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Abstract

It is well-known that freeness and linearity information positively in-
teract with aliasing information, therefore allowing both the precision and
the efficiency of the sharing analysis of logic programs to be improved. In
this paper we present a novel combination of set-sharing with freeness
and linearity information, which is characterized by an improved abstract
unification operator. We provide a new abstraction function and prove
the correctness of the analysis for both the finite tree and the rational tree
cases. Moreover, we show that the same notion of redundant information
as identified in [3] also applies to this abstract domain combination: this
allows for the implementation of an abstract unification operator running
in polynomial time and achieving the same precision on all the considered
observable properties.

1 Introduction

Even though the set-sharing domain is, in a sense, remarkably precise, more
precision is attainable by combining it with other domains. In particular, free-
ness and linearity information have received much attention by the literature
on sharing analysis (recall that a variable is said to be free if it is not bound to
a non-variable term; it is linear if it is not bound to a term containing multiple
occurrences of another variable).

As argued informally by Søndergaard [34], the mutual interaction between
linearity and aliasing information can improve the accuracy of a sharing analysis.
This observation has been formally applied in [11] to the specification of the
abstract mgu operator for the domain ASub. In his PhD thesis [30], Langen
proposed a similar integration with linearity, but for the set-sharing domain.
He also shown how the aliasing information allows to compute freeness with
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a good degree of accuracy (however, freeness information was not exploited to
improve aliasing). King [27] also shown how a more refined tracking of linearity
allows for further precision improvements.

The synergy attainable from a bi-directional interaction between aliasing
and freeness information was initially pointed out by Muthukumar and Her-
menegildo [32, 33]. Since then, several authors considered the integration of
set-sharing with freeness, sometimes also including additional explicit structural
information [9, 10, 29, 18].

Building on the results obtained in [34], [11] and [32], but independently
from [30], Hans and Winkler [20] proposed a combined integration of freeness
and linearity information with set-sharing. Similar combinations have been
proposed in [5, 6, 7]. From a more pragmatic point of view, Codish et al. [12, 13]
integrate the information captured by the domains of [34] and [32] by performing
the analysis with both the domains at the same time, exchanging information
between the two components at each step.

Most of the above proposals differ in the carrier of the underlying abstract
domain. Even when considering the simplest domain combinations, where no
explicit structural information is considered, there is no general consensus on
the specification of the abstract unification procedure. From a theoretical point
of view, once the abstract domain has been related to the concrete one by
means of a Galois connection, it is always possible to specify the best correct
approximation of each operator of the concrete semantics. However, empirical
observations suggest that sub-optimal operators are likely to result in better
complexity/precision trade-offs [4]. As a consequence, it is almost impossible to
identify “the right combination” of variable aliasing with freeness and linearity
information, at least when practical issues, such as the complexity of the abstract
unification procedure, are taken into account.

Given this state of affairs, we will now consider a domain combination whose
carrier is essentially the same as specified by Langen [30] and Hans and Win-
kler [20] (the same domain combination was also considered by Bruynooghe et
al. [6, 7], but with the addition of compoundness and explicit structural infor-
mation). The novelty of our proposal lies in the specification of an improved
abstract unification procedure, better exploiting the interaction between shar-
ing and linearity. As a matter of fact, we provide an example showing that
all previous approaches to the combination of set-sharing with freeness and
linearity are not uniformly more precise than the analysis based on the ASub
domain [11, 28, 34].

By extending the results of [22] to this combination, we provide a new ab-
straction function that can be applied to any logic language computing on do-
mains of syntactic structures, with or without the occurs-check; by using this
abstraction function, we also prove the correctness of the new abstract unifica-
tion procedure. Moreover, we show that the same notion of redundant informa-
tion as identified in [2, 3, 37] also applies to this abstract domain combination.
As a consequence, it is possible to implement an algorithm for abstract uni-
fication running in polynomial time and still obtain the same precision on all
the considered observables, which are groundness, independence, freeness and
linearity.
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2 Preliminaries

For a set S, ℘(S) is the powerset of S. The cardinality of S is denoted by #S
and the emptyset is denoted by ∅. The notation ℘f(S) stands for the set of all
the finite subsets of S, while the notation S ⊆f T stands for S ∈ ℘f(T ).

2.1 Terms and Trees

Let Sig denote a possibly infinite set of function symbols, ranked over the set
of natural numbers. Let Vars denote a denumerable set of variables, disjoint
from Sig . Then Terms denotes the free algebra of all (possibly infinite) terms
in the signature Sig having variables in Vars. Thus a term can be seen as an
ordered labeled tree, possibly having some infinite paths and possibly containing
variables: every inner node is labeled with a function symbol in Sig with a rank
matching the number of the node’s immediate descendants, whereas every leaf
is labeled by either a variable in Vars or a function symbol in Sig having rank
0 (a constant). It is assumed that Sig contains at least two distinct function
symbols, one having rank 0 (so that there exist finite terms having no variables)
and one having rank greater than 0 (so that there exist infinite terms).

If t ∈ Terms then vars(t) and mvars(t) denote the set and the multiset of
variables occurring in t, respectively. We will also write vars(o) to denote the
set of variables occurring in an arbitrary syntactic object o. To prove a few of
the results of this thesis, it is useful to assume a total ordering, denoted with
‘≤’, on Vars.

Suppose s, t ∈ Terms: s and t are independent if vars(s) ∩ vars(t) = ∅; if
y ∈ vars(t) and ¬

(
y A mvars(t)

)
we say that variable y occurs linearly in t,

more briefly written using the predication occ lin(y, t); t is said to be ground
if vars(t) = ∅; t is free if t ∈ Vars; t is linear if, for all y ∈ vars(t), we have
occ lin(y, t); finally, t is a finite term (or Herbrand term) if it contains a finite
number of occurrences of function symbols. The sets of all ground, linear and
finite terms are denoted by GTerms, LTerms and HTerms, respectively.

The function size : HTerms → N, for each t ∈ HTerms, is defined by

size(t) def=

{
1, if t ∈ Vars;
1 +

∑n
i=1 size(ti), if t = f(t1, . . . , tn).

A path p ∈
(
N \ {0}

)? is any finite sequence of (non-zero) natural numbers.
Given a path p and a (possibly infinite) term t ∈ Terms, we denote by t[p] the
subterm of t found by following path p. Formally,

t[p] =

{
t if p = ε;
ti[q] if p = i . q ∧ (1 ≤ i ≤ n) ∧ t = f(t1, . . . , tn).

Note that t[p] is only defined for those paths p actually corresponding to sub-
terms of t.

2.2 Substitutions

A substitution is a total function σ : Vars → HTerms that is the identity almost
everywhere; in other words, the domain of σ,

dom(σ) def=
{
x ∈ Vars

∣∣ σ(x) 6= x
}
,
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is finite. Given a substitution σ : Vars → HTerms, we overload the symbol ‘σ’
so as to denote also the function σ : HTerms → HTerms defined as follows, for
each term t ∈ HTerms:

σ(t) def=


t, if t is a constant symbol;
σ(t), if t ∈ Vars;
f
(
σ(t1), . . . , σ(tn)

)
, if t = f(t1, . . . , tn).

If t ∈ HTerms, we write tσ to denote σ(t). Note that, for each substitution σ
and each finite term t ∈ HTerms, it holds size(t) ≤ size(tσ).

If x ∈ Vars and t ∈ HTerms \ {x}, then x 7→ t is called a binding. The set of
all bindings is denoted by Bind . Substitutions are denoted by the set of their
bindings, thus a substitution σ is identified with the (finite) set{

x 7→ σ(x)
∣∣ x ∈ dom(σ)

}
.

We denote by vars(σ) the set of variables occurring in the bindings of σ. We
also define the sets param(σ) and range(σ) (the parameter variables and the
range variables of σ, respectively) as

param(σ) def= vars(σ) \ dom(σ),

range(σ) def=
{
y ∈ vars(t)

∣∣ (x 7→ t) ∈ σ
}
.

A substitution is said to be circular if, for n > 1, it has the form

{x1 7→ x2, . . . , xn−1 7→ xn, xn 7→ x1},

where x1, . . . , xn are distinct variables. A substitution is in rational solved form
if it has no circular subset. The set of all substitutions in rational solved form is
denoted by RSubst . A substitution σ is idempotent if, for all t ∈ Terms, we have
tσσ = tσ. Equivalently, σ is idempotent if and only if dom(σ) ∩ range(σ) = ∅.
The set of all idempotent substitutions is denoted by ISubst and ISubst ⊂
RSubst .

Example 1 The following hold:{
x 7→ y, y 7→ a

}
∈ RSubst \ ISubst ,{

x 7→ a, y 7→ a
}
∈ ISubst ,{

x 7→ y, y 7→ g(y)
}
∈ RSubst \ ISubst ,{

x 7→ y, y 7→ g(x)
}
∈ RSubst \ ISubst ,{

x 7→ y, y 7→ x
}
/∈ RSubst ,{

x 7→ y, y 7→ x, z 7→ a
}
/∈ RSubst .

We have assumed that there is a total ordering ‘≤’ for Vars. We say that
σ ∈ RSubst is ordered (with respect to this ordering) if, for each binding (x 7→
y) ∈ σ such that y ∈ param(σ), we have y < x.

We will sometimes write t[x/s] to denote t{x 7→ s}.
The composition of substitutions is defined in the usual way. Thus τ ◦ σ is

the substitution such that, for all terms t ∈ HTerms,

(τ ◦ σ)(t) = τ
(
σ(t)

)
4



and has the formulation

τ ◦ σ =
{
x 7→ xστ

∣∣ x ∈ dom(σ), x 6= xστ
}

∪
{
x 7→ xτ

∣∣ x ∈ dom(τ) \ dom(σ)
}
. (1)

As usual, σ0 denotes the identity function (i.e., the empty substitution) and,
when i > 0, σi denotes the substitution (σ ◦ σi−1).

