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Abstract. Convex polyhedra, commonly employed for the analysis and
verification of both hardware and software, may be defined either by a
finite set of linear inequality constraints or by finite sets of generating
points and rays of the polyhedron. Although most implementations of
the polyhedral operations assume that the polyhedra are topologically
closed (i.e., all the constraints defining them are non-strict), several an-
alyzers and verifiers need to compute on a domain of convex polyhedra
that are not necessarily closed (NNC). The usual approach to imple-
menting NNC polyhedra is to embed them into closed polyhedra in a
vector space having one extra dimension and reuse the tools and tech-
niques already available for closed polyhedra. Previously, this embedding
has been designed so that a constant number of constraints and a linear
number of generators have to be added to the original NNC specifica-
tion of the polyhedron. In this paper we explore an alternative approach:
while still using an extra dimension to represent the NNC polyhedron
by a closed polyhedron, the new embedding adds a linear number of
constraints and a constant number of generators. As far as the issue of
providing a non-redundant description of the NNC polyhedron is con-
cerned, we generalize the results established in a previous paper so that
they apply to both encodings.

1 Introduction

Many applications of static analysis and verification compute on some abstract
domain based on convex polyhedra [5]. Traditionally, most of these applications
are restricted to convex polyhedra that are topologically closed. When adopting
the Double Description (DD) method [10], a closed convex polyhedron can be
specified in two ways, using a constraint system or a generator system: the con-
straint system contains a finite set of linear non-strict inequality constraints; the
generator system contains two finite sets of vectors, collectively called generators,
which are rays and points of the polyhedron.

? This work has been partly supported by MURST project “Aggregate- and number-
reasoning for computing: from decision algorithms to constraint programming with
multisets, sets, and maps”.



Some applications of static analysis and verification, including recent propos-
als such as [4], need to compute on the domain of not necessarily closed (NNC)
convex polyhedra. By definition, any NNC polyhedron can be represented by a
so-called mixed constraint system, that is, a constraint system where a further
finite set of linear strict inequality constraints is allowed to occur. The usual ap-
proach for implementing NNC polyhedra is to embed them into closed polyhedra
in a vector space with one extra dimension. While this idea, originally proposed
in [7] and also described in [8], proved to be quite effective, its direct application
results in a low-level user interface where most of the geometric intuition of the
DD method gets lost under the “implementation details”.3

A much cleaner approach was proposed in [1, 2], where the concept of gen-
erator of an NNC polyhedron is extended to also account for the closure points
of the polyhedron. In particular, it is shown that any NNC polyhedron can be
defined directly by means of an extended generator system, namely, a triple of
finite sets containing rays, points and closure points of the polyhedron. By com-
bining the mixed constraint systems with these extended generator systems for
describing NNC polyhedra we can obtain a two-fold improvement over the pro-
posal in [7, 8]: easier generalizations and a natural, implementation-independent
interface.

Easier generalizations. Several complex operators, whose definition is in terms of
the rays and points of the standard generator systems for closed polyhedra, need
to be generalized to NNC polyhedra. Examples are given by the time-elapse op-
erator of [7, 8] and the generators-based widening of [3]. The notion of extended
generator system proved to be very effective in the definition and justification
of these generalizations. As an example, let us consider a very basic operator:
the inclusion test between two polyhedra. The usual implementation for closed
polyhedra is based on the following specification in terms of their constraint and
generator systems. Let P1 and P2 be closed polyhedra such that P1 is defined
by the generator system G1 and P2 by the constraint system C2. Then we have
P1 ⊆ P2 if and only if all the generators in G1 satisfy all the constraints in C2. In
order to test whether or not a generator g satisfies a constraint 〈a, x〉 ≥ b, it is
sufficient to determine if the scalar product s = 〈a, g〉 is such that s ≥ b, when g

is a point, or such that s ≥ 0, when g is a ray. Consider now the generalization
to two polyhedra P1 and P2 that are not necessarily closed. With the high-level
interface proposed in [2], the inclusion test can be easily specified using the same
approach described above: we only need to generalize the case analysis of the
satisfaction test to also cover the combinations provided by the additional con-
straint and generator types (i.e., strict inequalities and closure points), as shown
in Table 1. The elegance of this generalization is better appreciated if contrasted
with the specification of the inclusion test on the low-level implementation of [7],
informally described in the same paper, which appears to be much more tricky

3 This has a direct, negative impact on the usability of the resulting software: on this
subject, see [2, Section 4.1, page 218], [6, Section 4.5, pp. 10–11], and [9, Section 1.1.4,
page 10].
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and obscure. The reason is that in [7] the reader has no high-level interpretation
of the generators occurring in the low-level encoding.

Generator type

Constraint type ray point closure point

non-strict inequality 〈a, g〉 ≥ 0 〈a, g〉 ≥ b 〈a, g〉 ≥ b

strict inequality 〈a, g〉 ≥ 0 〈a, g〉 > b 〈a, g〉 ≥ b

Table 1. Checking whether a constraint is satisfied by a generator.

A natural, implementation-independent interface. The combination of mixed
constraint systems and extended generator systems offers another improvement
over the proposal in [7, 8]: a high-level user interface that is completely sepa-
rate from the implementation. On the one hand, an NNC polyhedron can be
presented to the client application directly in terms of its defining strict and
non-strict constraints or its generating rays, points and closure points; there is
no need for the client to be aware of the use of an additional space dimension
in the implementation and all issues related to its correct handling, such the
strong minimization procedures [2]. On the other hand, by relying on the high-
level specification only, the client application will be unaffected by the wider
adoption of lazy and incremental computation techniques in the procedures im-
plementing the operators on convex polyhedra. Moreover, if all the functionalities
and invariants of the interface are maintained, it is then possible to change the
low-level data structures without affecting the application.

In this paper we exploit the latter possibility by introducing an alternative
class of closed polyhedra for implementing the NNC polyhedra. The basis of this
representation is a simple generalization of the class of polyhedra used in [7, 8]
and also in [2]. The new class continues to employ an additional dimension to
encode whether or not each affine half-space defining the NNC polyhedron is
closed and relies on the same semantic function given in [2] for extracting the
NNC polyhedron it embeds. We describe two alternative specializations of this
class for representing the NNC polyhedra. One of these, shown to be biased for
the use of the constraint representation, corresponds to the embedding defined
in [2] while the other, which is biased for the use of the generator representa-
tion, is new to this paper. Moreover, we generalize the notion of strong minimal
form [2] so that it is applicable to all the above classes of closed polyhedra.

One interesting and potentially useful consequence of having the option of
these alternative implementations is that, depending on the number of strict con-
straints in the constraint system compared with the number of closure points
that are also points in the generator system, the choice of representation will af-
fect the efficiency of the polyhedral operations. The Parma Polyhedra Library 4,

4 Publicly available at URI http://www.cs./unipr.it/ppl/. The implementation de-
scribed in this paper is available in the alt nnc branch of the PPL’s CVS repository.
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a modern C++ library for the manipulation of convex polyhedra, has been ex-
tended so as to implement both approaches, so that it will be possible to perform
experiments to compare their efficiencies.

The paper is structured as follows: Section 2 recalls the required concepts
and notations; Section 3 presents a general class and two special subclasses of
the set of closed polyhedra that are appropriate for the representation of NNC
polyhedra; Section 4 generalizes, to all the above classes of closed polyhedra, the
notion of strong minimal form introduced in [2]; Section 5 concludes.

2 Preliminaries

We first define some necessary terminology and notation.
The set of non-negative reals is denoted by R+. In the paper, all topological

arguments refer to the Euclidean topological space R
n, for n ∈ N. If S ⊆ R

n, then
the topological closure C(S) is defined as

⋂

{C ⊆ Rn | S ⊆ C and C is closed }.
For each i ∈ {1, . . . , n}, vi denotes the i-th component of the (column) vector

v ∈ Rn. We denote by 0 the vector of Rn having all components equal to zero. A
vector v ∈ R

n can also be interpreted as a matrix in R
n×1 and manipulated ac-

cordingly with the usual definitions for addition, multiplication (both by a scalar
and by another matrix), and transposition, which is denoted by vT. The scalar
product of v, w ∈ Rn, denoted 〈v, w〉, is the real number vTw =

∑n
i=1 viwi.

For any relational operator ./ ∈ {=,≥,≤, <, >}, we write v ./ w to denote
the conjunctive proposition

∧n

i=1(vi ./ wi). In contrast, v 6= w will denote
the proposition ¬(v = w). For each vector a ∈ Rn and scalar b ∈ R, where
a 6= 0, the linear inequality constraint 〈a, x〉 ≥ b (resp., 〈a, x〉 > b) defines a
topologically closed (resp., open) affine half-space of R

n. We do not distinguish
between syntactically different constraints defining the same affine half-space so
that, e.g., x ≥ 2 and 2x ≥ 4 are considered to be the same constraint.

A subset P of R
n is called a closed polyhedron if either P can be expressed as

the intersection of a finite number of closed affine half-spaces of Rn or n = 0 and
P = ∅. The set of all closed polyhedra on Rn is denoted by CPn. A subset P of
Rn is called an NNC polyhedron if either P can be expressed as the intersection
of a finite number of (not necessarily closed) affine half-spaces of R

n or n = 0
and P = ∅. The set of all NNC polyhedra on Rn is denoted by Pn. The set Pn,
when partially ordered by subset inclusion, is a lattice and CPn is a sublattice
of Pn (note that CPn = Pn if and only if n = 0). The binary meet operation
is given by set-intersection, whereas the binary join operation, denoted ], is
called convex polyhedral hull, poly-hull for short. In this paper, we only consider
polyhedra in Pn when n > 0.

A mixed constraint system C is a finite set of linear inequality constraints
and we write con(C) to denote the polyhedron described by C.

Suppose that P ∈ Pn is non-empty. A vector p ∈ Rn is a point of P if p ∈ P ;
a vector r ∈ Rn such that r 6= 0 is a ray of P if, for every point p ∈ P and every
ρ ∈ R+, we have p+ρr ∈ P ; a vector c ∈ Rn is a closure point of P if c ∈ C(P).
Given three finite sets of vectors R, P, C ⊆ R

n, where R = {r1, . . . , rr} and
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0 /∈ R, P = {p1, . . . , pp} and C = {c1, . . . , cc}, then the triple G = (R, P, C) is
called an extended generator system [2] for the NNC polyhedron

gen(G)
def
=

{

r
∑

i=1

ρiri +

p
∑

i=1

πipi +

c
∑

i=1

γici

∣

∣

∣

∣

∣

ρ ∈ R
r
+
, π ∈ R

p
+, γ ∈ R

c
+
,

π 6= 0,
∑p

i=1 πi +
∑c

i=1 γi = 1

}

.

The polyhedron gen(G) is empty if and only if P = ∅. For a non-empty poly-
hedron P , vectors in R, P , and C are rays, points and closure points of P ,
respectively. We define an ordering v on extended generator systems such that,
for any generator systems G1 = (R1, P1, C1) and G2 = (R2, P2, C2), G1 v G2 if
and only if R1 ⊆ R2, P1 ⊆ P2 and C1 ⊆ C2; if, in addition, G1 6= G2, we write
G1 @ G2. When C = ∅, we will omit it from the generator system and simply
write G = (R, P ). In this case, the system G that defines the closed polyhedron
P = gen(G), is called a (standard) generator system for P .

Consider a mixed constraint system C, an extended generator system G, and
a polyhedron P . If con(C) = gen(G) = P , then (C,G) is said to be a DD pair for
P , and we write (C,G) ≡ P . We say that

– C is in minimal form if there does not exist C ′ ⊂ C such that con(C′) = P ;
– G is in minimal form if there does not exist G ′

@ G such that con(G′) = P ;
– the DD pair (C,G) is in minimal form if C and G are both in minimal form.

3 Representing NNC Polyhedra

The idea underlying the proposal of [7, 8] is to encode each NNC polyhedron of
Pn into a closed polyhedron of CPn+1. In the following, we denote by ε the vari-
able corresponding to the (n + 1)-st Cartesian axis of R

n+1. The interpretation
function [[·]] : CPn+1 → Pn maps any closed polyhedron in CPn+1 to an NNC
polyhedron in Pn; in particular, points in the closed polyhedron with a positive
ε-coordinate correspond to points in the NNC polyhedron.

Definition 1. (Represented NNC polyhedron.) Let R ∈ CPn+1 be a closed
polyhedron. R is said to represent the NNC polyhedron P ∈ Pn if and only if

P = [[R]]
def
=

{

v ∈ R
n

∣

∣

∣
∃e ∈ R .

(

e > 0 ∧ (vT, e)T ∈ R
)

}

. (1)

Note that any closed polyhedron that is included in the half-space defined by
the constraint ε ≤ 0 actually represents the empty NNC polyhedron.

Not all the polyhedra in CPn+1 are good candidates for representing an NNC
polyhedron in Pn. The rationale driving the choice of an appropriate subclass of
CPn+1 is that most of the operators defined on the domain of closed polyhedra
could be used, with no more than minor modifications, to implement correspond-
ing operators on the domain of NNC polyhedra. For instance, one would like to
implement the intersection and the poly-hull of two NNC polyhedra by comput-
ing the intersection and the poly-hull of their closed representations, respectively.
Under such a requirement, we will define two alternative representations for NNC
polyhedra. The two classes of closed polyhedra used for these representations are
instances of a more general class of closed polyhedra.
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Fig. 1. Only R2, R3 and R4 are ε-polyhedra.

Definition 2. (ε-polyhedron.) A closed polyhedron R ∈ CPn+1 is said to be
an ε-polyhedron if and only if

∃δ ∈ R .
(

δ > 0 ∧R ⊆ con
(

{ε ≤ δ}
)

)

; (2)

∀v ∈ R
n, e ∈ R : (vT, e)T ∈ R =⇒ (vT, 0)T ∈ R. (3)

The polyhedron R is said to be an ε-polyhedron for P ∈ Pn, denoted R Vε P, if
R is an ε-polyhedron and P = [[R]].

Condition (3) that every point in the ε-polyhedron R has a projection on the
hyperplane defined by the constraint (ε = 0) corresponds to a dual property
concerning the constraints for R.

