If (22) is feasible, then it is bounded by a rational number q < 1.

Thus, for each µ̌ ∈ Qn+ extracted from a feasible solution 〈y̌, µ̌〉 ∈
Qm+n

+ of (22), the corresponding LP problem (21) is also feasible,
bounded, and its optimum q′ ∈ Q is such that q′ ≤ q < 1. Moreover,
we must have q′ ≤ 0. In fact, if q′ > 0, problem (20) instantiated over
µ̌′ := µ̌/q′ would have an optimal solution of cost 1; the same would
hold for the corresponding dual (21), but this would contradict the
hypothesis that (22) is bounded by q < 1. Hence q′ ≤ 0. Since by
duality the optimum of problem (20) is q′, the analysis is inconclusive.

2. If (23) is feasible, let 〈y̌, µ̌〉 ∈ Qm+n be any of its feasible solutions.
Choosing µ̌ for the values of the parameters, (21) is feasible. There are
two further possibilities:
(a) either (21) is unbounded, so (12) trivially terminates;
(b) or it is bounded by a rational q ≥ 1 and the same holds for its

dual (20).
In both cases, µ̌, possibly multiplied by a positive natural in order to get
a tuple of naturals, defines, via (17), a ranking function for (12).

The above case analysis boils down to the following algorithm:

1. Use the simplex algorithm to determine the feasibility of (23), ignoring
the objective function. If it is feasible, then any feasible solution induces
a linear ranking function for (12); exit with success.

2. If (23) is unfeasible, then try to determine the feasibility of (19) (e.g.,
by using the simplex algorithm again to test whether the relaxation (20)
is feasible). If (19) is unfeasible then (12) trivially terminates; exit with
success.

3. Exit with failure (the analysis is inconclusive).

An example should serve to better clarify the methodology we have em-
ployed.
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Example 4.1. In the CLP(N) program

p(x1, x2) :− x1 ≤ 1 ∧ x2 = 0,
p(x1, x2) :− x1 ≥ 2 ∧ 2x′1 + 1 ≥ x1 ∧ 2x′1 ≤ x1 ∧ x′2 + 1 = x2, p(x′1, x

′
2),

p(x1, x2) is equivalent to

x2 =

{
blog2(x1)c, if x1 6= 0;
0, otherwise.

The relaxed optimization problem in LP notation (20) is:12

minimize 〈µ1, µ2,−µ1,−µ2〉T〈x1, x2, x
′
1, x
′
2〉

subject to


1 0 0 0
−1 0 2 0
1 0 −2 0
0 1 0 −1
0 −1 0 1



x1

x2

x′1
x′2

 ≥


2
−1
0
1
−1


〈x1, x2, x

′
1, x
′
2〉 ≥ 0

and the dual optimization problem (21) is:

maximize 〈2,−1, 0, 1,−1〉T〈y1, y2, y3, y4, y5〉

subject to


1 −1 1 0 0
0 0 0 1 −1
0 2 −2 0 0
0 0 0 −1 1



y1
y2
y3
y4
y5

 ≤

µ1

µ2

−µ1

−µ2


〈y1, y2, y3, y4, y5〉 ≥ 0

Incorporation of the unknown coefficients of µ among the problem variables
finally yields as the transformed problem (23):

maximize 〈2,−1, 0, 1,−1, 0, 0〉T〈y1, y2, y3, y4, y5, µ1, µ2〉

subject to


1 −1 1 0 0 −1 0
0 0 0 1 −1 0 −1
0 2 −2 0 0 1 0
0 0 0 −1 1 0 1
−2 1 0 −1 1 0 0





y1
y2
y3
y4
y5
µ1

µ2


≤


0
0
0
0
−1


〈y1, y2, y3, y4, y5, µ1, µ2〉 ≥ 0

(24)

12We will tacitly replace an equality in the form α = β by the equivalent pair of inequalities
α ≥ β and −α ≥ −β whenever the substitution is necessary to fit our framework.
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This problem is feasible so this CLP(N) program terminates. Projecting the
constraints of (24) onto µ we obtain, in addition, the knowledge that every µ
with µ1 + µ2 ≥ 1 gives a ranking function. In other words, µ1x1 + µ2x2 is a
ranking function if the non-negative numbers µ1 and µ2 satisfy µ1 + µ2 ≥ 1.

The following result illustrates the strength of the method:

Theorem 4.2. Let C be the binary CLP(Q+) clause p(x̄) :− c[x̄, x̄′], p(x̄′),
where p is an n-ary predicate and c[x̄, x̄′] is a linear satisfiable constraint. Let
plrf(C) be the set of positive linear ranking functions for C and svg(C) be the
set of solutions of (23) projected onto µ, that is,

plrf(C) :=
{
µ ∈ Qn+

∣∣∣∣ ∀x̄, x̄′ ∈ Qn+ : c[x̄, x̄′] =⇒
n∑
i=1

µixi −
n∑
i=1

µix
′
i ≥ 1

}
,

svg(C) :=
{
µ̌ ∈ Qn+

∣∣ 〈y̌, µ̌〉 is a solution of (23)
}
.

Then plrf(C) = svg(C).

Proof. As c[x̄, x̄′] is satisfiable, problem (20) is feasible. We prove each inclu-
sion separately.

svg(C) ⊆ plrf(C). Assume that (23) is feasible and let 〈y̌, µ̌〉 be a solution
of (23). For this choice of µ̌, the corresponding LP problems (20) and (21) are
bounded by q ≥ 1 (case 2b of the discussion above). So µ̌ ∈ plrf(C).

plrf(C) ⊆ svg(C). Let us pick µ ∈ plrf(C). For this choice, the corresponding
LP problem (20) is bounded by r ≥ 1, so is its dual (21). Let ŷ be an optimal
solution for (21). Thus 〈ŷ,µ〉 is a feasible solution of (22) and (23). Hence
µ ∈ svg(C).

As an immediate consequence, the question: does a given binary recursive
clause admit a positive linear mapping? can be solved in polynomial time.

Corollary 4.3. Let C be the binary CLP(Q+) clause p(x̄) :− c[x̄, x̄′], p(x̄′),
where c[x̄, x̄′] is a linear satisfiable constraint. The decision problem plrf(C) = ∅
is in P.

