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Appli
ations of Polyhedral Computations to the Analysisand Veri�
ation of Hardware and Software SystemsRoberto Bagnara, Patri
ia M. Hill, and Enea Za�anellaAbstra
t. Convex polyhedra are the basis for several abstra
tions used instati
 analysis and 
omputer-aided veri�
ation of 
omplex and sometimes mis-sion 
riti
al systems. For su
h appli
ations, the identi�
ation of an appropri-ate 
omplexity-pre
ision trade-o� is a parti
ularly a
ute problem, so that theavailability of a wide spe
trum of alternative solutions is mandatory. We sur-vey the range of appli
ations of polyhedral 
omputations in this area; give anoverview of the di�erent 
lasses of polyhedra that may be adopted; outline themain polyhedral operations required by automati
 analyzers and veri�ers; andlook at some possible 
ombinations of polyhedra with other numeri
al abstra
-tions that have the potential to improve the pre
ision of the analysis. Areaswhere further theoreti
al investigations 
an result in important 
ontributionsare highlighted.
1. Introdu
tionThe appli
ation of polyhedral 
omputations to the analysis and veri�
ationof 
omputer programs has its origin in a groundbreaking paper by Cousot andHalbwa
hs [CH78℄. There, the authors applied the theory of abstra
t interpretation[CC77℄ to the stati
 determination of linear equality and inequality relations amongprogram variables. Essentially, the idea 
onsists in interpreting the program (aswill be explained in more detail in Se
tions 2.1 and 3) on a domain of 
onvexpolyhedra instead of the 
on
rete domain of (sets of ve
tors of) ma
hine numbers.Ea
h program operation is 
orre
tly approximated by a 
orresponding operationon polyhedra and measures are taken to ensure that the approximate 
omputationalways terminates. At the end of this pro
ess, the obtained polyhedra en
odeprovably 
orre
t linear invariants of the analyzed program (i.e., linear equalitiesand inequalities that are guaranteed to hold for ea
h program exe
ution and forea
h program input).As we show in this paper, relational information 
on
erning the data obje
tsmanipulated by programs or other devi
es is 
ru
ial for a broad range of appli-
ations in the �eld of automati
 or semi-automati
 program manipulation: it 
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2 ROBERTO BAGNARA, PATRICIA M. HILL, AND ENEA ZAFFANELLAbe used to prove the absen
e of 
ertain kinds of errors; it 
an verify that 
ertainpro
esses always terminate or stabilize, it 
an pinpoint the position of errors in thesystem, and it 
an enable the appli
ation of optimizations. Despite this, due to thela
k of e�
ient, robust and publi
ly available implementations of 
onvex polyhedraand of the required operations, the line of work begun by Cousot and Halbwa
hsdid not see mu
h development until the beginning of the 1990s. Sin
e then, thisapproa
h has been in
reasingly adopted and today 
onvex polyhedra are the basisfor several abstra
tions used in stati
 analysis and 
omputer-aided veri�
ation of
omplex and sometimes mission 
riti
al systems. For su
h appli
ations, the iden-ti�
ation of an appropriate 
omplexity-pre
ision trade-o� is a parti
ularly a
uteproblem: on the one hand, relational information provided by general polyhedrais extremely valuable; on the other hand, its high 
omputational 
ost makes it afairly s
ar
e resour
e that must be managed with 
are. This implies, among otherthings, that general polyhedra must be 
ombined with simpler polyhedra in or-der to a
hieve s
alability. As the 
omplexity-pre
ision trade-o� varies 
onsiderablybetween di�erent appli
ations, the availability of a wide spe
trum of alternativesolutions is mandatory.In this paper, we survey the range of appli
ations of polyhedral 
omputationsin the area of the analysis and veri�
ation of hardware and software systems: wedes
ribe in detail one important �and histori
ally, �rst� appli
ation of polyhe-dral 
omputation in the �eld of formal methods, the linear invariant analysis forimperative programs; we provide an a

ount of linear hybrid systems that is baseddire
tly on polyhedra; and we show how polyhedral approximations 
an be appliedto analog systems. The paper also provides an overview of the main polyhedraloperations required by these appli
ations, brief des
riptions of some of the di�erent
lasses of polyhedra that may be adopted, depending on the parti
ular 
ontext,and a look at some possible 
ombinations of polyhedra with other numeri
al ab-stra
tions that have the potential to improve the pre
ision of the analysis. Areaswhere further theoreti
al investigations 
an result in important 
ontributions arehighlighted.The plan of the paper is as follows. Se
tion 2 introdu
es the required notionsand notations, in
luding a minimal exposition of the main 
on
epts of abstra
tinterpretation theory. Se
tion 3 demonstrates the use of polyhedral 
omputationsin the spe
i�
ation of a linear invariant analysis for a simple imperative language;a few of the many appli
ations for the analysis of 
omputer programs are brie�yre
alled. Se
tion 4 is devoted to polyhedral approximation te
hniques for hybridsystems, whi
h, as shown in Se
tion 5 
an also be applied to purely analog systems.Se
tion 6 presents several families of polyhedral approximations that provide arange of di�erent solutions to the 
omplexity/pre
ision trade-o�. The most impor-tant operations that su
h approximations must provide in order to support analysisand veri�
ation methods are illustrated in Se
tion 7. Se
tion 8 
on
ludes.2. PreliminariesWe assume some basi
 knowledge about latti
e theory [Bir67℄. Let (S,⊑) and
(T,�) be two partially ordered sets; the fun
tion f : S → T is monotoni
 if, for all
x0, x1 ∈ S, x0 ⊑ x1 implies f(x0) � f(x1). If (S,⊑) ≡ (T,�), so that f : S → S,an element x ∈ S su
h that x = f(x) is a �xpoint of f . If (S,⊑,⊥,⊤,⊔,⊓) is a
omplete latti
e, then f is 
ontinuous if it preserves the least upper bound of all
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reasing 
hains, i.e., for all x0 ⊑ x1 ⊑ · · · in S, it satis�es f(
⊔

xi

)

=
⊔

f(xi); insu
h a 
ase, the least �xpoint of f with respe
t to the partial order `⊑', denoted
lfp f , 
an be obtained by iterating the appli
ation of f starting from the bottomelement ⊥, thereby 
omputing the upward iteration sequen
e

⊥ = f0(⊥) ⊑ f1(⊥) ⊑ f2(⊥) ⊑ · · · ⊑ f i(⊥) ⊑ · · · ,up to the �rst non-zero limit ordinal ω; namely,
lfp f = fω(⊥)

def
=

⊔

i<ω

f i(⊥).

For ea
h f0 : S0 → T0 and f1 : S1 → T1, the fun
tion f0[f1] : (S0 ∪ S1) →
(T0 ∪ T1) is de�ned, for ea
h x ∈ S0 ∪ S1, by

(

f0[f1]
)

(x)
def
=

{

f1(x), if x ∈ S1;
f0(x), if x ∈ S0 \ S1.For n > 0, we denote by v = (v0, . . . , vn−1) ∈ Rn a n-tuple (ve
tor) of realnumbers; R+ is the set of non-negative real numbers; 〈v,w〉 denotes the s
alarprodu
t of ve
tors v,w ∈ Rn; the ve
tor 0 ∈ Rn has all 
omponents equal to zero.We write v ::w to denote the tuple 
on
atenation of v ∈ R

n and w ∈ R
m, so that

v ::w ∈ Rn+m.Let x be a n-tuple of distin
t variables. Then β =
(

〈a,x〉 ⊲⊳ b
) denotes a linearinequality 
onstraint, for ea
h ve
tor a ∈ Rn, where a 6= 0, ea
h s
alar b ∈ R,and ⊲⊳ ∈ {≥, >}. A linear inequality 
onstraint β de�nes a (topologi
ally 
losed oropen) a�ne half-spa
e of Rn, denoted by con

(

{β}
).A set P ⊆ Rn is a (
onvex) polyhedron if and only if P 
an be expressed asthe interse
tion of a �nite number of a�ne half-spa
es of Rn, i.e., as the solution

P = con(C) of a �nite set of linear inequality 
onstraints C (
alled a 
onstraintsystem). The set of all polyhedra on the ve
tor spa
e Rn is denoted as Pn. Whenpartially ordered by set-in
lusion, polyhedra form a latti
e (Pn,⊆, ∅,R
n,⊎,∩) hav-ing the empty set and Rn as the bottom and top element, respe
tively; the binarymeet operation, returning the greatest polyhedron smaller than or equal to the twoarguments, is easily seen to 
orrespond to set-interse
tion; the binary join opera-tion, returning the least polyhedron greater than or equal to the two arguments, isdenoted `⊎' and 
alled 
onvex polyhedral hull (poly-hull, for short). In general, thepoly-hull of two polyhedra is di�erent from their 
onvex hull [SW70℄.A relation ψ ⊆ Rn × Rn (of dimension n) is said to be a�ne if there exists

ℓ ∈ N and ai, ci ∈ Rn, bi ∈ R and ⊲⊳i ∈ {≥, >}, for ea
h i = 1, . . . , ℓ, su
h that
∀v,w ∈ R

n : (v,w) ∈ ψ ⇐⇒
ℓ

∧

i=1

(

〈ci,w〉 ⊲⊳i 〈ai,v〉 + bi
)

.

Any a�ne relation of dimension n 
an thus be en
oded by ℓ linear inequalities ona 2n-tuple of distin
t variables x ::x′ (playing the role of v and w, respe
tively),therefore de�ning a polyhedron in P2n. The set of polyhedra Pn is 
losed underthe (dire
t or inverse) appli
ation of a�ne relations: i.e., for ea
h P ∈ Pn and ea
ha�ne relation ψ ⊆ Rn × Rn, the image ψ(P) and the preimage ψ−1(P) are in Pn.



4 ROBERTO BAGNARA, PATRICIA M. HILL, AND ENEA ZAFFANELLA2.1. Abstra
t Interpretation. The semanti
s of a hardware or software sys-tem is a mathemati
al des
ription of all its possible run-time behaviors. Di�erentsemanti
s 
an be de�ned for the same system, depending on the details beingre
orded. Abstra
t interpretation [CC77℄ is a formal method for relating these se-manti
s a

ording to their level of abstra
tion, so that questions about the behaviorof a system 
an be provided with sound, possibly approximate answers.The 
on
rete semanti
s c ∈ C of a program is usually formalized as the least�xpoint of a 
ontinuous semanti
 fun
tion F : C → C, where the 
on
rete domain
(C,⊑,⊥,⊤,⊔,⊓) is a 
omplete latti
e of semanti
 properties; in many interesting
ases, the 
omputational order `⊑' 
orresponds to the approximation relation, sothat c1 ⊑ c2 holds if c1 is a stronger property than c2 (i.e., c2 approximates c1).For instan
e, the run-time behavior of a program may be de�ned in terms ofa transition system 〈Σ, t, ι〉, where Σ is a set of states, ι ⊆ Σ is the subset ofinitial states, and t ∈ ℘(Σ × Σ) is a binary transition relation mapping a state toits possible su

essor states. Letting Σ⋆ denote the set of all �nite sequen
es ofelements in Σ, the initial history of a forward 
omputation 
an be re
orded1 as apartial exe
ution tra
e τ = σ0 · · ·σm ∈ Σ⋆ starting from an initial state σ0 ∈ ιand su
h that any two 
onse
utive states σi and σi+1 are related by the transitionrelation, i.e., (σi, σi+1) ∈ t. In su
h a 
ontext, an element of the 
on
rete domain
(

℘(Σ⋆),⊆, ∅,Σ⋆,∪,∩
) is a set of partial exe
ution tra
es and the 
on
rete semanti
sis lfp(F), where the semanti
 fun
tion is de�ned by

F = λX ∈ ℘(Σ⋆) . X ∪ { τ ∈ Σ⋆ | τ = σ0 ∈ ι }

∪
{

τσi+1 ∈ Σ⋆
∣

∣ τ = σ0 · · ·σi ∈ X, (σi, σi+1) ∈ t
}

.An abstra
t domain2 (D♯,⊑,⊥,⊔) 
an be modeled as a bounded join-semilatti
e,so that it has a bottom element ⊥ and the least upper bound d♯
1 ⊔ d

♯
2 exists for all

d♯
1, d

♯
2 ∈ D♯. This domain is related to the 
on
rete domain by a monotoni
 andinje
tive 
on
retization fun
tion γ : D♯ → C. Monotoni
ity and inje
tivity meanthat the abstra
t partial order is equivalent to the approximation relation indu
edon D♯ by the 
on
retization fun
tion γ. Conversely, the 
on
rete domain is relatedto the abstra
t one by a partial abstra
tion fun
tion α : C ֌ D♯ su
h that, forea
h c ∈ C, if α(c) is de�ned then c ⊑ γ

(

α(c)
). In parti
ular, we assume that

α(⊥) = ⊥ is always de�ned; when needed or useful, we will require a few additionalproperties.For example, a �rst abstra
tion of the semanti
s above, typi
ally adopted whendis
ussing invarian
e properties of programs [CC79, CC92a℄, approximates a set oftra
es by the set of states o

urring in any one of the tra
es. The rea
hable states arethus 
hara
terized by elements of the 
omplete latti
e (

℘(Σ),⊆, ∅,Σ,∪,∩
), whi
hplays here the role of the abstra
t domain. The 
on
retization fun
tion relating

D♯ = ℘(Σ) to C = ℘(Σ⋆) is de�ned, for ea
h d♯ ∈ ℘(Σ), by
γ(d♯)

def
= { τ ∈ Σ⋆ | τ = σ0 · · ·σm, ∀i = 0, . . . ,m : σi ∈ d♯ }.