For each σ ∈ RSubst , s ∈ HTerms, the sequence of finite terms

σ0(s), σ1(s), σ2(s), . . .

converges to a (possibly infinite) term, denoted σ∞(s) [23, 28]. Therefore, the
function rt : HTerms × RSubst → Terms such that

rt(s, σ) def= σ∞(s)

is well defined. Note that, in general, this function is not a substitution: while
having a finite domain, its “bindings” x 7→ rt(x, σ) can map a domain variable
x into a term rt(x, σ) ∈ Terms \HTerms. However, as the name of the function
suggests, the term rt(x, σ) is granted to be rational, meaning that it can only
have a finite number of distinct subterms. Rational terms, even though infinite
in the sense that they admit paths of infinite length, can be finitely represented.

We have the following useful result regarding rt and substitutions that are
equivalent with respect to any given syntactic equality theory.

Proposition 2 Let σ, τ ∈ RSubst be satisfiable in the syntactic equality theory
T and suppose that T ` ∀(σ ↔ τ). Then

rt(y, σ) ∈ Vars ⇐⇒ rt(y, τ) ∈ Vars, (2)
rt(y, σ) ∈ GTerms ⇐⇒ rt(y, τ) ∈ GTerms, (3)
rt(y, σ) ∈ LTerms ⇐⇒ rt(y, τ) ∈ LTerms. (4)

2.3 Equality Theories

An equation is of the form s = t where s, t ∈ HTerms. Eqs denotes the set of all
equations. A substitution σ may be regarded as a finite set of equations, that is,
as the set

{
x = t

∣∣ (x 7→ t) ∈ σ
}

. We say that a set of equations e is in rational
solved form if

{
s 7→ t

∣∣ (s = t) ∈ e
}
∈ RSubst . In the rest of the paper, we will

often write a substitution σ ∈ RSubst to denote a set of equations in rational
solved form (and vice versa).

As is common in research work involving equality, we overload the symbol
‘=’ and use it to denote both equality and to represent syntactic identity. The
context makes it clear what is intended.

Let {r, s, t, s1, . . . , sn, t1, . . . , tn} ⊆ HTerms. We assume that any equality
theory T over Terms includes the congruence axioms denoted by the following
schemata:

s = s, (5)
s = t↔ t = s, (6)

r = s ∧ s = t→ r = t, (7)
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s1 = t1 ∧ · · · ∧ sn = tn → f(s1, . . . , sn) = f(t1, . . . , tn). (8)

In logic programming and most implementations of Prolog it is usual to
assume an equality theory based on syntactic identity. This consists of the
congruence axioms together with the identity axioms denoted by the following
schemata, where f and g are distinct function symbols or n 6= m:

f(s1, . . . , sn) = f(t1, . . . , tn)→ s1 = t1 ∧ · · · ∧ sn = tn, (9)

¬
(
f(s1, . . . , sn) = g(t1, . . . , tm)

)
. (10)

The axioms characterized by schemata (9) and (10) ensure the equality theory
depends only on the syntax. The equality theory for a non-syntactic domain
replaces these axioms by ones that depend instead on the semantics of the
domain and, in particular, on the interpretation given to functor symbols.

The equality theory of Clark [8], denoted FT , on which pure logic pro-
gramming is based, usually called the Herbrand equality theory, is given by the
congruence axioms, the identity axioms, and the axiom schema

∀z ∈ Vars : ∀t ∈ (HTerms \Vars) : z ∈ vars(t)→ ¬(z = t). (11)

Axioms characterized by the schema (11) are called the occurs-check axioms and
are an essential part of the standard unification procedure in SLD-resolution.

An alternative approach used in some implementations of logic programming
systems, such as Prolog II, SICStus and Oz, does not require the occurs-check
axioms. This approach is based on the theory of rational trees [14, 15], denoted
RT . It assumes the congruence axioms and the identity axioms together with
a uniqueness axiom for each substitution in rational solved form. Informally
speaking these state that, after assigning a ground rational tree to each param-
eter variable, the substitution uniquely defines a ground rational tree for each
of its domain variables. Note that being in rational solved form is a very weak
property. Indeed, unification algorithms returning a set of equations in rational
solved form are allowed to be much more “lazy” than one would usually expect
(e.g., see the first substitution in Example 1). We refer the interested reader to
[25, 26, 31] for details on the subject.

In the sequel we will use the expression “equality theory” to denote any
consistent, decidable theory T satisfying the congruence axioms. We will also
use the expression “syntactic equality theory” to denote any equality theory T
also satisfying the identity axioms. When the equality theory T is clear from
the context, it is convenient to adopt the notations σ =⇒ τ and σ ⇐⇒ τ ,
where σ, τ are sets of equations, to denote T ` ∀(σ → τ) and T ` ∀(σ ↔ τ),
respectively.

Given an equality theory T , and a set of equations in rational solved form
σ, we say that σ is satisfiable in T if T ` ∀Vars \ dom(σ) : ∃dom(σ) . σ. If T is
a syntactic equality theory that also includes the occurs-check axioms, and σ is
satisfiable in T , then we say that σ is Herbrand.

Given a satisfiable set of equations e ∈ ℘f(Eqs) in an equality theory T , then
a substitution σ ∈ RSubst is called a solution for e in T if σ is satisfiable in T
and T ` ∀(σ → e). If vars(σ) ⊆ vars(e), then σ is said to be a relevant solution
for e. In addition, σ is a most general solution for e in T if T ` ∀(σ ↔ e).
In this thesis, a most general solution is always a relevant solution of e. When
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the theory T is clear from the context, the set of all the relevant most general
solutions for e in T is denoted by mgs(e).

Observe that, given an equality theory T , a set of equations in rational solved
form may not be satisfiable in T . For example, ∃x .

{
x = f(x)

}
is false in the

equality theory FT .

2.4 Galois Connections and uco’s

Given two complete lattices (C,≤C) and (A,≤A), a Galois connection is a pair
of monotonic functions α : C → A and γ : A→ C such that

∀c ∈ C : c ≤C γ
(
α(c)

)
, ∀a ∈ A : α

(
γ(a)

)
≤A a.

The functions α and γ are said to be the abstraction and concretization func-
tions, respectively.

An upper closure operator (uco) ρ : C → C on the complete lattice (C,≤C)
is a monotonic, idempotent and extensive1 self-map. The set of all uco’s on
C, denoted by uco(C), is itself a complete lattice. Given a Galois connection,
the function ρ

def= γ ◦ α is an element of uco(C). The presentation of abstract
interpretation in terms of Galois connections can be rephrased by using uco’s.
In particular, the partial order v defined on uco(C) formalizes the intuition of
an abstract domain being more precise than another one; moreover, given two
elements ρ1, ρ2 ∈ uco(C), their reduced product, denoted ρ1 u ρ2, is their glb
on uco(C).

2.5 The Set-Sharing Domain

The set-sharing domain of Jacobs and Langen [24], encodes both aliasing and
groundness information. Let VI ⊆f Vars be a fixed and finite set of variables of
interest. An element of the set-sharing domain (a sharing set) is a set of subsets
of VI (the sharing groups). Note that the empty set is not a sharing group.

Definition 3 (The set-sharing lattice.) Let SG def= ℘(VI ) \ {∅} be the set
of sharing groups. The set-sharing lattice is defined as SH def= ℘(SG), ordered
by subset inclusion.

The following operators on SH are needed for the specification of the abstract
semantics.

Definition 4 (Auxiliary operators on SH .) For each sh, sh1, sh2 ∈ SH and
each V ⊆ VI , we define the following functions:
the star-union function (·)? : SH → SH , is defined as

sh? def=
{
S ∈ SG

∣∣ ∃n ≥ 1 . ∃S1, . . . , Sn ∈ sh . S = S1 ∪ · · · ∪ Sn
}

;

the extraction of the relevant component of sh with respect to V is encoded by
rel : ℘(VI )× SH → SH defined as

rel(V, sh) def= {S ∈ sh | S ∩ V 6= ∅ };
1Namely, c ≤C ρ(c) for each c ∈ C.
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the irrelevant component of sh with respect to V is thus defined as

rel(V, sh) def= sh \ rel(V, sh);

the binary union function bin: SH × SH → SH is defined as

bin(sh1, sh2) def= {S1 ∪ S2 | S1 ∈ sh1, S2 ∈ sh2 };

the self-bin-union operation on SH is defined as

sh2 def= bin(sh, sh);

the abstract existential quantification function aexists : SH × ℘(VI ) → SH is
defined as

aexists(sh, V ) def=
{
S \ V

∣∣ S ∈ sh, S \ V 6= ∅

}
∪
{
{x}

∣∣ x ∈ V }.
In [2, 3] it was shown that the domain SH contains many elements that

are redundant for the computation of the actual observable properties of the
analysis, that is groundness and pair-sharing. The following formalization of
these observables is a rewording of the definitions provided in [36, 37].

Definition 5 (The observables of SH .) The groundness and pair-sharing
observables (on SH ) ρCon , ρPS ∈ uco(SH ) are defined, for each sh ∈ SH , by

ρCon(sh) def=
{
S ∈ SG

∣∣ S ⊆ vars(sh)
}
,

ρPS(sh) def=
{
S ∈ SG

∣∣ (P ⊆ S ∧#P = 2) =⇒ (∃T ∈ sh . P ⊆ T )
}
.

Definition 6 (The pair-sharing dependency lattice PSD.) The operator
ρPSD ∈ uco(SH ) is defined, for each sh ∈ SH , by

ρPSD(sh) def=
{
S ∈ SG

∣∣∣ ∀y ∈ S : S =
⋃{

U ∈ sh
∣∣ {y} ⊆ U ⊆ S

}}
.

The pair-sharing dependency lattice is PSD def= ρPSD(SH ).

3 The Domain SFL

The abstract domain SFL is made up of three components, providing different
kinds of sharing information regarding the set of variables of interest VI : the
first component is the set-sharing domain SH of Jacobs and Langen [24]; the
other two components provide freeness and linearity information, each repre-
sented by simply recording those variables of interest that are known to enjoy
the corresponding property.

Definition 7 (The domain SFL.) Let F def= ℘(VI ) and L
def= ℘(VI ) be par-

tially ordered by reverse subset inclusion. The abstract domain SFL is defined
as

SFL def=
{
〈sh, f, l〉

∣∣ sh ∈ SH , f ∈ F, l ∈ L
}
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and is ordered by ≤S, the component-wise extension of the orderings defined on
the sub-domains. With this ordering, SFL is a complete lattice whose least upper
bound operation is denoted by alubS. The bottom element (∅,VI ,VI ) will be
denoted by ⊥S.