Proof. By Theorem 4.2 the problems plrf(C) = ∅ and svg(C) = ∅ are equiv-
alent. So, if (23) is feasible then the answer is no: as c[x̄, x̄′] is satisfiable, we
are in case (2)(b). Otherwise, again because of the satisfiability of c[x̄, x̄′], ei-
ther (20) is unbounded (case (1)(a)ii) or it is bounded by q′ < 0 (case (1)(b)).
In both cases, the answer is yes. Finally, testing the satisfiability of a linear
system, as well as computing one of its solutions —and thus computing one
concrete linear ranking function—, is in P (see, e.g., [36]).
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For the case where we have more than one directly recursive binary CLP(N)
clauses, C1, . . . , Cn, the set of global positive linear ranking functions, i.e., that
ensure termination whichever clause is selected at each computation step, is
given by

⋂n
i=1 svg(Ci). This can be computed by taking the conjunction of the

constraints obtained, for each clause, from the projection of the constraints of
the corresponding linear problem (23) onto µ.

To summarize, the main contribution of Sohn and Van Gelder lies in their
encoding of the ranking function search problem into linear programming and
their use of the duality theorem. As we will see, this idea is amenable to a
generalization that makes it widely applicable to any programming paradigm,
not just (constraint) logic programming.

4.3. The Generalization by Mesnard and Serebrenik
Fred Mesnard and Alexandre Serebrenik have generalized the method of

Sohn and Van Gelder from the analysis of logic programs to the analysis of
CLP(Q) and CLP(R) programs in [15, 16]. In the following, for presentation
purposes and without loss of generality, we consider the case of rational-valued
variables. They use a class of affine ranking functions of the form

fp(y1, . . . , yn) = µ0 +
n∑
i=1

µiyi, (25)

where µi ∈ Q, for i = 0, . . . , n. Allowing for rational-valued coefficients µi and
variables yi (both the µi’s and the yi’s were naturals in [6]) implies that (25)
does not necessarily define a nonnegative function and that Zeno sequences13

are not automatically excluded. Consequently, to avoid these two problems,
condition (16) is strengthened to14

∀x̄, x̄′ ∈ Qn : c[x̄, x̄′] =⇒
(
fp(x̄) ≥ 1 + fp(x̄′) ∧ fp(x̄) ≥ 0

)
. (26)

Note that the choice of the numbers 1 and 0 in the right hand side of the above
implication preserves generality: the general form of the former condition, i.e.,
fp(x̄) ≥ ε+fp(x̄′) for a fixed ε ∈ Q∗+, can be transformed as shown in Section 3,
and the general form of the latter, i.e., fp(x̄) ≥ b for a fixed b ∈ Q, can be
transformed into fp(x̄) ≥ 0 by a suitable choice of µ0. Condition (26) can be
rewritten as follows:

∀x̄, x̄′ ∈ Qn : c[x̄, x̄′] =⇒
( n∑
i=1

µixi −
n∑
i=1

µix
′
i ≥ 1 ∧ µ0 +

n∑
i=1

µixi ≥ 0
)
. (27)

Using the same notation chosen for (19), the existence of a ranking function
can now be equivalently expressed as the existence of a solution of cost at least

13Such as 1, 1
2

, 1
4

, 1
8

, . . . .
14Our presentation is strictly more general than the formulation in [15, 16], which imposes

that fp(x̄) ≥ 1 + fp(x̄′) ∧ fp(x̄′) ≥ 0.
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1 to the former and a solution of cost at least 0 to the latter of the following
optimization problems:

minimize 〈µ,−µ〉T〈x,x′〉
subject to Ac〈x,x′〉 ≥ bc

minimize 〈µ̃,0〉T〈x̃,x′〉
subject to Ãc〈x̃,x′〉 ≥ b̃c

(28)

where the extended vectors µ̃ := 〈µ0,µ〉 and x̃ := 〈x0,x〉 include the parameter
µ0 and the new variable x0, respectively, and the extended matrix and vector

Ãc :=

 1 0T

−1 0T

0 Ac

 and b̃c := 〈1,−1, bc〉

encode the additional constraint x0 = 1.
Reasoning as in Section 4.2, the problems (28) can then be transformed, ap-

plying the suitable form of the duality theorem, into the following dual problems
over new vectors of variables y and z, ranging over Qm and Qm+2, respectively:

maximize bT
cy

subject to AT
cy = 〈µ,−µ〉

y ≥ 0

maximize b̃T
c z

subject to ÃT
c z = 〈µ̃,0〉

z ≥ 0

(29)

Now the condition that the optimal solution is at least 1 (resp., 0) can
be added to the constraints, thus reducing the optimization problems (28) to
testing the satisfiability of the system:

bT
cy ≥ 1
AT
cy = 〈µ,−µ〉

y ≥ 0

b̃T
c z ≥ 0
ÃT
c z = 〈µ̃,0〉

z ≥ 0

or equivalently, after incorporating the parameters µ (resp., µ̃) into the vari-
ables, to the generalization to Q of problem (23):

AT
c
−In
In

−AT
c
In
−In

−Im 0

−bT
c 0T


〈y,µ〉 ≤



0

0

0

−1


∧


ÃT
c

−In+1

0

−ÃT
c

In+1

0

− Im+2 0

−b̃T
c 0T


〈z, µ̃〉 ≤ 0 (30)

The following completeness result generalizes Theorem 4.2:
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Theorem 4.4. Let C be the binary CLP(Q) clause p(x̄) :− c[x̄, x̄′], p(x̄′), where
p is an n-ary predicate and c[x̄, x̄′] is a linear satisfiable constraint. Let lrf(C)
be the set of linear ranking functions for C and ms(C) be the set of solutions
of (30) projected onto µ, that is,

lrf(C) :=

{
µ̃ ∈ Qn+1

∣∣∣∣∣ ∀x̄, x̄′ ∈ Qn : c[x̄, x̄′] =⇒∑n
i=1 µixi −

∑n
i=1 µix

′
i ≥ 1 ∧ µ0 +

∑n
i=1 µixi ≥ 0

}
,

ms(C) :=
{
µ̃ ∈ Qn+1

∣∣ 〈y,µ〉 and 〈z, µ̃〉 are solutions of the problems (30)
}
.

Then lrf(C) = ms(C).