Proposition 1. Let R ∈ CPn+1 be such that R ⊆ con
(

{ε ≤ δ}
)

, where δ > 0.
Then R is an ε-polyhedron if and only if

R ⊆ con
(

{

〈a, x〉 + s · ε ≥ b
}

)

=⇒ R ⊆ con
(

{

〈a, x〉 + 0 · ε ≥ b
}

)

. (4)

In Figure 1 we show several examples of polyhedra in CP2 (representing NNC
polyhedra in P1), a subset of which happens to be ε-polyhedra. In particular,
the semi-column polyhedron R1, which according to Definition 1 represents the
closed interval P1 = con

(

{1 ≤ x ≤ 3}
)

, is not an ε-polyhedron, because it is
not provided with a finite upper-bound on the ε coordinate, therefore violating
condition (2) of Definition 2. The triangle R2 is an ε-polyhedron for the open
segment P2 = con

(

{4 < x < 8}
)

. Polyhedron R3 is an ε-polyhedron for the

segment P3 = con
(

{10 < x ≤ 12}
)

, which is neither closed nor open. Similarly,

R4 is an ε-polyhedron for the closed segment P4 = con
(

{14 ≤ x ≤ 16}
)

. Finally,

polyhedron R5 represents the NNC polyhedron P5 = con
(

{18 ≤ x ≤ 20}
)

, but
it is not an ε-polyhedron because it violates condition (3) of Definition 2. For
instance, even though R ∈ R5, we have R′ /∈ R5.

If we are to provide an implementation-independent interface for the user,
we need to be able to extract from the constraint and generator systems describ-
ing an ε-polyhedron, the corresponding mixed constraint system and extended
generator system describing the NNC polyhedron it represents. Reasoning at
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the intuitive level, consider an arbitrary ε-polyhedron, such as R3 in Figure 1.
Then, it is worth noting that any facet that is parallel to the ε axis, such as
the segment [I, L], corresponding to an inequality constraint having a zero co-
efficient for the ε variable, will encode a non-strict inequality constraint of the
represented NNC polyhedron P3 (in this case, the constraint x ≤ 12). On the
other hand, any facet such as the segment [L, F], corresponding to an inequality
constraint having a negative coefficient for the ε variable, will encode a strict
inequality constraint of the represented NNC polyhedron P3 (in this case, the
constraint x > 10). Equivalently, we could have noted that in polyhedron R3

the points having a strictly positive ε coordinate can be chosen arbitrarily close
to vertex F = (10, 0)T, but all the points having value 10 for their x coordinate
happen to have a non-positive ε coordinate. Thus, the vector F′ = (10) ∈ R1

represented by F is not a point of the NNC polyhedron P3, but it is one of its
closure points. All of the above observations can be formalized as follows.

Definition 3. (Encoded descriptions.) Let (C,G) ≡ R ∈ CPn+1 be a DD
pair for a closed polyhedron. Then, if [[R]] 6= ∅, the mixed constraint system

encoded by C is defined as con enc(C)
def
= CS ∪ CNS , where

CS

def
=

{

〈a, x〉 > b
∣

∣

∣

(

〈a, x〉 + s · ε ≥ b
)

∈ C, a 6= 0, s < 0
}

,

CNS

def
=

{

〈a, x〉 ≥ b
∣

∣

∣

(

〈a, x〉 + 0 · ε ≥ b
)

∈ C,
(

〈a, x〉 > b
)

/∈ CS

}

.

If [[R]] = ∅, then we define con enc(C)
def
= {x1 > 0,−x1 > 0}. Also, the extended

generator system encoded by G = (R, P ) is defined as gen enc(G)
def
= (R′, P ′, C ′),

where

R′ def
=

{

r
∣

∣ (rT, 0)T ∈ R
}

,

P ′ def
=

{

p
∣

∣ (pT, e)T ∈ P, e > 0
}

,

C ′ def
=

{

c
∣

∣ (cT, 0)T ∈ P, c /∈ P ′
}

.

The following proposition states the correctness of the two mappings intro-
duced above.

Proposition 2. Let (C,G) ≡ R ∈ CPn+1 be an ε-polyhedron. Then

[[R]] = con
(

con enc(C)
)

= gen
(

gen enc(G)
)

. (5)

Figure 2, which shows the poly-hulls of some of the polyhedra in Figure 1,
provides a graphical and informal justification for the two conditions stated
in Definition 2. Suppose we do not enforce condition (2) of Definition 2, thus
admitting polyhedra such as R1, and consider the poly-hull P1 ]P2 = con

(

{1 ≤

x < 8}
)

. The poly-hull R1 ] R2 of the two encodings for P1 and P2 represents

a wrong result, since [[R1 ]R2]] = con
(

{1 ≤ x ≤ 8}
)

. Suppose now we do not
enforce condition (3) of Definition 2, thus allowing for polyhedra such as R5, and
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Fig. 2. R1 ] R2 does not represent the NNC polyhedron P1 ] P2; similarly, R4 ] R5

does not represent the NNC polyhedron P4 ] P5.

consider the poly-hull P4 ] P5 = con
(

{14 ≤ x ≤ 20}
)

. Again, the computation
of this poly-hull using the closed encodings of its arguments provides a wrong
result, since we have [[R4 ]R5]] = con

(

{12 < x ≤ 20}
)

.
We now consider two special subclasses of the class of ε-polyhedra. The first

of these requires zero as a lower bound for the ε dimension.

Definition 4. (C-ε-polyhedron.) An ε-polyhedron R ∈ CPn+1 is said to be
constraint-biased and called a C-ε-polyhedron if and only if

R ⊆ con
(

{ε ≥ 0}
)

.

We write R VC P if R is a C-ε-polyhedron and R Vε P.

The set of constraint-biased ε-polyhedra corresponds, essentially, to the class of
polyhedra originally proposed in [7, 8]. This is also the same class considered
in [2], where these polyhedra were called ε-representations. Thus many of the
definitions and results below concerning C-ε-polyhedra and the embedding of
the NNC polyhedra in them are taken from [2].

In [2], we have shown how a C-ε-polyhedron for an NNC polyhedron P may
be constructed directly from the constraint and generator systems for P .

Definition 5. (con reprC and gen reprC .) Let P ∈ Pn be an NNC polyhedron
such that (C,G) ≡ P. The constraint-biased representation of C is the constraint
system con reprC(C) on the vector space R

n+1 where

con reprC(C)
def
=

{

0 ≤ ε ≤ 1
}

∪
{

〈a, x〉 − 1 · ε ≥ b
∣

∣

∣

(

〈a, x〉 > b
)

∈ C
}

∪
{

〈a, x〉 + 0 · ε ≥ b
∣

∣

∣

(

〈a, x〉 ≥ b
)

∈ C
}

.

The constraint-biased representation of G = (R, P, C) is the generator system
gen reprC(G) = (R′, P ′) on the vector space Rn+1 where

R′ def
=

{

(rT, 0)T
∣

∣ r ∈ R
}

,

P ′ def
=

{

(pT, 1)T
∣

∣ p ∈ P
}

∪
{

(qT, 0)T
∣

∣ q ∈ P ∪ C
}

.
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Observe that, in the mapping defined by the representation function gen reprC

and using the notation in Definition 5, each point in P corresponds to two
distinct points in P ′, having a positive and a zero ε coordinate, respectively. This
ensures that condition (3) of Definition 2 is met. In general, the above encodings
require a constant number of additional constraints versus a linear number of
additional generators: this is the reason why ε-polyhedra in this subclass are
called “constraint-biased”.

The second special subclass of ε-polyhedra requires that all the non-empty

ε-polyhedra have the ray −eε
def
= (0T,−1)T so that there is no lower bound for

the ε dimension.

Definition 6. (G-ε-polyhedron.) An ε-polyhedron R = gen
(

(R, P )
)

∈ CPn+1

is said to be generator-biased and called a G-ε-polyhedron if and only if

R ⊇ gen
(

(

{−eε}, P
)

)

.

We write R VG P if R is a G-ε-polyhedron and R Vε P.

As for the constraint-biased case, generator-biased ε-polyhedra can also be
used for representing any NNC polyhedron. In particular, a G-ε-polyhedron for
an NNC polyhedron P may be constructed directly from the constraint and
generator systems for P .

Definition 7. (con reprG and gen reprG.) Let P ∈ Pn be an NNC polyhedron
such that (C,G) ≡ P. The generator-biased representation of C is the constraint
system con reprG(C) on the vector space R

n+1 where

con reprG(C)
def
=

{

0 ≤ ε ≤ 1
}

∪
{

〈a, x〉 − 1 · ε ≥ b
∣

∣

∣

(

〈a, x〉 > b
)

∈ C
}

∪
{

〈a, x〉 + 0 · ε ≥ b
∣

∣

∣

(

〈a, x〉 > b
)

∈ C
}

∪
{

〈a, x〉 + 0 · ε ≥ b
∣

∣

∣

(

〈a, x〉 ≥ b
)

∈ C
}

.

The generator-biased representation of G = (R, P, C) is the generator system
gen reprG(G) = (R′, P ′) on the vector space Rn+1 where

R′ =
{

−eε

}

∪
{

(rT, 0)T
∣

∣ r ∈ R
}

,

P ′ =
{

(pT, 1)T
∣

∣ p ∈ P
}

∪
{

(qT, 0)T
∣

∣ q ∈ C
}

.

It can be seen that, for each strict inequality contained in C, the repre-
sentation function con reprG adds both the strict and the non-strict inequality
encodings. This is similar to what is done for points in Definition 5 and, by
virtue of Proposition 1, ensures that condition (3) of Definition 2 is met. In
contrast, for each point in the generator system, the function gen reprG does
not add the corresponding closure point. In fact, these closure points are not
needed, because they can be generated by combining the corresponding point
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with the ray −eε, which is always added. Since the encodings for ε-polyhedra in
this subclass require a linear number of additional constraints versus a constant
number of additional generators, they are called “generator-biased”.

Returning to Figure 1, it can be observed that R2 is a constraint-biased ε-
polyhedron, R4 is a generator-biased ε-polyhedron, whereas the ε-polyhedron R3

is neither constraint-biased nor generator-biased. By comparing R3 with R1 and
R2 it can be seen that those ε-polyhedra that are not members of one of the two
subclasses can require both a linear number of additional constraints and a linear
number of additional generators (with respect to the original NNC descriptions),
resulting in a significant waste of both memory space and computational time.

The following result formalizes the correctness of the encodings introduced
in Definitions 5 and 7.

Proposition 3. Let (C,G) ≡ P ∈ Pn. Then

1. con
(

con reprC(C)
)

VC P, con
(

con reprG(C)
)

VG P;

2. gen
(

gen reprC(G)
)

VC P, gen
(

gen reprG(G)
)

VG P.

The next proposition shows that most of the operators defined on the domain
of NNC polyhedra Pn can be mapped into the corresponding operators on the
class of ε-polyhedra defined on CPn+1.

Proposition 4. Let VY ∈ {Vε, VC , VG}. Suppose R VY P, and R1 VY P1

and R2 VY P2. Then

1. R1 ∩R2 VY P1 ∩ P2;
2. (P1 6= ∅ ∧ P2 6= ∅) =⇒ (R1 ]R2 VY P1 ] P2);

3. let f
def
= λx ∈ Rn . Ax + b be any affine transformation defined on Pn; then

g(R) VY f(P), where

g
def
= λ

(

x

ε

)

∈ R
n+1 .

(

A 0
0T 1

) (

x

ε

)

+

(

b

0

)

is the corresponding affine transformation on CPn+1.

Hence, operations such as the intersection of NNC polyhedra and the application
of affine transformations can be safely performed on any ε-polyhedra for the
arguments; the same is true for the convex polyhedral hull operation, provided
neither of the arguments is empty. Moreover, both the constraint-biased and the
generator-biased subclasses are closed under the application of these operators.

4 Strong Minimization of ε-Polyhedra

As pointed out in [2], the usual minimization of the descriptions of a (constraint-
biased) ε-polyhedron does not enforce the minimization of the encoded descrip-
tions for the represented NNC polyhedron. The solution proposed in [2] is the
definition of a stronger form of minimization to be applied to the descriptions
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of constraint-biased ε-polyhedra. We here define the same notion of strong min-
imal form, but this time for arbitrary ε-polyhedra, being careful that if it is
constraint- or generator-biased before minimization, then it remains constraint-
or generator-biased, respectively, after the minimization.

Definition 8. (Strong minimal form for ε-polyhedra.) Let R ∈ CPn+1

and P ∈ Pn be such that R Vε P and let (C,G) ≡ R be a DD pair in minimal
form. Then

– C is in strong minimal form if there does not exist a constraint system C ′ ⊂ C
such that con

(

C′ ∪ {ε ≤ 1}
)

Vε P and con enc(C′) ⊂ con enc(C);
– G is in strong minimal form if there does not exist a generator system G ′

@ G
such that gen(G′) Vε P and gen enc(G′) @ gen enc(G).

The computation of strong minimal forms (smf’s, for short) requires the
removal of non-essential constraints and generators, whose efficient detection is
based on the checking of particular saturation conditions. The following notation
is needed for a formal definition of these conditions.

Let R = con(C) ∈ CPn+1. The set of strict and non-strict inequality encod-
ings C> and C≥ of C are defined as

C>
def
=

{

(

〈a, x〉 + s · ε ≥ b
)

∈ C
∣

∣

∣
a 6= 0, s < 0

}

;

C≥
def
=

{

(

〈a, x〉 + s · ε ≥ b
)

∈ C
∣

∣

∣
a 6= 0, s = 0

}

.

We say that a constraint
(

〈a, x〉 + s · ε ≥ b
)

∈ C is unmatched in C if s < 0 and
(

〈a, x〉 + 0 · ε ≥ b
)

/∈ C.
The sets of point encodings GP ⊆ P , closure point encodings GC ⊆ P , and

ray encodings GR ⊆ R of the generator system G = (R, P ) are defined as follows:

GP
def
=

{

(vT, e)T ∈ P
∣

∣ e > 0
}

;

GC
def
=

{

(vT, e)T ∈ P
∣

∣ e = 0
}

;

GR
def
=

{

(vT, e)T ∈ R
∣

∣ e = 0
}

.