The domain SFL contains many redundancies: that is, different abstract
elements represent the same set of concrete computation states. For instance,
any element d = 〈sh, f, l〉 ∈ SFL where f * vars(sh), such as ⊥S, represent
the semantics of those program fragments that have no successful computa-
tions: this is because any free variable necessarily shares (at least, with itself).
Similarly, the element d has the same meaning as the element 〈sh, f, l′〉, where
l′ =

(
VI \ vars(sh)

)
∪ f ∪ l: in this case, the reason is that any variable that is

either ground or free is also necessarily linear.
All these redundancies can be removed by taking, as abstract domain, the

image of the concrete domain under the abstraction function. Apart from the
simple cases shown above, it is somehow difficult to explicitly characterize such
a set. For instance, as observed in [18], the element〈

{xy, yz, xz}, {x, y, z}, {x, y, z}
〉
∈ SFL

like ⊥S does not correspond to the abstraction of any concrete computation
state. It is worth stressing that these “spurious” elements do not compromise
the correctness of the analysis and, although they can affect the precision of the
analysis, they rarely occur in practice [4, 35].

3.1 The Abstraction Function

When the concrete domain is based on the theory of finite trees, idempotent
substitutions provide a finitely computable strong normal form for domain ele-
ments, meaning that different substitutions describe different sets of finite trees.2

In contrast, when working on a concrete domain based on the theory of ratio-
nal trees, substitutions in rational solved form, while being finitely computable,
no longer satisfy this property: there can be an infinite set of substitutions in
rational solved form all describing the same set of rational trees (i.e., the same
element in the “intended” semantics). For instance, the substitutions

σn = {x 7→
n︷ ︸︸ ︷

f(· · · f(x) · · · )}

for n = 1, 2, . . . , all map the variable x into the same rational tree (which is
usually denoted by fω).

Ideally, a strong normal form for the set of rational trees described by a
substitution σ ∈ RSubst can be obtained by computing the limit σ∞. The
problem is that we may end up with σ∞ /∈ RSubst , as σ∞ can map domain
variables to infinite rational terms.

This poses a non-trivial problem when trying to define “good” abstraction
functions, since it would be really desirable for this function to map any two
equivalent concrete elements to the same abstract element. As shown in [22],
the classical abstraction function for set-sharing analysis [16, 24], which was

2As usual, this is modulo the possible renaming of variables.
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defined for idempotent substitutions only, does not enjoy this property when
applied, as it is, to arbitrary substitutions in rational solved form. A possibility
is to look for a more general abstraction function that allows to obtain the
desired property. For example, in [21, 22] the sharing group operator ‘sg’ of [24]
is replaced by an occurrence operator, ‘occ’, defined by means of a fixpoint
computation. However, to simplify the presentation, here we define ‘occ’ directly
by exploiting the fact that the number of iterations needed to reach the fixpoint
is bounded by the number of bindings in the substitution.

Definition 8 (Occurrence operator.) For each σ ∈ RSubst and v ∈ Vars,
the occurrence operator occ : RSubst ×Vars → ℘f(Vars) is defined as

occ(σ, v) def=
{
y ∈ Vars

∣∣ n = #σ, v ∈ vars(yσn) \ dom(σ)
}
.

For each σ ∈ RSubst, ssets : RSubst → SH is defined as

ssets(σ) def=
{

occ(σ, v) ∩VI
∣∣ v ∈ Vars

}
\ {∅}.

The operator ‘ssets’ is introduced for notational convenience only; its additive
extension corresponds to the abstraction function mapping concrete elements
into elements of the set-sharing domain SH .

Example 9 Let

σ =
{
x1 7→ f(x2), x2 7→ g(x3, x4), x3 7→ x1

}
,

τ =
{
x1 7→ f(g(x3, x4)), x2 7→ g(x3, x4), x3 7→ f(g(x3, x4))

}
.

Then dom(σ) = dom(τ) = {x1, x2, x3} so that occ(σ, xi) = occ(τ, xi) = ∅, for
i = 1, 2, 3 and occ(σ, x4) = occ(τ, x4) = {x1, x2, x3, x4}.

In a similar way, it is possible to define suitable operators for freeness,
groundness and linearity. As all ground trees are linear, a knowledge of the
definite groundness information in substitutions can be useful for proving prop-
erties concerning the linearity abstraction. Groundness is already encoded in
the previously defined abstraction for set-sharing; nonetheless, for both a sim-
plified notation and a clearer intuitive reading, we now explicitly define the set
of variables that are associated to ground trees by a substitution in RSubst .

Definition 10 (Groundness operator.) For each σ ∈ RSubst, the ground-
ness operator gvars : RSubst → ℘f(Vars) is defined as

gvars(σ) def=
{
y ∈ dom(σ)

∣∣ ∀v ∈ param(σ) : y /∈ occ(σ, v)
}
.

Example 11 Consider σ ∈ RSubst, where

σ =
{
x1 7→ x2, x2 7→ f(a), x3 7→ x4, x4 7→ f(x2, x4)

}
.

Then gvars(σ) = {x1, x2, x3, x4}. Observe that x1 ∈ gvars(σ) although x1σ ∈
Vars. Also, x3 ∈ gvars(σ) although vars(x3σ

i) = {x2, x4} 6= ∅ for all i ≥ 2.

As for possible sharing, the definite freeness information can be extracted
from a substitution in rational solved form by observing the result of a bounded
number of applications of the substitution.

10



Definition 12 (Freeness operator.) For each σ ∈ RSubst, the freeness op-
erator fvars : RSubst → ℘(Vars) is defined as

fvars(σ) def= { y ∈ Vars | n = #σ, yσn ∈ Vars }.

As σ ∈ RSubst has no circular subset, y ∈ fvars(σ) implies yσn ∈ Vars \dom(σ).

Example 13 Consider σ ∈ RSubst, where

σ =
{
x1 7→ x2, x2 7→ f(x3), x3 7→ x4, x4 7→ x5

}
.

Then, fvars(σ) = {x3, x4, x5}. Thus, x1 /∈ fvars(σ) although x1σ ∈ Vars. Also,
x3 ∈ fvars(σ) although x3σ ∈ dom(σ).

As in previous cases, the definite linearity information can be extracted by
observing the result of a bounded number of applications of the considered
substitution.

Definition 14 (Linearity operator.) For each σ ∈ RSubst, the linearity
operator lvars : RSubst → ℘(Vars) is defined as

lvars(σ) def=
{
y ∈ Vars

∣∣ n = #σ,∀z ∈ vars(yσn) \ dom(σ) : occ lin(z, yσ2n)
}
.

In the next example we consider the extraction of linearity from two substitu-
tions. The substitution σ shows that, in contrast with respect to set-sharing
and freeness, for linearity we may need to compute up to 2n applications, where
n = #σ; the substitution τ shows that, when observing the term yτ2n, multiple
occurrences of domain variables have to be disregarded.

Example 15 Let VI = {x1, x2, x3, x4} and consider σ ∈ RSubst, where

σ =
{
x1 7→ x2, x2 7→ x3, x3 7→ f(x1, x4)

}
.

Then, lvars(σ) = {x4}. Observe that x1 /∈ lvars(σ) since x4 /∈ dom(σ), x4 ∈
x1σ

3 = f(x1, x4) and x1σ
6 = f

(
f(x1, x4), x4

)
, so that occ lin(x4, x1σ

6) does
not hold. Note also that occ lin(x4, x1σ

i) holds for i = 3, 4, 5.
Let now τ ∈ RSubst, where

τ =
{
x1 7→ f(x2, x2), x2 7→ f(x2)

}
.

Then lvars(τ) = VI . Note that we have x1 ∈ lvars(τ), although, for all i > 0,
x2 ∈ dom(τ) occurs more than once in the term x1τ

i.

The occurrence, groundness, freeness and linearity operators precisely cap-
ture the intended properties over the domain of rational trees.

Proposition 16 If σ ∈ RSubst and y, v ∈ Vars then

y ∈ occ(σ, v) ⇐⇒ v ∈ vars
(
rt(y, σ)

)
, (12)

y ∈ gvars(σ) ⇐⇒ rt(y, σ) ∈ GTerms, (13)
y ∈ fvars(σ) ⇐⇒ rt(y, σ) ∈ Vars, (14)
y ∈ lvars(σ) ⇐⇒ rt(y, σ) ∈ LTerms. (15)

11



Moreover, the properties of sharing, groundness, freeness and linearity are
invariant with respect to substitutions that are equivalent in the given syntactic
equality theory.

Proposition 17 Let σ, τ ∈ RSubst be satisfiable in the syntactic equality theory
T and suppose that T ` ∀(σ ↔ τ). Then

ssets(σ) = ssets(τ), (16)
gvars(σ) = gvars(τ), (17)
fvars(σ) = fvars(τ), (18)
lvars(σ) = lvars(τ). (19)

We are now in position to define the abstraction function mapping rational
trees to elements of the domain SFL.

Definition 18 (The abstraction function for SFL.) For each substitution
σ ∈ RSubst, the function αS : RSubst → SFL is defined by

αS(σ) def=
〈

ssets(σ), fvars(σ) ∩VI , lvars(σ) ∩VI
〉
,

The concrete domain ℘(RSubst) is related to SFL by means of the abstraction
function αS : ℘(RSubst)→ SFL such that, for each Σ ∈ ℘(RSubst),

αS(Σ) def= alubS
{
αS(σ)

∣∣ σ ∈ Σ
}
.

Since the abstraction function αS is additive, the concretization function is given
by the adjoint [17]

γS
(
〈sh, f, l〉

) def=
{
σ ∈ RSubst

∣∣ ssets(σ) ⊆ sh, fvars(σ) ⊇ f, lvars(σ) ⊇ l
}
.

With the definitions given in this section, one of our objectives is fulfilled:
substitutions in RSubst that are equivalent have the same abstraction. The
following is a simple consequence of Definition 18 and Proposition 17.

Corollary 19 Let σ, τ ∈ RSubst be satisfiable in the syntactic equality theory
T and suppose T ` ∀(σ ↔ τ). Then αS(σ) = αS(τ).