Proof. We use l and r as subscripts of our references to the LP problems (28),
(29), and (30) to denote the LP problems on the left and the LP problems on
the right.

ms(C) ⊆ lrf(C). Assume that (30) is feasible and let 〈y̌, µ̌〉 be a solution of (30)l
and 〈ž, µ̌〉 be a solution of (30)r. For this choice of µ̌, the corresponding LP
problems (29)l and (28)l are bounded by 1 while the corresponding LP prob-
lems (29)r and (28)r are bounded by 0. Hence we have:

∀x̄, x̄′ ∈ Qn : c[x̄, x̄′] =⇒
n∑
i=1

µixi −
n∑
i=1

µix
′
i ≥ 1

and

∀x̄, x̄′ ∈ Qn : c[x̄, x̄′] =⇒ µ0 +
n∑
i=1

µixi ≥ 0

Thus:

∀x̄, x̄′ ∈ Qn : c[x̄, x̄′] =⇒
n∑
i=1

µixi −
n∑
i=1

µix
′
i ≥ 1 ∧ µ0 +

n∑
i=1

µixi ≥ 0

so µ̌ ∈ lrf(C).

lrf(C) ⊆ ms(C). Let us pick µ̃ ∈ lrf(C). For this choice, the corresponding
LP problem (28) are bounded by 1 and 0, so are their duals (29). Let ŷ be an
optimal solution for (29)l. Thus 〈ŷ,µ〉 is a feasible solution of (30)l. Similarly,
let ẑ be an optimal solution for (29)r. Thus 〈ẑ, µ̃〉 is a feasible solution of (30)r.
Hence µ̃ ∈ ms(C).

Moreover, even for the case of CLP(Q) —and CLP(R)— checking for the
existence of a linear ranking function is a polynomial problem.

Corollary 4.5. Let C be the binary CLP(Q) clause p(x̄) :− c[x̄, x̄′], p(x̄′), where
c[x̄, x̄′] is a linear satisfiable constraint. The decision problem lrf(C) = ∅ is in
P.
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A space of ranking functions can be obtained (at a computational price that
is no longer polynomial) by projecting the constraints of (30) onto µ̃. Any µ̃
satisfying all the projected constraints corresponds to one ranking function that,
subject to c[x̄, x̄′], is bounded from below by 0 and that decreases by at least
1 at each iteration. From these “normalized” ranking functions, the opposite
of the transformation outlined in Section 3 allows to recover all affine ranking
functions: these are induced by the set of parameters{

〈h, kµ〉
∣∣ 〈µ0,µ〉 ∈ lrf(C), h ∈ Q, k ∈ Q+ \ {0}

}
. (31)

4.4. Application to the Analysis of Imperative While Loops
The generalization of Mesnard and Serebrenik can be used, almost un-

changed, to analyze the termination behavior of imperative while loops with
integer- or rational-valued variables. Consider a loop of the form (2), i.e.,
{ I } while B do C where I is known to hold before any evaluation of B and C
is known to always terminate in that loop. Termination analysis is conducted
as follows:

1. Variables are duplicated: if x̄ are the n variables of the original loop, we
introduce a new tuple of variables x̄′.

2. An analyzer based on convex polyhedra [37] is used to analyze the following
program:

{I}
x′1 := x1; . . . ; x′n := xn;
if B[x̄′/x̄] then

C[x̄′/x̄]
F

(32)

Let the invariant obtained for the program point marked with ‘F’ be
c[x̄, x̄′]; this is a finite conjunction of linear constraints.

3. The method of Mesnard and Serebrenik is now applied to the CLP(Q)
clause p(x̄) :− c[x̄, x̄′], p(x̄′): if termination can be established for that
clause, then the while loop we started with will terminate.

Notice how the clause p(x̄) :− c[x̄, x̄′], p(x̄′) approximates the termination
behavior of the loop: if we interpret the predicate p applied to x̄ as “the loop
guard is evaluated on values x̄,” then the clause can be read as “if the loop
guard is evaluated on values x̄, and c[x̄, x̄′] holds, then the loop guard will be
evaluated again on values x̄′.”

We illustrate the overall methodology with an example.
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Example 4.6. The following program, where x1 and y take values in Z, com-
putes and stores in x2 the integer base-2 logarithm of x1 if x1 > 0, 0 otherwise:

x2 := 0;
{x1 ≥ 0 ∧ x2 ≥ 0}
while x1 ≥ 2 do

x1 := x1 div 2;
x2 := x2 + 1

where the loop invariant {x1 ≥ 0∧x2 ≥ 0} has been obtained by static analysis.
After the duplication of variables, we submit to the analyzer the program

{x1 ≥ 0 ∧ x2 ≥ 0}
x′1 := x1; x′2 := x2;
if x′1 ≥ 2 then

x′1 := x′1 div 2;
x′2 := x′2 + 1
F

and we obtain, for program point ‘F’, the invariant

x1 ≥ 2 ∧ 2x′1 + 1 ≥ x1 ∧ 2x′1 ≤ x1 ∧ x′2 = x2 + 1 ∧ x′2 ≥ 1.

Applying the method of Mesnard and Serebrenik we obtain that, for each
µ0, µ1, µ2 ∈ Q such that µ1 − µ2 ≥ 1, µ2 ≥ 0, and µ0 + 2µ1 ≥ 0, f(x1, x2) :=
µ0 +µ1x1 +µ2x2 is a ranking function for the given while loop. It is interesting
to observe that the first constraint guarantees strict decrease (at least 1), the
addition of the second constraint guarantees boundedness from below, while the
further addition of the third constraint ensures nonnegativity, i.e., that 0 is a
lower bound.

4.5. Application to the Conditional Termination Analysis
It is interesting to observe that the method of Mesnard and Serebrenik is

immediately applicable in conditional termination analysis. This is the problem
of (automatically) inferring the preconditions under which code that does not
universally terminate (i.e., there are inputs for which it does loop forever) is
guaranteed to terminate. This problem has been recently studied in [38], where
preconditions are inferred under which functions that are either decreasing or
bounded become proper ranking functions. The two systems in (30), projected
onto µ̃, exactly define the space of non-negative candidate ranking functions
and the space of decreasing candidate ranking functions, respectively. While
this is subject for future research, we believe that the availability of these two
spaces allows to improve the techniques presented in [38].
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5. The Approach of Podelski and Rybalchenko

Andreas Podelski and Andrey Rybalchenko [7] introduce a method for find-
ing linear ranking functions for a particular class of unnested while loops that,
with the help of a preliminary analysis phase, is indeed completely general.