A point (vT, e)T ∈ P is said to be unmatched in G if e > 0 and (vT, 0)T /∈ P .
We say that a point p (resp., a ray r) saturates a constraint 〈a, x〉 ./ b if and

only if 〈a, p〉 = b (resp., 〈a, r〉 = 0). For any point p and constraint system C,
we define

sat con(p, C)
def
= { c ∈ C | p saturates c };

and, for any constraint c and generator system G = (R, P ), we define

sat gen(c,G)
def
=

(

{ r ∈ R | r saturates c }, {p ∈ P | p saturates c }
)

.

11



Definition 9. Let (C,G) ≡ R ∈ CPn+1. A constraint c is ε-redundant in C if
c ∈ C> and at least one of the following conditions holds:

sat gen
(

c, (GR,GC)
)

v (GR, ∅);

∃c′ ∈ C> \ {c} . sat gen
(

c, (GR,GC)
)

v sat gen(c′,G).

A generator p is ε-redundant in G if p ∈ GP and

∃p′ ∈ GP \ {p} . sat con(p, C≥) ⊆ sat con(p′, C).

Note that, according to the above definition, only the strict inequality encod-
ings and the point encodings of an ε-polyhedron can be identified as ε-redundant
constraints and generators, respectively. The following result shows that such a
restriction is unconsequential, because all the redundant non-strict inequality
encodings and all the redundant closure point encodings will be filtered away by
the usual minimization procedure.

Proposition 5. Let R,R′ ∈ CPn+1 and P ∈ Pn be such that R Vε P 6= ∅ and
R′

Vε P. Then

1. for any constraint c =
(

〈a, x〉 + 0 · ε ≥ b
)

, R ⊆ con
(

{c}
)

if and only if

R′ ⊆ con
(

{c}
)

;
2. for any vector p = (vT, 0)T ∈ Rn+1, p ∈ R if and only if p ∈ R′.

The next proposition shows that ε-redundant constraints and generators can
be safely removed from the descriptions of an ε-polyhedron without affecting
the represented NNC polyhedron. Also, if the ε-polyhedron is constraint- or
generator-biased, it remains constraint- or generator-biased, respectively.

Proposition 6. Let VY ∈ {Vε, VC , VG}. Let R ∈ CPn+1 and P ∈ Pn be such
that R VY P 6= ∅ and let (C,G) ≡ R be a DD pair in minimal form. Then the
following hold:

1. If c is ε-redundant in C, then c is unmatched in C and

con
(

C \ {c} ∪ {ε ≤ 1}
)

VY P .

2. If p is ε-redundant in G = (R, P ), then p is unmatched in G and

gen
(

(

R, P \ {p}
)

)

VY P .

If there are no ε-redundant constraints or generators, then the constraint or
generator system, respectively, is in strong minimal form.

Proposition 7. Let R ∈ CPn+1 and P ∈ Pn be such that R Vε P 6= ∅ and let
(C,G) ≡ R be a DD pair in minimal form. Then the following hold:

1. If C contains no ε-redundant constraint, then it is in smf;
2. If G contains no ε-redundant generator, then it is in smf.
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It must be stressed that the above generalizations of the results regarding
strong minimal forms to any ε-polyhedron are extremely important from the
point of view of efficiency. As a matter of fact, a lot of ε-redundant constraints
and generators may be produced by a few applications of the usual operators,
even when starting from descriptions that are in strong minimal form.

To exemplify such a possibility, in Table 2 we report the results obtained
for a rather simple experimental evaluation, for which we have adopted the
new generator-biased implementation made available by the Parma Polyhedra
Library [1, 2]. The table has twelve rows in four groups of three. For each triple
of rows, we considered four NNC polyhedra Pi defined by an extended generator
system Gi = (∅, Pi, Ci). All four Gi, which are in minimal form, have the same
cardinalities for the Pi and the Ci and these are given in the 1st column. The
goal is to compute the NNC polyhedron P = (P1 ∩P2)] (P3∩P4) and each row
in the triple achieves this by following a different evaluation strategy.

#Pi + # Ci eval Inters (# Ci) Poly-hull (#Gij) Final result (# C)

1st arg 2nd arg 1st arg 2nd arg res smf time time-smf

a 48 48 131 77 356 56 0.91 0.01

4 + 8 b 32 32 40 17 156 56 0.08 0.00

c 48 32 132 17 251 56 0.16 0.00

a 62 62 209 125 537 59 2.29 0.01

8 + 8 b 36 36 50 21 308 59 0.25 0.00

c 62 36 190 21 332 59 0.37 0.00

a 132 132 414 305 2794 227 118.64 0.45

8 + 10 b 68 68 58 25 1084 227 1.42 0.06

c 132 68 261 25 1423 227 3.96 0.08

a 178 178 697 657 5078 235 932.72 2.07

16 + 10 b 80 80 78 29 1775 235 5.24 0.14

c 178 80 418 29 1238 235 9.48 0.08

Table 2. Exploiting smf’s to improve the efficiency of the computation.

For all evaluation strategies, in order to compute the two intersections, we
first obtain the constraint systems Ci; the 3rd and 4th columns of the table give
the cardinalities of each Ci, where the column labeled ‘1st arg’ indicates # C1 and
# C3 (which are always the same) while that labeled ‘2nd arg’ indicates # C2 and
# C4 (which are also always the same). We then compute the two intersections
and obtain the generator systems G12 and G34, whose cardinalities are reported
in the 5th and 6th columns. Then, we compute the poly-hull P . In the last four
columns we report: the cardinality of the constraint system obtained for P ; the
same, but after the removal of the ε-redundant constraints; the time spent by the
overall computation; the time spent to compute the final smf. Rows labeled ‘a’
correspond to the usual evaluation strategy, where no smf is computed. In this
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case, the two intersections are computed incrementally: namely, we start from
the DD pair of the first argument and incrementally add the constraints of the
second argument, keeping the generator system of the result up-to-date so that
it will be ready for the following poly-hull computation. Then, we compute the
poly-hull, again incrementally. In the rows labeled ‘b’ we report the outcomes of
an evaluation strategy that exploits the possibility of obtaining the smf’s of both
arguments before each operation (in the table, the cardinalities computed after
the application of strong minimization are shown in boldface). Note that, in our
current implementation, such a strategy does not fit very well with the adoption
of the incremental approach, because after the computation of the smf for one
description we no longer have a DD pair [2]. Therefore, after computing the
smf of the first argument of each operation, the corresponding dual description
has to be recomputed from scratch. The rows labeled ‘c’ report the outcomes
of an intermediate evaluation strategy, where we only compute the smf’s of the
second argument of each operation, so that the incremental approach can still
be adopted. For the examples considered, the latter strategy results in slightly
smaller, but still impressive, performance improvements.

Even though the considered examples are not meant to provide a faithful
representation of typical computation patterns, we can make a couple of ob-
servations based on these experiments. There may be many ε-redundant con-
straints/generators, and their removal can lead to dramatic speed-ups. More-
over, the identification of ε-redundant constraints/generators has a negligible
cost (see the last column in Table 2) so that the number of ε-redundant ele-
ments contained in a description can be efficiently computed at run time; based
on this, it is always possible to dynamically select the evaluation strategy that
is likely to result in a more efficient computation. We believe that the third
strategy, by preserving incrementality, is a safe and generally rewarding choice.

5 Conclusion

Convex polyhedra provide the basis for several abstractions used in static anal-
ysis and computer-aided verification of complex system. Some of these appli-
cations require the manipulation of convex polyhedra that are not necessarily
closed. In a previous paper we proposed an elegant way of decoupling the essen-
tial geometric features of NNC polyhedra from their traditional implementation.
This separation, besides providing a natural and easy to use interface, enables the
search for new implementation techniques and makes their eventual integration
into existing software libraries seamless (i.e., transparent to the client applica-
tion). In this work we have shown that the standard implementation of NNC
polyhedra, which happens to be biased for constraint-intensive computations,
has a dual. We have completely defined this new, previously unknown, imple-
mentation and showed that it is biased for generator-intensive computations.
Moreover, we have provided a generalization of a notion of strong minimal form
that is applicable to both constraint- and generator-biased implementations. We
have also shown that this general notion of strong minimization can have a dra-
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matic effect on the size of the representations and, thus, on the efficiency of the
algorithms operating upon them.

The encoding based on G-ε-polyhedra has dual properties with respect to the
one based on C-ε-polyhedra. In particular, using a C-ε-polyhedron, the encoding
of an NNC polyhedron may require a similar number of constraints but as many
as twice the number of generators, while, using a G-ε-polyhedron, it may require
a similar number of generators but as many as twice the number of constraints.
We have extended the Parma Polyhedra Library [1, 2], a modern C++ library
for the manipulation of convex polyhedra, so as to implement NNC polyhedra
both with the constraint- and the generator-biased encodings. This enabled us
to perform some very preliminary experiments on purely synthetic benchmarks.
It seems likely that the performance of one encoding with respect to the other
will depend on the particular application and, more specifically, on the kind of
polyhedra and operations that are more common in that application.

For future work, given the dual characteristics of the two representations, it
would be interesting to investigate whether efficient techniques can be devised so
as to use both constraint- and generator-biased encodings, switching dynamically
from one to the other in an attempt to maximize performance.
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A Proofs

For each set S ⊆ R
n of finite cardinality m, we denote by matrix(S) ⊆ R

n×m

the set of all matrices having S as the set of their columns.
In the proofs below we assume the following simple consequence of well known

theorems by Minkowski and Weyl [11].

Theorem 1. The set P ⊆ Rn is a closed polyhedron if and only if there exist
finite sets R, P ⊆ Rn of cardinality r and p, respectively, such that 0 /∈ R
and, for any matrices K ∈ Rn×r and L ∈ Rn×p where K ∈ matrix(R) and
L ∈ matrix(P ),

P =
{

Kρ + Lπ ∈ R
n

∣

∣ ρ ∈ R
r
+
, π ∈ R

p
+
,
∑p

i=1 πi = 1
}

.

Proof (Proof of Proposition 1 on page 6). Let R = con(C). We first assume
that (4) holds for any constraint c ∈ C and show that R is an ε-polyhedron.
Condition (2) of Definition 2 holds by hypothesis. We prove condition (3) holds.

Let c =
(

〈a, x〉 + s · ε ≥ b
)

. Then, by (4), R ⊆ con
(

{

〈a, x〉 + 0 · ε ≥ b
}

)

. Thus,

for any point (vT, e)T ∈ R we have 〈a, v〉+0 ·e ≥ b, so that also 〈a, v〉+s ·0 ≥ b
and hence (vT, 0)T satisfies c. As c was an arbitrary constraint in C, (vT, 0)T ∈ R
and condition (3) holds.

Second we assume that R is an ε-polyhedron and prove that (4) holds. Sup-
pose c =

(

〈a, x〉+s·ε ≥ b
)

and that R ⊆ con
(

{c}
)

. Then, any point (vT, e)T ∈ R
satisfies c. By condition (3) of Definition 2, (vT, 0)T ∈ R and therefore satisfies
c. Thus we have 〈a, v〉 ≥ b. Hence, if c0 =

(

〈a, x〉 + 0 · ε ≥ b
)

, (vT, e)T satisfies

c0. As (vT, e)T was an arbitrary point in R, R ⊆ con
(

{c0}
)

. ut

To prove Proposition 2, we need a few additional lemmas.

Lemma 1. If R ∈ CPn+1 is an ε-polyhedron and (rT, e)T is a ray of R, where
r 6= 0, then (rT, 0)T is a ray of R.
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Proof. Since R has a ray, it is not empty. Thus, let (vT, e′)T ∈ R. By condi-
tion (3) of Definition 2, we also have (vT, 0)T ∈ R.

Since (rT, e)T is a ray of R, for all ρ ∈ R+ we have that

(vT, 0)T + ρ(rT, e)T =
(

(v + ρr)T, ρe
)T

∈ R.

From this, again by condition (3) of Definition 2, we obtain

(

(v + ρr)T, 0
)T

= (vT, 0)T + ρ(rT, 0)T ∈ R,

proving that also (rT, 0)T is a ray of R. ut

Lemma 2. If R ∈ CPn+1 is an ε-polyhedron and (rT, e)T is a ray of R, then
e ≤ 0.

Proof. Since R is an ε-polyhedron, condition (2) of Definition 2 holds so that,
for some δ > 0 every point in R satisfies the constraint ε ≤ δ. Since R has a
ray, it is non-empty, so that there exists a point (vT, e0)

T ∈ R such that e0 ≤ δ.
Thus, for all ρ ∈ R+,

(vT

ρ , eρ)
T = (vT, e0)

T + ρ(rT, e)T ∈ R.

By condition (2) of Definition 2, eρ = e0 + ρe ≤ δ. Therefore, as this holds for
all ρ ∈ R+, we have e ≤ 0. ut

Lemma 3. Let R = gen(G) ∈ CPn+1 be an ε-polyhedron, where G = (R, P ).
Let also (vT, e′)T ∈ R for some e′ ∈ R and take emax ∈ R to be the maximal
ε coordinate such that (vT, emax)

T ∈ R. Then (vT, emax)
T ∈ gen

(

(R′, P ′ ∪ C ′)
)

,
where

R′ =
{

(rT, e)T ∈ R
∣

∣ e = 0
}

,

P ′ =
{

(vT, e)T ∈ P
∣

∣ e > 0
}

,

C ′ =
{

(vT, e)T ∈ P
∣

∣ e = 0, ∀e′ ∈ R : (vT, e′)T /∈ P ′
}

.

Proof. By hypothesis, (vT, emax)
T ∈ gen

(

(R, P )
)

so that

(vT, emax)
T = (rT, er)

T + π1(p
T

1 , e1)
T + · · · + πp(p

T

p , ep)
T (6)

where (rT, er)
T is a ray in R, {p1, . . . , pp} ⊆ P , π1, . . . , πp > 0 and

∑p
i=1 πi = 1.

