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Appliations of Polyhedral Computations to the Analysisand Veri�ation of Hardware and Software SystemsRoberto Bagnara, Patriia M. Hill, and Enea Za�anellaAbstrat. Convex polyhedra are the basis for several abstrations used instati analysis and omputer-aided veri�ation of omplex and sometimes mis-sion ritial systems. For suh appliations, the identi�ation of an appropri-ate omplexity-preision trade-o� is a partiularly aute problem, so that theavailability of a wide spetrum of alternative solutions is mandatory. We sur-vey the range of appliations of polyhedral omputations in this area; give anoverview of the di�erent lasses of polyhedra that may be adopted; outline themain polyhedral operations required by automati analyzers and veri�ers; andlook at some possible ombinations of polyhedra with other numerial abstra-tions that have the potential to improve the preision of the analysis. Areaswhere further theoretial investigations an result in important ontributionsare highlighted.
1. IntrodutionThe appliation of polyhedral omputations to the analysis and veri�ationof omputer programs has its origin in a groundbreaking paper by Cousot andHalbwahs [CH78℄. There, the authors applied the theory of abstrat interpretation[CC77℄ to the stati determination of linear equality and inequality relations amongprogram variables. Essentially, the idea onsists in interpreting the program (aswill be explained in more detail in Setions 2.1 and 3) on a domain of onvexpolyhedra instead of the onrete domain of (sets of vetors of) mahine numbers.Eah program operation is orretly approximated by a orresponding operationon polyhedra and measures are taken to ensure that the approximate omputationalways terminates. At the end of this proess, the obtained polyhedra enodeprovably orret linear invariants of the analyzed program (i.e., linear equalitiesand inequalities that are guaranteed to hold for eah program exeution and foreah program input).As we show in this paper, relational information onerning the data objetsmanipulated by programs or other devies is ruial for a broad range of appli-ations in the �eld of automati or semi-automati program manipulation: it an2000 Mathematis Subjet Classi�ation. Primary 68Q60, 52B99; Seondary 68N30, 68Q55.Key words and phrases. Stati analysis, omputer-aided veri�ation, abstrat interpretation.This work has been partly supported by PRIN projet �AIDA: Abstrat Interpretation Designand Appliations.� ©2007 R. Bagnara, P. M. Hill, E. Za�anella1



2 ROBERTO BAGNARA, PATRICIA M. HILL, AND ENEA ZAFFANELLAbe used to prove the absene of ertain kinds of errors; it an verify that ertainproesses always terminate or stabilize, it an pinpoint the position of errors in thesystem, and it an enable the appliation of optimizations. Despite this, due to thelak of e�ient, robust and publily available implementations of onvex polyhedraand of the required operations, the line of work begun by Cousot and Halbwahsdid not see muh development until the beginning of the 1990s. Sine then, thisapproah has been inreasingly adopted and today onvex polyhedra are the basisfor several abstrations used in stati analysis and omputer-aided veri�ation ofomplex and sometimes mission ritial systems. For suh appliations, the iden-ti�ation of an appropriate omplexity-preision trade-o� is a partiularly auteproblem: on the one hand, relational information provided by general polyhedrais extremely valuable; on the other hand, its high omputational ost makes it afairly sare resoure that must be managed with are. This implies, among otherthings, that general polyhedra must be ombined with simpler polyhedra in or-der to ahieve salability. As the omplexity-preision trade-o� varies onsiderablybetween di�erent appliations, the availability of a wide spetrum of alternativesolutions is mandatory.In this paper, we survey the range of appliations of polyhedral omputationsin the area of the analysis and veri�ation of hardware and software systems: wedesribe in detail one important �and historially, �rst� appliation of polyhe-dral omputation in the �eld of formal methods, the linear invariant analysis forimperative programs; we provide an aount of linear hybrid systems that is baseddiretly on polyhedra; and we show how polyhedral approximations an be appliedto analog systems. The paper also provides an overview of the main polyhedraloperations required by these appliations, brief desriptions of some of the di�erentlasses of polyhedra that may be adopted, depending on the partiular ontext,and a look at some possible ombinations of polyhedra with other numerial ab-strations that have the potential to improve the preision of the analysis. Areaswhere further theoretial investigations an result in important ontributions arehighlighted.The plan of the paper is as follows. Setion 2 introdues the required notionsand notations, inluding a minimal exposition of the main onepts of abstratinterpretation theory. Setion 3 demonstrates the use of polyhedral omputationsin the spei�ation of a linear invariant analysis for a simple imperative language;a few of the many appliations for the analysis of omputer programs are brie�yrealled. Setion 4 is devoted to polyhedral approximation tehniques for hybridsystems, whih, as shown in Setion 5 an also be applied to purely analog systems.Setion 6 presents several families of polyhedral approximations that provide arange of di�erent solutions to the omplexity/preision trade-o�. The most impor-tant operations that suh approximations must provide in order to support analysisand veri�ation methods are illustrated in Setion 7. Setion 8 onludes.2. PreliminariesWe assume some basi knowledge about lattie theory [Bir67℄. Let (S,⊑) and
(T,�) be two partially ordered sets; the funtion f : S → T is monotoni if, for all
x0, x1 ∈ S, x0 ⊑ x1 implies f(x0) � f(x1). If (S,⊑) ≡ (T,�), so that f : S → S,an element x ∈ S suh that x = f(x) is a �xpoint of f . If (S,⊑,⊥,⊤,⊔,⊓) is aomplete lattie, then f is ontinuous if it preserves the least upper bound of all



POLYHEDRAL COMPUTATIONS AND HW/SW ANALYSIS AND VERIFICATION 3inreasing hains, i.e., for all x0 ⊑ x1 ⊑ · · · in S, it satis�es f(
⊔

xi

)

=
⊔

f(xi); insuh a ase, the least �xpoint of f with respet to the partial order `⊑', denoted
lfp f , an be obtained by iterating the appliation of f starting from the bottomelement ⊥, thereby omputing the upward iteration sequene

⊥ = f0(⊥) ⊑ f1(⊥) ⊑ f2(⊥) ⊑ · · · ⊑ f i(⊥) ⊑ · · · ,up to the �rst non-zero limit ordinal ω; namely,
lfp f = fω(⊥)

def
=

⊔

i<ω

f i(⊥).

For eah f0 : S0 → T0 and f1 : S1 → T1, the funtion f0[f1] : (S0 ∪ S1) →
(T0 ∪ T1) is de�ned, for eah x ∈ S0 ∪ S1, by

(

f0[f1]
)

(x)
def
=

{

f1(x), if x ∈ S1;
f0(x), if x ∈ S0 \ S1.For n > 0, we denote by v = (v0, . . . , vn−1) ∈ Rn a n-tuple (vetor) of realnumbers; R+ is the set of non-negative real numbers; 〈v,w〉 denotes the salarprodut of vetors v,w ∈ Rn; the vetor 0 ∈ Rn has all omponents equal to zero.We write v ::w to denote the tuple onatenation of v ∈ R

n and w ∈ R
m, so that

v ::w ∈ Rn+m.Let x be a n-tuple of distint variables. Then β =
(

〈a,x〉 ⊲⊳ b
) denotes a linearinequality onstraint, for eah vetor a ∈ Rn, where a 6= 0, eah salar b ∈ R,and ⊲⊳ ∈ {≥, >}. A linear inequality onstraint β de�nes a (topologially losed oropen) a�ne half-spae of Rn, denoted by con

(

{β}
).A set P ⊆ Rn is a (onvex) polyhedron if and only if P an be expressed asthe intersetion of a �nite number of a�ne half-spaes of Rn, i.e., as the solution

P = con(C) of a �nite set of linear inequality onstraints C (alled a onstraintsystem). The set of all polyhedra on the vetor spae Rn is denoted as Pn. Whenpartially ordered by set-inlusion, polyhedra form a lattie (Pn,⊆, ∅,R
n,⊎,∩) hav-ing the empty set and Rn as the bottom and top element, respetively; the binarymeet operation, returning the greatest polyhedron smaller than or equal to the twoarguments, is easily seen to orrespond to set-intersetion; the binary join opera-tion, returning the least polyhedron greater than or equal to the two arguments, isdenoted `⊎' and alled onvex polyhedral hull (poly-hull, for short). In general, thepoly-hull of two polyhedra is di�erent from their onvex hull [SW70℄.A relation ψ ⊆ Rn × Rn (of dimension n) is said to be a�ne if there exists

ℓ ∈ N and ai, ci ∈ Rn, bi ∈ R and ⊲⊳i ∈ {≥, >}, for eah i = 1, . . . , ℓ, suh that
∀v,w ∈ R

n : (v,w) ∈ ψ ⇐⇒
ℓ

∧

i=1

(

〈ci,w〉 ⊲⊳i 〈ai,v〉 + bi
)

.

Any a�ne relation of dimension n an thus be enoded by ℓ linear inequalities ona 2n-tuple of distint variables x ::x′ (playing the role of v and w, respetively),therefore de�ning a polyhedron in P2n. The set of polyhedra Pn is losed underthe (diret or inverse) appliation of a�ne relations: i.e., for eah P ∈ Pn and eaha�ne relation ψ ⊆ Rn × Rn, the image ψ(P) and the preimage ψ−1(P) are in Pn.



4 ROBERTO BAGNARA, PATRICIA M. HILL, AND ENEA ZAFFANELLA2.1. Abstrat Interpretation. The semantis of a hardware or software sys-tem is a mathematial desription of all its possible run-time behaviors. Di�erentsemantis an be de�ned for the same system, depending on the details beingreorded. Abstrat interpretation [CC77℄ is a formal method for relating these se-mantis aording to their level of abstration, so that questions about the behaviorof a system an be provided with sound, possibly approximate answers.The onrete semantis c ∈ C of a program is usually formalized as the least�xpoint of a ontinuous semanti funtion F : C → C, where the onrete domain
(C,⊑,⊥,⊤,⊔,⊓) is a omplete lattie of semanti properties; in many interestingases, the omputational order `⊑' orresponds to the approximation relation, sothat c1 ⊑ c2 holds if c1 is a stronger property than c2 (i.e., c2 approximates c1).For instane, the run-time behavior of a program may be de�ned in terms ofa transition system 〈Σ, t, ι〉, where Σ is a set of states, ι ⊆ Σ is the subset ofinitial states, and t ∈ ℘(Σ × Σ) is a binary transition relation mapping a state toits possible suessor states. Letting Σ⋆ denote the set of all �nite sequenes ofelements in Σ, the initial history of a forward omputation an be reorded1 as apartial exeution trae τ = σ0 · · ·σm ∈ Σ⋆ starting from an initial state σ0 ∈ ιand suh that any two onseutive states σi and σi+1 are related by the transitionrelation, i.e., (σi, σi+1) ∈ t. In suh a ontext, an element of the onrete domain
(

℘(Σ⋆),⊆, ∅,Σ⋆,∪,∩
) is a set of partial exeution traes and the onrete semantisis lfp(F), where the semanti funtion is de�ned by

F = λX ∈ ℘(Σ⋆) . X ∪ { τ ∈ Σ⋆ | τ = σ0 ∈ ι }

∪
{

τσi+1 ∈ Σ⋆
∣

∣ τ = σ0 · · ·σi ∈ X, (σi, σi+1) ∈ t
}

.An abstrat domain2 (D♯,⊑,⊥,⊔) an be modeled as a bounded join-semilattie,so that it has a bottom element ⊥ and the least upper bound d♯
1 ⊔ d

♯
2 exists for all

d♯
1, d

♯
2 ∈ D♯. This domain is related to the onrete domain by a monotoni andinjetive onretization funtion γ : D♯ → C. Monotoniity and injetivity meanthat the abstrat partial order is equivalent to the approximation relation induedon D♯ by the onretization funtion γ. Conversely, the onrete domain is relatedto the abstrat one by a partial abstration funtion α : C  D♯ suh that, foreah c ∈ C, if α(c) is de�ned then c ⊑ γ

(

α(c)
). In partiular, we assume that

α(⊥) = ⊥ is always de�ned; when needed or useful, we will require a few additionalproperties.For example, a �rst abstration of the semantis above, typially adopted whendisussing invariane properties of programs [CC79, CC92a℄, approximates a set oftraes by the set of states ourring in any one of the traes. The reahable states arethus haraterized by elements of the omplete lattie (

℘(Σ),⊆, ∅,Σ,∪,∩
), whihplays here the role of the abstrat domain. The onretization funtion relating

D♯ = ℘(Σ) to C = ℘(Σ⋆) is de�ned, for eah d♯ ∈ ℘(Σ), by
γ(d♯)

def
= { τ ∈ Σ⋆ | τ = σ0 · · ·σm, ∀i = 0, . . . ,m : σi ∈ d♯ }.

1This is just one of a wide range of possible semantis; by the same approah, other semantismay be desribed and related by abstrat interpretation [CC92℄.2To avoid notational burden, whenever possible we will overload the lattie-theoreti symbols
⊑, ⊥, ⊔, et., exploiting ontext to disambiguate their meaning.