Consider a while loop of the form

{I}
while B do

H

C

F

(33)

in which variables x1, . . . , xn occur. Suppose we have determined (e.g., by a
data-flow analysis based on convex polyhedra) that the invariant

n∑
i=1

gi,kxi ≤ bk, for k = 1, . . . , r, (34)

holds at the program point marked with ‘H’, while the invariant

n∑
i=1

a′i,kx
′
i ≤

n∑
i=1

ai,kxi + bk for k = r + 1, . . . , r + s, (35)

holds at the program point marked with ‘F’, where unprimed variables represent
the values before the update and primed variables represent the values after the
update, and all the coefficients and variables are assumed to take values in Q.15

The inequalities in (34) can be expressed in the form (35) by just defining
a′i,k := 0 and ai,k := −gi,k for i = 1, . . . , n and k = 1, . . . , r. The conjunction
of (34) and (35) can now be stated in matrix form as

(
A A′

)(x
x′

)
≤ b, (36)

where the matrix
(
A A′

)
is obtained by juxtaposition of the two (r + s) × n

matrices A := (−ai,k) and A′ := (a′i,k), b := 〈b1, b2, . . . , br+s〉 and, as explained
in Section 2, 〈x,x′〉 is obtained by juxtaposing the vectors x := 〈x1, x2, . . . , xn〉
and x′ := 〈x′1, x′2, . . . , x′n〉.

Podelski and Rybalchenko have proved that (33) is guaranteed to terminate
on all possible inputs if there exist two (r+s)-dimensional non-negative rational

15In [7] variables are said to have integer domain, but this restriction seems unnecessary
and, in fact, it is not present in [39].
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vectors λ1 and λ2 such that:

λT
1A
′ = 0T, (37a)

(λT
1 − λT

2 )A = 0T, (37b)
λT

2 (A+A′) = 0T, (37c)
λT

2b < 0. (37d)

Note that we have either zero or infinitely many solutions, since if (λ1,λ2)
satisfies the constraints then (kλ1, kλ2) satisfies them as well for any k ∈ Q+ \
{0}. Podelski and Rybalchenko proved also the following completeness result: if
the behavior of (33) is completely characterized by conditions (34) and (35) —in
which case they call it a “simple linear loop”— then λ1,λ2 ∈ Qr+s+ satisfying
conditions (37a)–(37d) exist if and only if the program terminates for all inputs.

5.1. Generation of Ranking Functions
For each pair of vectors λ1 and λ2 satisfying the conditions (37a)–(37d), a

linear ranking function for the considered program can be obtained as

f(x) := λT
2A
′x. (38)

In [7] a slightly more complex form is proposed, namely:

g(x) :=

λ
T
2A
′x, if there exists x′ such that

(
A A′

)(x
x′

)
≤ b ,

(λT
2 − λT

1 )b, otherwise,
(39)

but the extra provisions are actually necessary only if one is interested into an
“extended ranking function” that is strictly decreasing also on the very last
iteration of the loop, that is, when the effect of the command C is such that x
would violate the loop guard B at the following iteration. As this more complex
definition does not seem to provide any additional benefit, we disregard it and
consider only the linear ranking function (38).

Example 5.1. Consider again the program of Example 4.6. The invariants in
the forms dictated by (34) and (35) are given by the systems {−x1 ≤ −2,−x′2 ≤
−1} and {2x′1 ≤ x1, −2x′1−1 ≤ −x1, −x′2 ≤ −x2−1, x′2 ≤ x2+1}, respectively.
These can be expressed in the matrix form (36) by letting

A :=


−1 0
−1 0

1 0
0 1
0 −1
0 0

 , A′ :=


0 0
2 0
−2 0

0 −1
0 1
0 −1

 , b =


−2

0
1
−1

1
−1

 .

Two non-negative rational vectors solving the system (37) are, for instance,
λ1 = 〈2, 0, 0, 0, 0, 0〉T and λ2 = 〈1, 1, 0, 0, 0, 0〉T.
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5.2. Interpretation in Terms of Lagrangian Relaxation
A reader of [7] wonders where the method of Podelski and Rybalchenko

comes from. In fact, the paper does not give an intuition about why conditions
(37a)–(37d) imply termination of (33). In [20, Section 6.2], Patrick Cousot
hints that the method can be derived from Lagrangian relaxation16 applied to
the Floyd termination verification conditions. We now show that this is indeed
the case.

Assuming we are dealing with affine ranking functions and with affine in-
variants and adding the limitation that r = 1 in (34), in [20] the existence of
an affine ranking function is proved to be equivalent to the existence of µ0 ∈ Q,
µ ∈ Qn, δ ∈ Q, α ∈ Q+, β ∈ Qm+ such that:

µTx+ µ0 − ασ1(x,x′) ≥ 0,

µT(x− x′)− δ −
m∑
k=1

βkσk(x,x′) ≥ 0,

δ > 0,

where n is the number of variables in x, the loop is described by the inequalities
σk(x,x′) ≥ 0, with σ1 being the inequality in (34), and x and x′ range on all
Qn.

The limitation that r = 1 can actually be removed as long as α is replaced
by a vector α ∈ Qr+. The generalization yields

µTx+ µ0 −
r∑

k=1

αkσk(x,x′) ≥ 0

µT(x− x′)− δ −
m∑
k=1

βkσk(x,x′) ≥ 0

δ > 0.

If, and this is the case in the Podelski and Rybalchenko method, the constraints
σk(x,x′) for k = 1, . . . , m are affine functions of 〈x,x′〉, the sums can be
interpreted as matrix products and the conditions rewritten as follows, where
A, A′ and b are the same as in (36):(

〈µ,0, µ0〉T − 〈α,0〉T
(
−A −A′ b

))
〈x,x′, 1〉 ≥ 0 (40a)(

〈µ,−µ,−δ〉T − βT
(
−A −A′ b

))
〈x,x′, 1〉 ≥ 0 (40b)

δ > 0 (40c)

16Lagrangian relaxation is a standard device to convert entailment into constraint solving:
given a finite dimensional vector space V, a positive integer n and functions fk : V → Q for
k = 0, . . . , n, the property that, for each x ∈ V,

Vn
k=1 fk(x) ≥ 0 =⇒ f0(x) ≥ 0 can be relaxed

to proving the existence of a vector a ∈ Qn
+ such that, for all x ∈ V, f0(x)−

Pn
k=1 akfk(x) ≥ 0.

If the fk are affine functions, the latter condition is equivalent to the former.
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Note that the inequalities (40a)–(40c) must hold for every possible value of x
and x′ in the whole space Qn. Therefore, by a suitable choice of x and x′,
each element of the coefficient vectors in (40a) and (40b) can be shown to be
necessarily zero. We define λ1 = 〈α,0〉 17 and λ2 = β, obtaining:

µ = −λT
1A, µ = −λT

2A,

0T = −λT
1A
′, −µ = −λT

2A
′,

µ0 = λT
1b, −δ = λT

2b, δ > 0.