By Lemma 2, er ≤ 0. Note that it cannot be r = 0, since this would also
entail er < 0, so that

(vT, e′)T = π1(p
T

1 , e1)
T + · · · + πp(p

T

p , ep)
T ∈ R,

where e′ = emax − er > emax, therefore contradicting the maximality of emax.
Hence r 6= 0 and, by Lemma 1, (rT, 0)T is also a ray in R. Note that it can
neither be er < 0, since in this case, by replacing (rT, er)

T by (rT, 0)T in (6), we
would obtain the same contradiction seen above. Hence er = 0. Since (rT, er)

T
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is a ray of R, then it can be obtained as a non-negative combination of rays
in R; by Lemma 2, all of these rays must have a non-positive ε coordinate and
hence, as er = 0, they all have a zero ε coordinate. As a consequence, (rT, er)

T

is a non-negative combination of rays in R′, so that (vT, emax)
T ∈ gen

(

(R′, P )
)

.
Suppose that ei < 0 for some 1 ≤ i ≤ p. Then, as R is an ε-polyhedron,

by condition (3) of Definition 2, (pT

i , 0)T ∈ R. Replacing the point (pT

i , ei)
T by

(pT

i , 0)T in (6), we obtain

(vT, e′)T = (rT, er)
T + π1(p

T

1 , e1)
T + · · · + πi(p

T

i , 0)T + · · · + πp(p
T

p , ep)
T ∈ R

where e′ = emax−ei > emax, again contradicting the maximality of emax. Suppose
now that, for some 1 ≤ i ≤ p, ei = 0 and there exists e′i > 0, such that
(pT

i , e′i)
T ∈ P . Replacing the point (pT

i , ei)
T by (pT

i , e′i)
T in (6), we obtain

(vT, e′)T = (rT, er)
T + π1(p

T

1 , e1)
T + · · · + πi(p

T

i , e′i)
T + · · · + πp(p

T

p , ep)
T ∈ R

where e′ = emax + e′i > emax, which again contradicts the maximality of emax. It
follows that, for all 1 ≤ i ≤ p, the point (pT

i , ei)
T is in P ′ if ei > 0 and it is in

C ′ otherwise. Thus, (vT, emax)
T ∈ gen

(

(R′, P ′ ∪ C ′)
)

. ut

Proof (Proof of Proposition 2 on page 7). Let con enc(C) be as specified
in Definition 3. Let also G = (R, P ), so that gen enc(G) = (R′, P ′, C ′), where
R′ = {r1, . . . , rr}, P ′ = {p1, . . . , pp}, and C ′ = {c1, . . . , cc}.

Suppose first that [[R]] = ∅. Then, by Definition 3, con
(

con enc(C)
)

= ∅.

Also, by Definition 1, R ⊆ con
(

{ε ≤ 0}
)

so that, by Definition 3, P ′ = ∅ and

gen
(

(R′, P ′, C ′)
)

= ∅. Thus 5) holds.

Suppose now that [[R]] 6= ∅. We will first prove that con
(

con enc(C)
)

⊆ [[R]]

and gen
(

gen enc(G)
)

⊆ [[R]]. To this end, we assume that one of the following
holds:

v ∈ con
(

con enc(C)
)

, (7)

v ∈ gen
(

gen enc(G)
)

, (8)

and, in each case, we show that there exists e > 0 such that (vT, e)T ∈ R.
Suppose that (7) holds. If c =

(

〈a, x〉 + 0 · ε ≥ b
)

∈ C, then, by Definition 3,

there exists
(

〈a, x〉 ./ b
)

∈ con enc(C), for some ./ ∈ {≥, >}. Thus 〈a, v〉 ≥ b

and hence (vT, e)T satisfies c for all e ∈ R. If
(

〈a, x〉 + s · ε ≥ b
)

∈ C, for some

s < 0 and a 6= 0, then, by Definition 3,
(

〈a, x〉 > b
)

∈ con enc(C). Thus, as

(7) holds, 〈a, v〉 > b. If
(

〈0, x〉 + s · ε ≥ b
)

∈ C, for some s < 0, then, as [[R]] is
non-empty, by Definition 2, b < 0. By condition (2) of Definition 2, the set

{

(

〈a, v〉 − b
)

∈ R

∣

∣

∣
∃s < 0 .

(

〈a, x〉 + s · ε ≥ b
)

∈ C
}

is non-empty. Let emin be its smallest element. It follows that emin > 0 and
the point (vT, emin)T satisfies every constraint

(

〈a, x〉 + s · ε ≥ b
)

∈ C such
that s ≤ 0. Reasoning towards a contradiction, suppose that (vT, emin)T /∈ R.
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As [[R]] 6= ∅, by Definition 1, there exists (wT, ew)T ∈ R such that ew > 0;
in particular, (wT, ew)T satisfies all constraints in C. Thus there exists a point
(wT

0 , e0)
T ∈ R which lies on the line segment joining (wT, ew)T and (vT, emin)T

that saturates a constraint
(

〈a′, x〉+s′ ·ε ≥ b′
)

∈ C where s′ > 0. Thus 〈a′, w0〉+
s′ ·e0 = b′. However, as e0 > 0, 〈a′, w0〉 < b′ so that (wT

0 , 0)T /∈ R, contradicting
condition (3) of Definition 2. Thus (vT, emin)T ∈ R.

Suppose next that (8) holds. By Theorem 1

v =

r
∑

i=1

ρiri +

p
∑

i=1

πipi +

c
∑

i=1

γici

where ρ ∈ Rr
+
, π ∈ R

p
+, γ ∈ Rc

+
, π 6= 0 and

∑p
i=1 πi +

∑c
i=1 γi = 1. By

Definition 3,
{

(rT

1 , 0)T, . . . , (rT

r , 0)T
}

⊆ R,
{

(pT

1 , e1)
T, . . . , (pT

p , ep)
T
}

⊆ P , for

some e1, . . . , ep > 0, and
{

(cT

1 , 0)T, . . . , (cT

c , 0)T
}

⊆ P . Letting

(vT, e)T =
r

∑

i=1

ρi(r
T

i , 0)T +

p
∑

i=1

πi(p
T

i , ei)
T +

c
∑

i=1

γi(c
T

i , 0)T

we obtain (vT, e)T ∈ gen(G) = R. Since π 6= 0, we also obtain e > 0.
We now prove that [[R]] ⊆ con

(

con enc(C)
)

and [[R]] ⊆ gen
(

gen enc(G)
)

.
To this end, let (vT, e)T ∈ R, where e > 0; since R is an ε-polyhedron, by
condition (2) of Definition 2, the ε dimension is bounded from above and thus
there exists a value emax ≥ e such that (vT, emax)

T ∈ R and, for all e′ > emax,
(vT, e′)T /∈ R. We show that both (7) and (8) hold.

Suppose that c′ =
(

〈a, x〉 ./ b
)

∈ con enc(C), where ./ ∈ {≥, >}. Then, by

Definition 3, there exists s ≤ 0 such that c =
(

〈a, x〉 + s · ε ≥ b
)

∈ C. Since
(vT, emax)

T ∈ R, then 〈a, v〉+ s · emax ≥ b so that, as emax > 0 holds, we obtain
〈a, v〉 ≥ b. Moreover, if ./ ∈ {>}, then s < 0 and we obtain 〈a, v〉 > b. Thus,
for any ./ ∈ {≥, >}, v satisfies c′. As c′ ∈ con enc(C) was chosen arbitrarily, (7)
holds.

We next prove (8). Since emax was chosen to be maximal for v, we can apply
Lemma 3, so that (vT, emax)

T ∈ gen
(

(R′′, P ′′ ∪ C ′′)
)

, where

R′′ =
{

(rT, e)T ∈ R
∣

∣ e = 0
}

=
{

(rT

1 , 0)T, . . . , (rT

r , 0)T
}

,

P ′′ =
{

(pT, e)T ∈ P
∣

∣ e > 0
}

=
{

(pT

1 , e1)
T, . . . , (pT

p , ep)
T
}

,

C ′′ =
{

(cT, e)T ∈ P
∣

∣ e = 0, ∀e′ > 0 : (cT, e′)T /∈ P ′′
}

=
{

(cT

1 , 0)T, . . . , (cT

c , 0)T
}

.

By definition of gen, we obtain

(vT, emax)
T =

r
∑

i=1

ρi(r
T

i , 0)T +

p
∑

i=1

πi(p
T

i , ei)
T +

c
∑

i=1

γi(c
T

i , 0)T;

where ρ ∈ Rr
+
, π ∈ R

p
+ and γ ∈ Rc

+
such that π 6= 0 and

∑p
i=1 πi +

∑c
i=1 γi = 1.

By Definition 3, for each 1 ≤ i ≤ r, ri ∈ R′; for 1 ≤ i ≤ p, pi ∈ P ′; and, for
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1 ≤ i ≤ c, ci ∈ C ′, so that

v =

r
∑

i=1

ρiri +

p
∑

i=1

πipi +

c
∑

i=1

γici

and hence v ∈ gen
(

(R′, P ′, C ′)
)

. Thus (8) holds. ut

Proof (Proof of Proposition 3 on page 10). To prove item 1 of the Propo-
sition, we first show that, for any Y ∈ {C, G},

con(C) = con
(

con enc
(

con reprY (C)
)

)

. (9)

Let C1 = con reprY (C) and C2 = con enc(C1). Let c =
(

〈a, x〉 ./ b
)

∈ C, for some

./ ∈ {≥, >}. If ./ ∈ {>}, then, by Definitions 5 and 7,
(

〈a, x〉 − 1 · ε ≥ b
)

∈ C1

and hence, by Definition 3,
(

〈a, x〉 > b
)

∈ C2. If otherwise ./ ∈ {≥}, then,

by Definitions 5 and 7,
(

〈a, x〉 + 0 · ε ≥ b
)

∈ C1 and hence, by Definition 3,
(

〈a, x〉 ./ b
)

∈ C2, for some ./ ∈ {≥, >}. Thus c is satisfied by all the points in
con(C2). As c was an arbitrary constraint in C, we obtain con(C) ⊆ con(C2).

Now let c =
(

〈a, x〉 ./ b
)

∈ C2, for some ./ ∈ {≥, >}. If ./ ∈ {>}, then,

by Definition 3,
(

〈a, x〉 + s · ε ≥ b
)

∈ C1, where s < 0. By Definitions 5 and 7,
(

〈a, x〉 > b
)

∈ C. If ./ ∈ {≥}, then, by Definition 3,
(

〈a, x〉 + 0 · ε ≥ b
)

∈ C1.

Thus, by Definitions 5 and 7,
(

〈a, x〉 ./ b
)

∈ C, for some ./ ∈ {≥, >}. Thus c is
satisfied by all the points in con(C). As c was an arbitrary constraint in C, we
obtain con(C2) ⊆ con(C). Thus (9) holds. As a consequence, by Proposition 2,
we have con(C1) Vε con(C).

Suppose now that Y = C. Then, by Definition 5, con(C1) ⊆ con
(

{ε ≥ 0}
)

so that, by Definition 4, con(C1) is a C-ε-polyhedron. Otherwise, suppose that
Y = G. If con(C1) = ∅ then, by Definition 6, it is a G-ε-polyhedron. Otherwise,
let (vT, e)T ∈ con(C1) and consider c′ ∈ C1. By Definition 7, either c′ = (ε ≤ 1)
or, for some a ∈ Rn, b ∈ R and s ∈ {0,−1}, c′ =

(

〈a, x〉 + s · ε ≥ b
)

. Thus,
for all ρ ∈ R+, (vT, e′)T = (vT, e)T + ρ(−eε) satisfies c′, so that −eε is a ray
in con

(

{c′}
)

. As the choice of c′ was arbitrary, −eε is a ray in con(C1) so that,
by Definition 6, con(C1) is a G-ε-polyhedron. Therefore the proof of item 1 is
complete.

To prove item 2 of the Proposition, we show that for any Y ∈ {C, G},

gen(G) = gen
(

gen enc
(

gen reprY (G)
)

)

. (10)

Let G = (R, P, C), G1 = gen reprY (G) = (R1, P1) and G2 = gen enc(G1) =
(R2, P2, C2). Suppose first that v ∈ R ∪ P ∪ C. If v ∈ R, then, by Definitions 5
and 7, (vT, 0)T ∈ R1 and hence, by Definition 3, v ∈ R2. If v ∈ P , then,
by Definitions 5 and 7, (vT, 1)T ∈ P1 and hence, by Definition 3, v ∈ P2. If
v ∈ C, then, by Definitions 5 and 7, (vT, 0)T ∈ P1 and hence, by Definition 3,
v ∈ P2 ∪ C2. Therefore, by definition of gen, we obtain gen(G) ⊆ gen(G2).

Now suppose v ∈ R2∪P2∪C2. If v ∈ R2, then, by Definition 3, (vT, 0)T ∈ R1.
By Definitions 5 and 7, v ∈ R. If v ∈ P2, then, by Definition 3, (vT, e)T ∈ P1,
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for some e > 0. Thus, by Definitions 5 and 7, v ∈ P . If v ∈ C2, then, by
Definition 3, (vT, e)T ∈ P1, for some e ≥ 0. Thus, by Definitions 5 and 7,
v ∈ P∪C. Therefore, by definition of gen, we obtain gen(G) ⊇ gen(G2). Thus (10)
holds. As a consequence, by Proposition 2, we have gen(G1) Vε gen(G).

Suppose now that Y = G. Then, by Definition 7, −eε ∈ R1 so that, by
Definition 6, gen(G1) is a G-ε-polyhedron. Otherwise, suppose that Y = C.
Observe that, by Definition 5, for each vector (vT

1 , e1)
T ∈ R1∪P1, we have e1 ≥ 0;

this implies that, for any point (vT, e)T ∈ gen(G1), we still have e ≥ 0. Thus
gen(G1) ⊆ con

(

{ε ≥ 0}
)

so that, by Definition 4, gen(G1) is a C-ε-polyhedron,
This completes the proof of item 2. ut

The proof of the Proposition 4 on page 10, requires a number of additional
preliminary results. In [2], we have shown that when considering NNC polyhedra,
closure points can be characterized by a property which is similar to the one used
when defining rays.