1This is just one of a wide range of possible semanti
s; by the same approa
h, other semanti
smay be des
ribed and related by abstra
t interpretation [CC92
℄.2To avoid notational burden, whenever possible we will overload the latti
e-theoreti
 symbols
⊑, ⊥, ⊔, et
., exploiting 
ontext to disambiguate their meaning.
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e, the 
on
rete semanti
 fun
tion F : ℘(Σ⋆) → ℘(Σ⋆) 
an be approximated bythe monotoni
 abstra
t semanti
 fun
tion A : ℘(Σ) → ℘(Σ) de�ned by
A = λd♯ ∈ ℘(Σ) . d♯ ∪ ι ∪

{

σ′ ∈ Σ
∣

∣ ∃σ ∈ d♯ . (σ, σ′) ∈ t
}

.This abstra
t semanti
 fun
tion is sound with respe
t to the 
on
rete semanti
fun
tion in that it satis�es the following lo
al 
orre
tness requirement
∀c ∈ C : ∀d♯ ∈ D♯ : c ⊑ γ(d♯) =⇒ F(c) ⊑ γ

(

A(d♯)
)

,ensuring that ea
h iteration F i(⊥) in the 
on
rete �xpoint 
omputation is safelyapproximated by 
omputing the 
orresponding abstra
t iteration Ai
(

α(⊥)
). Inparti
ular, the least �xpoint of F is safely approximated by any post-�xpoint of A[CC77℄, i.e., any abstra
t element d♯ ∈ D♯ su
h that A(d♯) ⊑ d♯.A
tually, the abstra
tion de�ned above satis�es an even stronger property, inthat the abstra
t semanti
 fun
tion A is the most pre
ise of all the sound ap-proximations of F that 
ould be de�ned on the 
onsidered abstra
t domain. Thishappens be
ause the two domains are related by a Galois 
onne
tion [CC77℄, i.e.,there exists a total abstra
tion fun
tion α : C → D♯ satisfying

∀c ∈ C : ∀d♯ ∈ D♯ : α(c) ⊑ d♯ ⇐⇒ c ⊑ γ(d♯).Namely, for all c ∈ ℘(Σ⋆), we 
an de�ne
α(c)

def
=

{

σi ∈ Σ
∣

∣ τ = σ0 · · ·σm ∈ c, i ∈ {0, . . . ,m}
}

.For Galois 
onne
tions it 
an be shown that α(c) is the best possible approximationin D♯ for the 
on
rete element c ∈ C; similarly, α◦F ◦γ (i.e., the fun
tion A de�nedabove) is the best possible approximation for F [CC77, CC79℄. Su
h a resultis provided with a quite intuitive reading; in order to approximate the 
on
retefun
tion F on an abstra
t element d♯ ∈ D♯: we �rst apply the 
on
retizationfun
tion γ so as to obtain the meaning of d♯; then we apply the 
on
rete fun
tion
F ; �nally, we abstra
t the result so as to obtain ba
k an element of D♯.Abstra
t interpretation theory 
an thus be used to spe
ify (semi-) automati
program analysis tools that are 
orre
t by design. Of 
ourse �due to well-knownunde
idability results� any fully automati
 tool 
an only provide partial, thoughsafe answers.2.2. Abstra
t Domains for Boolean and Numeri
 Values. The rea
h-able state abstra
tion des
ribed above is just one of the possible semanti
 approx-imations that 
an be adopted when spe
ifying an abstra
t semanti
s. A further,typi
al approximation 
on
erns the des
ription of the states of the transition sys-tem. Ea
h state σ ∈ Σ may be de
omposed into, e.g., a set of numeri
al or Booleanvariables that are of interest for the appli
ation at hand; new abstra
t domains 
anbe de�ned (and 
omposed [CC79℄) so as to soundly des
ribe the possible values ofthese variables.As an expository example that will be also used in the following se
tions, assumethat part of a state is 
hara
terized by the value of an integer variable. Then, thedomain (

℘(Σ),⊆, ∅,Σ,∪,∩
) 
an be abstra
ted to the 
on
rete domain of integers

(

℘(Int),⊆, ∅, Int,∪,∩
). This domain is further approximated by an abstra
t domain

(

Int♯,⊑,⊥,⊔
), via the 
on
retization fun
tion γI : Int♯ → ℘(Int). Elements of Int♯are denoted by m♯, possibly subs
ripted. We assume that the partial abstra
tionfun
tion αI : ℘(Int) ֌ Int♯ is de�ned on all singletons {m} ∈ ℘(Int) and on the



6 ROBERTO BAGNARA, PATRICIA M. HILL, AND ENEA ZAFFANELLAwhole set Int. We also assume that there are abstra
t binary operations `�', `�' and`�' on Int♯ that are sound with respe
t to the 
orresponding operations on ℘(Int)whi
h, in turn, are the obvious pointwise extensions of addition, subtra
tion andmultipli
ation over the integers. More formally, for `�', we require soundness withrespe
t to addition, i.e., γI(m
♯
0 �m♯

1) ⊇
{

m0 +m1

∣

∣ m0 ∈ γI(m
♯
0),m1 ∈ γI(m

♯
1)

},for ea
h m♯
0,m

♯
1 ∈ Int♯. Similar requirements are imposed on `�' and `�'. Eventhough the de�nition of Int♯ is 
ompletely general, families of integer intervals 
omenaturally to mind for this role.Suppose now that some other part of the state is 
hara
terized by the valueof a Boolean expression. Then, the domain (

℘(Σ),⊆, ∅,Σ,∪,∩
) 
an be abstra
tedto the �nite domain (

℘(Bool),⊆, ∅,Bool,∪,∩
), where Bool = {ff, tt} is the set ofBoolean values. In general, su
h a �nite domain may be further approximated by anabstra
t domain (Bool♯,⊑,⊥,⊤,⊔,⊓), related to the 
on
rete domain by a Galois
onne
tion. Elements of Bool♯ are denoted by t♯, possibly subs
ripted, and we 
ande�ne abstra
t operations `�', `6' and `7' on Bool♯ that are sound with respe
tto the pointwise extensions of Boolean negation, disjun
tion and 
onjun
tion over

℘(Bool). For instan
e, for the operation `6' to be sound with respe
t to disjun
tionon ℘(Bool), it is required that, γB(t♯0 6 t♯1) ⊇
{

t0 ∨ t1
∣

∣ t0 ∈ γB(t♯0), t1 ∈ γB(t♯1)
} forea
h t♯0 and t♯1 in Bool♯. Likewise for `7'. For `�' the 
orre
tness requirement is that,for ea
h t♯ in Bool♯, γB(� t♯) ⊇

{

¬t
∣

∣ t ∈ γB(t♯)
}. Abstra
t 
omparison operations

�,4 : Int♯×Int♯ → Bool♯ 
an then be de�ned to 
orre
tly approximate the equal-toand less-than tests: γB(m♯
0 � m♯

1) ⊇
{

m0 = m1

∣

∣ m0 ∈ γI(m
♯
0),m1 ∈ γI(m

♯
1)

} forea
h m♯
0,m

♯
1 ∈ Int♯; likewise for `4'.Simple abstra
t domains su
h as the ones above 
an be 
ombined in di�erentways so as to obtain quite a

urate approximations [CC79℄. In some 
ases, however,the required pre
ision level may only be obtained by a suitable initial 
hoi
e of theabstra
t domain. As a notable example, suppose that some part of the state σ ∈ Σ is
hara
terized by n (integer or real valued) numeri
 variables and the appli
ation athand needs some relational information about these variables. In su
h a 
ontext, anapproximation based on a simple 
onjun
tive 
ombination of n 
opies of the domain

Int♯ des
ribed above will be almost useless. Rather, a new approximation s
heme
an be devised by modeling states using the domain (

℘(Rn),⊆, ∅,Rn,∪,∩
), whereea
h ve
tor v ∈ Rn is meant to des
ribe a possible valuation for the n variables.A further abstra
tion should map this domain so as to retain some of the relationsholding between the values of the n variables. If a �nite set of linear inequalitiesprovides a good enough approximation, then the natural 
hoi
e is to abstra
t thisdomain into the abstra
t domain of 
onvex polyhedra (Pn,⊆, ∅,R

n,⊎,∩) [CH78℄.In this 
ase, the 
on
rete and abstra
t domain are not related by a Galois 
onne
-tion and hen
e, a best approximation might not exist.3 Nonetheless, the 
onvexpolyhedral hull (partial) abstra
tion fun
tion ⊎ : ℘(Rn) ֌ Pn is de�ned in mostof the 
ases of interest and provides the best possible approximation. Most of thearithmeti
 operations seen before 
an be en
oded (or approximated) by 
omputingimages of a�ne relations.
3This happens, for instan
e, when approximating an n-dimensional ball with a 
onvexpolyhedron.



POLYHEDRAL COMPUTATIONS AND HW/SW ANALYSIS AND VERIFICATION 72.3. Widening Operators. It should be stressed that, in general, the ab-stra
t semanti
s des
ribed above is not �nitely 
omputable. For instan
e, boththe domain of 
onvex polyhedra and the domain of integer intervals have in�niteas
ending 
hains, so that the limit of a 
onverging �xpoint 
omputation 
annotgenerally be rea
hed in a �nite number of iterations.A �nite 
omputation 
an be enfor
ed by further approximations resulting in aNoetherian abstra
t domain, i.e., a domain where all as
ending 
hains are �nite.Alternatively, and more generally, it is possible to keep an abstra
t domain within�nite 
hains, while enfor
ing that these 
hains are traversed in a �nite number ofiteration steps [CC92b℄. In both 
ases, termination is usually a
hieved to the detri-ment of pre
ision, so that an appropriate trade-o� should be pursued. Wideningoperators [CC76, CC77, CC92a, CC92b℄ provide a simple and general 
hara
teri-zation for the se
ond option.De�nition 2.1. The partial operator ∇ : D♯ ×D♯
֌ D♯ is a widening if:(1) for all d♯, e♯ ∈ D♯, d♯ ⊑ e♯ implies that d♯ ∇ e♯ is de�ned and e♯ ⊑ d♯ ∇ e♯;(2) for all in
reasing 
hains e♯

0 ⊑ e♯
1 ⊑ · · · , the in
reasing 
hain de�ned by

d♯
0

def
= e♯

0 and d♯
i+1

def
= d♯

i ∇ (d♯
i ⊔ e

♯
i+1), for i ∈ N, is not stri
tly in
reasing.It 
an be proved that, for any monotoni
 operator A : D♯ → D♯, the upwarditeration sequen
e with widenings starting at the bottom element d♯

0
def
= ⊥ andde�ned by

d♯
i+1

def
=

{

d♯
i , if A(d♯

i) ⊑ d♯
i ,

d♯
i ∇

(

d♯
i ⊔ A(d♯

i)
)

, otherwise,
onverges to a post-�xpoint ofA after a �nite number of iterations [CC92b℄. Clearly,the 
hoi
e of the widening has a deep impa
t on the pre
ision of the results obtained.Designing a widening whi
h is appropriate for a given appli
ation is therefore adi�
ult (but possibly rewarding) a
tivity.3. Analysis and Veri�
ation of Computer ProgramsIn this se
tion we begin a review of the appli
ations of polyhedral 
omputa-tions to analysis and veri�
ation problems starting with the the work of Cousotand Halbwa
hs [CH78, Hal79℄. These seminal papers on the automati
 inferen
e oflinear invariants for imperative programs 
onstituted a major leap forward for atleast two reasons. First, the polyhedral domain proposed by Cousot and Halbwa
hswas 
onsiderably more powerful than all the data-�ow analyses known at that time,in
luding the rather sophisti
ated one by Karr whi
h was limited to linear equali-ties [Kar76, MS04℄. Se
ondly, the use of 
onvex polyhedra as an abstra
t domainestablished abstra
t interpretation as the right methodology for the de�nition of
omplex and 
orre
t program analyzers.We illustrate the basi
 ideas by partially spe
ifying the analysis of linear in-variants for a very simple imperative language. The simpli
ity of the language wehave 
hosen for expository purposes should not mislead the reader: the approa
his generalizable to any imperative (and, for that matter, fun
tional and logi
) lan-guage [BHP+07℄. The abstra
t syntax of the language is presented in Figure 1. Thebasi
 synta
ti
 
ategories, 
orresponding to the sets Int, Bool and Var, are de�neddire
tly. From these, the 
ategories of arithmeti
 and Boolean expressions and of



8 ROBERTO BAGNARA, PATRICIA M. HILL, AND ENEA ZAFFANELLAIntegers: m ∈ Int
def
= ZBooleans: t ∈ Bool
def
= {tt,ff}Variables: x ∈ Var

def
= {x0, x1, x2, . . .}Arithmeti
 expressions:

Aexp ∋ a ::= m | x | a0 + a1 | a0 − a1 | a0 ∗ a1Boolean expressions:
Bexp ∋ b ::= t | a0 = a1 | a0 < a1Statements:
Stmt ∋ s ::= skip | x := a | s0; s1 | if e then s0 else s1 | while edo sFigure 1. Abstra
t syntax of the simple imperative languagestatements are de�ned by means of BNF rules. Noti
e the use of synta
ti
 meta-variables: for instan
e, to save typing we will 
onsistently denote by s, possiblysubs
ripted or supers
ripted, any element of Stmt.The 
on
rete semanti
s of programs is formally de�ned using the natural seman-ti
s approa
h [Kah87℄. This, in turn, is a �big-step� operational semanti
s de�nedby stru
tural indu
tion on program stru
tures in the style of Plotkin [Plo81℄. Firstwe de�ne the notion of store, whi
h is any mapping between a �nite set of variablesand elements of Int. Formally, stores are elements of the set
Store

def
= {σ : V → Int | V ⊆f Var }and will be denoted by the letter σ, possibly subs
ripted or supers
ripted. Thestore obtained from σ ∈ Store by the assignment of m ∈ Int to x ∈ Var, denotedby σ[m/x], is de�ned as follows, for ea
h x′ ∈ Var:

σ[m/x](x′)
def
=

{

m, if x′ = x;
σ(x′), if x′ 6= x.The 
on
rete evaluation relations that 
omplete the de�nition of the 
on
retesemanti
s for our simple language are de�ned by stru
tural indu
tion from a set ofrule s
hemata. The evaluation relations for terminating 
omputations are given by

a
→ ⊆ (Aexp× Store)× Int, for arithmeti
 expressions, b

→ ⊆ (Bexp× Store)×Bool,for Boolean expressions, and s
→ ⊆ (Stmt × Store) × Store, for statements. Thejudgment 〈a, σ〉 a

→ m means that when expression a is exe
uted in store σ it resultsin the integer m. The judgment 〈b, σ〉 b
→ t is similar. Note that expressions do nothave, in our simple language, side e�e
ts. The judgment 〈s, σ〉 s