These relations can finally be rearranged to yield:

λT
1A
′ = 0T,

(λT
1 − λT

2 )A = 0T,

λT
2 (A+A′) = 0T,

λT
2b < 0,

µ = λT
2A

′,

µ0 = λT
1b,

δ = −λT
2b,

where the conditions (37a)–(37d) appear on the left hand side and the conditions
on the coefficients of the synthesized ranking functions appear on the right hand
side, expressed in terms of λ1 and λ2.

5.3. An Alternative Implementation Approach
As long as the distinction between invariants (34) and (35) is retained, the

method of Podelski and Rybalchenko can be implemented following an alterna-
tive approach. The linear invariants (36) are more precisely described by(

AB 0
AC A′C

)(
x
x′

)
≤
(
bB
bC

)
(41)

where AB ∈ Qr×n, AC ∈ Qs×n, A′C ∈ Qs×n, bB ∈ Qr, bC ∈ Qs. As shown
in Section 5.2, the existence of a linear ranking function for the system (41) is
equivalent to the existence of three vectors v1 ∈ Qr+, v2 ∈ Qr+, v3 ∈ Qs+ such
that

(v1 − v2)TAB − vT
3AC = 0T, (42a)

vT
2AB + vT

3 (AC +A′C) = 0T, (42b)
v2bB + v3bC < 0. (42c)

As already noted, the two vectors of the original Podelski and Rybalchenko
method can be reconstructed as λ1 = 〈v1,0〉 and λ2 = 〈v2,v3〉.

17We explicitly require that the extra coefficients added to α be zero for consistency with the
derivation. However, even though Podelski and Rybalchenko admit any nonnegative rational
numbers to appear in those positions of λ1, there is no loss of generality: the synthesized
ranking functions (38) do not depend on these coefficients.
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Note that, even though we are solving a different linear programming prob-
lem, we are still able to obtain the same space of linear ranking functions we
would have obtained by applying the original method, as we prove using the
following lemma.

Lemma 5.2. Let S be the space of linear ranking functions obtained by applying
the method of Podelski and Rybalchenko to

(
A A′

)
〈x,x′〉 ≤ b, i.e.,

S :=
{
〈λT

2A
′,λT

1b〉 ∈ Qn+1
∣∣ 〈λ1,λ2〉 is a solution of (37)

}
,

and let P ∈ Q(r+s)×(r+s) be a permutation matrix.18 Then the application of
the method of Podelski and Rybalchenko to P

(
A A′

)
〈x,x′〉 ≤ Pb yields the

same space of linear ranking functions S.

Proof. The system (37) corresponding to P
(
A A′

)
〈x,x′〉 ≤ Pb becomes

ηT
1PA

′ = 0T, (43a)
(ηT

1 − ηT
2 )PA = 0T, (43b)

ηT
2P (A+A′) = 0T, (43c)

ηT
2Pb < 0, (43d)

to be solved for the two (r + s)-dimensional non-negative rational vectors η1

and η2.
Now, 〈λ1,λ2〉 is a solution of (37) if and only if 〈λ1,λ2〉P−1 is a solution

of (43): on one side, if 〈λ1,λ2〉 is a solution of (37) then 〈η1,η2〉 defined as
〈η1,η2〉 := 〈λ1,λ2〉P−1 is a solution of (43); on the other side, if 〈η1,η2〉 is
a solution of (43) then 〈λ1,λ2〉 defined as 〈λ1,λ2〉 := 〈η1,η2〉P is a solution
of (37) and the desired property can be verified by right-multiplying by P−1

both solutions.
The space of linear ranking functions for the permuted system is

SP =
{
〈ηT

2PA
′,ηT

1Pb〉 ∈ Qn+1
∣∣ 〈η1,η2〉 is a solution of (43)

}
=
{
〈λT

2P
−1PA′,λT

1P
−1Pb〉 ∈ Qn+1

∣∣ 〈λ1,λ2〉 is a solution of (37)
}

= S,

and thus it is unaltered with respect to the space of linear ranking functions S
corresponding to the non-permuted system.

Since the system (41) is obtained by applying a suitable permutation to (36),
a straightforward application of this lemma proves that the space of linear rank-
ing functions obtained is the same in both cases.

Moreover, as λT
2A
′ = vT

3A
′
C and λ1b = v1bB , we can express the space of

linear ranking functions as

S :=
{
〈vT

3A
′
C ,v1bB〉 ∈ Qn+1

∣∣ 〈v1,v2,v3〉 is a solution of (42)
}
.

18We recall that a k-dimensional permutation matrix is a square matrix obtained by a
permutation of the rows or columns of the k-dimensional identity matrix.
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6. Comparison of the Two Methods

In this section we compare the method by Mesnard and Serebrenik with
the method by Podelski and Rybalchenko: we first prove that they have the
same “inferential power”, then we compare their worst-case complexities, then
we experimentally evaluate them on a representative set of benchmarks.

6.1. Equivalence of the Two Methods
We will now show that the method proposed in [7] is equivalent to the one

given in [40] on the class of simple linear loops, i.e., that if one of the two
methods can prove termination of a given simple linear loop, then the other one
can do the same. This is an expected result since both methods claim to be
complete on the class of programs considered.

It is worth noting that a completeness result was already stated in [41,
Theorem 5.1] for the case of single predicate CLP(Q+) procedures, which can
be seen to be a close variant of the binary, directly recursive CLP(Q+) programs
considered in Theorem 4.2 and Corollary 4.3. Probably due to the programming
paradigm mismatch, Podelski and Rybalchenko [7] fail to recognize the actual
strength and generality of the mentioned result, thereby claiming originality for
their completeness result.

Theorem 6.1. Let C be the binary CLP(Q) clause p(x̄) :− c[x̄, x̄′], p(x̄′), where
p is an n-ary predicate and c[x̄, x̄′] is a linear satisfiable constraint. Let pr(C)
and m̂s(C) be the spaces of linear ranking functions for C obtained through the
method of Podelski and Rybalchenko and through the method of Mesnard and
Serebrenik, respectively, that is,

pr(C) :=
{
〈λT

2A
′,λT

1b〉 ∈ Qn+1
∣∣ 〈λ1,λ2〉 is a solution of (37)

}
,

m̂s(C) :=

{
kµ̃ ∈ Qn+1

∣∣∣∣∣ 〈y,µ〉 and 〈z, µ̃〉 are solutions of (30),
k ∈ Q+ \ {0}

}
.

where c[x̄, x̄′] is equivalent to
(
A A′

)
〈x,x′〉 ≤ b or to Ac〈x,x′〉 ≥ bc, respec-

tively. Then pr(C) = m̂s(C).