Proposition 8. [2, Proposition 3] Let P ∈ Pn and c ∈ Rn. Then c ∈ C(P) if
and only if P 6= ∅ and σp + (1− σ)c ∈ P for every point p ∈ P and σ ∈ R such
that 0 < σ < 1.

As for a C-ε-polyhedron (see [2, Lemma 5]), for any ε-polyhedron, closure
points in the NNC polyhedron are represented by points lying on the hyperplane
defined by ε = 0.

Lemma 4. Let R ∈ CPn+1 be such that R Vε P 6= ∅. Then

C(P) =
{

v ∈ R
n

∣

∣ (vT, 0)T ∈ R
}

.

Proof. Letting P ′ =
{

v ∈ Rn
∣

∣ (vT, 0)T ∈ R
}

, we will prove P ′ = C(P).
First, we show that P ′ ⊆ C(P). Let v ∈ P ′, so that (vT, 0)T ∈ R, and

consider any point p ∈ P (note that such a point exists by hypothesis). Then,
since R Vε P , there exists e > 0 such that (pT, e)T ∈ R. Since R is a convex
set, for all σ ∈ R such that 0 < σ < 1 we have

σ(pT, e)T + (1 − σ)(vT, 0)T =
(

σpT + (1 − σ)vT, σe
)T

∈ R.

Since σe > 0, by Definition 1, we obtain σp + (1 − σ)v ∈ P . As the choices
of p ∈ P and σ were both arbitrary, we can apply Proposition 8 and conclude
v ∈ C(P).

Now we show that C(P) ⊆ P ′. Let v ∈ C(P) and, for all i ∈ N such that
i > 1, define σi = 1

i
, so that 0 < σi < 1. Then, by Proposition 8, for all p ∈ P

we have
vi = σip + (1 − σi)v ∈ P .

Since R Vε P , by applying the fact that P = [[R]] and then property (3) of
Definition 2, we obtain (vT

i , 0)T ∈ R. If p = v, then vi = v, so that the thesis
holds. Otherwise, let p 6= v. For any open ball of R

n+1 centered in (vT, 0)T and
having radius δ > 0, there exists a j ∈ N such that σj < δ; thus, (vT

j , 0)T ∈ R
belongs to the ball and, as the choice of δ is arbitrary, (vT, 0)T ∈ C(R). However,
R ∈ CPn+1 is a topologically closed set, so that R = C(R) and (vT, 0)T ∈ R.
Hence, v ∈ P ′, completing the proof. ut
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Lemma 5. Let R ∈ CPn+1 be such that R Vε P 6= ∅ and r ∈ R
n be a ray of

the NNC polyhedron P. Then (rT, 0)T is a ray of R.

Proof. Suppose v ∈ P and ρ ∈ R+. Then v + ρr ∈ P . By Definition 1, for
some e1, e2 > 0, we have (vT, e1)

T ∈ R and
(

(v + ρr)T, e2

)T

∈ R and hence,

by condition (2) of Definition 2, (vT, 0)T ∈ R and
(

(v + ρr)T, 0
)T

∈ R. Thus
(vT, 0)T + ρ(rT, 0)T ∈ R. Therefore, as this holds for all ρ ∈ R+, (rT, 0)T is a ray
of R. ut

Lemma 6. Let R = gen
(

(R, P )
)

∈ CPn+1 be such that R Vε P 6= ∅. Let also

R′ =
{

(rT, 0)T
∣

∣ (rT, e)T ∈ R, r 6= 0
}

∪
{

−eε

∣

∣ (rT, e)T ∈ R, e < 0
}

.

Then gen
(

(R′, P )
)

Vε P.

Proof. Let R′ = gen
(

(R′, P )
)

.
First, suppose that for all (rT, e)T ∈ R we have e = 0. Then, the result holds

by observing that, in such a case, we obtain R′ = R and thus R′ = R.

Second, suppose that there exists (rT, e)T ∈ R such that e 6= 0. By Lemma 2,
it holds e < 0. It follows from the hypothesis that (−eε) ∈ R′.

Consider a ray (rT, e)T ∈ R. If e = 0, then r 6= 0 so that, by hypothesis,
(rT, e)T ∈ R′. If e < 0 and r = 0, then we can write (rT, e)T = −e(−eε),
where (−eε) ∈ R′ and −e > 0 is a positive factor. Otherwise, if e < 0 and
r 6= 0, then, by the hypothesis, we have

{

(rT, 0)T,−eε

}

⊆ R′ and we can write
(rT, e)T = (rT, 0)T − e(−eε). Thus, each element of R can be obtained as a
positive combination of elements of R′, therefore proving that R ⊆ R′ and, by
monotonicity, P ⊆ [[R′]].

To prove the other inclusion, let R′′ = R′\{−eε} and R′′ = gen
(

(R′′, P )
)

. For
each ray (rT, 0)T ∈ R′′, by hypothesis, we have (rT, e)T ∈ R so that, by Lemma 1,
(rT, 0)T is also a ray of R. Hence, R′′ ⊆ R. By the above observations, we obtain
that

∀(pT, e)T ∈ R′ : ∃(pT, e0)
T ∈ R, ρ ∈ R+ . (pT, e)T = (pT, e0)

T + ρ(−eε). (11)

Let now p ∈ [[R′]], so that there exists (pT, e)T ∈ R′ such that e > 0. By
applying (11), we obtain that (pT, e0)

T ∈ R, where e0 = e + ρ > 0, proving that
p ∈ [[R]] = P . As the choice of p was arbitrary, [[R′]] ⊆ P .

To complete the proof, we have to show that R′ is an ε-polyhedron. Condi-
tion (2) of Definition 2 easily follows from (11), because R is an ε-polyhedron:
namely, we can consider the same upper bound constraint ε ≤ δ used for R.
To prove condition (3) of Definition 2, let (pT, e)T ∈ R′. By (11), we have
(pT, e)T = (pT, e0)

T + ρ(−eε), where (pT, e0)
T ∈ R. As R is an ε-polyhedron, we

also have (pT, 0)T ∈ R. Since we already observed that R ⊆ R′, this completes
the proof. ut

The following Lemma is proved in [2].
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Lemma 7. For j ∈ {1, 2}, let Pj = gen
(

(Rj , Pj , Cj)
)

∈ Pn be a non-empty
NNC polyhedron; let also kj be the cardinality of Rj and Kj ∈ matrix(Rj). Then
x ∈ P1 ] P2 if and only if there exist 0 ≤ σ ≤ 1, x1 ∈ C(P1), x2 ∈ C(P2),
ρ1 ∈ Rk1

+
and ρ2 ∈ Rk2

+
such that

x = σx1 + (1 − σ)x2 + ρ1K1 + ρ2K2,

where (x1 ∈ P1 ∧ σ > 0) ∨ (x2 ∈ P2 ∧ σ < 1).

Proof (Proof of Proposition 4 on page 10). The case when VY ∈ {VC} is
proved in [2, Proposition 3]. We prove here the cases when VY ∈ {Vε, VG}.

To prove item (1), we assume that R1 VY P1 and R2 VY P2 and show that
R1 ∩R2 VY P1 ∩ P2.

We first prove condition (2) of Definition 2. As R1 and R2 are ε-polyhedra
there exists δ1, δ2 > 0 such that R1 ⊆ con

(

{ε ≤ δ1}
)

and R2 ⊆ con
(

{ε ≤ δ2}
)

.

Letting δ = min{δ1, δ2} we have R1 ∩R2 ⊆ con
(

{ε ≤ δ}
)

.
To prove condition (3) of Definition 2, let (vT, e)T ∈ R1∩R2. Then, as R1 and

R2 are ε-polyhedra, (vT, 0)T ∈ R1 and (vT, 0)T ∈ R2. Hence (vT, 0)T ∈ R1∩R2.
Having shown that R1 ∩R2 is an ε-polyhedron, we next show that it repre-

sents P1 ∩ P2. By Definition 1, we have to show that v ∈ P1 ∩ P2 if and only if
there exists e > 0 such that (vT, e)T ∈ R1 ∩ R2. First, let v ∈ P1 ∩ P2. By hy-
pothesis, R1 Vε P1 and R2 Vε P2, so that P1 = [[R1]] and P2 = [[R2]]. Hence, by
Definition 1, there exist e1, e2 > 0 such that (vT, e1)

T ∈ R1 and (vT, e2)
T ∈ R2.

Suppose, without loss of generality, that e1 ≤ e2. By condition (3) of Defini-
tion 2, (vT, 0)T ∈ R2. Thus, since R2 is a convex set, (vT, e1)

T ∈ R2. Hence,
(vT, e1)

T ∈ R1 ∩ R2. Secondly, suppose that there exists e > 0 such that
(vT, e)T ∈ R1 ∩ R2. Then (vT, e)T ∈ R1 and (vT, e)T ∈ R2. As P1 = [[R1]] and
P2 = [[R2]], v ∈ P1 and v ∈ P2, so that v ∈ P1 ∩P2. Thus, R1 ∩R2 Vε P1 ∩P2.

To prove that R1 ∩ R2 is a G-ε-polyhedron when R1 and R2 are G-ε-
polyhedra, we consider two subcases. If R1 ∩ R2 = ∅,then there is nothing
to prove. If otherwise R1 ∩ R2 6= ∅, then we have to prove that −eε is a
ray in R1 ∩ R2. Let v′ ∈ R1 ∩ R2 and consider, for any ρ ∈ R+, the vector
v′

ρ = v′ + ρ(−eε). As v′ ∈ R1 ∩ R2, v′ ∈ R1 and v′ ∈ R2. As R1 and R2 are
non-empty G-ε-polyhedra, −eε is a ray in R1 and R2 so that, for any ρ ∈ R+,
v′

ρ ∈ R1 and v′
ρ ∈ R2. Hence v′

ρ ∈ R1 ∩R2.
To prove item (2) of the proposition, we assume that R1 VY P2 6= ∅ and

R2 VY P2 6= ∅ and show that R1 ]R2 VY P1 ] P2.
For j ∈ {1, 2}, let Pj = gen

(

(Rj , Pj , Cj)
)

, where Rj has cardinality kj . By
Lemma 7, if (vT, e)T ∈ R1 ] R2, then for some 0 ≤ σ ≤ 1, (v1

T, e1)
T ∈ R1,

(v2
T, e2)

T ∈ R2, e′1, e
′
2 ∈ R, r1 = ρ1K1 and r2 = ρ2K2 where K1 ∈ matrix(R1),

K2 ∈ matrix(R2), ρ1 ∈ R
k1
+

and ρ2 ∈ R
k2
+

, we have

(

v

e

)

= σ

(

v1

e1

)

+ (1 − σ)

(

v2

e2

)

+

(

r1

e′1

)

+

(

r2

e′2

)

=

(

σv1 + (1 − σ)v2

σe1 + (1 − σ)e2

)

+

(

r1

e′1

)

+

(

r2

e′2

)

. (12)
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We first prove condition (2) of Definition 2. As R1,R2 are ε-polyhedra, there
exist δ1, δ2 > 0 such that R1 ⊆ con

(

{ε ≤ δ1}
)

and R2 ⊆ con
(

{ε ≤ δ2}
)

.
Suppose that (vT, e)T ∈ R1 ] R2 and rewrite it according to (12). By letting
δ = max{δ1, δ2}, we obtain e1 ≤ δ and e2 ≤ δ. Also, by Lemma 2, e′1, e

′
2 ≤ 0.

Thus e = σe1 +(1−σ)e2 +e′1 +e′2 satisfies e ≤ δ so that (vT, e)T ∈ con
(

{ε ≤ δ}
)

,
as required.

To prove condition (3) of Definition 2, suppose that (vT, e)T ∈ R1 ] R2,
so that we can rewrite it according to (12). As R1 and R2 are ε-polyhedra,
(vT

1 , 0)T ∈ R1 and (vT

2 , 0)T ∈ R2 and, by Lemma 1, (rT

1 , 0)T is a ray in R1 and
(rT

2 , 0)T is a ray in R2, so that

(

v

0

)

= σ

(

v1

0

)

+ (1 − σ)

(

v2

0

)

+

(

r1

0

)

+

(

r2

0

)

∈ R1 ]R2.

Having shown that R1 ]R2 is an ε-polyhedron, we next show that it repre-
sents P1 ] P2. By Definition 1, we have to prove that v ∈ P1 ] P2 if and only if
there exists e > 0 such that (vT, e)T ∈ R1 ]R2. First suppose that v ∈ P1 ]P2.
Then, by Lemma 7, v = σv1 + (1 − σ)v2 + r1 + r2, for some 0 ≤ σ ≤ 1,
v1 ∈ C(P1) and v2 ∈ C(P2), where v1 ∈ P1 and σ > 0 or v2 ∈ P2 and σ < 1,
and r1 = ρ1K1 and r2 = ρ2K2 where K1 ∈ matrix(R1) and K2 ∈ matrix(R2),
ρ1 ∈ Rk1

+
and ρ2 ∈ Rk2

+
. Suppose, without loss of generality, that v1 ∈ P1 and

σ > 0. As R1 Vε P1, there exists e1 > 0 such that (vT

1 , e1)
T ∈ R1. As R2 is

an ε-polyhedron, by Lemma 4, from v2 ∈ C(R2) we obtain (vT

2 , 0)T ∈ R2. By
Lemma 5, (rT

1 , 0)T is a ray in R1 and (rT

2 , 0)T is a ray in R2. Thus, by letting

(

v

e1

)

= σ

(

v1

e1

)

+ (1 − σ)

(

v2

0

)

+

(

r1

0

)

+

(

r2

0

)

,

we obtain (vT, e1)
T ∈ R1 ] R2, where e1 > 0 as required. Secondly, suppose

that there exists e > 0 such that (vT, e)T ∈ R1 ] R2, so that we can rewrite
it according to (12). As e > 0 and σ ≥ 0, either e1 > 0 and σ > 0 or e2 > 0
and σ < 1. Without loss of generality, we assume that e1 > 0 and σ > 0. As
R1 Vε P1, we have v1 ∈ P1. As R2 Vε P2, by Lemma 4, v2 ∈ C(P2). Thus, by
Lemma 7,

v = σv1 + (1 − σ)v2 + r1 + r2 ∈ P1 ] P2.