→ σ′ means that thestatement s, exe
uted in store σ, results in a (possibly modi�ed) store σ′. The rules
hemata, in the form premise
on
lusion , that de�ne these relations are given in Figure 2.Rule instan
es 
an be 
omposed in the obvious way to form �nite tree stru
tures,representing �nite 
omputations. Figure 3 shows one su
h tree.The possibly in�nite set of all �nite trees is obtained by means of a least�xpoint 
omputation, 
orresponding to the 
lassi
al indu
tive interpretation ofthe rules in Figure 2. The rule s
hemata in Figure 4 
an be used to dire
tlymodel non-terminating 
omputations and need to be interpreted 
oindu
tively
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〈m,σ〉

a
→ m 〈x, σ〉

a
→ σ(x)

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 + a1, σ〉
a
→ m0 +m1

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 − a1, σ〉
a
→ m0 −m1

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 ∗ a1, σ〉
a
→ m0 ·m1

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 = a1, σ〉
b
→ (m0 = m1)

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 < a1, σ〉
b
→ (m0 < m1)

〈skip, σ〉 s
→ σ

〈a, σ〉
a
→ m

〈x := a, σ〉
s
→ σ[m/x]

〈s0, σ〉
s
→ σ′′ 〈s1, σ

′′〉
s
→ σ′

〈s0; s1, σ〉
s
→ σ′

〈b, σ〉
b
→ tt 〈s0, σ〉

s
→ σ′

〈if b then s0 else s1, σ〉 s
→ σ′

〈b, σ〉
b
→ ff 〈s1, σ〉

s
→ σ′

〈if b then s0 else s1, σ〉 s
→ σ′

〈b, σ〉
b
→ ff

〈while bdo c, σ〉 s
→ σ

〈b, σ〉
b
→ tt 〈c, σ〉

s
→ σ′′ 〈while bdo c, σ′′〉

s
→ σ′

〈while bdo c, σ〉 s
→ σ′

Figure 2. Con
rete semanti
s rule s
hemata for the �nite 
om-putations of the simple imperative language
[CC92
, Ler06, S
h98℄. The judgment 〈s, σ〉

∞
→ means that the statement s di-verges when exe
uted in store σ. By a suitable adaptation of the 
omputationalordering, both sets of �nite and in�nite trees 
an be jointly 
omputed in a singleleast �xpoint 
omputation [CC92
, Ler06, S
h98℄. While these semanti
s 
hara
-terizations 
ontain all the information we need to perform a wide range of programreasoning tasks, they are generally not 
omputable: we have thus to resort to ap-proximation.Following the abstra
t interpretation approa
h, as instantiated in [S
h95, S
h97,S
h98℄, the 
on
rete rule s
hemata are paired with abstra
t rule s
hemata that 
or-re
tly approximate them. Before doing that, we need to formalize abstra
t domainsfor ea
h 
on
rete domain used by the 
on
rete semanti
s.For simple approximations of integers and Boolean expressions, we 
onsider theabstra
t domains Int♯ and Bool♯ introdu
ed in Se
tion 2.2. The last (and most inter-esting) abstra
tion we need is for approximating sets of stores. We thus require anabstra
t domain (

Store♯,⊑,⊥,⊔
) that is related, by means of a 
on
retization fun
-tion γS su
h that γS(⊥) = ∅, to the 
on
rete domain (

℘(Store),⊆, ∅, Store,∪,∩
).Elements of Store♯ are denoted by σ♯, possibly subs
ripted. The abstra
t storeevaluation and update operators

·[·] : (Store♯ × Aexp) → Int♯,

·[· := ·] :
(

Store♯ × Var × Aexp
)

→ Store♯,

·[·/·] :
(

Store♯ × Var × Int♯
)

→ Store♯
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〈0, σ0〉
a
→ 0 〈x0, σ0〉

a
→ 1

〈0 < x0, σ0〉
b
→ tt

〈x1, σ0〉
a
→ 1 〈2, σ0〉

a
→ 2

〈x1 + 2, σ0〉
a
→ 3

〈x1 := x1 + 2, σ0〉
s
→ σ1

〈x0, σ1〉
a
→ 1 〈x1, σ1〉

a
→ 3

〈x0 − x1, σ1〉
a
→ −2

〈x0 := x0 − x1, σ1〉
s
→ σ2

〈

(x1 := x1 + 2;x0 := x0 − x1), σ0

〉 s
→ σ2

〈0, σ2〉
a
→ 0 〈x0, σ2〉

a
→ −2

〈0 < x0, σ2〉
b
→ ff

〈w, σ2〉
s
→ σ2

〈while 0 < x0 do (x1 := x1 + 2;x0 := x0 − x1), σ0

〉 s
→ σ2Legend:

σ0
def
=

{

(x0, 1), (x1, 1)
}

,

σ1
def
=

{

(x0, 1), (x1, 3)
}

,

σ2
def
=

{

(x0,−2), (x1, 3)
}

,

w
def
=

(while 0 < x0 do (x1 := x1 + 2;x0 := x0 − x1)
)

.Figure 3. The tree representing a 
on
rete exe
ution of a program
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〈s0, σ〉

∞
→

〈s0; s1, σ〉
∞
→

〈s0, σ〉
s
→ σ′ 〈s1, σ

′〉
∞
→

〈s0; s1, σ〉
∞
→

〈b, σ〉
b
→ tt 〈s0, σ〉

∞
→

〈if b then s0 else s1, σ〉 ∞
→

〈b, σ〉
b
→ ff 〈s1, σ〉

∞
→

〈if b then s0 else s1, σ〉 ∞
→

〈b, σ〉
b
→ tt 〈c, σ〉

∞
→

〈while bdo c, σ〉 ∞
→

〈b, σ〉
b
→ tt 〈c, σ〉

s
→ σ′ 〈while bdo c, σ′〉

∞
→

〈while bdo c, σ〉 ∞
→Figure 4. Additional 
on
rete semanti
s rule s
hemata for thein�nite 
omputations of the simple imperative languageare assumed to be sound with respe
t to their 
on
rete 
ounterparts, i.e., su
h that,for ea
h σ♯ ∈ Store♯, a ∈ Aexp, x ∈ Var and m♯ ∈ Int♯:

γI

(

σ♯[a]
)

⊇
{

m ∈ Int
∣

∣ σ ∈ γS(σ♯), 〈a, σ〉
a
→ m

}

,

γS

(

σ♯
[

x := a]
)

⊇
{

σ′ ∈ Store
∣

∣ σ ∈ γS(σ♯), 〈x := a, σ〉
s
→ σ′

}

,

γS

(

σ♯
[

m♯/x]
)

⊇
{

σ[m/x] ∈ Store
∣

∣ σ ∈ γS(σ♯),m ∈ γI(m
♯)

}

.We also need 
omputable �Boolean �lters� to re�ne the information 
ontained inabstra
t stores. These are given by two fun
tions φtt, φff : Store♯ × Bexp → Store♯su
h that, for ea
h σ♯ ∈ Store♯ and b ∈ Bexp:
γS

(

φtt(σ
♯, b)

)

⊇
{

σ ∈ γS(σ♯)
∣

∣ 〈b, σ〉
b
→ tt

}

,

γS

(

φff(σ♯, b)
)

⊇
{

σ ∈ γS(σ♯)
∣

∣ 〈b, σ〉
b
→ ff

}

.We are now in a position to present, in Figure 5, a possible set of domain-independent abstra
t rules s
hemata. These s
hemata allow for the free approxi-mation of the ` ' right-hand sides in the 
on
lusions. This means that if, e.g.,premise
〈s, σ〉

s
 σ♯

1is an instan
e of some rule, thenpremise
〈s, σ〉

s
 σ♯

2is also an instan
e of the same rule for ea
h σ♯
2 su
h that σ♯

1 ⊑ σ♯
2. Hen
e thes
hemata in Figure 5 ensure 
orre
tness yet leaving 
omplete freedom about pre-
ision. The ability to give up some pre
ision, as we will see, is 
ru
ial in order toensure the (reasonably qui
k) termination of the analysis.It is possible to prove that, for ea
h (possibly in�nite) 
on
rete tree T builtusing the s
hemata of Figures 2 and 4, for ea
h (possibly in�nite) abstra
t tree

T ♯ built using the s
hemata of Figure 5, if the 
on
rete tree root is of the form
〈s, σ〉

s
→ σ1 (when the tree is �nite) or 〈s, σ〉 ∞

→ (when the tree is in�nite) and theabstra
t tree root is of the form 〈s, σ♯〉
s
 σ♯

1 with σ ∈ γS(σ♯), then T ♯ 
orre
tlyapproximates T . This means not only that σ1 ∈ γS(σ♯
1) (when T is �nite), but alsothat ea
h node in T is 
orre
tly approximated by at least one node in T ♯. In other
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〈m,σ♯〉

a
 αI

(

{m}
)

〈x, σ♯〉
a
 σ♯[x]

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 + a1, σ
♯〉

a
 m♯

0 �m♯
1

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 − a1, σ
♯〉

a
 m♯

0 �m♯
1

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 ∗ a1, σ
♯〉

a
 m♯

0 �m♯
1

〈t, σ♯〉
b
 αB

(

{t}
)

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 = a1, σ
♯〉

b
 m♯

0 � m♯
1

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 < a1, σ
♯〉

b
 m♯

0 4 m♯
1

〈skip, σ♯〉
s
 σ♯

〈a, σ♯〉
a
 m♯ (i)

〈x := a, σ♯〉
s
 σ♯[x := a]

〈a, σ♯〉
a
 m♯ (ii)

〈x := a, σ♯〉
s
 σ♯[m♯/x]

〈s0, σ
♯
0〉

s
 σ♯

1 〈s1, σ
♯
1〉

s
 σ♯

2

〈s0; s1, σ
♯
0〉

s
 σ♯

2

〈b, σ♯〉
b
 t♯

〈

s0, φtt(σ
♯, b)

〉 s
 σ♯

0

〈

s1, φff(σ♯, b)
〉 s
 σ♯

1

〈if b then s0 else s1, σ♯〉
s
 σ♯

0 ⊔ σ
♯
1

〈b, σ♯〉
b
 t♯

〈

c, φtt(σ
♯, b)

〉 s
 σ♯

1 〈while bdo c, σ♯
1〉

s
 σ♯

2

〈while bdo c, σ♯〉
s
 φff(σ♯, b) ⊔ σ♯

2Notes:(i) This rule is used if the domain Store♯ 
an 
apture the assignment pre
isely(e.g., when Store♯ is a domain of 
onvex polyhedra and a is an a�neexpression). Noti
e that the premise is intentionally not used: its presen
eis required in order to ensure that the abstra
t tree approximates the
on
rete tree in its entirety.(ii) This rule is used when (i) is not appli
able.Figure 5. Abstra
t semanti
s rule s
hemata for the simple im-perative language
words, the abstra
t tree 
orre
tly approximates the entire 
on
rete 
omputation(see [BHP+07℄ for the details).It is worth stressing the observation in [S
h98℄ that, even when disregardingthe non-terminating 
on
rete 
omputations, the abstra
t rules still have to be inter-preted 
oindu
tively be
ause most of the �nite 
on
rete trees 
an only be approxi-mated by in�nite abstra
t trees; for instan
e, all abstra
t trees 
ontaining a whileloop are in�nite. Sin
e, in general, we 
annot e�e
tively 
ompute in�nite abstra
ttrees, we still do not have a viable analysis te
hnique. The solution is to restri
tourselves to the 
lass of rational trees, i.e., trees with only �nitely many subtreesand that, 
onsequently, admit a �nite representation.



POLYHEDRAL COMPUTATIONS AND HW/SW ANALYSIS AND VERIFICATION 13The analysis algorithm is sket
hed in [S
h95℄. For expository purposes, wedes
ribe here a simpli�ed version that is enough to handle the 
onsidered program-ming language features. The algorithm works by re
ursively 
onstru
ting a �niteapproximation for the (possibly in�nite) abstra
t subtree rooted in the 
urrent node(initially, the root of the whole tree). The 
urrent node n =
(

〈p, σ♯
n〉 rn

), where
rn is a pla
eholder for the �yet to be 
omputed� 
on
lusion, is pro
essed a

ordingto the following alternatives.(1) If no an
estor of n has p in the label, the node has to be expanded usingan appli
able abstra
t rule instan
e. Namely, des
endants of the premisesof the rule are (re
ursively) pro
essed, one at a time and from left to right.When the expansion of all the premises has been 
ompleted, in
luding the
ase when the rule has no premise at all, the marker rn is repla
ed by anabstra
t value 
omputed a

ording to the 
on
lusion of the rule;(2) If there exists an an
estor node m = 〈p, σ♯

m〉  rm of n labeled by thesame syntax p and su
h that σ♯
n ⊑ σ♯

m, i.e., if node n is subsumed bynode m, then the node is not expanded further and the pla
eholder rn isrepla
ed by the least �xpoint of the equation rn = fm(rn), where fm isthe expression 
orresponding to the 
on
lusion of the abstra
t rule thatwas used for the expansion of node m;4(3) Otherwise, there must be an an
estor nodem = 〈p, σ♯
m〉 rm of n labeledby the same syntax p, but the subsumption 
ondition σ♯

n ⊑ σ♯
m does nothold. Then there are two options:(a) if the abstra
t domain Store♯ is �nite, we pro
eed as in 
ase (1);(b) if the abstra
t domain Store♯ is in�nite, to ensure 
onvergen
e, awidening `∇' over Store♯ 
an be employed5 and store σ♯

n in node n isrepla
ed by σ♯
m ∇ (σ♯

m ⊔ σ♯
n). Then, we pro
eed again as in 
ase (1).The abstra
t semanti
s of Figure 5 and the given algorithm for 
omputing arational abstra
t tree are fully generi
 in that any 
hoi
e for the abstra
t domains

Int♯, Bool♯ and Store♯ will result into a provably 
orre
t analysis algorithm. Fo-
using on numeri
al domains, the role of Int♯ 
an be played by any domain ofintervals, so that the operations `�', `�' and `�' are the standard ones of inter-val arithmeti
 [AH83℄; for instan
e, [ml
0,m

u
0 ] � [ml

1,m
u
1 ]

def
= [ml

0 + ml
1,m

u
0 + mu

1 ].More sophisti
ated domains, su
h as modulo intervals [NJPF99℄, are able to en
odemore pre
ise information about the set of integer values ea
h variable 
an take. For
Store♯, a 
ommon 
hoi
e is to abstra
t from the integrality of variables and 
onsidera domain of 
onvex polyhedra whi
h, in ex
hange, allows the tra
king of relationalinformation. With referen
e to Figure 5, rule (i) 
an be applied dire
tly when thearithmeti
 expression a = 〈a,x〉 + b is a�ne; the 
orresponding polyhedral oper-ation is the 
omputation of the image of a polyhedron by a spe
ial 
ase of a�ne

4As explained in [S
h95, S
h98℄, the 
omputation of su
h a least �xpoint (in the 
ontext ofa 
oindu
tive interpretation of the abstra
t rules) is justi�ed by the fa
t that here we only needto approximate the 
on
lusions produ
ed by the terminating 
on
rete 
omputations, i.e., by the
on
rete rules of Figure 2, whi
h are interpreted indu
tively. Also note that the divergen
e rulesof Figure 4 have no 
on
lusion at all.5If Store
♯ is in�nite but Noetherian, we 
an 
hoose ∇

def
= ⊔ as a widening.
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alled single-update a�ne fun
tion:
(v,w) ∈ ψ ⇐⇒ wk = 〈a,v〉 + b ∧

∧

0≤i<n
i 6=k

wi = vi.