3.2 The Abstract Operators

The specification of the abstract unification operator on the domain SFL is
rather complex, since it is based on a very detailed case analysis. To achieve
some modularity, that will be also useful when proving its correctness, in the
next definition we introduce several auxiliary abstract operators.

Definition 20 (Auxiliary operators.) Let s, t ∈ HTerms be finite terms
such that vars(s) ∪ vars(t) ⊆ VI . For each d = 〈sh, f, l〉 ∈ SFL we define the
following predicates:
s and t are independent in d if and only if indd : HTerms2 → Bool holds for
(s, t), where

indd(s, t) def=
(

rel
(
vars(s), sh

)
∩ rel

(
vars(t), sh

)
= ∅

)
;
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t is ground in d if and only if groundd : HTerms → Bool holds for t, where

groundd(t) def=
(
vars(t) ⊆ VI \ vars(sh)

)
;

y ∈ vars(t) occurs linearly (in t) in d if and only if occ lind : VI × HTerms →
Bool holds for (y, t), where

occ lind(y, t) def= groundd(y) ∨
(

occ lin(y, t) ∧ (y ∈ l)

∧ ∀z ∈ vars(t) :
(
y 6= z =⇒ indd(y, z)

))
;

t is free in d if and only if freed : HTerms → Bool holds for t, where

freed(t) def= ∃y ∈ VI . (y = t) ∧ (y ∈ f);

t is linear in d if and only if lind : HTerms → Bool holds for t, where

lind(t) def= ∀y ∈ vars(t) : occ lind(y, t).

The function share withd : HTerms → ℘(VI ) yields the set of variables of
interest that may share with the given term. For each t ∈ HTerms,

share withd(t) def= vars
(

rel
(
vars(t), sh

))
.

The function cyclictx : SH → SH strengthens the sharing set sh by forcing
the coupling of x with t. For each sh ∈ SH and each (x 7→ t) ∈ Bind,

cyclictx(sh) def= rel
(
{x} ∪ vars(t), sh

)
∪ rel

(
vars(t) \ {x}, sh

)
.

As a first correctness result, we have that the auxiliary operators correctly
approximate the corresponding concrete properties.

Theorem 21 Let d ∈ SFL, σ ∈ γS(d), y ∈ VI and s, t ∈ HTerms be such that
vars(s) ∪ vars(t) ⊆ VI . Then

indd(s, t) =⇒ vars
(
rt(s, σ)

)
∩ vars

(
rt(t, σ)

)
= ∅; (20)

indd(y, t) ⇐⇒ y /∈ share withd(t); (21)
freed(t) =⇒ rt(t, σ) ∈ Vars; (22)

groundd(t) =⇒ rt(t, σ) ∈ GTerms; (23)
lind(t) =⇒ rt(t, σ) ∈ LTerms. (24)

We now introduce the abstract mgu operator, specifying how a single binding
affects each component of the domain SFL in the context of a syntactic equality
theory T .

Definition 22 (amguS.) The function amguS : SFL × Bind → SFL captures
the effects of a binding on an element of SFL. Let d = 〈sh, f, l〉 ∈ SFL and
(x 7→ t) ∈ Bind, where {x} ∪ vars(t) ⊆ VI . Let also

sh ′ def= cyclictx(sh− ∪ sh ′′),
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where

sh−
def= rel

(
{x} ∪ vars(t), sh

)
,

shx
def= rel

(
{x}, sh

)
,

sht
def= rel

(
vars(t), sh

)
,

shxt
def= shx ∩ sht,

sh ′′ def=



bin(shx, sht), if freed(x) ∨ freed(t);
bin
(
shx ∪ bin(shx, sh?xt),

sht ∪ bin(sht, sh?xt)
)
, if lind(x) ∧ lind(t);

bin(sh?x, sht), if lind(x);
bin(shx, sh?t ), if lind(t);
bin(sh?x, sh?t ), otherwise.

Letting Sx
def= share withd(x) and St

def= share withd(t), we also define

f ′
def=


f, if freed(x) ∧ freed(t);
f \ Sx, if freed(x);
f \ St, if freed(t);
f \ (Sx ∪ St), otherwise;

l′
def=
(
VI \ vars(sh ′)

)
∪ f ′ ∪ l′′,

where

l′′
def=


l \ (Sx ∩ St), if lind(x) ∧ lind(t);
l \ Sx, if lind(x);
l \ St, if lind(t);
l \ (Sx ∪ St), otherwise.

Then

amguS
(
d , x 7→ t

) def=

{
⊥S, if d = ⊥S ∨

(
T = FT ∧ x ∈ vars(t)

)
;

〈sh ′, f ′, l′〉 otherwise.

The next result states that the abstract mgu operator is a correct approxi-
mation of the concrete one.

Theorem 23 Let d ∈ SFL and (x 7→ t) ∈ Bind, where {x} ∪ vars(t) ⊆ VI .
Then, for all σ ∈ γS(d) and τ ∈ mgs

(
σ ∪ {x = t}

)
in the syntactic equality

theory T , we have
τ ∈ γS

(
amguS(d , x 7→ t)

)
.

We now highlight the similarities and differences of the operator amguS
with respect to the corresponding ones defined in the “classical” proposals for
an integration of set-sharing with freeness and linearity, such as [6, 20, 30]. Note
that, when comparing our domain with the proposal in [6], we deliberately ignore
all those enhancements that depend on properties that cannot be represented
in SFL (i.e., compoundness and explicit structural information).
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• In the computation of the set-sharing component, the main difference can
be observed in the second, third and fourth cases of the definition of sh ′′:
here we omit one of the star-unions even when the terms x and t possibly
share. In contrast, in [6, 20, 30] the corresponding star-union is avoided
only when indd(x, t) holds. Note that when indd(x, t) holds in the second
case of sh ′′, then we have shxt = ∅; thus, the whole computation for
this case reduces to sh ′′ = bin(shx, sht), as was the case in the previous
proposals.

• Another improvement on the set-sharing component can be observed in
the definition of sh ′: the cyclictx operator allows the set-sharing description
to be further enhanced when dealing with definitely cyclic bindings, i.e.,
when x ∈ vars(t). This is the rewording of a similar enhancement proposed
in [1] for the domain Pos in the context of groundness analysis. Its net
effect is to recover some groundness and sharing dependencies that would
have been unnecessarily lost when using the standard operators. When
x /∈ vars(t), we have cyclictx(sh− ∪ sh ′′) = sh− ∪ sh ′′.

• The computation of the freeness component f ′ is the same as specified
in [6, 20], and is more precise than the one defined in [30].

• The computation of the linearity component l′ is the same as specified
in [6], and is more precise than those defined in [20, 30].

In the following examples we show that the improvements in the abstract
computation of the sharing component allow, in particular cases, to derive bet-
ter information than that obtainable by using the classical abstract unification
operators.

Example 24 Let VI = {x, x1, x2, y, y1, y2, z} and σ ∈ RSubst such that

σ
def=
{
x 7→ f(x1, x2, z), y 7→ f(y1, z, y2)

}
.

By Definition 18, we have d def= αS
(
{σ}

)
= 〈sh, f, l〉, where

sh = {xx1, xx2, xyz, yy1, yy2},
f = VI \ {x, y},
l = VI .

Consider the binding (x 7→ y) ∈ Bind. In the concrete, we compute (a substitu-
tion equivalent to) τ ∈ mgs

(
σ ∪ {x = y}

)
, where

τ =
{
x 7→ f(y1, y2, y2), y 7→ f(y1, y2, y2), x1 7→ y1, x2 7→ y2, z 7→ y2

}
.

Note that αS
(
{τ}
)

= 〈shτ , fτ , lτ 〉, where shτ = {xx1yy1, xx2yy2z}, so that the
pairs of variables Px = {x1, x2} and Py = {y1, y2} keep their independence.

When abstractly evaluating the binding, both lind(x) and lind(y) hold so that
we apply the second case of the definition of sh ′′. By using the notation of
Definition 22, we have

shx = {xx1, xx2, xyz}, sh− = ∅,
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sht = {yy1, yy2, xyz}, shxt = {xyz}.

Since we compute the star-closure of shxt only, we obtain the set-sharing com-
ponent

sh ′ = {xx1yy1, xx1yy2, xx1yz, xx2yy1, xx2yy2, xx2yz, xyy1z, xyy2z, xyz}.

Thus, we precisely capture the fact that pairs Px and Py keep their independence.
In contrast, since indd(x, y) does not hold, all of the classical definitions of

abstract unification would have required the star-closure of both shx and sht,
resulting in an abstract element including, among others, the sharing group
S = {x, x1, x2, y, y1, y2}. Since Px ∪ Py ⊂ S, this independence information
would have been unnecessarily lost.

Similar examples can be devised for the third and fourth cases of the defi-
nition of sh ′′, where only one side of the binding is known to be linear. Exam-
ple 24 has another interesting, unexpected consequence. By repeating the above
abstract computation on the domain ASub (e.g., using the abstract semantics
operators specified in [28]), we discover that even this simpler domain precisely
captures the independence of pairs Px and Py. Therefore, the example provides
a formal proof that all the classical approaches based on set-sharing are not
uniformly more precise than the pair-sharing domain ASub. Such a property is
enjoyed by our combination SFL with the improved abstract unification opera-
tor. The next example shows the precision improvements arising from the use
of the ‘cyclictx’ operator.

Example 25 Let VI = {x, x1, x2, y} and σ
def=
{
x 7→ f(x1, x2)

}
. By Defini-

tion 18, we have d def= αS
(
{σ}

)
= 〈sh, f, l〉, where

sh = {xx1, xx2, y},
f = VI \ {x},
l = VI .

Let t = f(x, y) and consider the cyclic binding (x 7→ t) ∈ Bind. In the concrete,
we compute (a substitution equivalent to) τ ∈ mgs

(
σ ∪ {x = t}

)
, where

τ =
{
x 7→ f(x1, x2), x1 7→ f(x1, x2), y 7→ x2,

}
.

Note that if we further instantiate τ by grounding y, then variables x, x1 and
x2 would become ground too. Formally, αS

(
{τ}
)

= 〈shτ , fτ , lτ 〉, where shτ =
{xyx1x2}. Thus, as observed above, y covers x, x1 and x2.