Thus, R1 ]R2 Vε P1 ] P2.
To prove that R1 ] R2 is a G-ε-polyhedron when R1 and R2 are G-ε-

polyhedra, since R1 ] R2 6= ∅, we have to show that −eε is a ray in R1 ] R2.
To this end, it is sufficient to observe that all the rays of R1 are also rays of
R1 ]R2 and −eε is a ray of R1, because R1 is a non-empty G-ε-polyhedron.

To prove item (3) of the proposition, we assume that R VY P and show that
g(R) VY f(P). Observe that, by definition of g, for any (vT, e)T ∈ R we have

g
(

(vT, e)T
)

=
(

f(v)T, e
)T

.

Thus the coefficient of the ε coordinate is not affected at all by the affine trans-
formation, so that conditions (2) and (3) of Definition 2 and f(P) = [[g(R)]]
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follow trivially from the hypothesis. To complete the proof, we have to show
that if R is a G-ε-polyhedron then g(R) is a G-ε-polyhedron. If R = ∅, then
also g(R) = ∅ and there is nothing to prove. If otherwise R 6= ∅, then −eε is a
ray in R. We have g(R) 6= ∅ and the ray is unaffected by the affine transforma-
tion, so that −eε is also a ray in g(R). ut

Proof (Proof of Proposition 5 on page 12). We first prove item 2, which
easily follows from two applications of Lemma 4, since P 6= ∅. Namely

(vT, 0)T ∈ R ⇐⇒ v ∈ C(P) ⇐⇒ (vT, 0)T ∈ R′.

We now prove the only if part of item 1. Thus, let c =
(

〈a, x〉 + 0 · ε ≥

b
)

and suppose that R ⊆ con
(

{c}
)

. Consider a point q = (vT, e)T ∈ R′; by
condition (3) of Definition 2, (vT, 0)T ∈ R′ so that, by the previous paragraph, we
have (vT, 0)T ∈ R. Thus, the vector (vT, 0)T satisfies c and, since the coefficient
of ε in c is 0, q also satisfies c. As the choice of q ∈ R′ is arbitrary, R′ ⊆ con

(

{c}
)

.
The if part follows by the same reasoning as above, after swapping R and R′.

ut

The proof of Proposition 6 requires some additional notation and a few pre-
liminary lemmas.

Let R = con(C) ∈ CPn+1 be such that R Vε P 6= ∅. Then, the set of
ε-upper-bounds of the constraint system C is defined as

Cε
def
=

{

(

〈a, x〉 + s · ε ≥ b
)

∈ C
∣

∣

∣
a = 0, s < 0

}

.

A constraint c ∈ Cε will be usually denoted as ε ≤ δ. Note that, since P 6= ∅,
we have δ > 0.

Lemma 8. Let R = con(C) ∈ CPn+1 be a non-empty ε-polyhedron. Then −eε

is a ray of R if and only if C = C> ∪ C≥ ∪ Cε.

Proof. Suppose that −eε is a ray of R. Let (vT, e)T ∈ R. Then, for all ρ ∈ R+,
(vT, e)T+ρ(−eε) ∈ R. Thus, if

(

〈a, x〉+s·ε ≥ b
)

∈ C, we have 〈a, v〉+s·(e−ρ) ≥ b
for all ρ ∈ R+. Thus s ≤ 0 so that C = (C> ∪ C≥ ∪ Cε).

Now suppose C = C> ∪ C≥ ∪ Cε. This means that, if
(

〈a, x〉 + s · ε ≥ b
)

∈ C,
then s ≤ 0. As R is non-empty, there exists a point (vT, e)T ∈ R. Also, for all
ρ ∈ R+, 〈a, v〉 + s · (e − ρ) ≥ b. As our choice of constraint in C is arbitrary,
(vT, e)T + ρ(−eε) satisfies all constraints in C and is therefore in R. Thus −eε

is a ray in R. ut

Lemma 9. Let R = con(C) ∈ CPn+1 be such that R Vε P 6= ∅. Let also
C′ = C> ∪ C≥ ∪ Cε ∪ {ε ≥ 0} and C′′ = C ∪ {ε ≥ 0}. Then con(C ′) Vε P and
con(C′) = con(C′′).

Proof. Let R′ = con(C′), R′′ = con(C′′), and C∗ = C \ (C> ∪ C≥ ∪Cε). Note that,
by Definition 1, we have P = [[R]] = [[R′′]]. Moreover, by Proposition 1, since R
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is an ε-polyhedron, R′′ is also an ε-polyhedron. To complete the proof, we show
that R′ = R′′.

Observe that R′′ ⊆ R′, because C′ ⊆ C′′. We now show the other inclusion
R′ ⊆ R′′. Let p = (vT, e)T ∈ R′, so that e ≥ 0. By hypothesis, P 6= ∅ so that
there exists a point q = (wT, ew)T ∈ R such that ew > 0. By hypothesis, both p

and q must satisfy every constraint in C>∪C≥∪Cε = C′
>∪C′

≥∪C′
ε. We show that

p also satisfies all the constraints in C∗, so that p ∈ R′′, completing the proof.
Suppose, by contraposition, that p does not satisfy a constraint in C∗. Let

{

σp + (1 − σ)q
∣

∣ 0 ≤ σ ≤ 1
}

be the set of points lying on the segment between p and q. As p /∈ R′′ and
q ∈ R′′, there must exists a minimum value 0 ≤ τ < 1 such that

p′ = (vτ , eτ ) = τp + (1 − τ)q ∈ R′′,

so that p′ saturates some constraint c∗ =
(

〈a, x〉 + s · ε ≥ b
)

∈ C∗. Note that
eτ > 0 and, by definition of C∗, we have s > 0. As a consequence, (vT

τ , 0)T

does not satisfy c∗, which implies (vT

τ , 0)T /∈ R′′. However, since R′′ is an ε-
polyhedron, this contradics condition (3) of Definition 2. ut

Lemma 10. Let R = con(C) ∈ CPn+1 be an ε-polyhedron. Let p ∈ R be such
that p = (vT, e)T, where e > 0, and consider p0 = (vT, 0)T. Then

sat con(p0, C> ∪ C≥ ∪ Cε) = sat con(p, C≥).

Proof. Consider c ∈ C≥, so that c =
(

〈a, x〉 + 0 · ε ≥ b
)

; then c ∈ sat con(p, C≥)
if and only if c ∈ sat con(p0, C≥), so that sat con(p0, C≥) = sat con(p, C≥).
Consider now c ∈ C>, so that c =

(

〈a, x〉 + s · ε ≥ b
)

where s < 0; since
e > 0, we obtain 〈a, v〉 > b, so that p0 satisfies but does not saturate c; thus
sat con(p0, C>) = ∅. Consider now c ∈ Cε, so that c = (ε ≤ δ) for some δ > 0;
then it follows that sat con(p0, Cε) = ∅. By all the above relations, we obtain

sat con(p0, C> ∪ C≥ ∪ Cε)

= sat con(p0, C>) ∪ sat con(p0, C≥) ∪ sat con(p0, Cε)

= sat con(p, C≥).

ut

Lemma 11. Let (C,G) ≡ R ∈ CPn+1 be an ε-polyhedron. Let also c ∈ C> be
such that c =

(

〈a, x〉 + s · ε ≥ b
)

and consider c0 =
(

〈a, x〉 + 0 · ε ≥ b
)

. Then

sat gen
(

c0, (GR,GC)
)

= sat gen
(

c, (GR,GC)
)

.

Proof. If p = (vT, e)T ∈ GC ∪GR, then e = 0. Thus, 〈a, v〉+ s · e = b if and only
if 〈a, v〉 + 0 · e = b. Similarly, 〈a, v〉 + s · e = 0 if and only if 〈a, v〉 + 0 · e = 0.
Thus, if p is a point or p is a ray, p saturates c if and only if it saturates c0. As
p is an arbitrary point or ray in GC ∪ GR, we have the required result. ut
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Lemma 12. Let (C,G) ≡ R ∈ CPn+1 be an ε-polyhedron. Let also c ∈ C> be
saturated by the point (vT, 0)T ∈ R. Then (vT, 0)T ∈ gen

(

(GR,GC)
)

.

Proof. Let G = (R, P ) and c =
(

〈a, x〉 + s · ε ≥ b
)

. Then, as c ∈ C>, s < 0.
Since (vT, 0)T ∈ R saturates c, it holds 〈a, v〉 = b, so that for all e > 0 we
have (vT, e)T /∈ R. Therefore we can apply Lemma 3, taking emax = 0, so that
we obtain (vT, 0)T ∈ gen

(

(GR,GP ∪ GC)
)

. By definition of gen, we conclude

(vT, 0)T ∈ gen
(

(GR,GC)
)

. ut

Lemma 13. Let R ∈ CPn+1 be an ε-polyhedron and (C,G) ≡ R be a DD pair
in minimal form. Then, if c is ε-redundant in C, c is unmatched in C.

Proof. Let G = (R, P ). Suppose that c =
(

〈a, x〉+ s · ε ≥ b
)

is ε-redundant in C.

Let also c0 =
(

〈a, x〉+ 0 · ε ≥ b
)

be the constraint matching c. We suppose that
c0 ∈ C and derive a contradiction. As c is ε-redundant, by Definition 9, c ∈ C>

and there are two cases to consider.
First suppose that

sat gen
(

c, (GR,GC)
)

v (GR, ∅). (13)

Then, for all (vT, 0)T ∈ GC , 〈a, v〉 + s · 0 > b. Thus, by Lemma 12, for all
(vT, 0)T ∈ R, 〈a, v〉+ s · 0 > b. However, by condition (3) of Definition 2, for all
(vT, e)T ∈ R, the point (vT, 0)T ∈ R. Thus, for all (vT, e)T ∈ R, we must have
〈a, v〉+0 · e > b so that c0 is not saturated by any points in R. As C is minimal,
c0 /∈ C which is a contradiction.

Secondly, we assume that (13) does not hold so that, by Definition 9, there
exists c′ =

(

〈a′, x〉 + s′ · ε ≥ b′
)

∈ C> \ {c} such that

sat gen
(

c, (GR,GC)
)

v sat gen(c′,G). (14)

Let c′0 =
(

〈a′, x〉 + 0 · ε ≥ b′
)

. As c and c′ are in C>, we have both s < 0 and
s′ < 0. By Lemma 11, we have

sat gen
(

c0, (GR,GC)
)

= sat gen
(

c, (GR,GC)
)

,

sat gen
(

c′0, (GR,GC)
)

= sat gen
(

c′, (GR,GC)
)

so that, by (14),

sat gen
(

c0, (GR,GC)
)

v sat gen
(

c′0, (GR,GC)
)

. (15)

We show that

sat gen(c0,G) v sat gen(c′0,G). (16)

Let (HR,HP ) = sat gen
(

c0, (GR,GC)
)

and (H′
R,H′

P ) = sat gen
(

c′0, (GR,GC)
)

.
Suppose that p = (vT, e)T ∈ P ∪ R saturates c0 so that 〈a, v〉 = b. Then, to
prove (16), we show that p is a point or ray in sat gen(c′0,G). Let p0 = (vT, 0)T so
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that p0 saturates c0 and hence, c. Suppose first that p ∈ P . By condition (3) of
Definition 2, p0 = (vT, 0)T ∈ R. By Lemma 12, p0 ∈ gen

(

(HR,HC)
)

. Therefore,

by (15), p0 ∈ gen
(

(H′
R,H′

C)
)

so that p0 saturates c′0. Thus 〈a′, v〉 = b′ and p

saturates c′0. Thus p is a point in sat gen(c′0,G). Suppose next that that p ∈ R.
By Lemma 1, p0 = (vT, 0)T is a ray in R. By Lemma 2, every ray in R has a
non-positive value for the ε coordinate so that as p0 is a linear combination of
rays in R that saturate c0, p0 must be a linear combination of rays in GR that
saturate c0. Thus p0 is a linear combination of rays in HR. Therefore, by (15),
p0 must be a linear combination of rays in H′

R so that p0 saturates c′0. Thus
〈a′, v〉 = b′ and p saturates c′0. Thus p is a ray in sat gen(c′0,G).

If c′0 and c0 are distinct constraints, then c′0 is a linear combination of con-
straints including c′′ ∈ C \ {c0} such that sat gen(c′0,G) v sat gen(c′′,G). By
(16), sat gen(c0,G) v sat gen(c′′,G) contradicting the hypothesis that C is mini-
mal. On the other hand, if c′0 and c0 are the same, then c′ =

(

〈a, x〉+ s′ · ε ≥ b
)

.
As c 6= c′, either s > s′ or s < s′. If s > s′, every point that satisfies c′ also
satisfies c so that c is redundant and similarly, if s < s′, c′ is redundant; both
cases contradicting the hypothesis that C is minimal. ut

Lemma 14. Let VY ∈ {Vε, VC , VG}. Let R ∈ CPn+1 be such that (C,G) ≡ R
is a DD pair in minimal form and R VY P 6= ∅. If c is an ε-redundant constraint
in C, then c is unmatched in C and con(C ′) VY P, where C′ = C \ {c}∪ {ε ≤ 1}.

Proof. By Lemma 13, c is unmatched in C. By Definition 9, we have c ∈ C>;
thus c =

(

〈a, x〉 + s · ε ≥ b
)

, where a 6= 0 and s < 0.