POLYHEDRAL COMPUTATIONS AND HW/SW ANALYSIS AND VERIFICATION 5Hene, the onrete semanti funtion F : ℘(Σ⋆) → ℘(Σ⋆) an be approximated bythe monotoni abstrat semanti funtion A : ℘(Σ) → ℘(Σ) de�ned by
A = λd♯ ∈ ℘(Σ) . d♯ ∪ ι ∪

{

σ′ ∈ Σ
∣

∣ ∃σ ∈ d♯ . (σ, σ′) ∈ t
}

.This abstrat semanti funtion is sound with respet to the onrete semantifuntion in that it satis�es the following loal orretness requirement
∀c ∈ C : ∀d♯ ∈ D♯ : c ⊑ γ(d♯) =⇒ F(c) ⊑ γ

(

A(d♯)
)

,ensuring that eah iteration F i(⊥) in the onrete �xpoint omputation is safelyapproximated by omputing the orresponding abstrat iteration Ai
(

α(⊥)
). Inpartiular, the least �xpoint of F is safely approximated by any post-�xpoint of A[CC77℄, i.e., any abstrat element d♯ ∈ D♯ suh that A(d♯) ⊑ d♯.Atually, the abstration de�ned above satis�es an even stronger property, inthat the abstrat semanti funtion A is the most preise of all the sound ap-proximations of F that ould be de�ned on the onsidered abstrat domain. Thishappens beause the two domains are related by a Galois onnetion [CC77℄, i.e.,there exists a total abstration funtion α : C → D♯ satisfying

∀c ∈ C : ∀d♯ ∈ D♯ : α(c) ⊑ d♯ ⇐⇒ c ⊑ γ(d♯).Namely, for all c ∈ ℘(Σ⋆), we an de�ne
α(c)

def
=

{

σi ∈ Σ
∣

∣ τ = σ0 · · ·σm ∈ c, i ∈ {0, . . . ,m}
}

.For Galois onnetions it an be shown that α(c) is the best possible approximationin D♯ for the onrete element c ∈ C; similarly, α◦F ◦γ (i.e., the funtion A de�nedabove) is the best possible approximation for F [CC77, CC79℄. Suh a resultis provided with a quite intuitive reading; in order to approximate the onretefuntion F on an abstrat element d♯ ∈ D♯: we �rst apply the onretizationfuntion γ so as to obtain the meaning of d♯; then we apply the onrete funtion
F ; �nally, we abstrat the result so as to obtain bak an element of D♯.Abstrat interpretation theory an thus be used to speify (semi-) automatiprogram analysis tools that are orret by design. Of ourse �due to well-knownundeidability results� any fully automati tool an only provide partial, thoughsafe answers.2.2. Abstrat Domains for Boolean and Numeri Values. The reah-able state abstration desribed above is just one of the possible semanti approx-imations that an be adopted when speifying an abstrat semantis. A further,typial approximation onerns the desription of the states of the transition sys-tem. Eah state σ ∈ Σ may be deomposed into, e.g., a set of numerial or Booleanvariables that are of interest for the appliation at hand; new abstrat domains anbe de�ned (and omposed [CC79℄) so as to soundly desribe the possible values ofthese variables.As an expository example that will be also used in the following setions, assumethat part of a state is haraterized by the value of an integer variable. Then, thedomain (

℘(Σ),⊆, ∅,Σ,∪,∩
) an be abstrated to the onrete domain of integers

(

℘(Int),⊆, ∅, Int,∪,∩
). This domain is further approximated by an abstrat domain

(

Int♯,⊑,⊥,⊔
), via the onretization funtion γI : Int♯ → ℘(Int). Elements of Int♯are denoted by m♯, possibly subsripted. We assume that the partial abstrationfuntion αI : ℘(Int)  Int♯ is de�ned on all singletons {m} ∈ ℘(Int) and on the



6 ROBERTO BAGNARA, PATRICIA M. HILL, AND ENEA ZAFFANELLAwhole set Int. We also assume that there are abstrat binary operations `�', `�' and`�' on Int♯ that are sound with respet to the orresponding operations on ℘(Int)whih, in turn, are the obvious pointwise extensions of addition, subtration andmultipliation over the integers. More formally, for `�', we require soundness withrespet to addition, i.e., γI(m
♯
0 �m♯

1) ⊇
{

m0 +m1

∣

∣ m0 ∈ γI(m
♯
0),m1 ∈ γI(m

♯
1)

},for eah m♯
0,m

♯
1 ∈ Int♯. Similar requirements are imposed on `�' and `�'. Eventhough the de�nition of Int♯ is ompletely general, families of integer intervals omenaturally to mind for this role.Suppose now that some other part of the state is haraterized by the valueof a Boolean expression. Then, the domain (

℘(Σ),⊆, ∅,Σ,∪,∩
) an be abstratedto the �nite domain (

℘(Bool),⊆, ∅,Bool,∪,∩
), where Bool = {ff, tt} is the set ofBoolean values. In general, suh a �nite domain may be further approximated by anabstrat domain (Bool♯,⊑,⊥,⊤,⊔,⊓), related to the onrete domain by a Galoisonnetion. Elements of Bool♯ are denoted by t♯, possibly subsripted, and we ande�ne abstrat operations `�', `6' and `7' on Bool♯ that are sound with respetto the pointwise extensions of Boolean negation, disjuntion and onjuntion over

℘(Bool). For instane, for the operation `6' to be sound with respet to disjuntionon ℘(Bool), it is required that, γB(t♯0 6 t♯1) ⊇
{

t0 ∨ t1
∣

∣ t0 ∈ γB(t♯0), t1 ∈ γB(t♯1)
} foreah t♯0 and t♯1 in Bool♯. Likewise for `7'. For `�' the orretness requirement is that,for eah t♯ in Bool♯, γB(� t♯) ⊇

{

¬t
∣

∣ t ∈ γB(t♯)
}. Abstrat omparison operations

�,4 : Int♯×Int♯ → Bool♯ an then be de�ned to orretly approximate the equal-toand less-than tests: γB(m♯
0 � m♯

1) ⊇
{

m0 = m1

∣

∣ m0 ∈ γI(m
♯
0),m1 ∈ γI(m

♯
1)

} foreah m♯
0,m

♯
1 ∈ Int♯; likewise for `4'.Simple abstrat domains suh as the ones above an be ombined in di�erentways so as to obtain quite aurate approximations [CC79℄. In some ases, however,the required preision level may only be obtained by a suitable initial hoie of theabstrat domain. As a notable example, suppose that some part of the state σ ∈ Σ isharaterized by n (integer or real valued) numeri variables and the appliation athand needs some relational information about these variables. In suh a ontext, anapproximation based on a simple onjuntive ombination of n opies of the domain

Int♯ desribed above will be almost useless. Rather, a new approximation shemean be devised by modeling states using the domain (

℘(Rn),⊆, ∅,Rn,∪,∩
), whereeah vetor v ∈ Rn is meant to desribe a possible valuation for the n variables.A further abstration should map this domain so as to retain some of the relationsholding between the values of the n variables. If a �nite set of linear inequalitiesprovides a good enough approximation, then the natural hoie is to abstrat thisdomain into the abstrat domain of onvex polyhedra (Pn,⊆, ∅,R

n,⊎,∩) [CH78℄.In this ase, the onrete and abstrat domain are not related by a Galois onne-tion and hene, a best approximation might not exist.3 Nonetheless, the onvexpolyhedral hull (partial) abstration funtion ⊎ : ℘(Rn)  Pn is de�ned in mostof the ases of interest and provides the best possible approximation. Most of thearithmeti operations seen before an be enoded (or approximated) by omputingimages of a�ne relations.
3This happens, for instane, when approximating an n-dimensional ball with a onvexpolyhedron.



POLYHEDRAL COMPUTATIONS AND HW/SW ANALYSIS AND VERIFICATION 72.3. Widening Operators. It should be stressed that, in general, the ab-strat semantis desribed above is not �nitely omputable. For instane, boththe domain of onvex polyhedra and the domain of integer intervals have in�niteasending hains, so that the limit of a onverging �xpoint omputation annotgenerally be reahed in a �nite number of iterations.A �nite omputation an be enfored by further approximations resulting in aNoetherian abstrat domain, i.e., a domain where all asending hains are �nite.Alternatively, and more generally, it is possible to keep an abstrat domain within�nite hains, while enforing that these hains are traversed in a �nite number ofiteration steps [CC92b℄. In both ases, termination is usually ahieved to the detri-ment of preision, so that an appropriate trade-o� should be pursued. Wideningoperators [CC76, CC77, CC92a, CC92b℄ provide a simple and general harateri-zation for the seond option.De�nition 2.1. The partial operator ∇ : D♯ ×D♯
 D♯ is a widening if:(1) for all d♯, e♯ ∈ D♯, d♯ ⊑ e♯ implies that d♯ ∇ e♯ is de�ned and e♯ ⊑ d♯ ∇ e♯;(2) for all inreasing hains e♯

0 ⊑ e♯
1 ⊑ · · · , the inreasing hain de�ned by

d♯
0

def
= e♯

0 and d♯
i+1

def
= d♯

i ∇ (d♯
i ⊔ e

♯
i+1), for i ∈ N, is not stritly inreasing.It an be proved that, for any monotoni operator A : D♯ → D♯, the upwarditeration sequene with widenings starting at the bottom element d♯

0
def
= ⊥ andde�ned by

d♯
i+1

def
=

{

d♯
i , if A(d♯

i) ⊑ d♯
i ,

d♯
i ∇

(

d♯
i ⊔ A(d♯

i)
)

, otherwise,onverges to a post-�xpoint ofA after a �nite number of iterations [CC92b℄. Clearly,the hoie of the widening has a deep impat on the preision of the results obtained.Designing a widening whih is appropriate for a given appliation is therefore adi�ult (but possibly rewarding) ativity.3. Analysis and Veri�ation of Computer ProgramsIn this setion we begin a review of the appliations of polyhedral omputa-tions to analysis and veri�ation problems starting with the the work of Cousotand Halbwahs [CH78, Hal79℄. These seminal papers on the automati inferene oflinear invariants for imperative programs onstituted a major leap forward for atleast two reasons. First, the polyhedral domain proposed by Cousot and Halbwahswas onsiderably more powerful than all the data-�ow analyses known at that time,inluding the rather sophistiated one by Karr whih was limited to linear equali-ties [Kar76, MS04℄. Seondly, the use of onvex polyhedra as an abstrat domainestablished abstrat interpretation as the right methodology for the de�nition ofomplex and orret program analyzers.We illustrate the basi ideas by partially speifying the analysis of linear in-variants for a very simple imperative language. The simpliity of the language wehave hosen for expository purposes should not mislead the reader: the approahis generalizable to any imperative (and, for that matter, funtional and logi) lan-guage [BHP+07℄. The abstrat syntax of the language is presented in Figure 1. Thebasi syntati ategories, orresponding to the sets Int, Bool and Var, are de�neddiretly. From these, the ategories of arithmeti and Boolean expressions and of



8 ROBERTO BAGNARA, PATRICIA M. HILL, AND ENEA ZAFFANELLAIntegers: m ∈ Int
def
= ZBooleans: t ∈ Bool
def
= {tt,ff}Variables: x ∈ Var

def
= {x0, x1, x2, . . .}Arithmeti expressions:

Aexp ∋ a ::= m | x | a0 + a1 | a0 − a1 | a0 ∗ a1Boolean expressions:
Bexp ∋ b ::= t | a0 = a1 | a0 < a1Statements:
Stmt ∋ s ::= skip | x := a | s0; s1 | if e then s0 else s1 | while edo sFigure 1. Abstrat syntax of the simple imperative languagestatements are de�ned by means of BNF rules. Notie the use of syntati meta-variables: for instane, to save typing we will onsistently denote by s, possiblysubsripted or supersripted, any element of Stmt.The onrete semantis of programs is formally de�ned using the natural seman-tis approah [Kah87℄. This, in turn, is a �big-step� operational semantis de�nedby strutural indution on program strutures in the style of Plotkin [Plo81℄. Firstwe de�ne the notion of store, whih is any mapping between a �nite set of variablesand elements of Int. Formally, stores are elements of the set
Store

def
= {σ : V → Int | V ⊆f Var }and will be denoted by the letter σ, possibly subsripted or supersripted. Thestore obtained from σ ∈ Store by the assignment of m ∈ Int to x ∈ Var, denotedby σ[m/x], is de�ned as follows, for eah x′ ∈ Var:

σ[m/x](x′)
def
=

{

m, if x′ = x;
σ(x′), if x′ 6= x.The onrete evaluation relations that omplete the de�nition of the onretesemantis for our simple language are de�ned by strutural indution from a set ofrule shemata. The evaluation relations for terminating omputations are given by

a
→ ⊆ (Aexp× Store)× Int, for arithmeti expressions, b

→ ⊆ (Bexp× Store)×Bool,for Boolean expressions, and s
→ ⊆ (Stmt × Store) × Store, for statements. Thejudgment 〈a, σ〉 a

→ m means that when expression a is exeuted in store σ it resultsin the integer m. The judgment 〈b, σ〉 b
→ t is similar. Note that expressions do nothave, in our simple language, side e�ets. The judgment 〈s, σ〉 s

→ σ′ means that thestatement s, exeuted in store σ, results in a (possibly modi�ed) store σ′. The ruleshemata, in the form premiseonlusion , that de�ne these relations are given in Figure 2.Rule instanes an be omposed in the obvious way to form �nite tree strutures,representing �nite omputations. Figure 3 shows one suh tree.The possibly in�nite set of all �nite trees is obtained by means of a least�xpoint omputation, orresponding to the lassial indutive interpretation ofthe rules in Figure 2. The rule shemata in Figure 4 an be used to diretlymodel non-terminating omputations and need to be interpreted oindutively
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〈m,σ〉

a
→ m 〈x, σ〉

a
→ σ(x)