When abstractly evaluating the binding, we compute

shx = {xx1, xx2},
sht = {xx1, xx2, y},

shxt = shx,
sh− ∪ sh ′′ = {xx1, xx1x2, xx1x2y, xx1y, xx2, xx2y},

sh ′ = cyclictx(sh− ∪ sh ′′)
= {xx1x2y, xx1y, xx2y}.
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Note that, in the element sh− ∪ sh ′′ (which is the abstract element that would
have been computed when not exploiting the ‘cyclictx’ operator) variable y covers
none of variables x, x1 and x2. Thus, by applying the ‘cyclictx’ operator, this
covering information is restored.

The full abstract unification operator aunifyS, capturing the effect of a se-
quence of bindings on an abstract element, can now be specified by a straight-
forward inductive definition using the operator amguS.

Definition 26 (aunifyS.) The operator aunifyS : SFL × Bind? → SFL is de-
fined, for each d ∈ SFL and each sequence of bindings bs ∈ Bind?, by

aunifyS(d , bs) def=

{
d , if bs = ε;
aunifyS

(
amguS(d , x 7→ t), bs ′

)
, if bs = (x 7→ t) . bs ′.

Note that the second argument of aunifyS is a sequence of bindings (i.e., it is not
a substitution, which is a set of bindings), because amguS is neither commutative
nor idempotent, so that the multiplicity and the actual order of application of
the bindings can influence the overall result of the abstract computation. The
correctness of the aunifyS operator is simply inherited from the correctness of
the underlying amguS operator. In particular, any reordering of the bindings in
the sequence bs still results in a correct implementation of aunifyS.

The ‘merge-over-all-path’ operator on the domain SFL is provided by alubS
and is correct by definition. Finally, we define the abstract existential quantifi-
cation operator for the domain SFL.

Definition 27 (aexistsS.) The function aexistsS : SFL × ℘f(VI ) → SFL pro-
vides the abstract existential quantification of an element with respect to a subset
of the variables of interest. For each d def= 〈sh, f, l〉 ∈ SFL and V ⊆ VI ,

aexistsS
(
〈sh, f, l〉, V

) def=
〈
aexists(sh, V ), f ∪ V, l ∪ V

〉
.

Note that the correctness of the aexistsS operator does not pose any problems.

4 SFL2: Eliminating Redundancies

As done in [3] for the plain set-sharing domain, even when considering the
richer domain SFL it is natural to question whether it contains redundancies
with respect to the computation of the observable properties of the analysis.

It is worth stressing that the results presented in [3] and [37] cannot be sim-
ply inherited by the new domain. The concept of “redundancy” depends on
both the starting domain and the given observables: in the SFL domain both
of these have changed. First of all, as can be seen by looking at the definition
of amguS, freeness and linearity positively interact in the computation of shar-
ing information: a priori it is an open issue whether or not the “redundant”
sharing groups can play a role in such an interaction. Secondly, since freeness
and linearity information can be themselves usefully exploited in a number of
applications of static analysis (e.g., in the optimized implementation of concrete
unification or in occurs-check reduction), these properties have to be included
in the observables.
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This stated, we will now show that the domain SFL can be simplified by
applying the same notion of redundancy as identified in [3]. Namely, in the
definition of SFL it is possible to replace the set-sharing component SH by
PSD without affecting the precision on groundness, pair-sharing, freeness and
linearity. In order to prove such a claim, we now formalize the new observable
properties.

Definition 28 (The observables of SFL.) The (overloaded) groundness and
pair-sharing observables ρCon , ρPS ∈ uco(SFL) are defined, for each 〈sh, f, l〉 ∈
SFL, by

ρCon

(
〈sh, f, l〉

) def=
〈
ρCon(sh),∅,∅

〉
,

ρPS

(
〈sh, f, l〉

) def=
〈
ρPS(sh),∅,∅

〉
;

the freeness and linearity observables ρF , ρL ∈ uco(SFL) are defined, for each
〈sh, f, l〉 ∈ SFL, by

ρF
(
〈sh, f, l〉

) def= 〈SG , f,∅〉,

ρL
(
〈sh, f, l〉

) def= 〈SG ,∅, l〉.

The overloading of ρPSD working on the domain SFL leaves the freeness and
linearity components untouched.

Definition 29 (Non-redundant SFL.) The operator ρPSD ∈ uco(SFL) is de-
fined, for each 〈sh, f, l〉 ∈ SFL, by

ρPSD

(
〈sh, f, l〉

) def=
〈
ρPSD(sh), f, l

〉
.

This operator induces the lattice SFL2
def= ρPSD(SFL).

As proved in [37], we have that ρPSD v (ρCon u ρPS); by the above definitions,
it is also straightforward to observe that ρPSD v (ρF u ρL); thus, ρPSD is more pre-
cise than the reduced product (ρCon u ρPS u ρF u ρL). Informally, this means that
the domain SFL2 is able to represent all of our observable properties without
precision losses.

The next theorem shows that ρPSD is a congruence with respect to the
aunifyS, alubS and aexistsS operators. This means that the domain SFL2 is
able to propagate the information on the observables as precisely as SFL, there-
fore providing a completeness result.

Theorem 30 Let d1, d2 ∈ SFL be such that ρPSD(d1) = ρPSD(d2). Then, for
each sequence of bindings bs ∈ Bind?, for each d ′ ∈ SFL and V ∈ ℘(VI ),

ρPSD

(
aunifyS(d1, bs)

)
= ρPSD

(
aunifyS(d2, bs)

)
,

ρPSD

(
alubS(d ′, d1)

)
= ρPSD

(
alubS(d ′, d2)

)
,

ρPSD

(
aexistsS(d1, V )

)
= ρPSD

(
aexistsS(d2, V )

)
.

Finally, by providing the minimality result, we show that the domain SFL2

is indeed the generalized quotient of SFL with respect to the reduced product
(ρCon u ρPS u ρF u ρL).
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Theorem 31 For each i ∈ {1, 2}, let di = 〈shi, fi, li〉 ∈ SFL be such that
ρPSD(d1) 6= ρPSD(d2). Then there exist a sequence of bindings bs ∈ Bind? and
ρ ∈ {ρCon , ρPS , ρF , ρL} such that

ρ
(
aunifyS(d1, bs)

)
6= ρ
(
aunifyS(d2, bs)

)
.

As far as the implementation is concerned, the results proved in [3] for
the domain PSD can also be applied to SFL2. In particular, in the definition
of amguS every occurrence of the star-union operator can be safely replaced
by the self-bin-union operator. As a consequence, it is possible to provide an
implementation where the time complexity of the amguS operator is bounded
by a polynomial in the number of sharing groups of the set-sharing component.

The following result provides another optimization that can be applied when
both terms x and t are definitely linear, but none of them is definitely free (i.e.,
when we compute sh ′′ by the second case stated in Definition 22).

Theorem 32 Let sh ∈ SH and (x 7→ t) ∈ Bind, where {x} ∪ vars(t) ⊆ VI .
Let W = vars(t) \ {x} and sh−

def= rel
(
{x} ∪ vars(t), sh

)
, shx

def= rel
(
{x}, sh

)
,

sht
def= rel

(
vars(t), sh

)
, shW

def= rel(W, sh), shxt
def= shx ∩ sht and

sh� def= sh− ∪ bin
(
shx ∪ bin(shx, sh?xt), sht ∪ bin(sht, sh?xt)

)
.

Then it holds

ρPSD

(
cyclictx(sh�)

)
=

{
ρPSD

(
sh− ∪ bin(shx, sht)

)
, if x /∈ vars(t);

ρPSD

(
sh− ∪ bin(sh2

x, shW )
)
, otherwise.

Therefore, even when terms x and t possibly share (i.e., when shxt 6= ∅), by
using SFL2 we can avoid the expensive computation of at least one of the two
inner binary unions in the expression for sh�.

5 Conclusion

In this paper we have introduced the abstract domain SFL, combining the set-
sharing domain SH with freeness and linearity information. While the carrier
of SFL can be considered standard, we have provided the specification of a new
abstract unification operator, showing examples where this operator achieves
more precision than the classical proposals. The main contributions of this
paper are the following:

• we have defined a precise abstraction function, mapping arbitrary substi-
tutions in rational solved form into their most precise approximation on
SFL;

• using this abstraction function, we have provided the mandatory proof of
correctness for the new abstract unification operator, for both finite-tree
and rational-tree languages;

• we have shown that, in the definition of SFL, we can replace the set-
sharing domain SH by its non-redundant version PSD . As a consequence,
it is possible to implement an algorithm for abstract unification running in
polynomial time and still obtain the same precision on all the considered
observables, that is groundness, independence, freeness and linearity.
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A Proofs of the Results of Section 2

The next three lemmas are needed for the proof of Proposition 2. The first two
are proven in [22].

Lemma 33 Let T be an equality theory, σ ∈ RSubst and t ∈ HTerms. Then

T ` ∀
(
σ → (t = tσ)

)
.

Lemma 34 Let σ ∈ RSubst be satisfiable in the equality theory T and consider
x 7→ t such that x /∈ dom(σ) and t ∈ GTerms ∩HTerms. Then, σ′ def= σ ∪ {x 7→
t} ∈ RSubst and σ′ is satisfiable in T .

Lemma 35 Let σ ∈ RSubst be satisfiable in the syntactic equality theory T .
Suppose s, t ∈ HTerms are such that T ` ∀

(
σ → (s = t)

)
. Then rt(s, σ) =

rt(t, σ).

Proof. We suppose, toward a contradiction, that rt(s, σ) 6= rt(t, σ). Then,
there must exist a finite path p such that:

a. x = rt(s, σ)[p] ∈ Vars \dom(σ), y = rt(t, σ)[p] ∈ Vars \dom(σ) and x 6= y;
or

b. x = rt(s, σ)[p] ∈ Vars \ dom(σ) and r = rt(t, σ)[p] /∈ Vars or, symmetri-
cally, we have r = rt(s, σ)[p] /∈ Vars and x = rt(t, σ)[p] ∈ Vars \ dom(σ);
or

c. r1 = rt(s, σ)[p] /∈ Vars, r2 = rt(t, σ)[p] /∈ Vars and r1 and r2 have different
principal functors.