Let R′ = con(C′) and consider (vT, e)T ∈ R′ \ R. We first show that

(vT, 0)T ∈ R, (17)

(vT, 0)T does not saturate c. (18)

As P 6= ∅, by Definition 1, there exists (wT, e′w)T ∈ R for some e′w > 0. As R is
an ε-polyhedron, (wT, 0)T ∈ R. Thus, as R is a convex set, for some 0 < ew ≤ 1,
(wT, ew)T ∈ R. Since ew ≤ 1, we also have that (wT, ew)T ∈ R′. Consider the
segment between (vT, e)T ∈ R′ \ R and (wT, ew)T ∈ R′ ∩ R. As R′ is a convex
set, for each 0 ≤ σ ≤ 1, we have (vT

σ, eσ)T ∈ R′, where

(vT

σ, eσ)T = σ(vT, e)T + (1 − σ)(wT, ew)T. (19)

Letting σ = 0, we obtain v0 = w so that, by condition (3) of Definition 2,
(vT

0 , 0)T ∈ R. Now let τ be the maximum value between 0 and 1 such that
(vT

τ , 0)T ∈ R. Then, for all σ ∈ R such that τ < σ ≤ 1, (vT

σ, 0)T /∈ R. Thus,
again by condition (3) of Definition 2, (vT

σ, e′)T /∈ R for all e′ ∈ R and all σ ∈ R

such that τ < σ ≤ 1.
Suppose first that τ < 1. Then, it follows that the only point in R on the

line joining (vT, e)T and (vT

τ , 0)T is the end point (vT

τ , 0)T. As every point on
this line is in R′, this implies that (vT

τ , 0)T saturates constraint c. Thus, by
Lemma 12, (vT

τ , 0)T ∈ gen
(

(GR,GC)
)

so that sat gen
(

c, (GR,GC)
)

6v (GR, ∅). As
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a consequence, since by hypothesis c is ε-redundant in C, by Definition 9 there
exists a constraint c′ =

(

〈a′, x〉 + s′ · ε ≥ b′
)

∈ C′
> such that

sat gen
(

c, (GR,GC)
)

v sat gen(c′,G). (20)

By (20), the point (vT

τ , 0)T also saturates c′. As already observed before, for all
σ ∈ R such that τ < σ ≤ 1, we have (vT

σ, eσ)T ∈ R′ \ R, so that (vT

σ, eσ)T does
not satisfy c but does satisfy c′. As s < 0, eτ ≥ 0. Hence, as s′ < 0, the point
(vT

τ , eτ )T either saturates c′ or it does not satisfy c′; in both cases, for all σ ∈ R

such that τ < σ ≤ 1, the point (vT

σ, eσ)T ∈ R′ does not satisfy c′ ∈ C′, which is
a contradiction. Thus it must hold τ = 1 and, by (19),

(vT

τ , 0)T = (vT, 0)T ∈ R′ ∩R

so that (17) holds. Suppose now that (18) does not hold, so that (vT, 0)T satu-
rates c. As (vT, e)T ∈ R′ \ R, it does not satisfy c. Thus, since s < 0, we must
have e > 0. By (20), (vT, 0)T also saturates c′. Hence, as s′ < 0, (vT, e)T does
not satisfy c′, contradicting the assumption that (vT, e)T ∈ R′. Therefore (18)
holds.

To prove R′
Vε P , we show that R′ is an ε-polyhedron and [[R]] = [[R′]].

By taking δ = 1, the inclusion R′ ⊆ con
(

{ε ≤ δ}
)

holds trivially, because
the constraint ε ≤ 1 has been explicitly added in C ′. Thus condition (2) of
Definition 2 holds. By (17), if (vT, e)T is an arbitrary point in R′, we have
(vT, 0)T ∈ R. Since (vT, 0)T obviously satisfies the constraint ε ≤ 1, we have
(vT, 0)T ∈ R′, so that condition (3) of Definition 2 also holds and R′ is an
ε-polyhedron.

To prove the inclusion [[R]] ⊆ [[R′]], let v ∈ [[R]]. Thus, there exists e > 0 such
that (vT, e)T ∈ R. By condition (3) of Definition 2, we also have (vT, 0)T ∈ R so
that, as R is a convex set, there exists 0 < e′ ≤ 1 such that (vT, e′)T ∈ R. Note
that (vT, e′)T satisfies all the constraints in C and it also satisfies the constraint
ε ≤ 1; as a consequence, (vT, e′)T ∈ R′ and v ∈ [[R′]], as required.

To show the other inclusion [[R′]] ⊆ [[R]], let v ∈ [[R′]]. Thus, there exists
e > 0 such that (vT, e)T ∈ R′. By (17) and (18), 〈a, v〉 > b. Thus, by letting

e′ = min
(

{

e, b−〈a,v〉
s

}

)

, we obtain e′ > 0 and (vT, e′)T ∈ R. Thus v ∈ [[R]].

Suppose next that R VC P so that R is a C-ε-polyhedron. By the first part
of the proof, R′

Vε P . We show that con(C ′) ⊆ con
(

{ε ≥ 0}
)

. By contraposition,
suppose that there exists (uT, eu)T ∈ R′ where eu < 0. As [[R′]] 6= ∅, there exists
(wT, ew)T ∈ R′ where ew > 0. By condition (2) of Definition 2, (wT, 0)T ∈ R′.
Let σ = ew

2(ew−eu) so that, as eu < 0 and ew > 0, we have 0 < σ < 1. Then, if

(wT

σ, eσ)T = σ(uT, eu)T + (1 − σ)(wT, ew)T,

(wT

σ, e′σ)T = σ(uT, eu)T + (1 − σ)(wT, 0)T,

we obtain eσ > 0 and e′σ < 0 and both (wT

σ, eσ)T ∈ R′ and (wT

σ, e′σ)T ∈ R′.
As eσ > 0, wσ ∈ [[R′]] = [[R]]. Thus, by Definition 1 and condition (2) of
Definition 2, (wT

σ, 0)T ∈ R and hence satisfies c. Thus, as s · e′σ > 0, (wT

σ, e′σ)T
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also satisfies c and, as it is in R′ = con(C′), it satisfies all the constraints in
C. Thus (wT

σ, e′σ)T ∈ R. However, as R is a C-ε-polyhedron, by Definition 4,
R ⊆ con

(

{ε ≥ 0}
)

which contradicts e′σ < 0. Thus con(C′) ⊆ con
(

{ε ≥ 0}
)

and
R′

VC P .
Finally, suppose that R VG P . By the first part of the proof R′

Vε P . Note
that, since P 6= ∅, we also have R 6= ∅ and R′ 6= ∅. Thus, by Definition 6,
−eε is a ray of R and we need to show that it is also a ray of R′. By Lemma 8,
C = C> ∪ C≥ ∪ Cε. As c ∈ C> and (ε ≤ 1) ∈ C′

ε, we also have C′ = C′
> ∪ C′

≥ ∪ C′
ε so

that, again by Lemma 8, −eε is a ray of R′. Thus, R′
VG P . ut

Lemma 15. Let R ∈ CPn+1 be an ε-polyhedron and (C,G) ≡ R be a DD pair
in minimal form. Then, if p is ε-redundant in G, p is unmatched in G.

Proof. Let G = (R, P ) and suppose that p = (vT, e)T is ε-redundant in G. Then,
by Definition 9, p ∈ GP and there exists p′ = (yT, e′)T ∈ GP \ {p} such that

sat con(p, C≥) ⊆ sat con(p′, C). (21)

As p and p′ are in GP , we have both e > 0 and e′ > 0. Let p0 = (vT, 0)T and
p′

0 = (yT, 0)T; as R is an ε-polyhedron, by condition (3) of Definition 2, we have
both p0 ∈ R and p′

0 ∈ R. Also note that, since G is in minimal form, then v 6= y.
To prove the result, we assume that p is matched (i.e., p0 ∈ P ) and derive a

contradiction. By Lemma 10, we have

sat con(p0, C≥) = sat con(p, C≥),

sat con(p′
0, C≥) = sat con(p′, C≥)

so that, by (21),

sat con(p0, C≥) ⊆ sat con(p′
0, C≥). (22)

Suppose first that e ≤ e′ and let σ = e
e′

, so that 0 < σ ≤ 1. Consider the
point qe = σp′ + (1 − σ)p0 = (wT, e)T. Being a convex combination of p′ and
p0, we have qe ∈ R. Let also r = p − qe; then r cannot be a ray of R, since

otherwise we would have p ∈ gen
(

(

R, {p′, p0}
)

)

, contradicting the hypothesis

that G is in minimal form. For each ρ ∈ R+, let pρ = p0 + ρr = (sT, 0)T. Since
r is not a ray of R, there must exist ρ′ ∈ R+ such that pρ′ ∈ R but pρ /∈ R,
for all ρ > ρ′. If ρ′ > 0, then pρ′ 6= p0; thus, p0 can be expressed as a convex
combination of pρ′ and p′

0, contradicting the hypothesis that G is in minimal
form. Therefore, it must hold ρ′ = 0 (i.e., pρ′ = p0). Since for all ρ > 0 we have
pρ = (sT, 0)T /∈ R and R is an ε-polyhedron, then (sT, e′′)T /∈ R for all e′′ ∈ R.
As a consequence, there must exist a constraint c ∈ C such that c is saturated
by all the points lying on the segment identified by p and p0. As a consequence,
c ∈ C≥ and c is not saturated by p′

0. However, this contradicts the condition (22)
established above, so that we cannot have e ≤ e′.

Secondly suppose that e > e′ and let pe′ = (vT, e′)T. Being a convex combina-
tion of p and p0, we have pe′ ∈ R. Let also r′ = p′−pe′ ; then r′ cannot be a ray
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of R, since otherwise we would have p′ ∈ gen
(

(

R, {p, p0}
)

)

, contradicting the

hypothesis that G is in minimal form. Consider now the vector r = −r′. Again,
r cannot be a ray of R, since otherwise p0 could be obtained by combining p′

0

and r. Thus, we are in the same situation identified before and a contradiction
can be derived by the same argument. As a consequence, p0 ∈ P cannot hold,
so that p is unmatched in G, completing the proof. ut

Lemma 16. Let R ∈ CPn+1 be such that R Vε P 6= ∅, (C,G) ≡ R and
{p, p′} ⊆ GP , where sat con(p, C≥) ⊆ sat con(p′, C≥). Let also G = (R, P ),
G′ =

(

R, P \ {p}
)

and R′ = gen(G′). Then

R∩ con
(

{ε = 0}
)

= R′ ∩ con
(

{ε = 0}
)

.

Proof. Since G′
@ G, we have R′ ⊆ R. Therefore, to prove the lemma, we need

to show that any point q = (wT, 0)T ∈ R is also in R′. Note that any ray in R
is also a ray in R′.

Let p = (vT, ev)T and p′ = (yT, ey)T so that, since they are both in GP ,
we obtain ev > 0 and ey > 0. Consider p0 = (vT, 0)T and p′

0 = (yT, 0)T. As
R is an ε-polyhedron, by condition (3) of Definition 2, we have {p0, p

′
0} ⊆ R.

Thus, p0 can be rewritten as p0 = σp + (1 − σ)p−, where 0 ≤ σ ≤ 1 and
the point p− = (vT, e−)T is such that p− ∈ gen(G′) = R′. Since ev > 0, we
obtain e− ≤ 0. Since p′ ∈ R′, which is a convex set, then R′ contains the whole
segment [p−, p′] and, in particular, by taking q1 = (wT

1 , 0)T to be the point on
this segment having a zero ε coordinate, we obtain q1 ∈ R′ (note that there
exists exactly one such a q1, because ey > 0). Thus, by applying Lemma 10 to
p and p′ we obtain

sat con(p0, C≥) = sat con(p, C≥), (23)

sat con(p′
0, C≥) = sat con(p′, C≥)

so that, by hypothesis,

sat con(p0, C≥) ⊆ sat con(p′
0, C≥).

Thus, as q1 lies on the segment [p0, p
′
0], we obtain

sat con(p0, C≥) ⊆ sat con(q1, C≥)

and hence, using again (23),

sat con(p, C≥) ⊆ sat con(q1, C≥). (24)

Let r = q − q1. If r = 0, then q = q1 ∈ R′. Otherwise, let r 6= 0. If r

is a ray in R, then it is also a ray in R′ and there exists ρ ∈ R+ such that
q = q1 + ρr ∈ R′. Suppose therefore that r 6= 0 is not a ray of R. Then there
must exist a minimum value ρ2 > 0 such that, for all ρ > ρ2, we have q1+ρr /∈ R.
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Thus, let q2 = q1 + ρ2r = (wT

2 , 0)T ∈ R. Note that, as ρ2 > 0, q2 6= q1. Thus,
by choice of ρ2, there must exist a constraint c ∈ C that saturates q2 but not
q1. Since no constraint in Cε can be saturated by q2, we have c /∈ Cε. Suppose
that c ∈ C>. Then, by Lemma 12, q2 ∈ gen

(

(GR,GC)
)

; since (GR,GC) v G′, we
obtain q2 ∈ R′. Suppose now that c ∈ C≥; then, as c /∈ sat con(q1, C≥), by (24),
we obtain c /∈ sat con(p, C≥). Similarly, supposing now c ∈ C \ (C> ∪C≥∪Cε), we
obtain again c /∈ sat con(p, C), because otherwise we would have p0 /∈ R. In both
cases, as q2 saturates constraint c, then q2 can be obtained as a combination of
generators in G all of which saturate c, i.e., a combination where p has a zero
coefficient, so that q2 ∈ gen(G′) = R′.

Thus, in all cases q2 ∈ R′ so that, as q lies on the segment [q1, q2] and R′ is
a convex set, we have q ∈ R′ as required. ut

Lemma 17. Let VY ∈ {Vε, VC , VG}. Let R ∈ CPn+1 be such that (C,G) ≡ R
is a DD pair in minimal form and R VY P. If p is ε-redundant in G = (R, P ),
then p is unmatched in G and gen(G ′) VY P, where G′ =

(

R, P \ {p}
)

.

Proof. Let R′ = gen(G′) and P ′ = P \ {p}, so that G′ = (R, P ′). Note that
G′ v G and hence, as the function ‘gen’ is monotonic, R′ ⊆ R. Also note that
any ray in R is also a ray in R′.

Suppose that p = (vT, e)T is ε-redundant in G so that, by Definition 9, p ∈ P ,
e > 0 and there exists a point p′ = (yT, e′)T such that p′ ∈ P ′, e′ > 0 and

sat con(p, C≥) ⊆ sat con(p′, C). (25)

Note that p′ ∈ R′. By Lemma 15, p is unmatched in G. Letting p0 = (vT, 0)T

and p′
0 = (yT, 0)T, by condition (3) of Definition 2, we have {p0, p

′
0} ⊆ R.