Another spe
ial 
ase, slightly more general than the one above and 
alled single-update bounded a�ne relation, allows among other things to approximate nonlinearassignments and to realize rule (ii). For �xed ve
tors a, c ∈ R
n and s
alars b, d ∈ R:

(v,w) ∈ ψ ⇐⇒ 〈a,v〉 + b ≤ wk ≤ 〈c,v〉 + d ∧
∧

0≤i<n
i 6=k

wi = vi.

Both the rules for the if-then-else and the while 
onstru
ts require the Boolean�lters and least upper bound operations: these are realized by means of interse
-tions (or the addition of individual 
onstraints) and poly-hulls, respe
tively. These,together with the 
ontainment test used to dete
t the rea
hing of post-�xpointsand the widening (see Se
tion 7) required to ensure termination of the analysisalgorithm, are all the operations required for the analysis of our simple impera-tive language. More 
omplex languages require other operations: for instan
e, theanalysis of languages with 
ommand blo
ks require the possibility of embeddingpolyhedra into a spa
e of higher dimension, reorganizing the dimensions, and pro-je
ting polyhedra on spa
es of lower dimension. Other operations are needed toa

ommodate di�erent semanti
 
onstru
tions (e.g., a�ne preimages for ba
kwardsemanti
s), to allow for the e�
ient modeling of data obje
ts (e.g., summarizeddimensions to approximate the values of unbounded 
olle
tions [GRS05℄), and tohelp s
alability (e.g., simpli�
ations of polyhedra [Fre05℄).Figure 6 illustrates an abstra
t 
omputation that, by following the algorithmabove, approximates the 
on
rete tree in Figure 3: intervals and polyhedra approx-imate sets of integers and sets of stores, respe
tively. The initial abstra
t storeis given by the polyhedron P0 = con
(

{x0 ≥ 1, x1 = 1}
), whi
h approximates all
on
rete stores σ satisfying σ(x0) ≥ 1 and σ(x1) = 1 in
luding the 
on
rete store

σ0 in Figure 3. Consider �rst the lower tree in Figure 3. This 
orresponds to thestage in the 
omputation when all possible instan
es of 
ase (1) of the algorithmhave been applied. In parti
ular, the two leftmost subtrees are derived a

ordingto the abstra
t semanti
s rules in Figure 5 by only using 
ase (1) of the algorithm.For the rightmost 
hild whi
h has still to be expanded, P is a pla
eholder for its
on
lusion. It is also noted that, in the root of this tree, sin
e Pf
0 = ∅, the �nal re-sult will be the same as the value assigned to P. Sin
e the rightmost 
hild, satis�esthe 
onditions of 
ase (3b) of the algorithm, the abstra
t store P1 must undergo awidening 
omputation, yielding the abstra
t store Q0. Thus this node has to berepla
ed by 〈w,Q0〉

s
 P. Consider now the upper tree in Figure 3 whi
h has theroot 〈w,Q0〉

s
 P as above. The two left-most immediate subtrees are derived, asin the lower tree, by only using 
ase (1) of the algorithm. The rightmost 
hild isinitially given Q as a pla
eholder for its 
on
lusion. Sin
e this node satis�es the
onditions for 
ase (2) of the algorithm, it is not expanded further; and the valueof Q is obtained by �nding the least �xpoint solution for the equation Q = Qf

0 ⊎Q;namely, Qf
0 = con

(

{2x0 + 3x1 ≥ 5, x0 ≤ 0}
). Thus in the 
on
lusion of the rootof the upper tree we have P = Qf

0 ⊎ Q = Qf
0 . Finally, the 
ompleted abstra
t tree
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〈0,Q0〉
a
 [0, 0] 〈x0,Q0〉

a
 ⊤

〈0 < x0,Q0〉
b
 ⊤

[ · · · ]

〈x1 := x1 + 2,Qt
0〉

s
 Q′

0 (i) [ · · · ]

〈x0 := x0 − x1,Q
′
0〉

s
 Q1 (i)

〈

(x1 := x1 + 2; x0 := x0 − x1),Q
t
0

〉 s
 Q1 〈w,Q1〉

s
 Q = Qf

0 (2)

〈w,Q0〉
s
 P = (Qf

0 ⊎ Q) = Qf
0 (2)

〈0,P0〉
a
 [0, 0] 〈x0,P0〉

a
 [1,∞]

〈0 < x0,P0〉
b
 αB

(

{tt}
)

[ · · · ]

〈x1 := x1 + 2,Pt
0〉

s
 P ′

0 (i) [ · · · ]

〈x0 := x0 − x1,P
′
0〉

s
 P1 (i)

〈

(x1 := x1 + 2; x0 := x0 − x1),P
t
0

〉 s
 P1 〈w,P1〉

s
 P (3b)

〈w,P0〉
s
 (Pf

0 ⊎ P) = (∅ ⊎ P) = PLegend:

w
def
=

(while 0 < x0 do (x1 := x1 + 2; x0 := x0 − x1)
)

,

P0
def
= con

(

{x0 ≥ 1, x1 = 1}
)

, Q0
def
= P0 ∇ (P0 ⊎ P1) = con

(

{2x0 + 3x1 ≥ 5, x1 ≥ 1}
)

,

Pt
0

def
= φtt(P0, 0 < x0) = P0, Qt

0
def
= φtt(Q0, 0 < x0) = con

(

{x0 ≥ 1, x1 ≥ 1}
)

,

Pf
0

def
= φff(P0, 0 < x0) = ∅, Qf

0
def
= φff(Q0, 0 < x0) = con

(

{2x0 + 3x1 ≥ 5, x0 ≤ 0}
)

,

P ′
0

def
= con

(

{x0 ≥ 1, x1 = 3}
)

, Q′
0

def
= con

(

{x0 ≥ 1, x1 ≥ 3}
)

,

P1
def
= con

(

{x0 ≥ −2, x1 = 3}
)

, Q1
def
= con

(

{x0 + x1 ≥ 1, x1 ≥ 3}
)

.Notes:(i) Rule (i) of Figure 5 is used here.(2) Case (2) of the algorithm is applied here.(3b) Case (3b) of the algorithm is applied here.Figure 6. Finite approximation of an in�nite abstra
t 
omputation tree
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an be obtained by repla
ing the rightmost 
hild of the lower tree by the upper treeand the pla
eholder P in the 
on
lusion of the root of the lower tree by Qf
0 .Based on suitable variations of the simple linear invariant analysis outlined inthis se
tion (possibly 
ombined with other analyses), many di�erent appli
ationshave been proposed in the literature. Examples in
lude the absen
e of 
ommon run-time arithmeti
 errors, su
h as �oating-point ex
eptions, over�ows and divisions byzero [BCC+03℄; the absen
e of out-of-bounds array indexing [CH78, VB04℄, as wellas other bu�er overruns 
aused by in
orre
t string manipulations [DRS01, Ell04℄;the analysis of programs manipulating (possibly unbounded) heap-allo
ated datastru
tures, so as to prove the absen
e of several kinds of pointer errors (e.g., mem-ory leaks) [GRS05, SKS00℄; the dete
tion of potential se
urity vulnerabilities in x86binaries that allow to bypass intrusion dete
tion systems [KKM+05℄; the inferen
eof temporal s
hedulability 
onstraints that a partially spe
i�ed set of real-timetasks has to satisfy [DM05℄. All of the above are examples of safety properties,whereby a 
omputer program is proved to be free from some undesired behavior.However, the 
omputation of invariant linear relations is also an important, oftenindispensable step when aiming at proving progress properties, su
h as termina-tion [Cou05, MB05, SV91℄. It should be also stressed that the same approa
h, aftersome minor adaptations, 
an be applied to the analysis of alternative 
omputationparadigms su
h as, e.g., gated data dependen
e graphs [HU04℄ (an intermediate rep-resentation for 
ompilers) and bat
h work�ow networks [vOSV06℄ (a form of Petrinet used in work�ow management).4. Analysis and Veri�
ation of Hybrid SystemsHybrid systems (that is, dynami
al systems with both 
ontinuous and dis
rete
omponents) are 
ommonly modeled by hybrid automata [ACHH93, Fre04, Hen96℄.These, often highly 
omplex, systems are usually nonlinear (making them 
ompu-tationally intra
table as they are). However, linear approximations, whi
h allowthe use of polyhedral 
omputations for the model 
he
king operations, have beenused su

essfully for the veri�
ation of useful safety properties [DHR05, FHK04,Fre04, Fre05, SCR06, SSM06℄.In this se
tion, we will illustrate, by means of examples, how polyhedral 
om-putations 
an be used for verifying simple properties of hybrid automata. Theexamples are all instan
es of linear hybrid systems, a parti
ular 
lass of hybridsystems that 
an be modeled using polyhedra where the 
ontinuous behavior isspe
i�ed by linear 
onstraints over the time-derivatives of the variables.De�nition 4.1. (Linear hybrid automaton.) A linear hybrid automaton(of dimension n) is a tuple

(Loc, Init,Act, Inv,Lab,Trans)where the �rst 
omponent Loc is a �nite set of lo
ations. For ea
h lo
ation ℓ ∈ Loc,fun
tions Init : Loc → Pn, Act: Loc → Pn and Inv : Loc → Pn de�ne polyhedra. Inparti
ular: Init(ℓ) spe
i�es the set of possible initial values the n variables 
an takeif the automaton starts at ℓ; Act(ℓ) spe
i�es the possible derivative values of the
n variables, so that, if the automaton rea
hes ℓ with values given by the ve
tor v,then after staying there for a delay of t ∈ R, the values will be given by a ve
tor
v + tw, where w ∈ Act(ℓ); Inv(ℓ) spe
i�es the values that an n-ve
tor v may haveat ℓ. The �fth and sixth 
omponents provide a set of syn
hronization labels Lab



POLYHEDRAL COMPUTATIONS AND HW/SW ANALYSIS AND VERIFICATION 17and a labeled set of a�ne transition relations Trans ⊆ Loc × Lab × P2n × Loc,required to hold when moving from one lo
ation to the next.Be
ause the invariants of the system are given by means of 
onvex polyhe-dra, this de�nition of a linear hybrid automaton di�ers from those in, for exam-ple [ACH+95, Fre04, Hen96, HPR97℄, sin
e there is no need to expli
itly in
lude aset of n variables as a 
omponent of the system.The syn
hronization labels Lab are required for spe
ifying large systems. Ea
hpart of the system is spe
i�ed by a separate automaton, and then parallel 
ompo-sition is employed to 
ombine the 
omponents into an automaton for the 
ompletesystem. This ensures that 
ommuni
ation between the automata o

urs, via se-le
ted input/output variables, between transitions that have the same label. Exam-ple 4.4 provides a very simple illustration of parallel 
omposition; formal de�nitionsare available in [ACHH93, Hen96℄ and a larger appli
ation 
an be found in [MS00℄.A linear hybrid automaton 
an be represented by a dire
ted graph whose nodesare the lo
ations and edges are the transitions from the sour
e to the target lo
a-tions. Ea
h node ℓ is labeled by two sets of 
onstraints de�ning the polyhedra
Inv(ℓ) and Act(ℓ). To distinguish these 
onstraints, if, for example x is a variableused for the 
onstraints de�ning Inv(ℓ), ẋ will be used in the 
onstraints de�ning
Act(ℓ).6 In the examples, the initial polyhedron Init(ℓ) is assumed to be emptyunless there is an arrow to ℓ (with no sour
e node) labeled by the 
onstraint systemde�ning Init(ℓ). Ea
h edge τ =

(

ℓ, a,P, ℓ′) ∈ Trans, is labeled by the 
onstraintsystem C de�ning P and, optionally, by a whi
h is only in
luded where it is usedfor the parallel 
omposition of automata. Sin
e P ∈ P2n, we spe
ify C by using two
n-tuples of variables x and x

′, whi
h are interpreted as usual to denote the vari-ables in the sour
e and target lo
ations, respe
tively. We also adopt some helpfulshorthand notation: x++ and x−− denotes x′ = x+ 1 and x′ = x− 1, respe
tively;also, 
onstraints of the form x′ = x are omitted. The following examples, taken(with some minor modi�
ations) from [ACHH93, HPR97℄, illustrate the automata.Example 4.2. A graphi
al view of a water-level monitor automaton is givenin Figure 7. This models a system des
ribing how the water level in a tank is
ontrolled by a monitor that senses the water level w and turns a pump on and o�.When the pump is o�, w falls by 2 
ms per se
ond; when the pump is on, w risesby 1 
m per se
ond. However, there is a delay of 2 se
onds from the moment themonitor signals the pump to 
hange from on to o� or vi
e versa before the swit
his a
tually operated. Initially the automaton is at ℓ0 with w = 1 and it is requiredthat 1 ≤ w ≤ 12 at all times. Thus the monitor must signal the pump to turn onwhen w = 5 and signal it to turn o� when w = 10.The automaton illustrated in Figure 7 has 2 dimensions with variables w and
x; where x denotes the time (in se
onds) sin
e the previous, most re
ent, signalfrom the monitor. There are four lo
ations ℓi where i = 0, 1, 2, 3. At ℓ0 and ℓ1,the pump is on while at ℓ2 and ℓ3, the pump is o�. At ℓ1 and ℓ3, the monitor hassignaled a 
hange to the pump swit
h but this is not yet been operated. Thus we