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 + a1, σ〉
a
→ m0 +m1

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 − a1, σ〉
a
→ m0 −m1

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 ∗ a1, σ〉
a
→ m0 ·m1

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 = a1, σ〉
b
→ (m0 = m1)

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 < a1, σ〉
b
→ (m0 < m1)

〈skip, σ〉 s
→ σ

〈a, σ〉
a
→ m

〈x := a, σ〉
s
→ σ[m/x]

〈s0, σ〉
s
→ σ′′ 〈s1, σ

′′〉
s
→ σ′

〈s0; s1, σ〉
s
→ σ′

〈b, σ〉
b
→ tt 〈s0, σ〉

s
→ σ′

〈if b then s0 else s1, σ〉 s
→ σ′

〈b, σ〉
b
→ ff 〈s1, σ〉

s
→ σ′

〈if b then s0 else s1, σ〉 s
→ σ′

〈b, σ〉
b
→ ff

〈while bdo c, σ〉 s
→ σ

〈b, σ〉
b
→ tt 〈c, σ〉

s
→ σ′′ 〈while bdo c, σ′′〉

s
→ σ′

〈while bdo c, σ〉 s
→ σ′

Figure 2. Conrete semantis rule shemata for the �nite om-putations of the simple imperative language
[CC92, Ler06, Sh98℄. The judgment 〈s, σ〉

∞
→ means that the statement s di-verges when exeuted in store σ. By a suitable adaptation of the omputationalordering, both sets of �nite and in�nite trees an be jointly omputed in a singleleast �xpoint omputation [CC92, Ler06, Sh98℄. While these semantis hara-terizations ontain all the information we need to perform a wide range of programreasoning tasks, they are generally not omputable: we have thus to resort to ap-proximation.Following the abstrat interpretation approah, as instantiated in [Sh95, Sh97,Sh98℄, the onrete rule shemata are paired with abstrat rule shemata that or-retly approximate them. Before doing that, we need to formalize abstrat domainsfor eah onrete domain used by the onrete semantis.For simple approximations of integers and Boolean expressions, we onsider theabstrat domains Int♯ and Bool♯ introdued in Setion 2.2. The last (and most inter-esting) abstration we need is for approximating sets of stores. We thus require anabstrat domain (

Store♯,⊑,⊥,⊔
) that is related, by means of a onretization fun-tion γS suh that γS(⊥) = ∅, to the onrete domain (

℘(Store),⊆, ∅, Store,∪,∩
).Elements of Store♯ are denoted by σ♯, possibly subsripted. The abstrat storeevaluation and update operators

·[·] : (Store♯ × Aexp) → Int♯,

·[· := ·] :
(

Store♯ × Var × Aexp
)

→ Store♯,

·[·/·] :
(

Store♯ × Var × Int♯
)

→ Store♯
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〈0, σ0〉
a
→ 0 〈x0, σ0〉

a
→ 1

〈0 < x0, σ0〉
b
→ tt

〈x1, σ0〉
a
→ 1 〈2, σ0〉

a
→ 2

〈x1 + 2, σ0〉
a
→ 3

〈x1 := x1 + 2, σ0〉
s
→ σ1

〈x0, σ1〉
a
→ 1 〈x1, σ1〉

a
→ 3

〈x0 − x1, σ1〉
a
→ −2

〈x0 := x0 − x1, σ1〉
s
→ σ2

〈

(x1 := x1 + 2;x0 := x0 − x1), σ0

〉 s
→ σ2

〈0, σ2〉
a
→ 0 〈x0, σ2〉

a
→ −2

〈0 < x0, σ2〉
b
→ ff

〈w, σ2〉
s
→ σ2

〈while 0 < x0 do (x1 := x1 + 2;x0 := x0 − x1), σ0

〉 s
→ σ2Legend:

σ0
def
=

{

(x0, 1), (x1, 1)
}

,

σ1
def
=

{

(x0, 1), (x1, 3)
}

,

σ2
def
=

{

(x0,−2), (x1, 3)
}

,

w
def
=

(while 0 < x0 do (x1 := x1 + 2;x0 := x0 − x1)
)

.Figure 3. The tree representing a onrete exeution of a program
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〈s0, σ〉

∞
→

〈s0; s1, σ〉
∞
→

〈s0, σ〉
s
→ σ′ 〈s1, σ

′〉
∞
→

〈s0; s1, σ〉
∞
→

〈b, σ〉
b
→ tt 〈s0, σ〉

∞
→

〈if b then s0 else s1, σ〉 ∞
→

〈b, σ〉
b
→ ff 〈s1, σ〉

∞
→

〈if b then s0 else s1, σ〉 ∞
→

〈b, σ〉
b
→ tt 〈c, σ〉

∞
→

〈while bdo c, σ〉 ∞
→

〈b, σ〉
b
→ tt 〈c, σ〉

s
→ σ′ 〈while bdo c, σ′〉

∞
→

〈while bdo c, σ〉 ∞
→Figure 4. Additional onrete semantis rule shemata for thein�nite omputations of the simple imperative languageare assumed to be sound with respet to their onrete ounterparts, i.e., suh that,for eah σ♯ ∈ Store♯, a ∈ Aexp, x ∈ Var and m♯ ∈ Int♯:

γI

(

σ♯[a]
)

⊇
{

m ∈ Int
∣

∣ σ ∈ γS(σ♯), 〈a, σ〉
a
→ m

}

,

γS

(

σ♯
[

x := a]
)

⊇
{

σ′ ∈ Store
∣

∣ σ ∈ γS(σ♯), 〈x := a, σ〉
s
→ σ′

}

,

γS

(

σ♯
[

m♯/x]
)

⊇
{

σ[m/x] ∈ Store
∣

∣ σ ∈ γS(σ♯),m ∈ γI(m
♯)

}

.We also need omputable �Boolean �lters� to re�ne the information ontained inabstrat stores. These are given by two funtions φtt, φff : Store♯ × Bexp → Store♯suh that, for eah σ♯ ∈ Store♯ and b ∈ Bexp:
γS

(

φtt(σ
♯, b)

)

⊇
{

σ ∈ γS(σ♯)
∣

∣ 〈b, σ〉
b
→ tt

}

,

γS

(

φff(σ♯, b)
)

⊇
{

σ ∈ γS(σ♯)
∣

∣ 〈b, σ〉
b
→ ff

}

.We are now in a position to present, in Figure 5, a possible set of domain-independent abstrat rules shemata. These shemata allow for the free approxi-mation of the ` ' right-hand sides in the onlusions. This means that if, e.g.,premise
〈s, σ〉

s
 σ♯

1is an instane of some rule, thenpremise
〈s, σ〉

s
 σ♯

2is also an instane of the same rule for eah σ♯
2 suh that σ♯

1 ⊑ σ♯
2. Hene theshemata in Figure 5 ensure orretness yet leaving omplete freedom about pre-ision. The ability to give up some preision, as we will see, is ruial in order toensure the (reasonably quik) termination of the analysis.It is possible to prove that, for eah (possibly in�nite) onrete tree T builtusing the shemata of Figures 2 and 4, for eah (possibly in�nite) abstrat tree

T ♯ built using the shemata of Figure 5, if the onrete tree root is of the form
〈s, σ〉

s
→ σ1 (when the tree is �nite) or 〈s, σ〉 ∞

→ (when the tree is in�nite) and theabstrat tree root is of the form 〈s, σ♯〉
s
 σ♯

1 with σ ∈ γS(σ♯), then T ♯ orretlyapproximates T . This means not only that σ1 ∈ γS(σ♯
1) (when T is �nite), but alsothat eah node in T is orretly approximated by at least one node in T ♯. In other
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〈m,σ♯〉

a
 αI

(

{m}
)

〈x, σ♯〉
a
 σ♯[x]

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 + a1, σ
♯〉

a
 m♯

0 �m♯
1

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 − a1, σ
♯〉

a
 m♯

0 �m♯
1

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 ∗ a1, σ
♯〉

a
 m♯

0 �m♯
1

〈t, σ♯〉
b
 αB

(

{t}
)

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 = a1, σ
♯〉

b
 m♯

0 � m♯
1

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 < a1, σ
♯〉

b
 m♯

0 4 m♯
1

〈skip, σ♯〉
s
 σ♯

〈a, σ♯〉
a
 m♯ (i)

〈x := a, σ♯〉
s
 σ♯[x := a]

〈a, σ♯〉
a
 m♯ (ii)

〈x := a, σ♯〉
s
 σ♯[m♯/x]

〈s0, σ
♯
0〉

s
 σ♯

1 〈s1, σ
♯
1〉

s
 σ♯

2

〈s0; s1, σ
♯
0〉

s
 σ♯

2

〈b, σ♯〉
b
 t♯

〈

s0, φtt(σ
♯, b)

〉 s
 σ♯

0

〈

s1, φff(σ♯, b)
〉 s
 σ♯

1

〈if b then s0 else s1, σ♯〉
s
 σ♯

0 ⊔ σ
♯
1

〈b, σ♯〉
b
 t♯

〈

c, φtt(σ
♯, b)

〉 s
 σ♯

1 〈while bdo c, σ♯
1〉

s
 σ♯

2

〈while bdo c, σ♯〉
s
 φff(σ♯, b) ⊔ σ♯

2Notes:(i) This rule is used if the domain Store♯ an apture the assignment preisely(e.g., when Store♯ is a domain of onvex polyhedra and a is an a�neexpression). Notie that the premise is intentionally not used: its preseneis required in order to ensure that the abstrat tree approximates theonrete tree in its entirety.(ii) This rule is used when (i) is not appliable.Figure 5. Abstrat semantis rule shemata for the simple im-perative language
words, the abstrat tree orretly approximates the entire onrete omputation(see [BHP+07℄ for the details).It is worth stressing the observation in [Sh98℄ that, even when disregardingthe non-terminating onrete omputations, the abstrat rules still have to be inter-preted oindutively beause most of the �nite onrete trees an only be approxi-mated by in�nite abstrat trees; for instane, all abstrat trees ontaining a whileloop are in�nite. Sine, in general, we annot e�etively ompute in�nite abstrattrees, we still do not have a viable analysis tehnique. The solution is to restritourselves to the lass of rational trees, i.e., trees with only �nitely many subtreesand that, onsequently, admit a �nite representation.



POLYHEDRAL COMPUTATIONS AND HW/SW ANALYSIS AND VERIFICATION 13The analysis algorithm is skethed in [Sh95℄. For expository purposes, wedesribe here a simpli�ed version that is enough to handle the onsidered program-ming language features. The algorithm works by reursively onstruting a �niteapproximation for the (possibly in�nite) abstrat subtree rooted in the urrent node(initially, the root of the whole tree). The urrent node n =
(

〈p, σ♯
n〉 rn

), where
rn is a plaeholder for the �yet to be omputed� onlusion, is proessed aordingto the following alternatives.(1) If no anestor of n has p in the label, the node has to be expanded usingan appliable abstrat rule instane. Namely, desendants of the premisesof the rule are (reursively) proessed, one at a time and from left to right.When the expansion of all the premises has been ompleted, inluding thease when the rule has no premise at all, the marker rn is replaed by anabstrat value omputed aording to the onlusion of the rule;(2) If there exists an anestor node m = 〈p, σ♯

m〉  rm of n labeled by thesame syntax p and suh that σ♯
n ⊑ σ♯

m, i.e., if node n is subsumed bynode m, then the node is not expanded further and the plaeholder rn isreplaed by the least �xpoint of the equation rn = fm(rn), where fm isthe expression orresponding to the onlusion of the abstrat rule thatwas used for the expansion of node m;4(3) Otherwise, there must be an anestor nodem = 〈p, σ♯
m〉 rm of n labeledby the same syntax p, but the subsumption ondition σ♯

n ⊑ σ♯
m does nothold. Then there are two options:(a) if the abstrat domain Store♯ is �nite, we proeed as in ase (1);(b) if the abstrat domain Store♯ is in�nite, to ensure onvergene, awidening `∇' over Store♯ an be employed5 and store σ♯

n in node n isreplaed by σ♯
m ∇ (σ♯

m ⊔ σ♯
n). Then, we proeed again as in ase (1).The abstrat semantis of Figure 5 and the given algorithm for omputing arational abstrat tree are fully generi in that any hoie for the abstrat domains

Int♯, Bool♯ and Store♯ will result into a provably orret analysis algorithm. Fo-using on numerial domains, the role of Int♯ an be played by any domain ofintervals, so that the operations `�', `�' and `�' are the standard ones of inter-val arithmeti [AH83℄; for instane, [ml
0,m

u
0 ] � [ml

1,m
u
1 ]

def
= [ml

0 + ml
1,m

u
0 + mu

1 ].More sophistiated domains, suh as modulo intervals [NJPF99℄, are able to enodemore preise information about the set of integer values eah variable an take. For
Store♯, a ommon hoie is to abstrat from the integrality of variables and onsidera domain of onvex polyhedra whih, in exhange, allows the traking of relationalinformation. With referene to Figure 5, rule (i) an be applied diretly when thearithmeti expression a = 〈a,x〉 + b is a�ne; the orresponding polyhedral oper-ation is the omputation of the image of a polyhedron by a speial ase of a�ne

4As explained in [Sh95, Sh98℄, the omputation of suh a least �xpoint (in the ontext ofa oindutive interpretation of the abstrat rules) is justi�ed by the fat that here we only needto approximate the onlusions produed by the terminating onrete omputations, i.e., by theonrete rules of Figure 2, whih are interpreted indutively. Also note that the divergene rulesof Figure 4 have no onlusion at all.5If Store
♯ is in�nite but Noetherian, we an hoose ∇

def
= ⊔ as a widening.