Proof. We will, as customary, prove the two inclusions pr(C) ⊆ m̂s(C) and
pr(C) ⊇ m̂s(C).

pr(C) ⊆ m̂s(C). Suppose that there exist two non-negative rational vectors λ1

and λ2 satisfying (37), i.e., λT
1A
′ = (λT

1 − λT
2 )A = λT

2 (A + A′) = 0T and
λT

2b < 0. By Theorem 4.4, it is enough to prove that 〈λT
2A
′,λT

1b〉 ∈ m̂s(C),
that is, there exists k ∈ Q+ such that 〈 1kλ

T
2A
′, 1
kλ

T
1b〉 ∈ lrf(C), which is in turn

equivalent, by definition, to λT
2A
′x − λT

2A
′x′ ≥ k and λT

1b + λT
2A
′x ≥ 0. We
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have (
A A′

)(x
x′

)
≤ b =⇒ Ax+A′x′ ≤ b

=⇒ −Ax ≥ A′x′ − b
=⇒ − λT

2Ax ≥ λT
2A
′x′ − λT

2b by λ2 ≥ 0

=⇒ λT
2A
′x ≥ λT

2A
′x′ − λT

2b by (37c)

and the former property is satisfied if we choose k = −λT
2b, which is nonnegative

by relation (37d). For the latter property, we have

Ax+A′x′ ≤ b =⇒ λT
1Ax+ λT

1A
′x′ ≤ λT

1b as λT
1 is non-negative

=⇒ λT
1Ax ≤ λT

1b by (37a)
=⇒ λT

2Ax ≤ λT
1b by (37b)

=⇒ − λT
2A
′x ≤ λT

1b by (37c)

and both properties are thus proved.

pr(C) ⊇ m̂s(C). In order to prove the inverse containment, we will need to
recall the affine form of Farkas’ Lemma (see [36]).

Lemma 6.2 (Affine form of Farkas’ lemma). Let P be a nonempty poly-
hedron defined by the inequalities Cx+ d ≥ 0. Then an affine function f(x) is
non-negative everywhere in P if and only if it is a positive affine combination
of the columns of Cx+ d: f(x) = λ0 + λT(Cx+ d) with λ0 ≥ 0, λ ≥ 0.

Let µ̃ ∈ m̂s(C). Then there exists h ∈ Q+ \ {0} such that hµ̃ ∈ lrf(C)
describes a linear ranking function f for C.

The inequalities
(
A A′

)
〈x,x′〉 ≤ b define a polyhedron; according to the

affine form of Farkas’ lemma, a function is non-negative on this polyhedron,
i.e., throughout the loop, if and only if it is a positive affine combination of the
column vectors

(
A A′

)
〈x,x′〉 ≤ b. In particular this holds for the ranking

function f and its two properties: f(x) ≥ 0 and f(x)− f(x′) ≥ 1.
Hence there exist two non-negative rational vectors λ1 and λ2 and two non-

negative numbers λ0,1 and λ0,2 such that

f(x) = λ0,1 + λT
1

(
−
(
A A′

)
〈x,x′〉+ b

)
and

f(x)− f(x′)− 1 = λ0,2 + λT
2

(
−
(
A A′

)
〈x,x′〉+ b

)
.

Replacing f(x) by hµx+ hµ0, we get two equalities—one for the part con-
taining variables and one for the remaining part—for each expression. After
simplification we obtain the following equalities:

−λT
1

(
A A′

)
〈x,x′〉 = hµx (44a)

−λT
2

(
A A′

)
〈x,x′〉 = hµx− hµx′ (44b)
−λT

2b = 1 + λ0,2 (44c)
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From (44a) and (44b) we obtain λT
1A = −hµT, λT

1A
′ = 0T, λT

2A = −hµT

and λT
2A
′ = hµT. We can rewrite it as 0T = λT

1A
′ = (λT

1−λT
2 )A = λT

2 (A+A′).
From (44c) we deduce λT

2b < 0.
The four conditions (37) to prove termination by [7] are thus satisfied.

The combination of Theorems 4.4 and 6.1 gives:

Theorem 6.3. Let C be the binary CLP(Q) clause p(x̄) :− c[x̄, x̄′], p(x̄′), where
p is an n-ary predicate and c[x̄, x̄′] is a linear satisfiable constraint. Let l̂rf(C) be
the set of (positive multiples of) linear ranking functions for C, m̂s(C) be the set
of (positive multiples of) solutions of the Mesnard and Serebrenik system (30)
projected onto µ and pr(C) be the set of the ranking function coefficients obtained
through the method of Podelski and Rybalchenko, that is,

l̂rf(C) :=

 kµ̃ ∈ Qn+1

∣∣∣∣∣∣∣∣∣
∀x̄, x̄′ ∈ Qn : c[x̄, x̄′] =⇒∑n

i=1 µixi −
∑n
i=1 µix

′
i ≥ 1

∧ µ0 +
∑n
i=1 µixi ≥ 0,

k ∈ Q+ \ {0}

,

m̂s(C) :=

{
kµ̃ ∈ Qn+1

∣∣∣∣∣ 〈y,µ〉 and 〈z, µ̃〉 are solutions of (30),
k ∈ Q+ \ {0}

}
,

pr(C) :=
{
〈λT

2A
′,λT

1b〉 ∈ Qn+1
∣∣ 〈λ1,λ2〉 is a solution of (37)

}
,

where c[x̄, x̄′] is equivalent to
(
A A′

)
〈x,x′〉 ≤ b or to Ac〈x,x′〉 ≥ bc, respec-

tively. Then l̂rf(C) = m̂s(C) = pr(C).

6.2. Worst-Case Complexity Using the Simplex Algorithm
The computationally most expensive component in both methods is the res-

olution of a linear optimization problem that can always be expressed in the
standard form

minimize cTx

subject to Ax = b

x ≥ 0

by applying well known transformations: inequalities and unconstrained (i.e.,
not subject to lower or upper bounds) variables can be replaced and the resulting
equivalent problem in standard form has one more variable for each inequality
or unconstrained variable appearing in the original problem.