6The dot notation re�e
ts the fa
t that these variables denote the derivatives of the statevariables.
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w = 1

ℓ0

w < 10

ẋ = 1

ẇ = 1

w = 10, x′ = 0signal pump o�
ℓ1

x < 2

ẋ = 1

ẇ = 1

swit
h o� x = 2

ℓ2

w > 5

ẋ = 1

ẇ = −2

w = 5, x′ = 0signal pump on
ℓ3

x < 2

ẋ = 1

ẇ = −2

x = 2 swit
h on

Figure 7. Water-level monitorhave:
Init(ℓ1) = Init(ℓ2) = Init(ℓ3) = ∅, Init(ℓ0) = con

(

{w = 1}
)

,

Inv(ℓ0) = con
(

{w < 10}
)

, Inv(ℓ2) = con
(

{w > 5}
)

,

Inv(ℓ1) = Inv(ℓ3) = con
(

{x < 2}
)

,

Act(ℓ0) = Act(ℓ1) = con
(

{ẋ = ẇ = 1}
)

,

Act(ℓ2) = Act(ℓ3) = con
(

{ẋ = 1, ẇ = −2}
)

.There are four transitions τij = (ℓi, ai,Pi, ℓj) ∈ Trans, where i ∈ {0, 1, 2, 3} and
j = i+ 1 (mod 4); the a�ne relations are

P0 = con
(

{w = 10, x′ = 0, w′ = w}
)

,

P1 = con
(

{x = 2, x′ = x,w′ = w}
)

,

P2 = con
(

{w = 5, x′ = 0, w′ = w}
)

,

P3 = P1.Example 4.3. A graphi
al representation of an automaton for a simpli�edversion of the Fis
her proto
ol is given in Figure 8. This models mutual ex
lusion fora system with two pro
essors P1 and P2 with skewed 
lo
ks x1 and x2, respe
tively.Ea
h pro
essor has a 
riti
al se
tion and, at any one moment in time, at most onemay be in its 
riti
al se
tion. This mutual ex
lusion is ensured by a version of theFis
her proto
ol whi
h requires that P1 and P2 share a variable k; a pro
ess Pi(i = 1, 2) is only able to enter its 
riti
al se
tion if k = i and Pi may only write to
k if k = 0. However, it takes at most a time units, as measured by Pi's 
lo
k for Pito set the value of k to i and it 
ould be that the other pro
ess Pj may also havestarted writing j to k. To avoid any resulting 
on�i
t, the proto
ol requires that Pimust wait for a further b time units, also measured by Pi's 
lo
k, before 
he
kingthat k = i still holds. The time b is 
alled the delay time. The proto
ol ensuresmutual ex
lusion only for 
ertain values of a and b whi
h depend on the relativerates of x1 and x2. Here it is assumed that the rate of x2 is between 0.9 and 1.1times that of x1 and that, for i = 1, 2, the 
lo
k xi is reset to zero at the start ofboth the write pro
ess and the delay time for Pi.
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a ≥ 0, b ≥ 0,

0 ≤ k ≤ 2

ℓ0 0 ≤ k ≤ 2
ẋ1 = 1

9 ≤ 10ẋ2 ≤ 11

ȧ = ḃ = 0

k = 0, x′

1 = 0

ℓ1 x1 ≤ a, k = 0
ẋ1 = 1

9 ≤ 10ẋ2 ≤ 11

ȧ = ḃ = 0

x′

1 = x′

2 = 0, k′ = 1

ℓ2 k = 1
ẋ1 = 1

9 ≤ 10ẋ2 ≤ 11

ȧ = ḃ = 0

x1 ≥ b

ℓ3 k = 2
ẋ1 = 1

9 ≤ 10ẋ2 ≤ 11

ȧ = ḃ = 0

x1 < b, x2 ≤ a, k′ = 2

x1 ≥ b

ℓ4k = 1
ẋ1 = 1

9 ≤ 10ẋ2 ≤ 11

ȧ = ḃ = 0

k′ = 0

x2 ≤ a, k′ = 2

ℓ5k = 2
ẋ1 = 1

9 ≤ 10ẋ2 ≤ 11

ȧ = ḃ = 0

true

Figure 8. Fis
her proto
ol (simpli�ed)Interrupt
c1 ≥ 0, c2 ≥ 0 Intpttrue

ċ1 = 1

ċ2 = 1

I1; c1 ≥ 10, c′1 = 0 I2; c2 ≥ 20, c′2 = 0

Task
x1 = x2 = k1 = k2 = 0 Idletrue

ẋ1 = 0

ẋ2 = 1x1 = 4, k1 ≤ 1,

k1−−, x′

1 = 0

I1; k′

1 = 1

x2 = 8, k2 ≤ 1, k1 = 0,

k2−−, x′

2 = 0

I2; k′

2 = 1

Task1
x1 ≤ 4

ẋ1 = 1

ẋ2 = 0 Task2
x2 ≤ 8

ẋ1 = 0

ẋ2 = 1

I2; k′

2 = 1

x2 = 8, k2 ≤ 1, k1 ≥ 1,

k2−−, x′

2 = 0

I1; k1++

x1 = 4, k1 ≥ 2, k1−−, x′

1 = 0

I2; k2++

I1; k1++

x2 = 8, k2 ≥ 1, k2−−, x′

2 = 0Figure 9. S
hedulerThe automaton illustrated in Figure 8 has 5 dimensions with variables a, b, x1,
x2, k. Note that here, a and b are 
onstant for all runs of the automaton and thisis indi
ated in the graph by the in
lusion of the derivative 
onstraints ȧ = ḃ = 0at every lo
ation. There are six lo
ations: ℓ0 where P1 is idle; at ℓ1 where k = 0and P1 is in the pro
ess of writing to k; at ℓ2 where k = 1 and P1 waits for thedelay time of b time units; at ℓ3 where k = 2 sin
e P2 managed to 
omplete writingto k before the delay time of b had expired; at ℓ4 where the pro
ess P1 is in the
riti
al se
tion; at ℓ5 where P2 has set k = 2 and the mutual ex
lusion guaranteeis violated. All the fun
tions and transitions for these lo
ations are as given inFigure 8.Example 4.4. A representation of an automaton for a simple task s
heduleris given in Figure 9. This models a s
heduler with two 
lasses of tasks A1 and A2,a
tivated by interrupts I1 and I2. Interrupt I1 (resp., I2) o

urs at most on
e every
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onds and a
tivates a task in 
lass A1 (resp., A2), whi
h takes 4(resp., 8) se
onds to 
omplete. Tasks in 
lass A2 have priority and preempt tasksin A1. It is required that tasks in 
lass A2 never wait.The automaton given in Figure 9 is the parallel 
omposition of two 
omponentautomata: Interrupt, whi
h models the assumptions about the interrupt frequen-
ies; and Task, whi
h models the exe
ution of the tasks. The Interrupt automaton,whi
h has a single lo
ation `Intpt', has 2 dimensions with variables c1 and c2; wherethe variable ci (i = 1, 2) measures the time elapsed sin
e interrupt Ii o

urred. TheTask automaton has three lo
ations: one labeled `Idle' when no tasks are runningand the other two labeled `Task1' and `Task2' for when task 1 (resp., task 2) isa
tive. This automaton has 4 dimensions with variables x1, x2, k1 and k2. Letting
i = 1, 2, the variable xi measures the exe
ution time of a task in 
lass Ai, and ki
ounts the number of pending tasks in 
lass Ai. All the fun
tions and transitionsfor both automata are as given in Figure 9.The 
ombined S
heduler automaton has 6 dimensions with variables x1, x2, k1,
k2, c1 and c2. Its set of lo
ations is formed by taking the Cartesian produ
t of thesets of the 
omponent automata's lo
ations. As the Interrupt 
omponent automa-ton has just one lo
ation, the lo
ations for the produ
t automaton are isomorphi
to the lo
ations for the Task automaton so that, for this simple example, these alsodenote the produ
t lo
ations. For ea
h lo
ation ℓ in a produ
t automaton, the ini-tial Init(ℓ), derivative Act(ℓ) and invariant Inv(ℓ) polyhedra are the 
on
atenationof the 
orresponding 
omponent polyhedra for the Task and Interrupt automata(informally, a 
on
atenation of polyhedra P ∈ Pm and Q ∈ Pn may be obtained by�rst embedding P into a ve
tor spa
e of dimension n+m and then add a suitablyrenamed-apart version of the 
onstraints de�ning Q).For ea
h transition (ℓ, a,P, ℓ′) in the Task automaton where a /∈ {I1, I2} (i.e.,in the graphs, the label a is omitted), there is a transition (ℓ, a,Q, ℓ′) in the prod-u
t automaton where Q ∈ P6 is obtained by embedding P into a ve
tor spa
e ofdimension 6. Letting i = 1, 2, for transitions (ℓ, Ii,P, ℓ

′) and (Intpt, Ii,P
′, Intpt) inthe Task and Interrupt automata, respe
tively, there is a transition (ℓ, Ii,Q, ℓ

′) inthe produ
t automaton where Q ∈ P6 is obtained by 
on
atenating P and P ′ (andthen reordering the dimensions so that variables for ℓ pre
ede the variables for ℓ′).Given a linear hybrid automaton, the aim of an analyzer is to 
he
k, or even�nd su�
ient 
onditions that ensure, that a valid run of the system 
annot rea
ha lo
ation and ve
tor of values that violates some requirement of the system. Forinstan
e, in Example 4.2, we need to show that the water level always lies between
1 cm and 12 cm; in Example 4.3, we need to �nd 
onditions on a and b so that atmost one pro
essor 
an be in its 
riti
al se
tion at any one time; while in Exam-ple 4.4, we need to show that no 
lass in A2 will ever have to wait. To show how we
an use polyhedral 
omputations to prove su
h properties, we �rst need to de�nemore formally su
h a run and how the rea
hable sets may be 
omputed.Letting H = (Loc, Init,Act, Inv,Lab,Trans) be a linear hybrid automaton in ndimensions, a state s ofH 
onsists of a pair (ℓ,v), where ℓ ∈ Loc and v ∈ Rn. Givenstates s = (ℓ,v) and s′ = (ℓ′,v′), a time delay t ∈ R+ and a ve
tor w ∈ Act(ℓ),

s→t
w
s′is a step of H provided that, for all t′ ∈ [0, t), v + t′w ∈ Inv(ℓ) and, for some

(ℓ, a,P, ℓ′) ∈ Trans, (v + tw) ::v′ ∈ P. A run of H is a sequen
e (�nite or in�nite)
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w0

s1 →t1
w1

s2 · · ·where the initial state s0 = (ℓ0,v0) satis�es the 
ondition v0 ∈ Init(ℓ0). An in�niterun diverges if the sum ∑

i≥0 ti diverges. For ea
h divergent run given by (4.1)where, for i ≥ 0, si = (ℓi,vi), we asso
iate a (state) behavior β whi
h is a totalfun
tion from time to states: that is, for ea
h t ∈ R+, β(t)
def
= (ℓi,v), where

i = min

{

k ∈ N

∣

∣

∣

∣

k
∑

j=0

tj > t

} and v = vi + wi

(

t−
∑

j<i

tj

)

.A state s is rea
hable if there exists a divergent run with behavior β and time
t ∈ R+ su
h that β(t) = s. The set of all rea
hable values Rℓ for a lo
ation ℓ isde�ned as:

Rℓ
def
=

{

v ∈ R
n

∣

∣ ∃t ∈ R+ . β(t) = (ℓ,v)
}

.The set of rea
hable values Rℓ at a lo
ation ℓ 
an be 
hara
terized by a systemof �xpoint equations that are de�ned in terms of sets of rea
hable values Rℓ′ atlo
ations ℓ′ where (

ℓ′, a,P, ℓ
)

∈ Trans. These equations use the following operationson sets of ve
tors in Rn. Let P ∈ P2n and S ∈ Rn. Then
ψP(S)

def
=

{

v
′ ∈ R

n
∣

∣ v ∈ S,v ::v′ ∈ P
}

.Note that, if S ∈ Pn, then ψP(S) ∈ Pn. Let Q ∈ Pn and S ∈ Rn. Then
S ր Q = {v + tw ∈ R

n | v ∈ S,w ∈ Q, t ∈ R+ }.The `ր' operator is 
alled the time elapse operator. We 
an now provide the�xpoint equation for Rℓ:(4.2) Rℓ =

(

(

Init(ℓ) ∪
⋃

(ℓ′,a,P,ℓ)∈Trans

ψP(Rℓ′) ∩ Inv(ℓ)
)

ր Act(ℓ)

)

∩ Inv(ℓ).Informally, the �xpoint equation forRℓ says that the rea
hable values at the lo
ation
ℓ are obtained by letting the time elapse either from an initial value for ℓ or from avalue obtained from an in
oming transition. However, the �xpoint Equation (4.2)
annot handle stri
t 
onstraints 
orre
tly and needs modifying; this is illustratedin the following example.Example 4.5. Consider again Example 4.2. Then, just applying the Equa-tion (4.2) (as proposed in [HPR94, HPR97℄), the sets of rea
hable values at lo
ations
ℓ1, ℓ2, ℓ3 are empty. The reason for this is that, for example, at lo
ation ℓ0, the stri
t
onstraint w < 10 must hold, while in the transition from ℓ0 to ℓ1, the transition
ondition w = 10 has to hold. On the other hand, it follows from the de�nition ofa step, that sin
e one of the derivative 
onstraints at ℓ0 is ẇ = 1; the water level
w may 
ontinue to in
rease up to the topologi
al 
losure of Rℓ0 whi
h is 
onsistentwith w = 10.To resolve this problem, in Equation (4.2) de�ning the 
on
rete 
omputation,
Rℓ′ needs to be repla
ed by(4.3) c(Rℓ′) ∩