14 ROBERTO BAGNARA, PATRICIA M. HILL, AND ENEA ZAFFANELLArelation ψ ⊆ Rn × Rn, alled single-update a�ne funtion:
(v,w) ∈ ψ ⇐⇒ wk = 〈a,v〉 + b ∧

∧

0≤i<n
i 6=k

wi = vi.

Another speial ase, slightly more general than the one above and alled single-update bounded a�ne relation, allows among other things to approximate nonlinearassignments and to realize rule (ii). For �xed vetors a, c ∈ R
n and salars b, d ∈ R:

(v,w) ∈ ψ ⇐⇒ 〈a,v〉 + b ≤ wk ≤ 〈c,v〉 + d ∧
∧

0≤i<n
i 6=k

wi = vi.

Both the rules for the if-then-else and the while onstruts require the Boolean�lters and least upper bound operations: these are realized by means of interse-tions (or the addition of individual onstraints) and poly-hulls, respetively. These,together with the ontainment test used to detet the reahing of post-�xpointsand the widening (see Setion 7) required to ensure termination of the analysisalgorithm, are all the operations required for the analysis of our simple impera-tive language. More omplex languages require other operations: for instane, theanalysis of languages with ommand bloks require the possibility of embeddingpolyhedra into a spae of higher dimension, reorganizing the dimensions, and pro-jeting polyhedra on spaes of lower dimension. Other operations are needed toaommodate di�erent semanti onstrutions (e.g., a�ne preimages for bakwardsemantis), to allow for the e�ient modeling of data objets (e.g., summarizeddimensions to approximate the values of unbounded olletions [GRS05℄), and tohelp salability (e.g., simpli�ations of polyhedra [Fre05℄).Figure 6 illustrates an abstrat omputation that, by following the algorithmabove, approximates the onrete tree in Figure 3: intervals and polyhedra approx-imate sets of integers and sets of stores, respetively. The initial abstrat storeis given by the polyhedron P0 = con
(

{x0 ≥ 1, x1 = 1}
), whih approximates allonrete stores σ satisfying σ(x0) ≥ 1 and σ(x1) = 1 inluding the onrete store

σ0 in Figure 3. Consider �rst the lower tree in Figure 3. This orresponds to thestage in the omputation when all possible instanes of ase (1) of the algorithmhave been applied. In partiular, the two leftmost subtrees are derived aordingto the abstrat semantis rules in Figure 5 by only using ase (1) of the algorithm.For the rightmost hild whih has still to be expanded, P is a plaeholder for itsonlusion. It is also noted that, in the root of this tree, sine Pf
0 = ∅, the �nal re-sult will be the same as the value assigned to P. Sine the rightmost hild, satis�esthe onditions of ase (3b) of the algorithm, the abstrat store P1 must undergo awidening omputation, yielding the abstrat store Q0. Thus this node has to bereplaed by 〈w,Q0〉

s
 P. Consider now the upper tree in Figure 3 whih has theroot 〈w,Q0〉

s
 P as above. The two left-most immediate subtrees are derived, asin the lower tree, by only using ase (1) of the algorithm. The rightmost hild isinitially given Q as a plaeholder for its onlusion. Sine this node satis�es theonditions for ase (2) of the algorithm, it is not expanded further; and the valueof Q is obtained by �nding the least �xpoint solution for the equation Q = Qf

0 ⊎Q;namely, Qf
0 = con

(

{2x0 + 3x1 ≥ 5, x0 ≤ 0}
). Thus in the onlusion of the rootof the upper tree we have P = Qf

0 ⊎ Q = Qf
0 . Finally, the ompleted abstrat tree
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〈0,Q0〉
a
 [0, 0] 〈x0,Q0〉

a
 ⊤

〈0 < x0,Q0〉
b
 ⊤

[ · · · ]

〈x1 := x1 + 2,Qt
0〉

s
 Q′

0 (i) [ · · · ]

〈x0 := x0 − x1,Q
′
0〉

s
 Q1 (i)

〈

(x1 := x1 + 2; x0 := x0 − x1),Q
t
0

〉 s
 Q1 〈w,Q1〉

s
 Q = Qf

0 (2)

〈w,Q0〉
s
 P = (Qf

0 ⊎ Q) = Qf
0 (2)

〈0,P0〉
a
 [0, 0] 〈x0,P0〉

a
 [1,∞]

〈0 < x0,P0〉
b
 αB

(

{tt}
)

[ · · · ]

〈x1 := x1 + 2,Pt
0〉

s
 P ′

0 (i) [ · · · ]

〈x0 := x0 − x1,P
′
0〉

s
 P1 (i)

〈

(x1 := x1 + 2; x0 := x0 − x1),P
t
0

〉 s
 P1 〈w,P1〉

s
 P (3b)

〈w,P0〉
s
 (Pf

0 ⊎ P) = (∅ ⊎ P) = PLegend:

w
def
=

(while 0 < x0 do (x1 := x1 + 2; x0 := x0 − x1)
)

,

P0
def
= con

(

{x0 ≥ 1, x1 = 1}
)

, Q0
def
= P0 ∇ (P0 ⊎ P1) = con

(

{2x0 + 3x1 ≥ 5, x1 ≥ 1}
)

,

Pt
0

def
= φtt(P0, 0 < x0) = P0, Qt

0
def
= φtt(Q0, 0 < x0) = con

(

{x0 ≥ 1, x1 ≥ 1}
)

,

Pf
0

def
= φff(P0, 0 < x0) = ∅, Qf

0
def
= φff(Q0, 0 < x0) = con

(

{2x0 + 3x1 ≥ 5, x0 ≤ 0}
)

,

P ′
0

def
= con

(

{x0 ≥ 1, x1 = 3}
)

, Q′
0

def
= con

(

{x0 ≥ 1, x1 ≥ 3}
)

,

P1
def
= con

(

{x0 ≥ −2, x1 = 3}
)

, Q1
def
= con

(

{x0 + x1 ≥ 1, x1 ≥ 3}
)

.Notes:(i) Rule (i) of Figure 5 is used here.(2) Case (2) of the algorithm is applied here.(3b) Case (3b) of the algorithm is applied here.Figure 6. Finite approximation of an in�nite abstrat omputation tree



16 ROBERTO BAGNARA, PATRICIA M. HILL, AND ENEA ZAFFANELLAan be obtained by replaing the rightmost hild of the lower tree by the upper treeand the plaeholder P in the onlusion of the root of the lower tree by Qf
0 .Based on suitable variations of the simple linear invariant analysis outlined inthis setion (possibly ombined with other analyses), many di�erent appliationshave been proposed in the literature. Examples inlude the absene of ommon run-time arithmeti errors, suh as �oating-point exeptions, over�ows and divisions byzero [BCC+03℄; the absene of out-of-bounds array indexing [CH78, VB04℄, as wellas other bu�er overruns aused by inorret string manipulations [DRS01, Ell04℄;the analysis of programs manipulating (possibly unbounded) heap-alloated datastrutures, so as to prove the absene of several kinds of pointer errors (e.g., mem-ory leaks) [GRS05, SKS00℄; the detetion of potential seurity vulnerabilities in x86binaries that allow to bypass intrusion detetion systems [KKM+05℄; the infereneof temporal shedulability onstraints that a partially spei�ed set of real-timetasks has to satisfy [DM05℄. All of the above are examples of safety properties,whereby a omputer program is proved to be free from some undesired behavior.However, the omputation of invariant linear relations is also an important, oftenindispensable step when aiming at proving progress properties, suh as termina-tion [Cou05, MB05, SV91℄. It should be also stressed that the same approah, aftersome minor adaptations, an be applied to the analysis of alternative omputationparadigms suh as, e.g., gated data dependene graphs [HU04℄ (an intermediate rep-resentation for ompilers) and bath work�ow networks [vOSV06℄ (a form of Petrinet used in work�ow management).4. Analysis and Veri�ation of Hybrid SystemsHybrid systems (that is, dynamial systems with both ontinuous and disreteomponents) are ommonly modeled by hybrid automata [ACHH93, Fre04, Hen96℄.These, often highly omplex, systems are usually nonlinear (making them ompu-tationally intratable as they are). However, linear approximations, whih allowthe use of polyhedral omputations for the model heking operations, have beenused suessfully for the veri�ation of useful safety properties [DHR05, FHK04,Fre04, Fre05, SCR06, SSM06℄.In this setion, we will illustrate, by means of examples, how polyhedral om-putations an be used for verifying simple properties of hybrid automata. Theexamples are all instanes of linear hybrid systems, a partiular lass of hybridsystems that an be modeled using polyhedra where the ontinuous behavior isspei�ed by linear onstraints over the time-derivatives of the variables.De�nition 4.1. (Linear hybrid automaton.) A linear hybrid automaton(of dimension n) is a tuple

(Loc, Init,Act, Inv,Lab,Trans)where the �rst omponent Loc is a �nite set of loations. For eah loation ℓ ∈ Loc,funtions Init : Loc → Pn, Act: Loc → Pn and Inv : Loc → Pn de�ne polyhedra. Inpartiular: Init(ℓ) spei�es the set of possible initial values the n variables an takeif the automaton starts at ℓ; Act(ℓ) spei�es the possible derivative values of the
n variables, so that, if the automaton reahes ℓ with values given by the vetor v,then after staying there for a delay of t ∈ R, the values will be given by a vetor
v + tw, where w ∈ Act(ℓ); Inv(ℓ) spei�es the values that an n-vetor v may haveat ℓ. The �fth and sixth omponents provide a set of synhronization labels Lab



POLYHEDRAL COMPUTATIONS AND HW/SW ANALYSIS AND VERIFICATION 17and a labeled set of a�ne transition relations Trans ⊆ Loc × Lab × P2n × Loc,required to hold when moving from one loation to the next.Beause the invariants of the system are given by means of onvex polyhe-dra, this de�nition of a linear hybrid automaton di�ers from those in, for exam-ple [ACH+95, Fre04, Hen96, HPR97℄, sine there is no need to expliitly inlude aset of n variables as a omponent of the system.The synhronization labels Lab are required for speifying large systems. Eahpart of the system is spei�ed by a separate automaton, and then parallel ompo-sition is employed to ombine the omponents into an automaton for the ompletesystem. This ensures that ommuniation between the automata ours, via se-leted input/output variables, between transitions that have the same label. Exam-ple 4.4 provides a very simple illustration of parallel omposition; formal de�nitionsare available in [ACHH93, Hen96℄ and a larger appliation an be found in [MS00℄.A linear hybrid automaton an be represented by a direted graph whose nodesare the loations and edges are the transitions from the soure to the target loa-tions. Eah node ℓ is labeled by two sets of onstraints de�ning the polyhedra
Inv(ℓ) and Act(ℓ). To distinguish these onstraints, if, for example x is a variableused for the onstraints de�ning Inv(ℓ), ẋ will be used in the onstraints de�ning
Act(ℓ).6 In the examples, the initial polyhedron Init(ℓ) is assumed to be emptyunless there is an arrow to ℓ (with no soure node) labeled by the onstraint systemde�ning Init(ℓ). Eah edge τ =

(

ℓ, a,P, ℓ′) ∈ Trans, is labeled by the onstraintsystem C de�ning P and, optionally, by a whih is only inluded where it is usedfor the parallel omposition of automata. Sine P ∈ P2n, we speify C by using two
n-tuples of variables x and x

′, whih are interpreted as usual to denote the vari-ables in the soure and target loations, respetively. We also adopt some helpfulshorthand notation: x++ and x−− denotes x′ = x+ 1 and x′ = x− 1, respetively;also, onstraints of the form x′ = x are omitted. The following examples, taken(with some minor modi�ations) from [ACHH93, HPR97℄, illustrate the automata.Example 4.2. A graphial view of a water-level monitor automaton is givenin Figure 7. This models a system desribing how the water level in a tank isontrolled by a monitor that senses the water level w and turns a pump on and o�.When the pump is o�, w falls by 2 ms per seond; when the pump is on, w risesby 1 m per seond. However, there is a delay of 2 seonds from the moment themonitor signals the pump to hange from on to o� or vie versa before the swithis atually operated. Initially the automaton is at ℓ0 with w = 1 and it is requiredthat 1 ≤ w ≤ 12 at all times. Thus the monitor must signal the pump to turn onwhen w = 5 and signal it to turn o� when w = 10.The automaton illustrated in Figure 7 has 2 dimensions with variables w and
x; where x denotes the time (in seonds) sine the previous, most reent, signalfrom the monitor. There are four loations ℓi where i = 0, 1, 2, 3. At ℓ0 and ℓ1,the pump is on while at ℓ2 and ℓ3, the pump is o�. At ℓ1 and ℓ3, the monitor hassignaled a hange to the pump swith but this is not yet been operated. Thus we

6The dot notation re�ets the fat that these variables denote the derivatives of the statevariables.
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w = 1