The most common way to solve this linear optimization problems involves
using the simplex algorithm [42], an iterative algorithm that requires

(
e+u
e

)
pivoting steps in the worst-case scenario, where e and u denote the number of
equalities in A and unknowns in x respectively.

For a simple linear loop of m inequalities over n variables, Podelski and Ry-
balchenko require to solve a linear problem in standard form having 3n equal-
ities over 2m variables (the opposite of the expression appearing in (37d) can
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be used as the quantity to be minimized); this gives a worst-case complexity of(
3n+2m

3n

)
pivoting steps, corresponding, by Stirling’s formula, to an exponential

complexity of exponent 3n+ 2m approximately.19

If the alternative formalization of the Podelski and Rybalchenko method
is adopted for the same loop, then we will have the same m constraints as
above for the ‘F’ invariant, while the ‘H’ invariant will be described by other `
constraints. If redundant constraints are removed, we will have ` ≤ m. Hence,
the alternative approach will result in a linear programming problem having 2n
equalities over m+2` variables. Hence, the worst-case number of pivoting steps
will be an exponential of exponent approximately 2n+m+ 2`.

For the same simple linear loop, Serebrenik and Mesnard require the res-
olution of two linear problems, that can be rewritten to contain 2n equalities
over m+n variables (with n unconstrained variables) and 2n+ 1 equalities over
(m + 2) + (n + 1) variables (with n + 1 unconstrained variables), respectively.
They can then be merged to generate a single linear problem of 4n+1 equalities
over m+ (m+ 2) + (n+ 1) variables, n+ 1 of which unconstrained, and an extra
inequality replacing one of the two objective functions. In the end, we get a
linear problem in standard form with 4n+2 equalities over 2m+2n+5 variables.
This means a worst-case complexity of

(
6n+2m+7

4n+2

)
pivoting steps—exponential

complexity of exponent 6n+ 2m approximately.
So the method proposed by Podelski and Rybalchenko has, in general, a

lower worst-case complexity than the one proposed by Mesnard and Serebrenik,
if the single linear problem approach is chosen. The comparison of the two al-
ternative implementation approaches for the Podelski and Rybalchenko method
depends on the relations between quantities n, m and `. On the one hand, if `
is significantly smaller than m, then the alternative approach could result in an
efficiency improvement. On the other hand, if the number of constraints is much
higher than the number of variables, then the original implementation approach
should be preferred. Note that the need for two loop invariants instead of a sin-
gle one should not be seen as a big practical problem: in fact, most analysis
frameworks will provide the ‘H’ invariant as the original input to the termina-
tion analysis tool, which will then use it to compute the ‘F’ invariant (via the
abstract execution of a single iteration of the loop); that is, the computational
cost for the ‘H’ invariant is implicitly paid anyway.

It is well known, though, that the worst-case scenario for the simplex algo-
rithm is extremely uncommon in practice. An average complexity analysis and,
more recently, a smoothed complexity analysis [43] have been carried out on the
simplex algorithm and showed why it usually takes polynomial time. Besides
the theoretical studies, several experimental evaluations of implementations of
the simplex algorithm reported that the average number of pivoting steps seems
to grow linearly with the sum e + u of the number of equalities and unknowns

19When a + b → ∞, by Stirling’s formula we have
`a+b

a

´
≤ C2a+b(a + b)−1/2, where C is

an absolute constant. This inequality is sharp. Notice however that if a, say, is known to be
much smaller than b, a much stronger inequality can be given, namely

`a+b
a

´
≤ (a+ b)a/a!.
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of the problem. Therefore, for a more informative and meaningful compari-
son, the next section presents an experimental evaluation of the methods on a
representative set of while loops.

7. Implementation and Experimental Evaluation

The Parma Polyhedra Library (PPL) is a free software, professional library
for the handling of numeric approximations targeted at static analysis and
computer-aided verification of hardware and software systems [5].20 The PPL
is employed by numerous projects in this field, most notably by GCC, the GNU
Compiler Collection, probably the compilers’ suite more in widespread use.

As an integral part of the overall project to which the present paper belongs
—whose aim is to make the technology of the automatic synthesis of linear rank-
ing functions thoroughly explained and generally available—, we have extended
the PPL with all the methods discussed in the present paper. Previously, only
a rather limited demo version of RankFinder was available, only in x86/Linux
binary format, implementing the method by Podelski and Rybalchenko.21 In
contrast, the PPL implementation is completely general and available, both in
source and binary formats, with high-level interfaces to C, C++, Java, OCaml
and six different Prolog systems.

For each of the methods —Mesnard and Serebrenik (MS) or Podelski and
Rybalchenko (PR)—, for each of the two possibilities to encode the input —
either the single F invariant of (32) in Section 4.4, or the two H and F invari-
ants of (33) in Section 5—, for each numerical abstractions supported by the
PPL —including (not necessarily closed) convex polyhedra, bounded-difference
shapes and octagonal shapes—, the PPL provides three distinct functionalities
to investigate termination of the loop being analyzed:

1. a Boolean termination test;
2. a Boolean termination test that, in addition, returns the coefficients of

one (not further specified) affine ranking function;
3. a function returning a convex polyhedron that encodes the space of all

affine ranking functions.

In addition, using the MS method and for each input method, the PPL provides

4. a function returning two convex polyhedra that encode the space of all
decreasing functions and all bounded functions, respectively, for use in
conditional termination analysis.

We have evaluated the performance of the new algorithms implemented in
the PPL using the termination analyzer built into Julia, a state-of-the-art ana-
lyzer for Java bytecode [44]. We have thus taken several Java programs in the
Julia test suite and, using Julia, we have extracted the constraint systems that

20See http://www.cs.unipr.it/ppl/ for more information.
21See http://www7.in.tum.de/~rybal/rankfinder/, last checked on March 27th, 2010.
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characterize the loops in the program that Julia cannot quickly resolve with
syntax-based heuristics. This extraction phase allowed us to measure the per-
formance of the methods described in the present paper, factoring out the time
spent by Julia in all the analyses (nullness, sharing, path-length, unfolding, . . . )
that allow to obtain such constraint systems.