(

Rℓ′ ր Act(ℓ′)
)

,where c(R′
ℓ) denotes the topologi
al 
losure of R′

ℓ.
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i�ed by means ofpolyhedra, the rea
hable set Rℓ for a linear hybrid automaton and lo
ation ℓ maynot be in the form of a 
onvex polyhedron. Thus, to verify that some states ofan automaton are unrea
hable using the standard polyhedral 
omputations, ap-proximations, even with su
h a restri
ted system, are needed. In parti
ular, in the�xpoint Equation (4.2) (or (4.3)), the set operations have to be repla
ed by the
orresponding polyhedral operations. In fa
t all the operations in (4.2) ex
ept setunion 
an be used as they are sin
e they transform polyhedra to polyhedra. Justthe set union operation has to be repla
ed by the poly-hull operation ⊎ des
ribedin Se
tion 2. Thus the following �xpoint equation 
omputes an approximation R♯
ℓto the rea
hability set Rℓ.(4.4) R♯

ℓ =

(

(

Init(ℓ) ⊎
⊎

(ℓ′,a,P,ℓ)∈Trans

ψP(R♯
ℓ′) ∩ Inv(ℓ)

)

ր Act(ℓ)

)

∩ Inv(ℓ).As for the 
on
rete �xpoint equation, to 
orre
tly handle the stri
t 
onstraintsEquation (4.4) needs to be be modi�ed by repla
ing R♯
ℓ′ with

c(R♯
ℓ′) ∩

(

R♯
ℓ′ ր Act(ℓ′)

)

.If we let R
♯ denote the tuple {R♯

ℓ | ℓ ∈ Loc } we 
an write Equation (4.4) as
R♯

ℓ = Fℓ(R
♯)For all ℓ ∈ Loc, we write R

♯(0)
ℓ = ∅ and, for all k ≥ 1, R

♯(k+1)
ℓ = Fℓ(R

♯(k)
ℓ ).Then R

♯ 
an be 
omputed iteratively provided the sequen
e R
♯(0),R♯(1), . . . doesnot diverge. To handle diverging sequen
es, we apply a widening (see Se
tion 7.2).Note that we do not have to apply it at all lo
ations. Let W be a set of lo
ationsthat 
ut all 
y
li
 paths in the graph of the hybrid automaton (that is, ea
h loopof the dire
ted graph 
ontains at least one lo
ation in W). Then the following setof �xpoint equations is guaranteed to 
onverge:(4.5) R♯

ℓ =

{

R♯
ℓ ∇ Fℓ(R

♯), if ℓ ∈ W ;
Fℓ(R

♯), if ℓ ∈ Loc \W .Example 4.6. Consider again Example 4.2. As there is a single loop passingthrough ℓ0, it is su�
ient to de�ne the set of widening lo
ations as W = {ℓ0}.With the modi�ed form of Equation (4.4) and the standard polyhedron widen-ing, the 
omputation requires three iterations resulting in polyhedra de�ned by
onstraint systems Ci for 0 ≤ i ≤ 3 where:
C0 = {1 ≤ w < 10}, C1 = {w − x = 10, 10 ≤ w < 12},

C2 = {w + 2x = 16, 5 < w ≤ 12}, C3 = {w + 2x = 5, 1 < w ≤ 5}.Example 4.7. Consider again Example 4.3. The analysis terminates withoutwidening in just two iterations with the resulting polyhedron at ℓ5 de�ned by the
onstraint system:
C = {k = 2, 10a ≥ 9b, 0 ≤ b ≤ x1, 9x1 ≤ 10x2 ≤ 11x1,

11x1 + 10a ≥ 10x2 + 11b}.It therefore follows that, to ensure that there 
an be no run with a state at lo
ation
ℓ5, it is su�
ient that 10a < 9b.



POLYHEDRAL COMPUTATIONS AND HW/SW ANALYSIS AND VERIFICATION 23Example 4.8. Consider again Example 4.4. By applying the standard widen-ing at lo
ation `Task2' only, the analysis for the produ
t automaton terminates infour iterations. After proje
ting away the variables c1 and c2, the rea
hable valuesare given by polyhedra de�ned by 
onstraint systems Ct0, Ct1, and Ct2 for lo
ations`Idle', `Task1' and `Task2', respe
tively, where:
Ct0 = {x1 = x2 = k1 = k2 = 0},

Ct1 = {0 ≤ x1 ≤ 4, x2 = 0, k1 = 1, k2 = 0},

Ct2 = {x2 ≥ 0, x2 ≤ 8, 4k1 ≥ x1, x1 ≥ 0, k2 = 1}.So it 
an be 
on
luded that, at ea
h lo
ation of the automaton, k2 ≤ 1 and, hen
e,no task in 
lass A2 will ever have to wait. However, as noted in [HPR97℄, be
auseof the 
onvex hull approximation, with the polyhedral domain the analyzer fails toshow that k1 ≤ 2. We therefore redid the analysis using a domain of powersetsof polyhedra (see Se
tion 6.2) and, after taking the poly-hull of the �nal sets andproje
ting away the variables c1 and c2, we obtained the polyhedra de�ned by 
on-straint systems C′
t0, C′

t1 and C′
t2 for lo
ations `Idle', `Task1' and `Task2', respe
tively,where:

C′
t0 = {x1 = x2 = k1 = k2 = 0},

C′
t1 = {0 ≤ x1 ≤ 4, x2 = 0, k1 = 1, k2 = 0},

C′
t2 = {0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 8, 4k1 ≥ x1 ≥ 2k1 − 2,

x1 + x2 ≥ 10k1 − 10, k1 ≤ 2, k2 = 1}.This veri�es that k1 ≤ 2 and k0 ≤ 1 in every state of any run of the automata.Hybrid systems with a�ne or nonlinear dynami
s do not �t the above spe
i�-
ation of a linear system so that the veri�
ation te
hniques des
ribed here are notdire
tly appli
able. Nonetheless, by partitioning the 
ontinuous state spa
e andover-approximating the dynami
s in ea
h of the partitions, the same te
hniquesused to verify linear hybrid automata 
an be used in these more general 
ases[DHR05, Fre05, HH95a, HHWT97, SSM06℄. Su
h an approa
h has also been su
-
essfully applied in the veri�
ation of analog 
ir
uits, as dis
ussed in the followingse
tion. 5. Analysis and Veri�
ation of Analog SystemsThe idea of applying formal methods, that originated in the digital world,to analog systems was put forward in [HHB02℄. This is an important step forwardwith respe
t to more traditional methods for the validation of analog 
ir
uit designs.A formal veri�
ation tool 
an, for example, ensure that a design satis�es 
ertainproperties for entire sets of initial states and 
ontinuous ranges of 
ir
uit parameters,something that 
annot be done with simulation.In [DDM04℄ and [GKR04℄, polyhedral approximations were su

essfully usedin the veri�
ation of analog 
ir
uits. Here, we use a simple example, taken from[FKR06℄, on the veri�
ation of an os
illator 
ir
uit to illustrate the approa
h.7 Toverify properties of the (
y
li
) behavior of su
h 
ir
uits, 
y
li
 invariants have to bedetermined. To establish a 
y
li
 invariant for a given set of initial states and rangesfor the 
ir
uit parameters, one has to show that the 
ir
uit returns to a subset of7For a more general view, we refer the interested reader to the 
ited literature and to [Mal06℄.
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Figure 11. Rea
hable states of the tunnel-diode os
illator (dashed)those initial states, whi
h implies the system will keep traversing the same statesinde�nitely. From su
h an invariant, a number of properties of the os
illator 
anbe established [FKRM06℄.Consider the tunnel-diode os
illator s
hematized in Figure 10(a). The state ofthe system at a given instant of time is 
ompletely 
hara
terized by the values ofthe indu
tor 
urrent IL and the diode voltage drop Vd. With these as the statevariables, the system is des
ribed by the se
ond-order state equations
V̇d = 1/C

(

−Id(Vd) + IL
)

,(5.1)
İL = 1/L(−Vd −RIL + Vin).(5.2)In [FKR06℄ it is shown how a 
y
li
 invariant 
an be obtained for this 
ir
uitusing the PHAVer system. First, a pie
ewise a�ne envelope is 
onstru
ted forthe tunnel diode 
hara
teristi
 Id(Vd) depi
ted in Figure 10(b): for the parti
ularexample analyzed in [FKR06℄, su�
ient pre
ision is obtained by dividing the range

Vd ∈ [−0.1 V, 0.6 V] into 64 intervals, resulting in a pie
ewise a�ne model of (5.1).Forward rea
hability 
omputation with PHAVer allows to obtain the set of statesdepi
ted in Figure 11. These are the states rea
hable from the set of initial states
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orresponding to Vd ∈ [0.42 V, 0.52 V] and IL = 0.6 mA (the base of the downward-fa
ing triangular shape in Figure 11). Taking into a

ount that the loop shape
onstituted by the rea
hable states is traversed 
lo
kwise, it 
an be seen that theindu
tor 
urrent IL returns to the initial value of 0.6 mA with a diode voltage dropthat is well within the initial range [0.42 V, 0.52 V]. The set of rea
hable states soobtained is thus an invariant of the 
ir
uit.In [FKR06℄ it is shown that, due to over-approximation, forward rea
hability
an fail to determine invariants of more 
omplex 
ir
uits. A new te
hnique 
ombin-ing forward and ba
kward rea
hability with iterative re�nement of the partitions isthus proposed and shown to be more powerful and e�
ient.6. Families of Polyhedral Approximations for Analysis and Veri�
ationFor several appli
ations of stati
 analysis and veri�
ation, an approximationbased on the domain of 
onvex polyhedra 
an be regarded as the most appropriate
hoi
e. In this se
tion we dis
uss alternative options (simpli�
ations, generaliza-tions, and 
ombinations with other numeri
al domains) that might be 
onsideredwhen trying either to redu
e the 
ost of the analysis, or to in
rease the pre
ision ofthe 
omputed results.6.1. Simpli�
ations of Polyhedra. There are 
ontexts where approxima-tions based on the domain of 
onvex polyhedra, no matter whi
h implementationis adopted, in
ur an una

eptable 
omputational 
ost. In su
h 
ases, the stati
analysis may resort to further simpli�
ations so as to obtain useful results withinreasonable time and spa
e bounds.A �rst, almost traditional approa
h is based on the identi�
ation of suitablesynta
ti
 sub
lasses of polyhedra. The abstra
t domain of bounding boxes (orintervals [CC76℄) is based on polyhedra that 
an be represented as �nite 
on-jun
tions of 
onstraints of the form ±xi ≤ d or ±xi < d, leading to the spe
-i�
ation of operations whose worst-
ase 
omplexity is linear in the number ofspa
e dimensions. As a more pre
ise alternative, the 
lass of potential 
onstraints[AK85, Bag97, Bel57, Dav87, Dil89, LLPY97℄, also known as bounded di�eren
es,allows for 
onstraints of the form xi−xj ≤ d or±xi ≤ d; the generalization proposedin [BK89℄, also admits 
onstraints of the form xi + xj ≤ d, leading to the abstra
tdomain of o
tagons [Min01℄. In these last two 
ases, the operators are 
hara
terizedby a worst-
ase time 
omplexity whi
h is 
ubi
 in the number of spa
e dimensions.For all of the approximations mentioned above, improved e�
ien
y also followsfrom the fa
t that the 
orresponding 
omputations are simple enough to allow forthe adoption of �oating-point data types: in 
ontrast, the spe
i�
ation of safe ande�
ient �oating-point operations for general polyhedra is an open problem, so thatpolyhedra libraries have to be based on unbounded pre
ision data types.Several alternative (synta
ti
 and/or semanti
) simpli�
ation s
hemes havebeen put forward in the re
ent literature. The Two Variables per Linear Inequalityabstra
t domain is proposed in [SKH02℄, where 
onstraints take the synta
ti
 form
axi + bxj ≤ d. In [SSM05℄, an arbitrary family of polyhedra is 
hosen before start-ing the analysis by �xing the slopes of a �nite number of linear inequalities, whi
hare 
alled the template 
onstraints ; linear programming te
hniques are then usedto 
ompute pre
ise approximations in the 
onsidered 
lass of shapes. In 
ontrast,in [SCSM06℄, general polyhedra are allowed, but the 
orresponding operations (inparti
ular, the poly-hull and the image of a�ne relations) are approximated by
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ise variants so as to ensure a polynomial worst-
ase 
omplexity in the sizeof the inputs. An even more �exible approa
h is proposed in [Fre05℄, where ar-bitrary polyhedra are approximated, when they be
ome too 
omplex, by limitingthe number of 
onstraints in their des
ription and/or the magnitude of the 
oef-�
ients o

urring in the 
onstraints. These more dynami
 approximation s
hemesare promising, in parti
ular for those appli
ations where nothing is known in ad-van
e about the synta
ti
 form of the 
onstraints that will be 
omputed during theanalysis.An important observation to be made is that there is no a
tual need to prefera priori (and therefore 
ommit to) a spe
i�
 abstra
t domain: the analysis toolmay be based on several abstra
tions, safely swit
hing from more pre
ise, possibly
ostly domains to more e�
ient, possibly impre
ise ones, and vi
e versa, depend-ing on the 
ontext. When repla
ing a generi
 polyhedron by a simpler one, theproblem of the identi�
ation of a good over-approximation has to be solved. De-pending on the 
ontext, the approa
hes may vary signi�
antly. At one extreme,when e�
ien
y is really 
riti
al, the adoption of synta
ti
 te
hniques should bepursued: for an interesting example, we refer the reader to one of the simpli�
ationheuristi
s used in [Fre05℄, where the e�
ient sele
tion of a small number of linearinequalities out of a 
onstraint system is driven by a simple, yet e�e
tive reasoningon the measure of the angles formed by the 
orresponding half-spa
es. At the otherextreme, linear programming (LP) optimization te
hniques may be used so as toobtain the best mat
h in the 
onsidered 
lass of geometri
 shapes. For instan
e,the pre
ise approximation of a polyhedron by a bounding box (resp., a boundeddi�eren
e or o
tagon) 
an be implemented by a linear (resp., quadrati
) number ofoptimizations of a 
lass of LP problems, where the obje
tive fun
tion varies whilethe feasible region is invariant and de�ned by the 
onstraints of the polyhedron.Note that, if 
orre
tness has to be preserved, it is essential that no rounding erroris made on the wrong side, so that 
lassi
al �oating-point implementations of LPsolvers have to be 
onsidered unsafe, unless the 
omputed results 
an be 
erti�edby some other tool. Alternatively, it is possible to 
onsider LP implementationsbased on unbounded pre
ision data types.When the number of spa
e dimensions to be modeled is beyond a given thresh-old, the whole analysis spa
e 
an be split into a �nite number of smaller, moremanageable 
omponents, thereby realizing a further simpli�
ation s
heme that 
anbe 
ombined with those des
ribed above. The splitting strategy varies 
onsiderably.In [HMPV03, HMG06℄, Cartesian fa
toring te
hniques are used so as to dynami-
ally partition the spa
e dimensions of a polyhedron into independent subsets; theorthogonal fa
tors are then approximated by lower dimensional polyhedra with nopre
ision penalty. In an alternative approa
h des
ribed in [BCC+03℄, many (pos-sibly overlapping) small subsets of spa
e dimensions, 
alled variables pa
ks, areidenti�ed before the start of the analysis by means of synta
ti
 