ℓ0

w < 10

ẋ = 1

ẇ = 1

w = 10, x′ = 0signal pump o�
ℓ1

x < 2

ẋ = 1

ẇ = 1

swith o� x = 2

ℓ2

w > 5

ẋ = 1

ẇ = −2

w = 5, x′ = 0signal pump on
ℓ3

x < 2

ẋ = 1

ẇ = −2

x = 2 swith on

Figure 7. Water-level monitorhave:
Init(ℓ1) = Init(ℓ2) = Init(ℓ3) = ∅, Init(ℓ0) = con

(

{w = 1}
)

,

Inv(ℓ0) = con
(

{w < 10}
)

, Inv(ℓ2) = con
(

{w > 5}
)

,

Inv(ℓ1) = Inv(ℓ3) = con
(

{x < 2}
)

,

Act(ℓ0) = Act(ℓ1) = con
(

{ẋ = ẇ = 1}
)

,

Act(ℓ2) = Act(ℓ3) = con
(

{ẋ = 1, ẇ = −2}
)

.There are four transitions τij = (ℓi, ai,Pi, ℓj) ∈ Trans, where i ∈ {0, 1, 2, 3} and
j = i+ 1 (mod 4); the a�ne relations are

P0 = con
(

{w = 10, x′ = 0, w′ = w}
)

,

P1 = con
(

{x = 2, x′ = x,w′ = w}
)

,

P2 = con
(

{w = 5, x′ = 0, w′ = w}
)

,

P3 = P1.Example 4.3. A graphial representation of an automaton for a simpli�edversion of the Fisher protool is given in Figure 8. This models mutual exlusion fora system with two proessors P1 and P2 with skewed loks x1 and x2, respetively.Eah proessor has a ritial setion and, at any one moment in time, at most onemay be in its ritial setion. This mutual exlusion is ensured by a version of theFisher protool whih requires that P1 and P2 share a variable k; a proess Pi(i = 1, 2) is only able to enter its ritial setion if k = i and Pi may only write to
k if k = 0. However, it takes at most a time units, as measured by Pi's lok for Pito set the value of k to i and it ould be that the other proess Pj may also havestarted writing j to k. To avoid any resulting on�it, the protool requires that Pimust wait for a further b time units, also measured by Pi's lok, before hekingthat k = i still holds. The time b is alled the delay time. The protool ensuresmutual exlusion only for ertain values of a and b whih depend on the relativerates of x1 and x2. Here it is assumed that the rate of x2 is between 0.9 and 1.1times that of x1 and that, for i = 1, 2, the lok xi is reset to zero at the start ofboth the write proess and the delay time for Pi.
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a ≥ 0, b ≥ 0,

0 ≤ k ≤ 2

ℓ0 0 ≤ k ≤ 2
ẋ1 = 1

9 ≤ 10ẋ2 ≤ 11

ȧ = ḃ = 0

k = 0, x′

1 = 0

ℓ1 x1 ≤ a, k = 0
ẋ1 = 1

9 ≤ 10ẋ2 ≤ 11

ȧ = ḃ = 0

x′

1 = x′

2 = 0, k′ = 1

ℓ2 k = 1
ẋ1 = 1

9 ≤ 10ẋ2 ≤ 11

ȧ = ḃ = 0

x1 ≥ b

ℓ3 k = 2
ẋ1 = 1

9 ≤ 10ẋ2 ≤ 11

ȧ = ḃ = 0

x1 < b, x2 ≤ a, k′ = 2

x1 ≥ b

ℓ4k = 1
ẋ1 = 1

9 ≤ 10ẋ2 ≤ 11

ȧ = ḃ = 0

k′ = 0

x2 ≤ a, k′ = 2

ℓ5k = 2
ẋ1 = 1

9 ≤ 10ẋ2 ≤ 11

ȧ = ḃ = 0

true

Figure 8. Fisher protool (simpli�ed)Interrupt
c1 ≥ 0, c2 ≥ 0 Intpttrue

ċ1 = 1

ċ2 = 1

I1; c1 ≥ 10, c′1 = 0 I2; c2 ≥ 20, c′2 = 0

Task
x1 = x2 = k1 = k2 = 0 Idletrue

ẋ1 = 0

ẋ2 = 1x1 = 4, k1 ≤ 1,

k1−−, x′

1 = 0

I1; k′

1 = 1

x2 = 8, k2 ≤ 1, k1 = 0,

k2−−, x′

2 = 0

I2; k′

2 = 1

Task1
x1 ≤ 4

ẋ1 = 1

ẋ2 = 0 Task2
x2 ≤ 8

ẋ1 = 0

ẋ2 = 1

I2; k′

2 = 1

x2 = 8, k2 ≤ 1, k1 ≥ 1,

k2−−, x′

2 = 0

I1; k1++

x1 = 4, k1 ≥ 2, k1−−, x′

1 = 0

I2; k2++

I1; k1++

x2 = 8, k2 ≥ 1, k2−−, x′

2 = 0Figure 9. ShedulerThe automaton illustrated in Figure 8 has 5 dimensions with variables a, b, x1,
x2, k. Note that here, a and b are onstant for all runs of the automaton and thisis indiated in the graph by the inlusion of the derivative onstraints ȧ = ḃ = 0at every loation. There are six loations: ℓ0 where P1 is idle; at ℓ1 where k = 0and P1 is in the proess of writing to k; at ℓ2 where k = 1 and P1 waits for thedelay time of b time units; at ℓ3 where k = 2 sine P2 managed to omplete writingto k before the delay time of b had expired; at ℓ4 where the proess P1 is in theritial setion; at ℓ5 where P2 has set k = 2 and the mutual exlusion guaranteeis violated. All the funtions and transitions for these loations are as given inFigure 8.Example 4.4. A representation of an automaton for a simple task sheduleris given in Figure 9. This models a sheduler with two lasses of tasks A1 and A2,ativated by interrupts I1 and I2. Interrupt I1 (resp., I2) ours at most one every



20 ROBERTO BAGNARA, PATRICIA M. HILL, AND ENEA ZAFFANELLA10 (resp., 20) seonds and ativates a task in lass A1 (resp., A2), whih takes 4(resp., 8) seonds to omplete. Tasks in lass A2 have priority and preempt tasksin A1. It is required that tasks in lass A2 never wait.The automaton given in Figure 9 is the parallel omposition of two omponentautomata: Interrupt, whih models the assumptions about the interrupt frequen-ies; and Task, whih models the exeution of the tasks. The Interrupt automaton,whih has a single loation `Intpt', has 2 dimensions with variables c1 and c2; wherethe variable ci (i = 1, 2) measures the time elapsed sine interrupt Ii ourred. TheTask automaton has three loations: one labeled `Idle' when no tasks are runningand the other two labeled `Task1' and `Task2' for when task 1 (resp., task 2) isative. This automaton has 4 dimensions with variables x1, x2, k1 and k2. Letting
i = 1, 2, the variable xi measures the exeution time of a task in lass Ai, and kiounts the number of pending tasks in lass Ai. All the funtions and transitionsfor both automata are as given in Figure 9.The ombined Sheduler automaton has 6 dimensions with variables x1, x2, k1,
k2, c1 and c2. Its set of loations is formed by taking the Cartesian produt of thesets of the omponent automata's loations. As the Interrupt omponent automa-ton has just one loation, the loations for the produt automaton are isomorphito the loations for the Task automaton so that, for this simple example, these alsodenote the produt loations. For eah loation ℓ in a produt automaton, the ini-tial Init(ℓ), derivative Act(ℓ) and invariant Inv(ℓ) polyhedra are the onatenationof the orresponding omponent polyhedra for the Task and Interrupt automata(informally, a onatenation of polyhedra P ∈ Pm and Q ∈ Pn may be obtained by�rst embedding P into a vetor spae of dimension n+m and then add a suitablyrenamed-apart version of the onstraints de�ning Q).For eah transition (ℓ, a,P, ℓ′) in the Task automaton where a /∈ {I1, I2} (i.e.,in the graphs, the label a is omitted), there is a transition (ℓ, a,Q, ℓ′) in the prod-ut automaton where Q ∈ P6 is obtained by embedding P into a vetor spae ofdimension 6. Letting i = 1, 2, for transitions (ℓ, Ii,P, ℓ

′) and (Intpt, Ii,P
′, Intpt) inthe Task and Interrupt automata, respetively, there is a transition (ℓ, Ii,Q, ℓ

′) inthe produt automaton where Q ∈ P6 is obtained by onatenating P and P ′ (andthen reordering the dimensions so that variables for ℓ preede the variables for ℓ′).Given a linear hybrid automaton, the aim of an analyzer is to hek, or even�nd su�ient onditions that ensure, that a valid run of the system annot reaha loation and vetor of values that violates some requirement of the system. Forinstane, in Example 4.2, we need to show that the water level always lies between
1 cm and 12 cm; in Example 4.3, we need to �nd onditions on a and b so that atmost one proessor an be in its ritial setion at any one time; while in Exam-ple 4.4, we need to show that no lass in A2 will ever have to wait. To show how wean use polyhedral omputations to prove suh properties, we �rst need to de�nemore formally suh a run and how the reahable sets may be omputed.Letting H = (Loc, Init,Act, Inv,Lab,Trans) be a linear hybrid automaton in ndimensions, a state s ofH onsists of a pair (ℓ,v), where ℓ ∈ Loc and v ∈ Rn. Givenstates s = (ℓ,v) and s′ = (ℓ′,v′), a time delay t ∈ R+ and a vetor w ∈ Act(ℓ),

s→t
w
s′is a step of H provided that, for all t′ ∈ [0, t), v + t′w ∈ Inv(ℓ) and, for some

(ℓ, a,P, ℓ′) ∈ Trans, (v + tw) ::v′ ∈ P. A run of H is a sequene (�nite or in�nite)
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w0

s1 →t1
w1

s2 · · ·where the initial state s0 = (ℓ0,v0) satis�es the ondition v0 ∈ Init(ℓ0). An in�niterun diverges if the sum ∑

i≥0 ti diverges. For eah divergent run given by (4.1)where, for i ≥ 0, si = (ℓi,vi), we assoiate a (state) behavior β whih is a totalfuntion from time to states: that is, for eah t ∈ R+, β(t)
def
= (ℓi,v), where

i = min

{

k ∈ N

∣

∣

∣

∣

k
∑

j=0

tj > t

} and v = vi + wi

(

t−
∑

j<i

tj

)

.A state s is reahable if there exists a divergent run with behavior β and time
t ∈ R+ suh that β(t) = s. The set of all reahable values Rℓ for a loation ℓ isde�ned as:

Rℓ
def
=

{

v ∈ R
n

∣

∣ ∃t ∈ R+ . β(t) = (ℓ,v)
}

.The set of reahable values Rℓ at a loation ℓ an be haraterized by a systemof �xpoint equations that are de�ned in terms of sets of reahable values Rℓ′ atloations ℓ′ where (

ℓ′, a,P, ℓ
)

∈ Trans. These equations use the following operationson sets of vetors in Rn. Let P ∈ P2n and S ∈ Rn. Then
ψP(S)

def
=

{

v
′ ∈ R

n
∣

∣ v ∈ S,v ::v′ ∈ P
}

.Note that, if S ∈ Pn, then ψP(S) ∈ Pn. Let Q ∈ Pn and S ∈ Rn. Then
S ր Q = {v + tw ∈ R

n | v ∈ S,w ∈ Q, t ∈ R+ }.The `ր' operator is alled the time elapse operator. We an now provide the�xpoint equation for Rℓ:(4.2) Rℓ =

(

(

Init(ℓ) ∪
⋃

(ℓ′,a,P,ℓ)∈Trans

ψP(Rℓ′) ∩ Inv(ℓ)
)

ր Act(ℓ)

)

∩ Inv(ℓ).Informally, the �xpoint equation forRℓ says that the reahable values at the loation
ℓ are obtained by letting the time elapse either from an initial value for ℓ or from avalue obtained from an inoming transition. However, the �xpoint Equation (4.2)annot handle strit onstraints orretly and needs modifying; this is illustratedin the following example.Example 4.5. Consider again Example 4.2. Then, just applying the Equa-tion (4.2) (as proposed in [HPR94, HPR97℄), the sets of reahable values at loations
ℓ1, ℓ2, ℓ3 are empty. The reason for this is that, for example, at loation ℓ0, the stritonstraint w < 10 must hold, while in the transition from ℓ0 to ℓ1, the transitionondition w = 10 has to hold. On the other hand, it follows from the de�nition ofa step, that sine one of the derivative onstraints at ℓ0 is ẇ = 1; the water level
w may ontinue to inrease up to the topologial losure of Rℓ0 whih is onsistentwith w = 10.To resolve this problem, in Equation (4.2) de�ning the onrete omputation,
Rℓ′ needs to be replaed by(4.3) c(Rℓ′) ∩

(

Rℓ′ ր Act(ℓ′)
)

,where c(R′
ℓ) denotes the topologial losure of R′

ℓ.