Then, by definition of ‘rt’, there must exists an index i ∈ N such that one of
these holds:

1. x = sσi[p] ∈ Vars \ dom(σ), y = tσi[p] ∈ Vars \ dom(σ) and x 6= y; or

2. x = sσi[p] ∈ Vars \ dom(σ) and r = tσi[p] /∈ Vars or, symmetrically, we
have r = sσi[p] /∈ Vars and x = tσi[p] ∈ Vars \ dom(σ); or
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3. r1 = sσi[p] /∈ Vars and r2 = tσi[p] /∈ Vars have different principal func-
tors.

By Lemma 33, we have T ` ∀
(
σ → (sσi = tσi)

)
; from this, by the identity

axioms, we obtain that

T ` ∀
(
σ →

(
sσi[p] = tσi[p]

))
. (25)

We now prove that each case leads to a contradiction.
Consider case 1. Let r1, r2 ∈ GTerms ∩ HTerms be two ground and finite

terms having different principal functors, so that T ` ∀(r1 6= r2). By Lemma 34,
we have that σ′ = σ ∪ {x 7→ r1, y 7→ r2} ∈ RSubst is satisfiable; moreover,
T ` ∀(σ′ → σ), T ` ∀

(
σ′ → (x = r1)

)
and T ` ∀

(
σ′ → (y = r2)

)
. This is a

contradiction, since, by (25), we have T ` ∀
(
σ → (x = y)

)
.

Consider case 2. Without loss of generality, consider the first subcase, where
x = sσi and r = tσi[p] /∈ Vars. Let r′ ∈ GTerms ∩ HTerms be such that r
and r′ have different principal functors, so that T ` ∀(r 6= r′). By Lemma 34,
σ′ = σ ∪ {x 7→ r′} ∈ RSubst is satisfiable; we also have T ` ∀(σ′ → σ) and T `
∀
(
σ′ → (x = r′)

)
. This is a contradiction, since, by (25), T ` ∀

(
σ → (x = r)

)
.

Finally, consider case 3. In this case T ` ∀(r1 6= r2). This immediately leads
to a contradiction, since, by (25), T ` ∀

(
σ → (r1 = r2)

)
.

Proof of Proposition 2 on page 5 For each stated equivalence, we will prove
only one implication since the other one will follow by symmetry.

Consider (2). Reasoning by contraposition, suppose rt(y, σ) /∈ Vars. Then
there exists an index i ≥ 0 such that yσi /∈ Vars. Since T ` ∀(τ → σ),
by Lemma 33 we have T ` ∀

(
τ → (y = yσi)

)
. By Lemma 35, we obtain

rt(y, τ) = rt(yσi, τ), so that rt(y, τ) /∈ Vars.
Consider (3). We suppose, toward a contradiction, that rt(y, σ) ∈ GTerms

but rt(y, τ) /∈ GTerms. Then, there must exist a finite path p such that:

a. r = rt(y, σ)[p] ∈ GTerms and x = rt(y, τ)[p] ∈ Vars \ dom(τ); or

b. r1 = rt(y, σ)[p] /∈ Vars, r2 = rt(y, τ)[p] /∈ Vars and r1 and r2 have different
principal functors.

Then, by definition of ‘rt’, there must exists an index i ∈ N such that one of
these holds:

1. r = yσi[p] /∈ Vars and x = yτ i[p] ∈ Vars \ dom(τ); or

2. r1 = yσi[p] /∈ Vars and r2 = yτ i[p] /∈ Vars have different principal func-
tors.

By Lemma 33, we have T ` ∀
(
σ → (yσi = yτ i)

)
; from this, by the identity

axioms, we obtain that

T ` ∀
(
σ →

(
yσi[p] = yτ i[p]

))
. (26)

We now prove that both cases lead to a contradiction.
Consider case 1. Let r′ ∈ GTerms ∩ HTerms be such that r and r′ have

different principal functors, so that T ` ∀(r 6= r′). By Lemma 34, τ ′ = τ ∪{x 7→
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r′} ∈ RSubst is satisfiable; we also have T ` ∀(τ ′ → τ) and T ` ∀
(
τ ′ → (x =

r′)
)
. This is a contradiction, since, by (26), T ` ∀

(
τ → (x = r)

)
.

Finally, consider case 2. In this case T ` ∀(r1 6= r2). This immediately leads
to a contradiction, since, by (26), T ` ∀

(
σ → (r1 = r2)

)
.

Consider (4). Reasoning by contraposition, suppose that rt(y, τ) /∈ LTerms,
so that there exists v ∈ vars

(
rt(y, τ)

)
such that occ lin

(
v, rt(y, τ)

)
does not

hold. By definition of ‘rt’, there exists an index i ≥ 0 such that v ∈ vars(yτ i)
and occ lin(v, yτ i) does not hold. Thus, as v /∈ dom(τ), so that rt(v, τ) =
v ∈ Vars. By (2), rt(v, σ) = w ∈ Vars \ dom(σ). Therefore there exists
j ≥ 0 such that w = vσj . Hence, we obtain that w ∈ vars

(
rt(yτ iσj , σ)

)
and

occ lin
(
w, rt(yτ iσj , σ)

)
does not hold, so that rt(yτ iσj , σ) /∈ LTerms. Since

T ` ∀(σ → τ), by Lemma 33 we have T ` ∀
(
σ → (y = yτ iσj)

)
. By Lemma 35,

we obtain rt(y, σ) = rt(yτ iσj , σ), so that rt(y, σ) /∈ LTerms.

B Proofs of the Results of Subsection 3.1.

The definition of idempotence requires that repeated applications of a substi-
tution do not change the syntactic structure of a term. However, several ab-
stractions of terms, such as the ones commonly used for sharing analysis, are
only interested in the variables and not in the structure that contains them.
Thus, an obvious way to relax the definition of idempotence to allow for a
non-Herbrand substitution is to ignore the structure and just require that its
repeated application leaves the set of variables in a term invariant.

Definition 36 (Variable-idempotence.) A substitution σ ∈ RSubst is vari-
able-idempotent if and only if for all t ∈ HTerms we have

vars(tσσ) = vars(tσ).

The set of variable-idempotent substitutions is denoted VSubst.

Note that any idempotent substitution is also variable-idempotent, so that
ISubst ⊂ VSubst ⊂ RSubst . The above definition of variable-idempotence,
which is the same originally provided in [21], is a bit stronger than the one
adopted in [22] (weak variable-idempotence), where we were disregarding those
variables that are in the domain of the substitution. Since any variable-idempo-
tent substitution is also weak variable-idempotent, almost all the results proven
in [22] still apply.

The next result provides an alternative characterization of variable-idempo-
tence.

Lemma 37 Let σ ∈ RSubst. Then

σ ∈ VSubst ⇐⇒ ∀(x 7→ r) ∈ σ : vars(rσ) = vars(r).

Proof. Suppose first that σ ∈ VSubst and let (x 7→ r) ∈ σ. Then

vars(xσσ) = vars(xσ)

and hence, vars(rσ) = vars(r).
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Next, suppose that for all (x 7→ r) ∈ σ, vars(rσ) = vars(r) and consider
t ∈ HTerms. We will show that vars(tσσ) = vars(tσ) by induction on the size
of t. If t is a constant or t ∈ Vars \ dom(σ), then the result follows from the
fact that tσ = t. If t ∈ dom(σ), then there exists (y 7→ s) ∈ σ such that t = y,
so that tσ = s. Thus, we have

vars(tσσ) = vars(sσ) = vars(s) = vars(tσ).

Finally, if t = f(t1, . . . , tn), then by the inductive hypothesis vars(tiσσ) =
vars(tiσ) for i = 1, . . . , n. Therefore we have

vars(tσσ) =
n⋃
i=1

vars(tiσσ) =
n⋃
i=1

vars(tiσ) = vars(tσ).

Thus, by Definition 36, as σ ∈ RSubst , σ ∈ VSubst .

The next result provides a sufficient condition for a variable-idempotent
substitution so that all of its subsets are variable-idempotent too.

Lemma 38 Let σ ∈ VSubst be such that for all y ∈ range(σ), y ∈ vars(yσ).
Then, for all σ′ ⊆ σ, σ′ ∈ VSubst.

Proof. Let (x 7→ t) ∈ σ′ ⊆ σ. We will prove that vars(tσ′) = vars(t), so that
the thesis will follow from Lemma 37.

To prove the first implication, let y ∈ vars(tσ′), so that y ∈ range(σ). If it
also holds y ∈ dom(σ), then by the hypothesis y ∈ vars(yσ), so that y ∈ vars(tσ).
Otherwise, if y /∈ dom(σ), then again y ∈ vars(tσ). Thus, in both cases, since
σ ∈ VSubst , by Lemma 37 we obtain y ∈ vars(t).

To prove the other implication, let y ∈ vars(t), so that y ∈ range(σ). If
y /∈ dom(σ′) then y ∈ vars(tσ′). Otherwise, if y ∈ dom(σ′), then we have
y ∈ dom(σ) ∩ range(σ). Thus, by hypothesis, y ∈ vars(yσ). Since yσ = yσ′, we
have y ∈ vars(yσ′), so that y ∈ vars(tσ′).

The following result concerns the composition of variable idempotent sub-
stitutions.

Lemma 39 Let σ, τ ∈ VSubst, where dom(σ) ∩ vars(τ) = ∅. Then τ ◦ σ has
the following properties.

1. T ` ∀
(
(τ ◦ σ)↔ (τ ∪ σ)

)
, for any equality theory T ;

2. dom(τ ◦ σ) = dom(σ) ∪ dom(τ);

3. τ ◦ σ ∈ VSubst.

Proof. We have that (τ ∪ σ) ∈ RSubst because, by hypothesis, σ, τ ∈ RSubst
and dom(σ) ∩ vars(τ) = ∅. It follows from (1) that τ ◦ σ can be obtained from
(τ ∪ σ) by a sequence of S-steps so that, by Theorem 47, we have properties 1
and 2.