onditions; the re-lations holding between the variables in ea
h pa
k are then approximated by usingan o
tagonal abstra
tion. A variation of this is des
ribed in [VB04℄, where non-overlapping variable pa
ks are dynami
ally 
omputed (and possibly merged) duringthe analysis, whereas the relations between the variables in a pa
k are approximatedby means of potential 
onstraints. In [VB04℄ it is also observed that, sin
e the aver-age size of variables pa
ks is small (5 variables), more pre
ise approximations basedon general polyhedra should be feasible.
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ations where the re-stri
tion to the domain of 
onvex polyhedra is intrinsi
ally inadequate. This mayhappen, not only when the veri�
ation property of interest is itself non-
onvex,but also when the adopted 
omputation strategy requires that a 
onvex property isproved by passing through a non-
onvex intermediate approximation. This was the
ase in Example 4.8 of Se
tion 4, where the upper bound (k1 ≤ 2) on the numberof waiting pro
esses for 
lass A1 was obtained by swit
hing from the domain of
onvex polyhedra to the domain of �nite sets of polyhedra.The �nite powerset domain 
onstru
tion [Bag98℄ is a spe
ial 
ase of disjun
tive
ompletion [CC79℄, a systemati
 te
hnique to derive an enhan
ed abstra
t domainstarting from an existing one. A �nite powerset domain implements disjun
tions bymaintaining an expli
it (hen
e �nite) and non-redundant 
olle
tion of elements ofthe base-level domain: non-redundan
y means that a 
olle
tion is made of maximalelements with respe
t to the approximation ordering, so that no element subsumesanother element in the 
olle
tion.For a better understanding of the 
on
epts, whi
h are des
ribed in 
ompletelygeneral terms in [BHZ06
℄, let us 
onsider the appli
ation of the �nite powerset
onstru
tion to the domain of 
onvex polyhedra. This instantiation (whi
h is theone also adopted for the examples developed in [BHZ06
℄) 
an be used to modelnonlinear systems as des
ribed, e.g., in Se
tion 5. Then, an element of the abstra
tdomain is a �nite set of maximal 
onvex polyhedra, so that no polyhedron in theset is 
ontained in another polyhedron in the set. The powerset domain is a latti
e:the bottom and top elements are ∅ and {Rn}, respe
tively; the meet is obtainedby removing redundan
ies from the set of all possible binary interse
tions of anelement in the �rst powerset with an element in the se
ond powerset; while thebinary join is the non-redundant subset of the union of the two arguments. Mostof the other abstra
t operations needed for a stati
 analysis using the �nite pow-erset domain are easily obtained by �lifting� the 
orresponding operations de�nedon the base-level domain, and then reinfor
ing non-redundan
y. For instan
e, the
omputation of the image of a �nite powerset under an a�ne relation is obtainedby 
omputing the image of ea
h polyhedron in the 
olle
tion. However, the 
on-stru
tion of a provably 
orre
t widening operator has only re
ently been addressedin [BHZ06
℄ (see Se
tion 7.2). The generi
 spe
i�
ation of the abstra
t operatorsof the �nite powerset domain in terms of abstra
t operations on the (arbitrary)base-level domain allows for the development of a single implementation whi
h isshared by all the possible instan
es of the domain 
onstru
tion.An alternative abstra
tion s
heme has been proposed in [BRCZ05℄ for the 
aseof �nite 
onjun
tions of polynomial inequalities. Intuitively, a polynomial 
on-straint 
an be approximated by means of a linear 
onstraint in a higher dimensionve
tor spa
e, so that the di�erent terms of the polynomial (e.g., x0, x0x1, x2
0) aremapped to di�erent and independent spa
e dimensions; these linear 
onstraints arethen used to perform an almost 
lassi
al linear relation analysis based on 
onvexpolyhedra. Due to the linearization step, most of the pre
ision of the polynomial
onstraints is initially lost; however, some of the relations holding between the di�er-ent terms of the original polynomial 
an be re
overed by adding further 
onstraintsthat are redundant when interpreted in the polynomial world, but do 
ontribute topre
ision in the linearized spa
e. In parti
ular, in [BRCZ05℄ the polynomial 
on-straints are mapped into �nitely generated polynomial 
ones and a degree-bounded
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t 
losure operator is systemati
ally applied so as to improve a

ura
y. As atrivial example, let the polynomial terms x0, x1 and x0x1 be mapped to the spa
edimensions y0, y1 and y2, respe
tively. Then, the linearization of the polynomial
onstraints x0 ≥ 0 and x1 ≥ 0 will produ
e a polyhedron that, while satisfying
y0 ≥ 0 and y1 ≥ 0, leaves variable y2 totally un
onstrained. By applying the prod-u
t 
losure operator we also obtain the linear 
onstraint y2 ≥ 0, thereby re
overingthe non-negativity of term x0x1.6.3. Combinations with other Numeri
al Abstra
tions. We observethat there are two basi
 kinds of numeri
al abstra
tions for approximating thevalues of the program variables: outer limits (or bounds within whi
h the val-ues must lie) and the pattern of distribution of these values. The �rst 
an beapproximated by (
onstru
tions based on) 
onvex polyhedra, while the se
ond
an be approximated by sets of 
ongruen
es de�ning latti
es of points we 
allgrids [BDH+07, Gra91, Gra97℄. Thus before 
onsidering how these and similardomains may be 
ombined, we �rst give a brief overview of the domain of grids.Any ve
tor that satis�es 〈a,v〉 = b + µf , for some µ ∈ Z, is said to satisfythe 
ongruen
e relation 〈a,v〉 ≡f b. A 
ongruen
e system Cg is a �nite set of
ongruen
e relations in R

n. A grid is the set of all ve
tors in R
n that satisfy the
ongruen
es in Cg. The domain of grids Gn is the set of all grids in Rn ordered bythe set in
lusion relation, so that the empty set and Rn are the bottom and topelements of Gn respe
tively and the interse
tion of two grids is itself a grid. Thus, asfor the domain of polyhedra, the domain of grids forms a latti
e (Gn,⊆, ∅,R

n,⊎,∩)where ⊎ denotes the join operation returning the least grid greater than or equal tothe two arguments. For more details 
on
erning all aspe
ts of the domain of grids,see [BDH+07℄.The distribution information 
aptured by grids has a number of appli
ationsin its own right, for instan
e: to ensure that external memory a

esses obey thealignment restri
tion imposed by the host ar
hite
ture; and to enable several trans-formations for e�
ient parallel exe
ution as well as optimizations that enhan
e
a
he behavior. However, here we are primarily 
on
erned with appli
ations that
an bene�t from the 
ombination of the domain of grids with that of 
onvex poly-hedra. For instan
e, knowing the frequen
y (and position) of the points in a grid,we 
an shrink the polyhedra so that the bounding hyperplanes pass through thegrid values; if this leads to a polyhedron with redu
ed dimension (su
h as a singlepoint) or one that is empty, it 
an lead, not only to improved pre
ision, but also amore e�
ient use of resour
es by the analyzer [An
91, NR00, QRR96℄.Generi
 
onstru
tions su
h as dire
t and redu
ed produ
t 
an be used to pro-vide a formal basis for the 
ombination of the grid and polyhedral domains [CC79℄.However, the exa
t 
hoi
e of produ
t 
onstru
tion used to build the grid-polyhedraldomain needs further study and should probably depend on the appli
ation. Theproblem is that the dire
t produ
t has the disadvantage in that there is no provi-sion for 
ommuni
ation between the 
omponent domains while the redu
ed prod-u
t, whi
h is the most pre
ise re�nement of the dire
t produ
t, has exponential
omplexity. It is expe
ted that, for grid-polyhedra, the most useful produ
t 
on-stru
tion will lie between these extremes. For instan
e, as equalities are 
ommonentities for both 
onstraint and 
ongruen
e systems, if an equality is found to holdin one 
omponent, it is safe to just add this to the 
onstraint or 
ongruen
e sys-tem des
ribing the other 
omponent. In addition, any hyperplane that bounds the
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ould be moved inwards until it interse
t with points of the grid withonly linear 
ost on the number of dimensions. Of 
ourse, this redu
tion on its ownis not optimal sin
e the grid points in the interse
tion may not lie in the polyhe-dron itself. For optimality or, more generally, so as to gain additional pre
ision, weneed to experiment with various forms of the bran
h-and-bound and 
utting-planealgorithms [KM06℄ already well-resear
hed for integer linear programming. Whatis needed is a range of options for the produ
t 
onstru
tion allowing the user tode
ide on the 
omplexity/pre
ision trade-o�. Further work on this in
luding aninvestigation of other proposals for generi
 produ
ts that lie between the dire
t andredu
ed produ
t su
h as the lo
al de
reasing iteration method [Gra92℄ and the openprodu
t 
onstru
tion [CLV00℄ is needed.7. Polyhedral Computations Pe
uliar to Analysis and Veri�
ationAs observed in the previous se
tions, the analysis of the run-time behavior of asystem 
an be tra
ed down to the 
omputations of a basi
 set of operations on the
hosen abstra
t domains. This means that ea
h abstra
t domain should provideadequate 
omputational support for su
h a set and, where appropriate, further op-erations that might be useful for tuning the 
ost/pre
ision ratio. In this se
tion,we dis
uss several key issues relevant to the design and implementation of an ab-stra
t domain of, or based on, 
onvex polyhedra. Before going into further detail,it should be stressed that the parti
ular 
ontext of appli
ation plays a signi�
antand non-trivial role here. For instan
e, in many 
omputational 
omplexity studies,it is assumed that a small number of operations (often, just a single one) will haveoperands whose sizes 
an grow arbitrarily large; also, it is typi
ally required thatexa
t results have to be 
omputed. Both these assumptions may be inappropriatein the 
ontext of stati
 analysis: it is quite often the 
ase that a large number of op-erations will have only small or medium sized operands; moreover, whenever fa
ingan e�
ien
y issue, the exa
tness requirement 
an be dropped (provided soundnessis maintained). As a 
onsequen
e, the evaluation of alternative algorithmi
 strate-gies should be based on pra
ti
al experimentation, rather than purely theoreti
alresults.7.1. The Double Des
ription Method. Convex polyhedra are typi
allyspe
i�ed by a �nite system of linear inequality 
onstraints and there are known al-gorithms (e.g., based on Fourier-Motzkin elimination [LM92, S
h99℄) for 
omputingmost of the operations already mentioned on su
h a des
ription.An alternative approa
h is based on the double des
ription method due toMotzkin et al. [MRTT53℄. This method was originally de�ned on the set of topo-logi
ally 
losed 
onvex polyhedra, a sub-latti
e (CPn,⊆, ∅,R
n,⊎,∪) of the latti
e of(not ne
essarily 
losed, or NNC) polyhedra Pn. In the double des
ription method, a
losed polyhedron may be des
ribed by using a system of non-stri
t linear inequal-ities or by using a generator system that re
ords its key geometri
 features. Thefollowing is the main theoreti
al result, whi
h is a simple 
onsequen
e of well-knowntheorems by Minkowski and Weyl [SW70℄.Theorem 7.1. The set P ⊆ Rn is a topologi
ally 
losed 
onvex polyhedron ifand only if there exist �nite sets R,P ⊆ R

n of 
ardinality r and p, respe
tively,su
h that 0 /∈ R and P 
an be generated from (R,P ) as follows:
P =

{

Rρ+ Pπ ∈ R
n

∣

∣

∣
ρ ∈ R

r
+
, π ∈ R

p
+
,
∑p

i=1 πi = 1
}

.