22 ROBERTO BAGNARA, PATRICIA M. HILL, AND ENEA ZAFFANELLAObserve that, although the linear hybrid automata are spei�ed by means ofpolyhedra, the reahable set Rℓ for a linear hybrid automaton and loation ℓ maynot be in the form of a onvex polyhedron. Thus, to verify that some states ofan automaton are unreahable using the standard polyhedral omputations, ap-proximations, even with suh a restrited system, are needed. In partiular, in the�xpoint Equation (4.2) (or (4.3)), the set operations have to be replaed by theorresponding polyhedral operations. In fat all the operations in (4.2) exept setunion an be used as they are sine they transform polyhedra to polyhedra. Justthe set union operation has to be replaed by the poly-hull operation ⊎ desribedin Setion 2. Thus the following �xpoint equation omputes an approximation R♯
ℓto the reahability set Rℓ.(4.4) R♯

ℓ =

(

(

Init(ℓ) ⊎
⊎

(ℓ′,a,P,ℓ)∈Trans

ψP(R♯
ℓ′) ∩ Inv(ℓ)

)

ր Act(ℓ)

)

∩ Inv(ℓ).As for the onrete �xpoint equation, to orretly handle the strit onstraintsEquation (4.4) needs to be be modi�ed by replaing R♯
ℓ′ with

c(R♯
ℓ′) ∩

(

R♯
ℓ′ ր Act(ℓ′)

)

.If we let R
♯ denote the tuple {R♯

ℓ | ℓ ∈ Loc } we an write Equation (4.4) as
R♯

ℓ = Fℓ(R
♯)For all ℓ ∈ Loc, we write R

♯(0)
ℓ = ∅ and, for all k ≥ 1, R

♯(k+1)
ℓ = Fℓ(R

♯(k)
ℓ ).Then R

♯ an be omputed iteratively provided the sequene R
♯(0),R♯(1), . . . doesnot diverge. To handle diverging sequenes, we apply a widening (see Setion 7.2).Note that we do not have to apply it at all loations. Let W be a set of loationsthat ut all yli paths in the graph of the hybrid automaton (that is, eah loopof the direted graph ontains at least one loation in W). Then the following setof �xpoint equations is guaranteed to onverge:(4.5) R♯

ℓ =

{

R♯
ℓ ∇ Fℓ(R

♯), if ℓ ∈ W ;
Fℓ(R

♯), if ℓ ∈ Loc \W .Example 4.6. Consider again Example 4.2. As there is a single loop passingthrough ℓ0, it is su�ient to de�ne the set of widening loations as W = {ℓ0}.With the modi�ed form of Equation (4.4) and the standard polyhedron widen-ing, the omputation requires three iterations resulting in polyhedra de�ned byonstraint systems Ci for 0 ≤ i ≤ 3 where:
C0 = {1 ≤ w < 10}, C1 = {w − x = 10, 10 ≤ w < 12},

C2 = {w + 2x = 16, 5 < w ≤ 12}, C3 = {w + 2x = 5, 1 < w ≤ 5}.Example 4.7. Consider again Example 4.3. The analysis terminates withoutwidening in just two iterations with the resulting polyhedron at ℓ5 de�ned by theonstraint system:
C = {k = 2, 10a ≥ 9b, 0 ≤ b ≤ x1, 9x1 ≤ 10x2 ≤ 11x1,

11x1 + 10a ≥ 10x2 + 11b}.It therefore follows that, to ensure that there an be no run with a state at loation
ℓ5, it is su�ient that 10a < 9b.



POLYHEDRAL COMPUTATIONS AND HW/SW ANALYSIS AND VERIFICATION 23Example 4.8. Consider again Example 4.4. By applying the standard widen-ing at loation `Task2' only, the analysis for the produt automaton terminates infour iterations. After projeting away the variables c1 and c2, the reahable valuesare given by polyhedra de�ned by onstraint systems Ct0, Ct1, and Ct2 for loations`Idle', `Task1' and `Task2', respetively, where:
Ct0 = {x1 = x2 = k1 = k2 = 0},

Ct1 = {0 ≤ x1 ≤ 4, x2 = 0, k1 = 1, k2 = 0},

Ct2 = {x2 ≥ 0, x2 ≤ 8, 4k1 ≥ x1, x1 ≥ 0, k2 = 1}.So it an be onluded that, at eah loation of the automaton, k2 ≤ 1 and, hene,no task in lass A2 will ever have to wait. However, as noted in [HPR97℄, beauseof the onvex hull approximation, with the polyhedral domain the analyzer fails toshow that k1 ≤ 2. We therefore redid the analysis using a domain of powersetsof polyhedra (see Setion 6.2) and, after taking the poly-hull of the �nal sets andprojeting away the variables c1 and c2, we obtained the polyhedra de�ned by on-straint systems C′
t0, C′

t1 and C′
t2 for loations `Idle', `Task1' and `Task2', respetively,where:

C′
t0 = {x1 = x2 = k1 = k2 = 0},

C′
t1 = {0 ≤ x1 ≤ 4, x2 = 0, k1 = 1, k2 = 0},

C′
t2 = {0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 8, 4k1 ≥ x1 ≥ 2k1 − 2,

x1 + x2 ≥ 10k1 − 10, k1 ≤ 2, k2 = 1}.This veri�es that k1 ≤ 2 and k0 ≤ 1 in every state of any run of the automata.Hybrid systems with a�ne or nonlinear dynamis do not �t the above spei�-ation of a linear system so that the veri�ation tehniques desribed here are notdiretly appliable. Nonetheless, by partitioning the ontinuous state spae andover-approximating the dynamis in eah of the partitions, the same tehniquesused to verify linear hybrid automata an be used in these more general ases[DHR05, Fre05, HH95a, HHWT97, SSM06℄. Suh an approah has also been su-essfully applied in the veri�ation of analog iruits, as disussed in the followingsetion. 5. Analysis and Veri�ation of Analog SystemsThe idea of applying formal methods, that originated in the digital world,to analog systems was put forward in [HHB02℄. This is an important step forwardwith respet to more traditional methods for the validation of analog iruit designs.A formal veri�ation tool an, for example, ensure that a design satis�es ertainproperties for entire sets of initial states and ontinuous ranges of iruit parameters,something that annot be done with simulation.In [DDM04℄ and [GKR04℄, polyhedral approximations were suessfully usedin the veri�ation of analog iruits. Here, we use a simple example, taken from[FKR06℄, on the veri�ation of an osillator iruit to illustrate the approah.7 Toverify properties of the (yli) behavior of suh iruits, yli invariants have to bedetermined. To establish a yli invariant for a given set of initial states and rangesfor the iruit parameters, one has to show that the iruit returns to a subset of7For a more general view, we refer the interested reader to the ited literature and to [Mal06℄.



24 ROBERTO BAGNARA, PATRICIA M. HILL, AND ENEA ZAFFANELLA
Vin

R LIL

Id
Vd C

(a) Ciruit shemati
Id

Vd(b) Tunnel diode harateristiFigure 10. Tunnel-diode osillator iruit
I L

[m
A

]

−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Voltage V  [V]
−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Voltage V  [V]
Vd[ V]

(Piture
ourtesy
ofGoran
Frehse.)

Figure 11. Reahable states of the tunnel-diode osillator (dashed)those initial states, whih implies the system will keep traversing the same statesinde�nitely. From suh an invariant, a number of properties of the osillator anbe established [FKRM06℄.Consider the tunnel-diode osillator shematized in Figure 10(a). The state ofthe system at a given instant of time is ompletely haraterized by the values ofthe indutor urrent IL and the diode voltage drop Vd. With these as the statevariables, the system is desribed by the seond-order state equations
V̇d = 1/C

(

−Id(Vd) + IL
)

,(5.1)
İL = 1/L(−Vd −RIL + Vin).(5.2)In [FKR06℄ it is shown how a yli invariant an be obtained for this iruitusing the PHAVer system. First, a pieewise a�ne envelope is onstruted forthe tunnel diode harateristi Id(Vd) depited in Figure 10(b): for the partiularexample analyzed in [FKR06℄, su�ient preision is obtained by dividing the range

Vd ∈ [−0.1 V, 0.6 V] into 64 intervals, resulting in a pieewise a�ne model of (5.1).Forward reahability omputation with PHAVer allows to obtain the set of statesdepited in Figure 11. These are the states reahable from the set of initial states



POLYHEDRAL COMPUTATIONS AND HW/SW ANALYSIS AND VERIFICATION 25orresponding to Vd ∈ [0.42 V, 0.52 V] and IL = 0.6 mA (the base of the downward-faing triangular shape in Figure 11). Taking into aount that the loop shapeonstituted by the reahable states is traversed lokwise, it an be seen that theindutor urrent IL returns to the initial value of 0.6 mA with a diode voltage dropthat is well within the initial range [0.42 V, 0.52 V]. The set of reahable states soobtained is thus an invariant of the iruit.In [FKR06℄ it is shown that, due to over-approximation, forward reahabilityan fail to determine invariants of more omplex iruits. A new tehnique ombin-ing forward and bakward reahability with iterative re�nement of the partitions isthus proposed and shown to be more powerful and e�ient.6. Families of Polyhedral Approximations for Analysis and Veri�ationFor several appliations of stati analysis and veri�ation, an approximationbased on the domain of onvex polyhedra an be regarded as the most appropriatehoie. In this setion we disuss alternative options (simpli�ations, generaliza-tions, and ombinations with other numerial domains) that might be onsideredwhen trying either to redue the ost of the analysis, or to inrease the preision ofthe omputed results.6.1. Simpli�ations of Polyhedra. There are ontexts where approxima-tions based on the domain of onvex polyhedra, no matter whih implementationis adopted, inur an unaeptable omputational ost. In suh ases, the statianalysis may resort to further simpli�ations so as to obtain useful results withinreasonable time and spae bounds.A �rst, almost traditional approah is based on the identi�ation of suitablesyntati sublasses of polyhedra. The abstrat domain of bounding boxes (orintervals [CC76℄) is based on polyhedra that an be represented as �nite on-juntions of onstraints of the form ±xi ≤ d or ±xi < d, leading to the spe-i�ation of operations whose worst-ase omplexity is linear in the number ofspae dimensions. As a more preise alternative, the lass of potential onstraints[AK85, Bag97, Bel57, Dav87, Dil89, LLPY97℄, also known as bounded di�erenes,allows for onstraints of the form xi−xj ≤ d or±xi ≤ d; the generalization proposedin [BK89℄, also admits onstraints of the form xi + xj ≤ d, leading to the abstratdomain of otagons [Min01℄. In these last two ases, the operators are haraterizedby a worst-ase time omplexity whih is ubi in the number of spae dimensions.For all of the approximations mentioned above, improved e�ieny also followsfrom the fat that the orresponding omputations are simple enough to allow forthe adoption of �oating-point data types: in ontrast, the spei�ation of safe ande�ient �oating-point operations for general polyhedra is an open problem, so thatpolyhedra libraries have to be based on unbounded preision data types.Several alternative (syntati and/or semanti) simpli�ation shemes havebeen put forward in the reent literature. The Two Variables per Linear Inequalityabstrat domain is proposed in [SKH02℄, where onstraints take the syntati form
axi + bxj ≤ d. In [SSM05℄, an arbitrary family of polyhedra is hosen before start-ing the analysis by �xing the slopes of a �nite number of linear inequalities, whihare alled the template onstraints ; linear programming tehniques are then usedto ompute preise approximations in the onsidered lass of shapes. In ontrast,in [SCSM06℄, general polyhedra are allowed, but the orresponding operations (inpartiular, the poly-hull and the image of a�ne relations) are approximated by



26 ROBERTO BAGNARA, PATRICIA M. HILL, AND ENEA ZAFFANELLAless preise variants so as to ensure a polynomial worst-ase omplexity in the sizeof the inputs. An even more �exible approah is proposed in [Fre05℄, where ar-bitrary polyhedra are approximated, when they beome too omplex, by limitingthe number of onstraints in their desription and/or the magnitude of the oef-�ients ourring in the onstraints. These more dynami approximation shemesare promising, in partiular for those appliations where nothing is known in ad-vane about the syntati form of the onstraints that will be omputed during theanalysis.An important observation to be made is that there is no atual need to prefera priori (and therefore ommit to) a spei� abstrat domain: the analysis toolmay be based on several abstrations, safely swithing from more preise, possiblyostly domains to more e�ient, possibly impreise ones, and vie versa, depend-ing on the ontext. When replaing a generi polyhedron by a simpler one, theproblem of the identi�ation of a good over-approximation has to be solved. De-pending on the ontext, the approahes may vary signi�antly. At one extreme,when e�ieny is really ritial, the adoption of syntati tehniques should bepursued: for an interesting example, we refer the reader to one of the simpli�ationheuristis used in [Fre05℄, where the e�ient seletion of a small number of linearinequalities out of a onstraint system is driven by a simple, yet e�etive reasoningon the measure of the angles formed by the orresponding half-spaes. At the otherextreme, linear programming (LP) optimization tehniques may be used so as toobtain the best math in the onsidered lass of geometri shapes. For instane,the preise approximation of a polyhedron by a bounding box (resp., a boundeddi�erene or otagon) an be implemented by a linear (resp., quadrati) number ofoptimizations of a lass of LP problems, where the objetive funtion varies whilethe feasible region is invariant and de�ned by the onstraints of the polyhedron.Note that, if orretness has to be preserved, it is essential that no rounding erroris made on the wrong side, so that lassial �oating-point implementations of LPsolvers have to be onsidered unsafe, unless the omputed results an be erti�edby some other tool. Alternatively, it is possible to onsider LP implementationsbased on unbounded preision data types.When the number of spae dimensions to be modeled is beyond a given thresh-old, the whole analysis spae an be split into a �nite number of smaller, moremanageable omponents, thereby realizing a further simpli�ation sheme that anbe ombined with those desribed above. The splitting strategy varies onsiderably.In [HMPV03, HMG06℄, Cartesian fatoring tehniques are used so as to dynami-ally partition the spae dimensions of a polyhedron into independent subsets; theorthogonal fators are then approximated by lower dimensional polyhedra with nopreision penalty. In an alternative approah desribed in [BCC+03℄, many (pos-sibly overlapping) small subsets of spae dimensions, alled variables paks, areidenti�ed before the start of the analysis by means of syntati onditions; the re-lations holding between the variables in eah pak are then approximated by usingan otagonal abstration. A variation of this is desribed in [VB04℄, where non-overlapping variable paks are dynamially omputed (and possibly merged) duringthe analysis, whereas the relations between the variables in a pak are approximatedby means of potential onstraints. In [VB04℄ it is also observed that, sine the aver-age size of variables paks is small (5 variables), more preise approximations basedon general polyhedra should be feasible.