We first tested the performance (and correctness) of the new PPL implemen-
tation with the implementation of the MS method, based on CLP(Q), previously
used by Julia and with the implementation of PR, still based on CLP(Q), pro-
vided by the demo version of RankFinder. The reason we did this comparison
is that, while we know that the infinite precision implementation of the simplex
algorithm available in the PPL performs better than its direct competitors [5,
Section 4, Table 3],22 we know there is much room for improvement: it could
have been the case that the constraint solver employed in modern CLP systems
made our implementation useless. The result was quite satisfactory: the PPL
implementation is one to two orders of magnitude faster over the considered
benchmark suite.

The benchmark programs are: CaffeineMark, from Pendragon Software
Corporation, measures the speed of Java; JLex is a lexical analyzer generator
developed by Elliot Berk and C. Scott Ananian; JavaCC is a parser generator
from Sun Microsystems; Java_CUP is a parser generator developed by Scott
Hudson, Frank Flannery and C. Scott Ananian; Jess is a rule engine written
by Ernest Friedman-Hill; Kitten is a didactic compiler for a simple impera-
tive object-oriented language written by Fausto Spoto; NQueens is a solver of
the n-queens problem which includes a library for binary decision diagrams;
Raytracer is a ray-tracing program; Termination is a JAR file containing all
the programs of [44, Figure 16]. In Table 1 we report, for each benchmark, the
number of loops for which termination was investigated, the interval, mean and
standard deviations —with two significant figures— of the quantities n (number
of variables) and m (number of constraints) that characterize those loops.

The results of the CPU-time comparison between the MS and PR methods
are reported in Table 2. Measurements took place on a GNU/Linux system
equipped with an Intel Core 2 Quad CPU Q9400 at 2.66 GHz and 8 Gbytes of
main memory; a single core was used and the maximum resident set size over
the entire set of tests was slightly above 53 Mbytes. From these we can conclude
that the difference in performance between the two methods is rather limited.
The PR method is more efficient on the problem of semi-deciding termination,
with or without the computation of a witness ranking function, while the MS
method is superior on the problem of computing the space of all affine ranking
functions.

We also present, in Table 3, the precision results. For each benchmark,

22I.e., Cassowary (http://www.cs.washington.edu/research/constraints/cassowary/)
and Wallaroo (http://sourceforge.net/projects/wallaroo/). While GLPK, the GNU Lin-
ear Programming Toolkit (http://www.gnu.org/software/glpk/) includes a solver that is
termed “exact,” it still depends critically on floating point computations; moreover, it has not
yet been made available in the public interface.
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Table 1: Benchmarks used in the experimental evaluation

benchmark loops n n σn m m σm
CaffeineMark 151 [1,9] 6.0 1.3 [2,26] 17. 3.8
JLex 467 [1,14] 7.2 2.5 [2,45] 17. 6.7
JavaCC 136 [1,14] 8.6 4.1 [1,45] 22. 12.
Java_CUP 29 [2,14] 8.3 4.3 [5,45] 23. 13.
Jess 151 [1,9] 6.0 1.3 [2,26] 17. 3.8
Kitten 1484 [1,15] 11. 3.6 [2,45] 29. 10.
NQueens 359 [1,14] 6.3 3.6 [2,45] 17. 10.
Raytracer 8 [2,9] 4.5 2.7 [5,26] 11. 7.8
Termination 121 [1,9] 4.2 3.5 [2,27] 12. 9.9

Table 2: MS vs PR: CPU time in seconds
term. test one r. f. all r. f.

benchmark MS PR MS PR MS PR
CaffeineMark 0.42 0.26 0.43 0.25 0.31 0.34
JLex 1.62 0.83 1.64 0.84 1.17 1.14
JavaCC 0.86 0.43 0.87 0.45 0.67 0.65
Java_CUP 0.35 0.14 0.35 0.14 0.29 0.22
Jess 0.42 0.26 0.43 0.26 0.29 0.34
Kitten 11.8 6.87 11.9 6.84 8.41 10.2
NQueens 1.43 0.76 1.44 0.74 0.99 1.03
Raytracer 0.04 0.03 0.04 0.03 0.03 0.03
Termination 0.25 0.15 0.25 0.15 0.18 0.21
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Table 3: Precision results and application to conditional termination

benchmark loops term w/ d.f. w/o d.f.
CaffeineMark 151 149 0 2
JLex 467 453 3 11
JavaCC 136 120 4 12
Java_CUP 29 27 0 2
Jess 151 149 0 2
Kitten 1484 1454 3 27
NQueens 359 271 4 84
Raytracer 8 6 0 2
Termination 121 119 0 2

along with the total number of loops, we have the number of loops for which
termination is decided positively, either with the MS or the PR method (column
‘term’); the remaining loops are divided, using the MS method, between those
that admit a linear decreasing function (column ‘w/ d.f.’) and those who do
not (column ‘w/o d.f.’). It can be seen that the percentage of loops for which
termination is decided positively ranges from 75% to 99%, depending on the
benchmark. This means that we are conducting the experimental evaluation
with a termination analyzer, Julia, whose analysis algorithms —though certainly
improvable— very often provide enough information for termination analysis.
This is crucial for the meaningfulness of the experimental evaluation presented
in this section.

8. Conclusions

Linear ranking functions play a crucial role in termination analysis, as the
termination of many programs can be decided by the existence on one such
function. In this paper we have addressed the topic of the automatic synthesis
of linear ranking functions with the aim of clarifying its origins, thoroughly
explaining the underlying theory, and presenting new, efficient implementations
that are begin made available to the general public.

In particular, we have introduced, in general terms independent from any
programming paradigm, the problem of automatic termination analysis of indi-
vidual loops —to which more general control flows can be reconducted— and
its solution technique based on the synthesis of ranking functions.

We have then presented and generalized a technique. originally due to Sohn
and Van Gelder, that was virtually unknown outside the logic programming field
despite its general applicability and its relative completeness (given a linear
constraint system approximating the behavior of a loop, if a linear ranking
function exists for that system, then the method will find it). This method, due
to its ability to characterize the spaces of all the linear decreasing functions and
all the linear bounded functions, is also immediately applicable to conditional
termination analysis; this theme is an excellent candidate for future work.
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We have also presented and, for the first time, fully justified, a more recent
technique by Podelski and Rybalchenko. For this we also present an alternative
formulation that can lead to efficiency improvements.

We have compared the two methods, first proving their equivalence —
thus obtaining an independent confirmation on their correctness and relative
completeness— and then studying their worst-case complexity.

Finally, we have presented the implementation of all the techniques described
in the paper recently included in the Parma Polyhedra Library, along with an
experimental evaluation covering both the efficiency and the precision of the
analysis.
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