To prove property 3, we will show that, for all terms t ∈ HTerms,

vars(tστ) = vars(tστστ).
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• We start by proving the inclusion vars(tστ) ⊆ vars(tστστ). Thus, let
z ∈ vars(tστ).

First note that, if z /∈ dom(σ) ∪ dom(τ), then the result is trivial.

Suppose z ∈ dom(σ). By hypothesis, z /∈ vars(τ) so that z ∈ vars(tσ).
Since σ is variable-idempotent, z ∈ vars(tσσ), so that there exists v ∈
vars(tσ) ∩ dom(σ) such that z ∈ vars(vσ). Thus v /∈ vars(τ), so that
v ∈ vars(tστ). Therefore z ∈ vars(tστσ) and, since z /∈ vars(τ), we can
conclude z ∈ vars(tστστ).

Otherwise, let z ∈ dom(τ), so that z /∈ dom(σ). There exists v ∈
vars(tσ)∩ dom(τ) such that z ∈ vars(vτ). Since τ is variable-idempotent,
z ∈ vars(vττ) so that there exists w ∈ vars(vτ) ∩ dom(τ) such that
z ∈ vars(wτ). Since w /∈ dom(σ) then w ∈ vars(tστσ). Therefore we
can conclude z ∈ vars(tστστ).

• To prove the other inclusion, let z ∈ vars(tστστ), so that there exists v ∈
vars(tστσ) such that z ∈ vars(vτ). Similarly, there exists w ∈ vars(tστ)
such that v ∈ vars(wσ).

Suppose v 6= w. Then w ∈ dom(σ), so that by hypothesis w /∈ vars(τ).
As a consequence, w ∈ vars(tσ), v ∈ vars(tσσ) and z ∈ vars(tσστ). Thus,
as σ ∈ VSubst , we obtain z ∈ vars(tστ).

Otherwise, if v = w, there exists x ∈ vars(tσ) such that z ∈ vars(xττ).
Thus, z ∈ vars(tσττ) and, since τ ∈ VSubst , z ∈ vars(tστ).

The proof of the following result is the same as the proof of [22, Theorem 2]
(where weaker properties were stated).

Proposition 40 Suppose T is an equality theory and σ ∈ RSubst. Then there
exists σ′ ∈ VSubst such that dom(σ) = dom(σ′), vars(σ) = vars(σ′) and T `
∀(σ ↔ σ′); also, for all y ∈ dom(σ′) ∈ range(σ′), y ∈ vars(yσ′).

The following result is proven in [22, Lemma 6].

Lemma 41 Let τ, σ ∈ VSubst be satisfiable in the syntactic equality theory
T and suppose T ` ∀(τ → σ). In addition, let s, t ∈ HTerms be such that
T ` ∀

(
τ → (s = t)

)
and v ∈ vars(s) \ dom(τ). Then there exists a variable

z ∈ vars(tσ) \ dom(σ) such that v ∈ vars(zτ).

When σ ∈ VSubst , the following simplified characterizations for the opera-
tors occ, fvars, gvars and lvars can be used.

Proposition 42 For each σ ∈ VSubst and v ∈ Vars, we have

occ(σ, v) =
{
y ∈ Vars

∣∣ v ∈ vars(yσ) \ dom(σ)
}
, (27)

gvars(σ) =
{
y ∈ Vars

∣∣ vars(yσ) ⊆ dom(σ)
}
, (28)

fvars(σ) =
{
y ∈ Vars

∣∣ yσ ∈ Vars \ dom(σ)
}
, (29)

lvars(σ) =

{
y ∈ Vars

∣∣∣∣∣ ∀z ∈ vars(yσ) \ dom(σ) : occ lin(z, yσ),
∀z ∈ vars(yσ) ∩ dom(σ) : z ∈ gvars(σ)

}
. (30)
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Proof. Let #σ = n. If n = 0, then, by Definitions 10, 12 and 14, gvars(σ) = ∅

and fvars(σ) = lvars(σ) = Vars. Thus equations (28), (29) and (30) hold. We
assume now that n > 0 and prove each equation separately.

Consider equation (28). By Definition 10, y ∈ gvars(σ) if and only if, for all
v ∈ Vars, we have y /∈ occ(σ, v). By Proposition 42, this holds if and only if
there does not exist v ∈ Vars such that v ∈ vars(yσ) \ dom(σ), i.e., if and only
if vars(yσ) ⊆ dom(σ).

Consider equation (29). By Definition 12, y ∈ fvars(σ) if and only if yσn ∈
Vars. First note that, if yσn /∈ Vars, then yσ /∈ Vars \ dom(σ). Conversely, if
yσn ∈ Vars, then yσ ∈ Vars and, as σ ∈ VSubst , yσ = yσn. Thus, if n = 1,
yσ /∈ dom(σ) and, if n > 1, then yσ = yσ2 and, again yσ /∈ dom(σ).

Consider equation (30). First, suppose that, for some z ∈ vars(yσ), either
z /∈ dom(σ) and occ lin(z, yσ) does not hold or z /∈ gvars(σ). We show that,
in both cases, y /∈ lvars(σ). In the first case it follows that z ∈ vars(yσn)
and occ lin(z, yσ2n) does not hold. For the second case, by (28), there exists
w ∈ vars(zσ) \ dom(σ). As σ ∈ VSubst , w ∈ vars(yσ). As n ≥ 1, w 6= z and
z ∈ vars(yσ), so that occ lin(w, yσ2) does not hold. Thus, as w /∈ dom(σ) and
n ≥ 1, occ lin(w, yσ2n) does not hold. Therefore, by Definition 14, y /∈ lvars(σ).

Secondly, suppose that y /∈ lvars(σ). Then, by Definition 14, there exists z ∈
vars(yσn)\dom(σ) and occ lin(z, yσ2n) does not hold. Thus, as σ ∈ VSubst , z ∈
vars(yσ). Also, if occ lin(z, yσ) holds, there must exist v ∈ vars(yσ) ∩ dom(σ)
and z ∈ vars(vσ2n−1). Thus, as σ ∈ VSubst , z ∈ vars(vσ) and vars(vσ) \
dom(σ) 6= ∅ and hence, by (28), z /∈ gvars(σ).

The following proposition shows that, for a substitution σ ∈ VSubst , the
occurrence, groundness, freeness and linearity operators precisely capture the
intended properties.

Proposition 43 Let σ ∈ VSubst, y ∈ VI and v ∈ Vars. Then:

y ∈ occ(σ, v) ⇐⇒ v ∈ vars
(
rt(y, σ)

)
, (31)

y ∈ gvars(σ) ⇐⇒ rt(y, σ) ∈ GTerms, (32)
y ∈ fvars(σ) ⇐⇒ rt(y, σ) ∈ Vars, (33)
y ∈ lvars(σ) ⇐⇒ rt(y, σ) ∈ LTerms. (34)

Proof. We first prove item (31). By Proposition 42, y ∈ occ(σ, v) if and only
if v ∈ vars(yσ) \ dom(σ).

To prove the first implication (⇒), let v ∈ vars(yσ) \ dom(σ). Then, for all
i > 0, we have v ∈ vars(yσi) \ dom(σ), so that v ∈ vars

(
rt(y, σ)

)
.

To prove the other implication (⇐), assume that v ∈ vars
(
rt(y, σ)

)
. We

prove by contradiction that v ∈ vars(yσ) \ dom(σ). In fact, assume that v /∈
vars(yσ) \ dom(σ). Then, since σ ∈ VSubst , by Definition 36 we obtain v /∈
vars(yσσ) \ dom(σ) so that, for all i > 0, v /∈ vars(yσi) \ dom(σ). Thus, by
definition of ‘rt’, v /∈ vars

(
rt(y, σ)

)
.

We now prove item (32). By Definition 10, we have y ∈ gvars(σ) if and
only if y /∈ occ(σ, v), for all v ∈ Vars. By Proposition 16, this is equivalent to
v /∈ vars

(
rt(y, σ)

)
, for all v ∈ Vars. Thus, vars

(
rt(y, σ)

)
= ∅ and rt(y, σ) ∈

GTerms.
We now prove item (33). By Proposition 42, y ∈ fvars(σ) if and only if

yσ ∈ Vars \ dom(σ).
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To prove the first implication (⇒), let yσ ∈ Vars \dom(σ). Then, rt(y, σ) ∈
Vars \ dom(σ) and, more generally, rt(y, σ) ∈ Vars.

To prove the other implication (⇐), assume that rt(y, σ) ∈ Vars. We prove
by contradiction that yσ ∈ Vars \ dom(σ). In fact, assume that yσ /∈ Vars \
dom(σ). We have two cases:

1. if yσ /∈ Vars then, by definition, rt(y, σ) /∈ Vars.

2. otherwise, let yσ ∈ dom(σ). Thus, we have y 6= yσ 6= yσσ, so that
(y 7→ yσ) ∈ σ and (yσ 7→ yσσ) ∈ σ. Since σ ∈ VSubst , we also have
{yσ} = vars(yσ) = vars(yσσ). Therefore, yσσ /∈ Vars, so that there
exists an n > 0 such that yσσ = f(t1, . . . , tn), and size(yσσ) > 1. Since
rt(y, σ) ∈ Vars, this is a contradiction because we also have size(yσ2) ≤
size
(
rt(y, σ)

)
= 1.

Finally, we prove item (34). In order to prove the first implication (⇒),
assume y ∈ lvars(σ) so that, by Proposition 42, we have

∀z ∈ vars(yσ) \ dom(σ) : occ lin(z, yσ), (35)
∀z ∈ vars(yσ) ∩ dom(σ) : vars(zσ) ⊆ dom(σ). (36)

We need to show that rt(y, σ) ∈ LTerms and we proceed by contradiction,
negating the conclusion. Thus assume there exists v ∈ vars

(
rt(y, σ)

)
such that

occ lin
(
v, rt(y, σ)

)
does not hold. Note that v /∈ dom(σ); also, since σ ∈ VSubst ,

vars(yσ) = vars(yσi), for all i > 0, so that v ∈ vars(yσ). If occ lin(v, yσ) does
not hold, then we obtain the negation of equation (35), hence a contradiction.
So, assume that occ lin(v, yσ) hold. As a consequence, there exists an index
j > 1 such that occ lin(v, yσj−1) holds and occ lin(v, yσj) does not hold. Thus,
there exists w ∈ vars(yσj−1) ∩ dom(σ) such that v ∈ vars(wσ) \ dom(σ). Since
σ ∈ VSubst , w ∈ vars(yσj−1) if and only if w ∈ vars(yσ). Hence j = 2,
w ∈ vars(yσ) ∩ dom(σ) and vars(wσ) 6⊆ dom(σ). Hence we have contradicted
equation (36).