POLYHEDRAL COMPUTATIONS AND HW/SW ANALYSIS AND VERIFICATION 276.2. Generalizations of Polyhedra. There are appliations where the re-strition to the domain of onvex polyhedra is intrinsially inadequate. This mayhappen, not only when the veri�ation property of interest is itself non-onvex,but also when the adopted omputation strategy requires that a onvex property isproved by passing through a non-onvex intermediate approximation. This was thease in Example 4.8 of Setion 4, where the upper bound (k1 ≤ 2) on the numberof waiting proesses for lass A1 was obtained by swithing from the domain ofonvex polyhedra to the domain of �nite sets of polyhedra.The �nite powerset domain onstrution [Bag98℄ is a speial ase of disjuntiveompletion [CC79℄, a systemati tehnique to derive an enhaned abstrat domainstarting from an existing one. A �nite powerset domain implements disjuntions bymaintaining an expliit (hene �nite) and non-redundant olletion of elements ofthe base-level domain: non-redundany means that a olletion is made of maximalelements with respet to the approximation ordering, so that no element subsumesanother element in the olletion.For a better understanding of the onepts, whih are desribed in ompletelygeneral terms in [BHZ06℄, let us onsider the appliation of the �nite powersetonstrution to the domain of onvex polyhedra. This instantiation (whih is theone also adopted for the examples developed in [BHZ06℄) an be used to modelnonlinear systems as desribed, e.g., in Setion 5. Then, an element of the abstratdomain is a �nite set of maximal onvex polyhedra, so that no polyhedron in theset is ontained in another polyhedron in the set. The powerset domain is a lattie:the bottom and top elements are ∅ and {Rn}, respetively; the meet is obtainedby removing redundanies from the set of all possible binary intersetions of anelement in the �rst powerset with an element in the seond powerset; while thebinary join is the non-redundant subset of the union of the two arguments. Mostof the other abstrat operations needed for a stati analysis using the �nite pow-erset domain are easily obtained by �lifting� the orresponding operations de�nedon the base-level domain, and then reinforing non-redundany. For instane, theomputation of the image of a �nite powerset under an a�ne relation is obtainedby omputing the image of eah polyhedron in the olletion. However, the on-strution of a provably orret widening operator has only reently been addressedin [BHZ06℄ (see Setion 7.2). The generi spei�ation of the abstrat operatorsof the �nite powerset domain in terms of abstrat operations on the (arbitrary)base-level domain allows for the development of a single implementation whih isshared by all the possible instanes of the domain onstrution.An alternative abstration sheme has been proposed in [BRCZ05℄ for the aseof �nite onjuntions of polynomial inequalities. Intuitively, a polynomial on-straint an be approximated by means of a linear onstraint in a higher dimensionvetor spae, so that the di�erent terms of the polynomial (e.g., x0, x0x1, x2
0) aremapped to di�erent and independent spae dimensions; these linear onstraints arethen used to perform an almost lassial linear relation analysis based on onvexpolyhedra. Due to the linearization step, most of the preision of the polynomialonstraints is initially lost; however, some of the relations holding between the di�er-ent terms of the original polynomial an be reovered by adding further onstraintsthat are redundant when interpreted in the polynomial world, but do ontribute topreision in the linearized spae. In partiular, in [BRCZ05℄ the polynomial on-straints are mapped into �nitely generated polynomial ones and a degree-bounded



28 ROBERTO BAGNARA, PATRICIA M. HILL, AND ENEA ZAFFANELLAprodut losure operator is systematially applied so as to improve auray. As atrivial example, let the polynomial terms x0, x1 and x0x1 be mapped to the spaedimensions y0, y1 and y2, respetively. Then, the linearization of the polynomialonstraints x0 ≥ 0 and x1 ≥ 0 will produe a polyhedron that, while satisfying
y0 ≥ 0 and y1 ≥ 0, leaves variable y2 totally unonstrained. By applying the prod-ut losure operator we also obtain the linear onstraint y2 ≥ 0, thereby reoveringthe non-negativity of term x0x1.6.3. Combinations with other Numerial Abstrations. We observethat there are two basi kinds of numerial abstrations for approximating thevalues of the program variables: outer limits (or bounds within whih the val-ues must lie) and the pattern of distribution of these values. The �rst an beapproximated by (onstrutions based on) onvex polyhedra, while the seondan be approximated by sets of ongruenes de�ning latties of points we allgrids [BDH+07, Gra91, Gra97℄. Thus before onsidering how these and similardomains may be ombined, we �rst give a brief overview of the domain of grids.Any vetor that satis�es 〈a,v〉 = b + µf , for some µ ∈ Z, is said to satisfythe ongruene relation 〈a,v〉 ≡f b. A ongruene system Cg is a �nite set ofongruene relations in R

n. A grid is the set of all vetors in R
n that satisfy theongruenes in Cg. The domain of grids Gn is the set of all grids in Rn ordered bythe set inlusion relation, so that the empty set and Rn are the bottom and topelements of Gn respetively and the intersetion of two grids is itself a grid. Thus, asfor the domain of polyhedra, the domain of grids forms a lattie (Gn,⊆, ∅,R

n,⊎,∩)where ⊎ denotes the join operation returning the least grid greater than or equal tothe two arguments. For more details onerning all aspets of the domain of grids,see [BDH+07℄.The distribution information aptured by grids has a number of appliationsin its own right, for instane: to ensure that external memory aesses obey thealignment restrition imposed by the host arhiteture; and to enable several trans-formations for e�ient parallel exeution as well as optimizations that enhaneahe behavior. However, here we are primarily onerned with appliations thatan bene�t from the ombination of the domain of grids with that of onvex poly-hedra. For instane, knowing the frequeny (and position) of the points in a grid,we an shrink the polyhedra so that the bounding hyperplanes pass through thegrid values; if this leads to a polyhedron with redued dimension (suh as a singlepoint) or one that is empty, it an lead, not only to improved preision, but also amore e�ient use of resoures by the analyzer [An91, NR00, QRR96℄.Generi onstrutions suh as diret and redued produt an be used to pro-vide a formal basis for the ombination of the grid and polyhedral domains [CC79℄.However, the exat hoie of produt onstrution used to build the grid-polyhedraldomain needs further study and should probably depend on the appliation. Theproblem is that the diret produt has the disadvantage in that there is no provi-sion for ommuniation between the omponent domains while the redued prod-ut, whih is the most preise re�nement of the diret produt, has exponentialomplexity. It is expeted that, for grid-polyhedra, the most useful produt on-strution will lie between these extremes. For instane, as equalities are ommonentities for both onstraint and ongruene systems, if an equality is found to holdin one omponent, it is safe to just add this to the onstraint or ongruene sys-tem desribing the other omponent. In addition, any hyperplane that bounds the



POLYHEDRAL COMPUTATIONS AND HW/SW ANALYSIS AND VERIFICATION 29polyhedron ould be moved inwards until it interset with points of the grid withonly linear ost on the number of dimensions. Of ourse, this redution on its ownis not optimal sine the grid points in the intersetion may not lie in the polyhe-dron itself. For optimality or, more generally, so as to gain additional preision, weneed to experiment with various forms of the branh-and-bound and utting-planealgorithms [KM06℄ already well-researhed for integer linear programming. Whatis needed is a range of options for the produt onstrution allowing the user todeide on the omplexity/preision trade-o�. Further work on this inluding aninvestigation of other proposals for generi produts that lie between the diret andredued produt suh as the loal dereasing iteration method [Gra92℄ and the openprodut onstrution [CLV00℄ is needed.7. Polyhedral Computations Peuliar to Analysis and Veri�ationAs observed in the previous setions, the analysis of the run-time behavior of asystem an be traed down to the omputations of a basi set of operations on thehosen abstrat domains. This means that eah abstrat domain should provideadequate omputational support for suh a set and, where appropriate, further op-erations that might be useful for tuning the ost/preision ratio. In this setion,we disuss several key issues relevant to the design and implementation of an ab-strat domain of, or based on, onvex polyhedra. Before going into further detail,it should be stressed that the partiular ontext of appliation plays a signi�antand non-trivial role here. For instane, in many omputational omplexity studies,it is assumed that a small number of operations (often, just a single one) will haveoperands whose sizes an grow arbitrarily large; also, it is typially required thatexat results have to be omputed. Both these assumptions may be inappropriatein the ontext of stati analysis: it is quite often the ase that a large number of op-erations will have only small or medium sized operands; moreover, whenever faingan e�ieny issue, the exatness requirement an be dropped (provided soundnessis maintained). As a onsequene, the evaluation of alternative algorithmi strate-gies should be based on pratial experimentation, rather than purely theoretialresults.7.1. The Double Desription Method. Convex polyhedra are typiallyspei�ed by a �nite system of linear inequality onstraints and there are known al-gorithms (e.g., based on Fourier-Motzkin elimination [LM92, Sh99℄) for omputingmost of the operations already mentioned on suh a desription.An alternative approah is based on the double desription method due toMotzkin et al. [MRTT53℄. This method was originally de�ned on the set of topo-logially losed onvex polyhedra, a sub-lattie (CPn,⊆, ∅,R
n,⊎,∪) of the lattie of(not neessarily losed, or NNC) polyhedra Pn. In the double desription method, alosed polyhedron may be desribed by using a system of non-strit linear inequal-ities or by using a generator system that reords its key geometri features. Thefollowing is the main theoretial result, whih is a simple onsequene of well-knowntheorems by Minkowski and Weyl [SW70℄.Theorem 7.1. The set P ⊆ Rn is a topologially losed onvex polyhedron ifand only if there exist �nite sets R,P ⊆ R

n of ardinality r and p, respetively,suh that 0 /∈ R and P an be generated from (R,P ) as follows:
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30 ROBERTO BAGNARA, PATRICIA M. HILL, AND ENEA ZAFFANELLAIntuitively, a point of a polyhedron P is obtained by adding a onvex ombinationof the vetors in P (the generating points) to a oni ombination of the vetors in
R (the generating rays).It turns out that onstraint and generator desriptions are duals: eah repre-sentation an be omputed starting from the other one. Clever implementationsof this onversion proedure, improving on the Chernikova's algorithms [Che64,Che65, Che68℄, are the starting point for the development of software libraries that,while being haraterized by a worst ase omputational ost whih is exponentialin the size of the input, turn out to be pratially useful. A ommon harateristiof these implementations is the exploitation of inrementality, whereby most of theomputational work done for an operation is reused to e�iently ompute smallvariations of the orresponding result. Further omputational enhanements areobtained by the adoption of suitable heuristis, ranging from the e�ient handlingof adjaeny information [Le 92℄, to a areful hoie of ordering strategies for theomputation of intermediate results [Avi00, AB95, FP96℄; the overall onstrutiontypially relies on a tight integration of the basi algorithms with a arefully hosenset of data strutures [BHZ06b℄.An important motivation for the adoption of an implementation based on thedouble desription method is that the ability to swith from a onstraint desrip-tion to a generator desription, or vie versa, an be usefully exploited to providesimple implementations for the basi operations on polyhedra. For instane, setintersetion is easily implemented by taking the union of the onstraint systemsrepresenting the two arguments, whereas the poly-hull is implemented by joiningthe generator systems representing the two arguments; and the test for emptinessan be implemented by heking whether the generator system ontains no pointsat all. Moreover, a test for subset inlusion P ⊆ Q an be implemented by hekingif eah point and eah ray in a generator system desribing P satis�es all linearinequalities in a onstraint system desribing Q. As a further example, the timeelapse operation spei�ed in Setion 4 an be implemented using the generator sys-tems for the argument polyhedra. That is, a generator system for the polyhedron
P ր Q an be obtained by adopting the same set of generating points as P and byde�ning its set of rays as the union of the set of generating rays for P with the setof all the generators (both points and rays) for Q.As seen in Setion 3, in the ontext of the analysis of imperative languagesone of the most frequent statements is variable assignment, where the expressionassigned is safely approximated by an a�ne relation ψ ⊆ Rn × Rn. The (diretor inverse) image of an a�ne relation an be naively omputed by embedding theinput polyhedron P ⊆ R

n into the spae R
2n, interseting it with the onstraintsde�ning ψ and �nally projeting the result bak on Rn. However, due to themoves to/from a higher dimensional spae, this approah su�ers from signi�antoverheads. Quite often, the expression assigned is a simple a�ne funtion of thevariables' values and an thus be exatly modeled by omputing the image of asingle-update a�ne funtion. With the double desription method, the images ofa�ne funtions are muh more e�iently omputed by applying them diretly tothe generators of the argument polyhedron. A dual approah, using the onstraintdesription of the polyhedron, allows for the omputation of the preimages of a�nefuntions, whih an be of interest for a bakward semanti onstrution, wherethe initial values of program variables are approximated starting from their �nal