30 ROBERTO BAGNARA, PATRICIA M. HILL, AND ENEA ZAFFANELLAIntuitively, a point of a polyhedron P is obtained by adding a 
onvex 
ombinationof the ve
tors in P (the generating points) to a 
oni
 
ombination of the ve
tors in
R (the generating rays).It turns out that 
onstraint and generator des
riptions are duals: ea
h repre-sentation 
an be 
omputed starting from the other one. Clever implementationsof this 
onversion pro
edure, improving on the Chernikova's algorithms [Che64,Che65, Che68℄, are the starting point for the development of software libraries that,while being 
hara
terized by a worst 
ase 
omputational 
ost whi
h is exponentialin the size of the input, turn out to be pra
ti
ally useful. A 
ommon 
hara
teristi
of these implementations is the exploitation of in
rementality, whereby most of the
omputational work done for an operation is reused to e�
iently 
ompute smallvariations of the 
orresponding result. Further 
omputational enhan
ements areobtained by the adoption of suitable heuristi
s, ranging from the e�
ient handlingof adja
en
y information [Le 92℄, to a 
areful 
hoi
e of ordering strategies for the
omputation of intermediate results [Avi00, AB95, FP96℄; the overall 
onstru
tiontypi
ally relies on a tight integration of the basi
 algorithms with a 
arefully 
hosenset of data stru
tures [BHZ06b℄.An important motivation for the adoption of an implementation based on thedouble des
ription method is that the ability to swit
h from a 
onstraint des
rip-tion to a generator des
ription, or vi
e versa, 
an be usefully exploited to providesimple implementations for the basi
 operations on polyhedra. For instan
e, setinterse
tion is easily implemented by taking the union of the 
onstraint systemsrepresenting the two arguments, whereas the poly-hull is implemented by joiningthe generator systems representing the two arguments; and the test for emptiness
an be implemented by 
he
king whether the generator system 
ontains no pointsat all. Moreover, a test for subset in
lusion P ⊆ Q 
an be implemented by 
he
kingif ea
h point and ea
h ray in a generator system des
ribing P satis�es all linearinequalities in a 
onstraint system des
ribing Q. As a further example, the timeelapse operation spe
i�ed in Se
tion 4 
an be implemented using the generator sys-tems for the argument polyhedra. That is, a generator system for the polyhedron
P ր Q 
an be obtained by adopting the same set of generating points as P and byde�ning its set of rays as the union of the set of generating rays for P with the setof all the generators (both points and rays) for Q.As seen in Se
tion 3, in the 
ontext of the analysis of imperative languagesone of the most frequent statements is variable assignment, where the expressionassigned is safely approximated by an a�ne relation ψ ⊆ Rn × Rn. The (dire
tor inverse) image of an a�ne relation 
an be naively 
omputed by embedding theinput polyhedron P ⊆ R

n into the spa
e R
2n, interse
ting it with the 
onstraintsde�ning ψ and �nally proje
ting the result ba
k on Rn. However, due to themoves to/from a higher dimensional spa
e, this approa
h su�ers from signi�
antoverheads. Quite often, the expression assigned is a simple a�ne fun
tion of thevariables' values and 
an thus be exa
tly modeled by 
omputing the image of asingle-update a�ne fun
tion. With the double des
ription method, the images ofa�ne fun
tions are mu
h more e�
iently 
omputed by applying them dire
tly tothe generators of the argument polyhedron. A dual approa
h, using the 
onstraintdes
ription of the polyhedron, allows for the 
omputation of the preimages of a�nefun
tions, whi
h 
an be of interest for a ba
kward semanti
 
onstru
tion, wherethe initial values of program variables are approximated starting from their �nal
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ien
y arguments motivate the study of spe
i�
 implementationsfor single-update bounded a�ne relations and other spe
ial sub
lasses of a�nerelations.7.2. Widening and Narrowing. The �rst widening operator for the domainof 
onvex polyhedra, proposed in [CH78℄ and re�ned in [Hal79℄, 
an be informallydes
ribed as follows: suppose that in the post-�xpoint iteration sequen
e we 
om-pute as su

essive iterates the polyhedra Pi and Pi+1; then, the widening keeps alland only the 
onstraints de�ning Pi that are also satis�ed by Pi+1. This simpleidea, whi
h is basi
ally borrowed from the widening operator de�ned on the domainof intervals [CC76℄, is quite e�e
tive in ensuring the termination of the analysis (thenumber of 
onstraints de
reases at ea
h iteration); by avoiding the appli
ation ofthe widening in the �rst few iterations of the analysis [Cou81℄ and/or by applyingthe �widening up-to� te
hnique of [Hal93℄, it also provides, in the main, an adequatelevel of pre
ision.Some appli
ation �elds, however, are parti
ularly sensitive to the pre
ision ofthe dedu
ed numeri
al information, to the point that some authors propose to giveup the termination guarantee and use so-
alled extrapolation operators: examplesin
lude the operators de�ned in [HPWT01℄ and [HH95b℄, as well as the proposalsin [BGP99℄ and [DP99℄ for sets of polyhedra and the heuristi
s sket
hed in [BJT99℄.In [BHRZ05℄ this pre
ision problem is re
onsidered in a more general 
ontextand a framework is proposed that is able to improve upon the pre
ision of a givenwidening while keeping the termination guarantee. The approa
h, whi
h buildson theoreti
al results put forward in work on termination analysis, 
ombines anexisting widening operator, whose termination guarantee should be formally 
er-ti�able, with an arbitrary number of pre
ision improving heuristi
s. Its feasibilitywas demonstrated by instantiating the framework so as to produ
e a new wideningon polyhedra improving upon the pre
ision of [Hal79℄ in a signi�
ant per
entage ofben
hmarks.For the more 
hallenging 
ase of an abstra
t domain obtained by the �nite pow-erset domain 
onstru
tion, several generi
 s
hemes of widenings have been proposedin [BHZ06
℄ that are able to �lift� a widening de�ned on the base-level domain with-out 
ompromising its termination guarantee. The instantiation of su
h a generi
approa
h led to the de�nition of the �rst non-trivial and provably 
orre
t wideningson a domain of �nite sets of 
onvex polyhedra. Being highly parametri
, the widen-ing s
hemes proposed in [BHZ06
℄ 
an be instantiated a

ording to the needs of thespe
i�
 appli
ation, as done in [GR06℄. One of the heuristi
 approa
hes adoptedin [BHZ06
℄ to 
ontrol the pre
ision/
omplexity trade-o� of the widenings, origi-nally proposed in [BGP99℄, attempts at redu
ing the 
ardinality of a polyhedral
olle
tion by merging two of its elements whenever their set union happens to bea 
onvex polyhedron. The implementation of su
h a heuristi
s 
ould signi�
antlybene�t from the results and algorithms presented in [BF05, BFT01℄.It is also worth mentioning that, on
e a post-�xpoint approximation has beenobtained by means of an upward iteration sequen
e with widening, its pre
ision 
anbe improved by means of a downward iteration, possibly using a narrowing operator[CC77, CC76, CC92a, CC92b℄. To the best of our knowledge, no narrowing hasever been de�ned on the domain of 
onvex polyhedra: appli
ations simply stop thedownward 
omputation after a small number of iterations.
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essarily Closed Convex Polyhedra. Most stati
 analysis ap-pli
ations 
omputing linear inequality relations between program variables 
onsiderthe domain CPn of topologi
ally 
losed polyhedra. One of the underlying motiva-tions is that sometimes (e.g., when working with integer valued variables only)stri
t inequalities 
an be �ltered away by suitable synta
ti
 manipulations; evenwhen this is not the 
ase, the topologi
al 
losure approximation may be interpretedas a qui
k and pra
ti
al workaround to the fa
t that some software libraries do notfully support 
omputations on NNC polyhedra. However, there are appli
ations[ACHH93, CS01, HPR94, HPR97℄ where the ability of en
oding and propagatingstri
t inequalities might be 
ru
ial for the usefulness of the �nal results.The �rst proposal for a systemati
 implementation of stri
t inequalities in a soft-ware library based on the double des
ription method was put forward in [HPR94℄:a synta
ti
 translation embeds an n-dimensional NNC polyhedron P ∈ Pn into an
(n + 1)-dimensional 
losed polyhedron R ∈ CPn+1, by adding a single sla
k vari-able ǫ, satisfying the additional side 
onstraints 0 ≤ ǫ ≤ 1. Namely, any stri
t in-equality 
onstraint 〈a,x〉 > b is translated into the non-stri
t inequality 
onstraint
〈a,x〉 − ǫ ≥ b. The 
omputation is thus performed on the 
losed representation
R ∈ CPn+1, with only minor adaptations to the basi
 algorithms so as to also takeinto a

ount the impli
it stri
t 
onstraint ǫ > 0.While this idea is quite e�e
tive, the resulting software library no longer enjoysall of the properties of the underlying double des
ription implementation: NNCpolyhedra 
annot be suitably des
ribed using generator systems, and the geometri
intuitions are lost under the �implementation details.� These problems motivatedthe studies in [BHZ03, BHZ05, BRZH02℄, where a proper generalization of the dou-ble des
ription method to NNC polyhedra was proposed. The main improvementwas the identi�
ation of the 
losure point as a new kind of generator for NNCpolyhedra, leading to the following result generalizing Theorem 7.1.Theorem 7.2. The set P ⊆ Rn is an NNC polyhedron if and only if there exist�nite sets R,P,C ⊆ Rn of 
ardinality r, p and c, respe
tively, su
h that 0 /∈ R and

P =

{

Rρ+ Pπ + Cγ ∈ R
n

∣

∣

∣

∣

∣

ρ ∈ Rr
+
, π ∈ R

p
+, π 6= 0, γ ∈ Rc

+
,

∑p
i=1 πi +

∑c
i=1 γi = 1

}

.The new 
ondition π 6= 0 ensures that at least one of the points of P plays ana
tive role in any 
onvex 
ombination of the ve
tors of P and C. As a 
onsequen
e,the ve
tors of C are 
losure points of P, i.e., points that belong to the topologi
al
losure of P, but may not belong to P itself.Thanks to the introdu
tion of (stri
t inequalities and) 
losure points, most ofthe pros of the double des
ription method now also apply to the domain of NNCpolyhedra: simpler, higher-level implementations of operations on NNC polyhedra
an be spe
i�ed, reasoned about and justi�ed in terms of any one of the two dualdes
riptions; important implementation issues (su
h as the need to identify andremove all kinds of redundan
ies in the des
riptions [BHZ05, BRZH02℄) 
an beprovided with proper solutions; di�erent lower-level en
odings (e.g., an alternativemanagement of the sla
k variable [BHZ03, BHZ05℄) 
an be investigated and ex-perimented with, without a�e
ting the user of the software library. It would beinteresting, from both a theoreti
al and pra
ti
al point of view, to provide a moredire
t en
oding of NNC polyhedra, i.e., one that is not based on the use of sla
k



POLYHEDRAL COMPUTATIONS AND HW/SW ANALYSIS AND VERIFICATION 33variables; this requires the spe
i�
ation and the 
orresponding proof of 
orre
t-ness of a dire
t NNC 
onversion algorithm, potentially a
hieving a major e�
ien
yimprovement.
8. Con
lusionIn the �eld of automati
 analysis and veri�
ation of software and hardware sys-tems, approximate reasoning on numeri
al quantities is 
ru
ial. As �rst re
ognizedin 1978 [CH78℄, polyhedral 
omputation algorithms 
an be used for the automati
inferen
e of numeri
al assertions that 
orre
tly (though usually not 
ompletely)
hara
terize the behavior of a system at some level of abstra
tion.Until the end of the 1990's these te
hniques were not in widespread use, mainlydue to the unavailability of robust and e�
ient implementations of 
onvex poly-hedra. As far as we know, the �rst published libraries of polyhedral algorithmssuitable for analysis and veri�
ation purposes have been Polylib,8 released in 1995,written by Wilde at IRISA [Wil93℄ and based on earlier work by Le Verge [Le 92℄,and the polyhedra library of POLINE (POLyhedra INtegrated Environment) writ-ten by Halbwa
hs and Proy at Verimag and also released in 1995. Both librariesused ma
hine integers to represent the 
oe�
ients of linear equalities and inequal-ities, something that 
ould easily result into (undete
ted) over�ows. While Polylibprovided only a fra
tion of the fun
tionalities o�ered by POLINE's library (whi
ho�ered, among other things, support for NNC polyhedra), it was available in sour
eformat. The POLINE's library, instead, was distributed only in binary form for theSun-4 platform (freely, until about the year 1996; under rather restri
tive 
ondi-tions afterward). POLINE in
luded also a system 
alled POLKA (POLyhedra desK
Al
ulator) and an analyzer for linear hybrid automata. A variation of a subset ofPOLINE's library was in
orporated into the HyTe
h tool [HHWT97℄.9The work of Wilde and Le Verge, whi
h was extended by Loe
hner [Loe99℄, ledto the 
reation of PolyLib.10 The New Polka library by Jeannet,11 �rst released in2000 and originally based on both IRISA's Polylib and POLINE's library, in
or-porates the idea �suggested by Fukuda and Prodon [FP96℄� of lexi
ographi
allysorting the matri
es representing 
onstraints and generators. New Polka, whi
hsupports both 
losed and NNC polyhedra, together with Miné's O
tagon Abstra
tDomain Library [Min01, Min05℄12 and an interval library 
alled ITV, is now in-
luded in the APRON library.13 Finally, the Parma Polyhedra Library (PPL),initially inspired by New Polka and �rst released in 2001, is developed and main-tained by the authors of this paper.14 The PPL supports both 
losed and NNCpolyhedra, bounding boxes, bounded di�eren
e and o
tagonal shapes, grids and
ombinations of the above in
luding the �nite powerset 
onstru
tion [BHZ06a℄.The above libraries have all been designed spe
i�
ally for appli
ations of analy-sis and veri�
ation su
h as those des
ribed in this paper. However, two libraries that8http://www.ee.byu.edu/fa
ulty/wilde/polyhedra.html.9http://embedded.ee
s.berkeley.edu/resear
h/hyte
h/.10http://i
ps.u-strasbg.fr/polylib/.11http://pop-art.inrialpes.fr/people/bjeannet/newpolka/index.html.12http://www.di.ens.fr/~mine/o
t/13http://apron.
ri.ensmp.fr/library/.14http://www.
s.unipr.it/ppl.



34 ROBERTO BAGNARA, PATRICIA M. HILL, AND ENEA ZAFFANELLAwere designed for solving vertex enumeration/
onvex hull problems have su

ess-fully been used in stati
 analysis and 
omputer-aided veri�
ation tools: Fukuda's 
d-dlib,15 an implementation of the double des
ription method [MRTT53℄; and lrslib,16the implementation by Avis of the reverse sear
h algorithm [Avi00℄.All the libraries mentioned in the last two paragraphs are distributed underfree software li
enses and support the use of unbounded numeri
 
oe�
ients. This,together with the ever in
reasing available 
omputing power and the growing in-terest in ensuring the 
orre
tness of 
riti
al systems, has 
aused, in the 2000's, the
ontinuous emergen
e of new tools and appli
ations of polyhedral 
omputations inthe area of formal methods. As a 
onsequen
e, this is mu
h more of a new beginningthan an end to resear
h in this area. As explained in Se
tions 6 and 7, several openissues remain. Most of them have to do with the need for e�e
tively managing the
omplexity-pre
ision trade-o�: the en
ouraging results obtained with today's toolspush us to apply them to more 
omplex systems for a possibly more pre
ise analysisand/or veri�
ation of more 
omplex properties. Further progress in this area 
allsfor a tight 
ollaboration of experts in the �elds of formal methods, 
omputationalgeometry and 
ombinatorial optimization. We hope the present paper 
onstitutesa useful step in this dire
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