As (25) holds, we can use Lemma 16, to obtain that, for all w ∈ Rn,

(wT, 0)T ∈ R ⇐⇒ (wT, 0)T ∈ R′. (26)

In order to show that R′
Vε P , we first prove that R′ is an ε-polyhedron.

Consider condition (2) of Definition 2. As R′ ⊆ R, R′ satisfies condition (2) by
taking the same value δ used for R. Consider now condition (3) of Definition 2.
Let (wT, ew)T ∈ R′. Since R′ ⊆ R, we have (wT, ew)T ∈ R; since R is an
ε-polyhedron, (wT, 0)T ∈ R. Then, by (26), we obtain (wT, 0)T ∈ R′.

Thus, R′ is an ε-polyhedron. To show that it is indeed an ε-polyhedron
for P , we have to prove that [[R]] = [[R′]]. The inclusion [[R′]] ⊆ [[R]] holds by
monotonicity of function [[·]], since R′ ⊆ R. To prove the other inclusion, suppose
that w ∈ [[R]]. Then there exists ew > 0 such that q = (wT, ew)T ∈ R. By
condition (3) of Definition 2, we obtain q0 = (wT, 0)T ∈ R and hence, by (26),
q0 ∈ R′. As q ∈ R, by definition of ‘gen’ there exist 0 ≤ π ≤ 1 and p1 ∈ gen(G′)
such that q = πp+(1−π)p1. If π = 0, then q ∈ R′, so that w ∈ [[R′]] as required.
Suppose now that π > 0; then sat con(q, C) ⊆ sat con(p, C). Thus, by (25), we
obtain

sat con(q, C≥) ⊆ sat con(p′, C).
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By applying Lemma 10 twice, we obtain

sat con
(

q0, C> ∪ C≥ ∪ Cε

)

= sat con(q, C≥)

⊆ sat con(p′, C≥)

= sat con(p′
0, C> ∪ C≥ ∪ Cε)

⊆ sat con(p′
0, C).

Now let c =
(

〈a, x〉 + s · ε ≥ b
)

be such that c ∈ C> ∪ C≥ ∪ Cε. Then, as p′ ∈ R,
〈a, y〉 ≥ b. If c ∈ sat con(q0, C), then c ∈ sat con(p′

0, C), so that all the points
lying on the line passing through q0 and p′

0 saturate c. On the other hand, if
c /∈ sat con(q0, C), then 〈a, w〉 > b. Let

ρc =

{

〈a,y〉−〈a,w〉
〈a,y〉−b

if 〈a, y〉 > 〈a, w〉;

1 otherwise;

qc = (1 + ρc)q0 − ρcp
′
0.

Thus qc = (wT

c , 0)T is an affine combination of q0 and p′
0, therefore lying on the

line passing through these two points. Note that ρc > 0 and qc satisfies constraint
c. Let c vary in the set of constraints C \ sat con(q0, C) and take ρ > 0 to be the
minimum of all the ρc obtained as above. Consider the affine combination

qρ = (1 + ρ)q0 − ρp′
0.

Then qρ = (wT

ρ , 0)T satisfies all the constraints in C> ∪C≥∪Cε. By Lemma 9, qρ

also satisfies every constraint in C \(C>∪C≥∪Cε), so that qρ ∈ R. Thus, by (26),
qρ ∈ R′. Letting σ = 1

1+ρ
we obtain 0 < σ < 1 and w = σwρ + (1 − σ)y. Thus,

we have
(

wT, (1 − σ)e′
)T

= σqρ + (1 − σ)p′ ∈ R′.

As e′ > 0 and σ < 1, we have (1 − σ)e′ > 0 and hence w ∈ [[R′]] as required.
Suppose next that R VC P . Then, by the first part of the proof R′

Vε P .
By Definition 4, R ⊆ con

(

{ε ≥ 0}
)

. Thus, if (vT, e)T ∈ R ∪ P , e ≥ 0. Since

G′ v G, we also obtain gen(G ′) ⊆ con
(

{ε ≥ 0}
)

, so that R′
VC P .

Finally, suppose that R VG P . By the first part of the proof R′
Vε P . Since

R 6= ∅, by Definition 6, we have that −eε is a ray of R. Thus, −eε is also a ray
of R′ and R′

VG P , as required. ut

Proof (Proof of Proposition 6 on page 12). Items 1 and 2 have been proved
as Lemmas 14 and 17 respectively. ut

The proof of Proposition 7 is based on the following lemmas.

Lemma 18. Let R ∈ CPn+1 be such that (C,G) ≡ R is a DD pair in minimal
form and R Vε P 6= ∅. If C has no ε-redundant constraint then it is in smf.

Proof. To prove the thesis, we assume that C is not in smf and show that C must
contain an ε-redundant constraint. By Proposition 2, P = con

(

con enc(C)
)

. As
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C is not in smf, by Definition 8, there exists a constraint system C ′ ⊂ C such
that con enc(C′) ⊂ con enc(C) and con

(

C′ ∪ {ε ≤ 1}
)

Vε P . Let R′ = con(C′)

and R′
1 = con

(

C′ ∪ {ε ≤ 1}
)

.
Suppose that all the constraints in con enc(C) \ con enc(C ′) are non-strict

inequalities. Then, by Definition 3, con enc(C>) = con enc(C′
>). Also, by Defi-

nition 3, con enc(C) = con enc(C> ∪ C≥) and con enc(C′) = con enc(C′
> ∪ C′

≥);
so that, as con enc(C ′) 6= con enc(C), C′

≥ 6= C≥. Thus, since C′ ⊆ C, we obtain
C′
≥ ⊂ C≥. Therefore there exist a ∈ Rn \ {0} and b ∈ R such that

c =
(

〈a, x〉 + 0 · ε ≥ b
)

∈ C \ C′.

Let R0 = con
(

C \ {c}
)

. Then, as C′ ⊆ C \ {c} ⊂ C, R0 ⊆ R′ and R ⊆ R0. We
now show that R0 ⊆ R so that R = R0; therefore contradicting the hypothesis
that C is in minimal form. For this, consider any vector p = (vT, e)T ∈ R0. We
need to show that p ∈ R. Since R0 ⊆ R′, p ∈ R′. We prove that v ∈ C(P) and
we do this by considering the cases e ≤ 1 and e > 1 separately. If e ≤ 1, then p

satisfies cu = (ε ≤ 1) so that p ∈ R′
1. In this case, as R′

1 Vε P , by condition (3)
of Definition 2, p0 = (vT, 0)T ∈ R′

1 and hence, by Lemma 4, v ∈ C(P). Suppose
now that e > 1; then p ∈ con

(

C′
> ∪ C′

≥ ∪ C′
ε ∪ {c`}

)

, where c` = (ε ≥ 0), and

hence, (vT, 1)T ∈ R′′
1 = con

(

C′
> ∪ C′

≥ ∪ C′
ε ∪ {cu, c`}

)

. Since R′
1 Vε P , it follows

from Lemma 9, that R′′
1 Vε P ; hence, by Definition 2, v ∈ P . Thus in both

cases we have v ∈ C(P). Therefore, as R Vε P , by Lemma 4, we obtain p0 ∈ R
so that p0 satisfies c. As c ∈ C≥, p also satisfies c and hence p ∈ R. As p is an
arbitrary point in R0, R0 ⊆ R, as required.

Thus there must exist a constraint c1 ∈ con enc(C) \ con enc(C ′) which is a
strict inequality, so that c1 =

(

〈a, x〉 > b
)

for some a ∈ R
n \ {0} and b ∈ R. By

Definition 3, for some s < 0,

c =
(

〈a, x〉 + s · ε ≥ b
)

∈ C \ C′.

We now show that c is ε-redundant in C. Letting G = (R, P ), suppose first that
no point in gen

(

(R,GC)
)

saturates c; this implies that no point in GC saturates

c, so that sat gen
(

c, (GR,GC)
)

v (GR, ∅). It follows from Definition 9 that c is
ε-redundant in C.

Suppose next that there exists a point p ∈ gen
(

(R,GC)
)

saturating c and
let p = (vT, ev)T. Note that, if ec is the value of the ε coordinate of a point in
GC , then ec = 0. Also, by Lemma 2, if er is the value of the ε coordinate of a
ray in R, then er ≤ 0. Thus we obtain ev ≤ 0. Since p ∈ R, by condition (3) of
Definition 2, p0 = (vT, 0)T ∈ R. Since p saturates c and s < 0, we obtain ev = 0,
i.e., p = p0. Thus p ∈ gen

(

(GR,GC)
)

.
We show that there exist c′ ∈ C′

> that is saturated by p. Since s < 0, we
have (vT, e)T /∈ R, for all e > 0. As R Vε P , by Definition 2, v /∈ P and, by
Lemma 4, we have v ∈ C(P). By hypothesis, R′

1 Vε P so that, by applying
again Definition 2 and Lemma 4, we obtain (vT, e)T /∈ R′

1, for all e > 0, and
p ∈ R′

1. As a consequence, there must exist c′ =
(

〈a′, x〉 + s′ · ε ≥ b′
)

∈ C′ such
that c′ is saturated by p but not satisfied by (vT, e)T, for any e > 0. Thus s′ < 0
and hence, c′ ∈ C′

> (note that it cannot be c′ = (ε ≤ 0) because we have P 6= ∅).
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Let H = (HR,HC) = sat gen
(

c, (GR,GC)
)

and C′
> = {c′1, . . . , c

′
k}. Suppose

that, for each 1 ≤ i ≤ k, there exists a point qi ∈ gen(H) that does not saturate

c′i. Then the convex combination 1
k

∑k
i=1 qi ∈ gen(H) saturates c, but does

not saturate any constraint in C ′
>, contradicting the previous paragraph. As a

consequence, there exists a constraint c′j ∈ C′
> that is saturated by all the points

in gen(H), so that H v sat gen(c′j ,G). It then follows from Definition 9 that c is
ε-redundant in C. ut

Lemma 19. Let R ∈ CPn+1 be such that (C,G) ≡ R is a DD pair in minimal
form and R Vε P 6= ∅. If G has no ε-redundant generator then it is in smf.

Proof. To prove the thesis, we assume that G is not in smf and show that G must
have an ε-redundant generator. Let (R, P ) = G and (R1, P1, C1) = gen enc(G).
Since R Vε P then, by Proposition 2, we have P = gen

(

gen enc(G)
)

. As G is
in minimal form but not in smf, then by Definition 8, there exists G ′ = (R′, P ′)
such that G′

@ G, R′ = gen(G′) Vε P and gen enc(G′) @ gen enc(G). Let
(R′

1, P
′
1, C

′
1) = gen enc(G′); thus we have R′

1 ⊂ R1, or P ′
1 ⊂ P1, or C ′

1 ⊂ C1.
Note that, again by Proposition 2, we have P = gen

(

gen enc(G′)
)

.
We first suppose that there exists v ∈ R1 \R′

1 and derive a contradiction. By
Definition 3, (vT, 0)T ∈ R \ R′. Thus v is a ray in P and hence v is the positive
combination of rays in R′

1. By Definition 3, there is a ray r ∈ R′
1 if and only

if there is a ray (rT, 0)T ∈ R′. Therefore (vT, 0)T is the positive combination of
rays in R \

{

(vT, 0)T
}

; contradicting the hypothesis that G is in minimal form.
We next suppose there exists v ∈ C1 \ C ′

1 and derive a contradiction. By
Definition 3, p0 = (vT, 0)T ∈ P and (vT, e)T /∈ P for all e > 0. As P ′ ⊆ P ,
we also have that (vT, e)T /∈ P ′ for all e > 0. As a consequence, as v /∈ C ′

1, by
Definition 3 we obtain p0 /∈ P ′. Since P 6= ∅, we have v ∈ C(P). Thus, since
R′

Vε P , we can apply Lemma 4 to obtain p0 ∈ R′. Let G′′ =
(

R, P \ {p0}
)

;
then, we have G′ v G′′

@ G. By the monotonicity of the function gen, we obtain
p0 ∈ gen(G′′), so that gen(G′′) = R, contradicting the hypothesis that G is in
minimal form.

Therefore there exists a vector v ∈ P1\P ′
1. By Definition 3, there exists e > 0

such that p = (vT, e)T ∈ P , so that p ∈ GP . Moreover, since v /∈ P ′
1, we have

p /∈ G′
P . Let C′ = sat con(p, C≥) and

C′
1 =

{

〈a, x〉 ≥ b
∣

∣

∣

(

〈a, x〉 + 0 · ε ≥ b
)

∈ C′
}

.

(Note that the constraints in C ′ are defined on the vector space Rn+1, whereas
those in C′

1 are defined on Rn.) Then v saturates all the constraints in C ′
1. For all

c =
(

〈a, x〉 + 0 · ε ≥ b
)

∈ C′ and all s < 0, we have cs =
(

〈a, x〉 + s · ε ≥ b
)

/∈ C,
because otherwise we would have p /∈ R. Thus, by Definition 3, we obtain
C′
1 ⊆ con enc(C), which also implies P ⊆ con(C ′

1).
As gen

(

gen enc(G′)
)

= P , then v can be obtained by combining the gen-
erators in (R′

1, P
′
1, C

′
1). By definition of gen, this means that there exists a

point y ∈ P ′
1 that, in such a combination, has a strictly positive coefficient;

this implies that sat con
(

v, con enc(C)
)

⊆ sat con
(

y, con enc(C)
)

; in particular,
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since C′
1 ⊆ con enc(C), we obtain sat con(v, C ′

1) ⊆ sat con(y, C′
1). By Defini-

tion 3, there exists e′ > 0 such that p′ = (yT, e′)T ∈ P ′, so that p′ ∈ G′
P .

Since G′
@ G, we also obtain p′ ∈ GP \ {p}. Observe that, as y saturates ev-

ery constraint in C′
1, then p′ saturates every constraint in C ′. It follows that

sat con(p, C≥) ⊆ sat con(p′, C≥) and, by Definition 9, p is ε-redundant in G. ut

Proof (Proof of Proposition 7 on page 12). Items 1 and 2 have been proved
as Lemmas 18 and 19 respectively. ut
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