POLYHEDRAL COMPUTATIONS AND HW/SW ANALYSIS AND VERIFICATION 31values. Similar e�ieny arguments motivate the study of spei� implementationsfor single-update bounded a�ne relations and other speial sublasses of a�nerelations.7.2. Widening and Narrowing. The �rst widening operator for the domainof onvex polyhedra, proposed in [CH78℄ and re�ned in [Hal79℄, an be informallydesribed as follows: suppose that in the post-�xpoint iteration sequene we om-pute as suessive iterates the polyhedra Pi and Pi+1; then, the widening keeps alland only the onstraints de�ning Pi that are also satis�ed by Pi+1. This simpleidea, whih is basially borrowed from the widening operator de�ned on the domainof intervals [CC76℄, is quite e�etive in ensuring the termination of the analysis (thenumber of onstraints dereases at eah iteration); by avoiding the appliation ofthe widening in the �rst few iterations of the analysis [Cou81℄ and/or by applyingthe �widening up-to� tehnique of [Hal93℄, it also provides, in the main, an adequatelevel of preision.Some appliation �elds, however, are partiularly sensitive to the preision ofthe dedued numerial information, to the point that some authors propose to giveup the termination guarantee and use so-alled extrapolation operators: examplesinlude the operators de�ned in [HPWT01℄ and [HH95b℄, as well as the proposalsin [BGP99℄ and [DP99℄ for sets of polyhedra and the heuristis skethed in [BJT99℄.In [BHRZ05℄ this preision problem is reonsidered in a more general ontextand a framework is proposed that is able to improve upon the preision of a givenwidening while keeping the termination guarantee. The approah, whih buildson theoretial results put forward in work on termination analysis, ombines anexisting widening operator, whose termination guarantee should be formally er-ti�able, with an arbitrary number of preision improving heuristis. Its feasibilitywas demonstrated by instantiating the framework so as to produe a new wideningon polyhedra improving upon the preision of [Hal79℄ in a signi�ant perentage ofbenhmarks.For the more hallenging ase of an abstrat domain obtained by the �nite pow-erset domain onstrution, several generi shemes of widenings have been proposedin [BHZ06℄ that are able to �lift� a widening de�ned on the base-level domain with-out ompromising its termination guarantee. The instantiation of suh a generiapproah led to the de�nition of the �rst non-trivial and provably orret wideningson a domain of �nite sets of onvex polyhedra. Being highly parametri, the widen-ing shemes proposed in [BHZ06℄ an be instantiated aording to the needs of thespei� appliation, as done in [GR06℄. One of the heuristi approahes adoptedin [BHZ06℄ to ontrol the preision/omplexity trade-o� of the widenings, origi-nally proposed in [BGP99℄, attempts at reduing the ardinality of a polyhedralolletion by merging two of its elements whenever their set union happens to bea onvex polyhedron. The implementation of suh a heuristis ould signi�antlybene�t from the results and algorithms presented in [BF05, BFT01℄.It is also worth mentioning that, one a post-�xpoint approximation has beenobtained by means of an upward iteration sequene with widening, its preision anbe improved by means of a downward iteration, possibly using a narrowing operator[CC77, CC76, CC92a, CC92b℄. To the best of our knowledge, no narrowing hasever been de�ned on the domain of onvex polyhedra: appliations simply stop thedownward omputation after a small number of iterations.



32 ROBERTO BAGNARA, PATRICIA M. HILL, AND ENEA ZAFFANELLA7.3. Not Neessarily Closed Convex Polyhedra. Most stati analysis ap-pliations omputing linear inequality relations between program variables onsiderthe domain CPn of topologially losed polyhedra. One of the underlying motiva-tions is that sometimes (e.g., when working with integer valued variables only)strit inequalities an be �ltered away by suitable syntati manipulations; evenwhen this is not the ase, the topologial losure approximation may be interpretedas a quik and pratial workaround to the fat that some software libraries do notfully support omputations on NNC polyhedra. However, there are appliations[ACHH93, CS01, HPR94, HPR97℄ where the ability of enoding and propagatingstrit inequalities might be ruial for the usefulness of the �nal results.The �rst proposal for a systemati implementation of strit inequalities in a soft-ware library based on the double desription method was put forward in [HPR94℄:a syntati translation embeds an n-dimensional NNC polyhedron P ∈ Pn into an
(n + 1)-dimensional losed polyhedron R ∈ CPn+1, by adding a single slak vari-able ǫ, satisfying the additional side onstraints 0 ≤ ǫ ≤ 1. Namely, any strit in-equality onstraint 〈a,x〉 > b is translated into the non-strit inequality onstraint
〈a,x〉 − ǫ ≥ b. The omputation is thus performed on the losed representation
R ∈ CPn+1, with only minor adaptations to the basi algorithms so as to also takeinto aount the impliit strit onstraint ǫ > 0.While this idea is quite e�etive, the resulting software library no longer enjoysall of the properties of the underlying double desription implementation: NNCpolyhedra annot be suitably desribed using generator systems, and the geometriintuitions are lost under the �implementation details.� These problems motivatedthe studies in [BHZ03, BHZ05, BRZH02℄, where a proper generalization of the dou-ble desription method to NNC polyhedra was proposed. The main improvementwas the identi�ation of the losure point as a new kind of generator for NNCpolyhedra, leading to the following result generalizing Theorem 7.1.Theorem 7.2. The set P ⊆ Rn is an NNC polyhedron if and only if there exist�nite sets R,P,C ⊆ Rn of ardinality r, p and c, respetively, suh that 0 /∈ R and
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.The new ondition π 6= 0 ensures that at least one of the points of P plays anative role in any onvex ombination of the vetors of P and C. As a onsequene,the vetors of C are losure points of P, i.e., points that belong to the topologiallosure of P, but may not belong to P itself.Thanks to the introdution of (strit inequalities and) losure points, most ofthe pros of the double desription method now also apply to the domain of NNCpolyhedra: simpler, higher-level implementations of operations on NNC polyhedraan be spei�ed, reasoned about and justi�ed in terms of any one of the two dualdesriptions; important implementation issues (suh as the need to identify andremove all kinds of redundanies in the desriptions [BHZ05, BRZH02℄) an beprovided with proper solutions; di�erent lower-level enodings (e.g., an alternativemanagement of the slak variable [BHZ03, BHZ05℄) an be investigated and ex-perimented with, without a�eting the user of the software library. It would beinteresting, from both a theoretial and pratial point of view, to provide a morediret enoding of NNC polyhedra, i.e., one that is not based on the use of slak



POLYHEDRAL COMPUTATIONS AND HW/SW ANALYSIS AND VERIFICATION 33variables; this requires the spei�ation and the orresponding proof of orret-ness of a diret NNC onversion algorithm, potentially ahieving a major e�ienyimprovement.
8. ConlusionIn the �eld of automati analysis and veri�ation of software and hardware sys-tems, approximate reasoning on numerial quantities is ruial. As �rst reognizedin 1978 [CH78℄, polyhedral omputation algorithms an be used for the automatiinferene of numerial assertions that orretly (though usually not ompletely)haraterize the behavior of a system at some level of abstration.Until the end of the 1990's these tehniques were not in widespread use, mainlydue to the unavailability of robust and e�ient implementations of onvex poly-hedra. As far as we know, the �rst published libraries of polyhedral algorithmssuitable for analysis and veri�ation purposes have been Polylib,8 released in 1995,written by Wilde at IRISA [Wil93℄ and based on earlier work by Le Verge [Le 92℄,and the polyhedra library of POLINE (POLyhedra INtegrated Environment) writ-ten by Halbwahs and Proy at Verimag and also released in 1995. Both librariesused mahine integers to represent the oe�ients of linear equalities and inequal-ities, something that ould easily result into (undeteted) over�ows. While Polylibprovided only a fration of the funtionalities o�ered by POLINE's library (whiho�ered, among other things, support for NNC polyhedra), it was available in soureformat. The POLINE's library, instead, was distributed only in binary form for theSun-4 platform (freely, until about the year 1996; under rather restritive ondi-tions afterward). POLINE inluded also a system alled POLKA (POLyhedra desKAlulator) and an analyzer for linear hybrid automata. A variation of a subset ofPOLINE's library was inorporated into the HyTeh tool [HHWT97℄.9The work of Wilde and Le Verge, whih was extended by Loehner [Loe99℄, ledto the reation of PolyLib.10 The New Polka library by Jeannet,11 �rst released in2000 and originally based on both IRISA's Polylib and POLINE's library, inor-porates the idea �suggested by Fukuda and Prodon [FP96℄� of lexiographiallysorting the matries representing onstraints and generators. New Polka, whihsupports both losed and NNC polyhedra, together with Miné's Otagon AbstratDomain Library [Min01, Min05℄12 and an interval library alled ITV, is now in-luded in the APRON library.13 Finally, the Parma Polyhedra Library (PPL),initially inspired by New Polka and �rst released in 2001, is developed and main-tained by the authors of this paper.14 The PPL supports both losed and NNCpolyhedra, bounding boxes, bounded di�erene and otagonal shapes, grids andombinations of the above inluding the �nite powerset onstrution [BHZ06a℄.The above libraries have all been designed spei�ally for appliations of analy-sis and veri�ation suh as those desribed in this paper. However, two libraries that8http://www.ee.byu.edu/faulty/wilde/polyhedra.html.9http://embedded.ees.berkeley.edu/researh/hyteh/.10http://ips.u-strasbg.fr/polylib/.11http://pop-art.inrialpes.fr/people/bjeannet/newpolka/index.html.12http://www.di.ens.fr/~mine/ot/13http://apron.ri.ensmp.fr/library/.14http://www.s.unipr.it/ppl.



34 ROBERTO BAGNARA, PATRICIA M. HILL, AND ENEA ZAFFANELLAwere designed for solving vertex enumeration/onvex hull problems have suess-fully been used in stati analysis and omputer-aided veri�ation tools: Fukuda's d-dlib,15 an implementation of the double desription method [MRTT53℄; and lrslib,16the implementation by Avis of the reverse searh algorithm [Avi00℄.All the libraries mentioned in the last two paragraphs are distributed underfree software lienses and support the use of unbounded numeri oe�ients. This,together with the ever inreasing available omputing power and the growing in-terest in ensuring the orretness of ritial systems, has aused, in the 2000's, theontinuous emergene of new tools and appliations of polyhedral omputations inthe area of formal methods. As a onsequene, this is muh more of a new beginningthan an end to researh in this area. As explained in Setions 6 and 7, several openissues remain. Most of them have to do with the need for e�etively managing theomplexity-preision trade-o�: the enouraging results obtained with today's toolspush us to apply them to more omplex systems for a possibly more preise analysisand/or veri�ation of more omplex properties. Further progress in this area allsfor a tight ollaboration of experts in the �elds of formal methods, omputationalgeometry and ombinatorial optimization. We hope the present paper onstitutesa useful step in this diretion. AknowledgmentsWe thank Goran Frehse for the disussion we had on the subjet of polyhedrasimpli�ations and for ontributing the PostSript ode we used to produe Fig-ure 11. The �rst author would also like to thank the organizers and partiipants ofthe Polyhedral Computation workshop17 for providing the environment and initialinspiration that brought us to write this paper.Referenes[AB95℄ D. Avis and D. Bremner, How good are onvex hull algorithms?, Proeedings ofthe Eleventh Annual Symposium on Computational Geometry (Vanouver, B.C.,Canada), ACM Press, 1995, pp. 20�28.[ACH+95℄ R. Alur, C. Couroubetis, N. Halbwahs, T. A. Henzinger, P.-H. Ho, X Niollin,A. Olivero, J. Sifakis, and S. Yovine, The algorithmi analysis of hybrid systems,Theoretial Computer Siene 138 (1995), 3�34.[ACHH93℄ R. Alur, C. Couroubetis, T. A. Henzinger, and P.-H. Ho, Hybrid automata: Analgorithmi approah to the spei�ation and veri�ation of hybrid systems, HybridSystems I, Leture Notes in Computer Siene, vol. 736, 1993, pp. 209�229.[AH83℄ G. Alefeld and J. Herzberger, Introdution to interval omputation, Aademi Press,New York, 1983.[AK85℄ J. F. Allen and H. A. Kautz, A model of naive temporal reasoning, Formal Theoriesof the Commonsense World (J. R. Hobbs and R. Moore, eds.), Ablex, Norwood, NJ,1985, pp. 251�268.[An91℄ C. Anourt, Génération automatique de odes de transfert pour multiproesseurs àmémoires loales, Ph.D. thesis, Université de Paris VI, Paris, Frane, Marh 1991.[Avi00℄ D. Avis, lrs: A revised implementation of the reverse searh vertex enumeration al-gorithm, Polytopes � Combinatoris and Computation (G. Kalai and G. M. Ziegler,eds.), Oberwolfah Seminars, vol. 29, Birkhäuser-Verlag, 2000, pp. 177�198.15http://www.ifor.math.ethz.h/~fukuda/dd_home/.16http://gm.s.mgill.a/~avis/C/lrs.html.17Centre de reherhes mathématiques, Université de Montréal, Montréal (Québe), Canada,Otober 17�20, 2006.
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