To prove the other implication (⇐), assume rt(y, σ) ∈ LTerms, so that, by
definition, we have occ lin

(
z, rt(y, σ)

)
, for all z ∈ vars

(
rt(y, σ)

)
. We need to

show that equations (35) and (36) hold. We proceed by contradiction, negating
the conclusion. There are two cases.

1. Assume that equation (35) does not hold, i.e., there exists a variable z ∈
vars(yσ) \ dom(σ) such that occ lin(z, yσ) does not hold. Then, for all
i > 0, we have that z ∈ vars(yσi), but occ lin(z, yσi) does not hold.
Hence, occ lin

(
z, rt(y, σ)

)
does not hold and rt(y, σ) /∈ LTerms, therefore

obtaining the contradiction.

2. Assume now equation (36) does not hold. Namely, there exists a vari-
able z ∈ vars(yσ) ∩ dom(σ) such that vars(zσ) 6⊆ dom(σ). Thus, let
v ∈ vars(zσ) \ dom(σ). Since σ ∈ VSubst and v ∈ vars(yσσ), then
v ∈ vars(yσ). Then, since z ∈ vars(yσ)∩dom(σ), occ lin(v, yσσ) does not
hold. Also, since v /∈ dom(σ), for all i ≥ 2, occ lin(v, yσi) does not hold.
By definition, occ lin

(
v, rt(y, σ)

)
does not hold and rt(y, σ) /∈ LTerms,

obtaining the contradiction.

29



Proof of Proposition 16 on page 11. By Proposition 40, there exists τ ∈
VSubst such that σ ⇐⇒ τ , dom(σ) = dom(τ) and T ` ∀(σ ↔ τ). By
Proposition 17, we have gvars(σ) = gvars(τ), fvars(σ) = fvars(τ) and lvars(σ) =
lvars(τ). From all of the above, by Proposition 43, we obtain

y ∈ fvars(σ) ⇐⇒ rt(y, τ) ∈ Vars,
y ∈ lvars(σ) ⇐⇒ rt(y, τ) ∈ LTerms.

Thus, the equivalences (13), (14) and (15) follow from Proposition 2.

In order to prove one of the statements of Proposition 17, in particular, to
show that the linearity operators precisely capture the intended properties even
for arbitrary substitutions in RSubst , we prove two preliminary results.

Lemma 44 Let T be a syntactic equality theory, σ, τ ∈ RSubst and s, t ∈ Terms
where T ` ∀(σ ↔ τ), T ` ∀(σ → s = t), dom(σ) = dom(τ) and #τ = n. Then,
if z ∈ vars(s) \ dom(σ), z ∈ vars(tτn).

Proof. Suppose that z ∈ vars(s) \ dom(σ), then we show that, by induction on
the depth of s, that z ∈ vars(tτn).

Suppose first that s = z. Then rt(s, σ) = z. By Lemma 35, rt(s, σ) = rt(t, σ)
and hence rt(t, σ) = z. Thus, for all i ∈ N, tσi ∈ Vars and for some j ∈ N,
tσj = z. Since τ ∈ RSubst , σ has no circular subsets, tσn = z.

Secondly, suppose that s = f(s1, . . . , sm) and z ∈ vars(sj), for some j ∈
{1, . . . ,m}. We first show that tτn /∈ Vars. Suppose, by contraposition that
tτn ∈ Vars, then as τ contains no circular subsets, tτn ∈ Vars \ dom(τ).
Then, as dom(σ) = dom(τ), rt(tτn, σ) ∈ Vars. By Lemma 33, we have
T ` ∀

(
σ → (s = tτn)

)
. Thus, by Lemma 35, rt(s, σ) = rt(tτn, σ) so that

rt(s, σ) ∈ Vars contradicting the assumption that s /∈ Vars. Thus we must have
tτn = f(t1, . . . , tm), for some t1, . . . , tm ∈ Terms where, for each i = 1, . . . , n,
T ` ∀

(
σ → (si = ti)

)
. Hence, by the inductive hypothesis, z ∈ vars(tjτn).

It follows that z ∈ vars(tτ2n). This means that occ(z, τ) ∩ vars(t) 6= ∅ and,
therefore occn(z, τ) ∩ vars(t) 6= ∅. Thus z ∈ vars(tτ2n).

Lemma 45 Let T be a syntactic equality theory, σ, τ ∈ RSubst, s, t ∈ Terms
and z ∈ Vars \ dom(σ) where T ` ∀(σ ↔ τ), T ` ∀(σ → s = t), dom(σ) =
dom(τ) and #τ = n. Then, if z ∈ vars(s)∩ vars(t) and occ lin(z, sσn) does not
hold, then occ lin(z, tτn) does not hold

Proof. Suppose that z ∈ vars(s)∩ vars(t) and occ lin(s, σn) does not hold. We
show that, by induction on the depth of s, that occ lin(t, τn) does not hold.

Suppose first that s = z. Then occ lin(z, sσn) does not hold and the result
follows.

Secondly, suppose that s = f(s1, . . . , sm) and z ∈ vars(sj), for some j ∈
{1, . . . ,m}. We first show that t /∈ Vars. Suppose, by contraposition that
t ∈ Vars, then as z ∈ vars(t), t = z. Then, as dom(σ) = dom(τ), rt(t, σ) = z.
Thus, by Lemma 35, rt(s, σ) = rt(t, σ) = z so that rt(s, σ) ∈ Vars contradicting
the assumption that s /∈ Vars. Thus we must have t = f(t1, . . . , tm), for some
t1, . . . , tm ∈ Terms where, for each i = 1, . . . , n, T ` ∀

(
σ → (si = ti)

)
. By

Lemma 44, z ∈ vars(tj) If occ lin(z, sjσn does not hold, then, by the inductive
hypothesis, occ lin(z, tjτn does not hold and hence, occ lin(z, tτn does not hold.
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Otherwise, there must exist k ∈ {1, . . . ,m} where k 6= j such that z ∈ vars(sk).
By Lemma 44, z ∈ vars(tk) As k 6= j, occ lin(tτn).

The next three results are needed in the proof of Proposition 17 below. The
first Lemma is a consequence of the proof of [22, Lemma 15]. The other two
results correspond to [22, Theorems 1 and 2].

Lemma 46 Let σ, σ′ ∈ RSubst be such that σ S7−→∗ σ′. Then, for all v ∈ Vars,
we have occ(σ, v) = occ(σ′, v).

Theorem 47 Let T be an equality theory, σ ∈ RSubst and σ
S7−→∗ σ′. Then

σ′ ∈ RSubst, vars(σ) = vars(σ′), dom(σ) = dom(σ′) and T ` ∀(σ ↔ σ′).

Theorem 48 Let σ ∈ RSubst. Then there exists σ′ ∈ VSubst such that σ S7−→∗
σ′ and y ∈ dom(σ′) ∩ range(σ′) implies y ∈ vars(yσ′).

Proof of Proposition 17 on page 12. Let n = #σ. Then, as dom(σ) =
dom(τ), n = #τ .

Consider first (16). By Theorem 48, there exists τ ∈ VSubst such that
σ
S7−→∗ τ . By Theorem 47, dom(σ) = dom(τ) and T ` ∀(σ ↔ τ). By Lemma 46,

occ(σ, v) = occ(τ, v). Moreover, by Proposition 43, we have y ∈ occ(τ, v) if
and only if v ∈ vars

(
rt(y, τ)

)
. Thus, we have y ∈ occ(σ, v) if and only if

v ∈ vars
(
rt(y, τ)

)
and, to complete the proof, it is sufficient to show that

v ∈ vars
(
rt(y, σ)

)
⇐⇒ v ∈ vars

(
rt(y, τ)

)
.

We only prove the first implication, since the other one follows by symmetry.
Suppose v ∈ vars

(
rt(y, σ)

)
. Then there exists an index i ≥ 0 such that

v ∈ vars(yσi). Note that v /∈ dom(σ) = dom(τ), so that v ∈ vars
(
rt(yσi, τ)

)
.

Since T ` ∀(τ → σ), by Lemma 33 we have T ` ∀
(
τ → (y = yσi)

)
. By

Lemma 35, rt(y, τ) = rt(yσi, τ). Thus, v ∈ vars
(
rt(y, τ)

)
.

Consider (17). By Definition 10, this is a simple consequence of (16) proved
above.

Consider (18). Suppose that y ∈ fvars(σ). Then, by Definition 12, yσn ∈
Vars \ dom(σ) and hence, yσn ∈ Vars \ dom(τ). By Lemma 33, we have T `
∀
(
τ → (y = yσn)

)
. Thus, by Lemma 35, rt(y, τ) = rt(yσn, τ) = yσn. Thus

rt(y, τ) ∈ Vars \ dom(τ). Thus yτ i ∈ Vars for all i ∈ N. As τ ∈ RSubst , there
are no circular subsets of τ so that yτn /∈ dom(τ) so that, by Definition 12,
y ∈ fvars(τ).

Consider (18). Suppose y /∈ lvars(σ), Then there exists z ∈ vars(yσn) such
that occ lin(z, yσ2n) does not hold. By Lemma 44, z ∈ vars(yτn). As T `
∀
(
τ → (yσn = yτn)

)
, by Lemma 45, occ lin(z, yτ2n) does not hold.

C Proofs of the Results of Subsection 3.2

In this section we prove that the abstract unification operator defined on the
domain SFL is a correct approximation of the concrete unification procedure. As
already discussed, this result applies to any syntactic equality theory, including
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both the finite-tree theory FT and the rational-tree theory RT . In contrast,
all the published proofs of correctness for a combination of set-sharing with
freeness and linearity information assume the occurs-check is performed. As
a consequence, they do not apply to the vast majority of implemented logic
languages.

First we recall the definition of the abstract mgu operator on SH and the
corresponding correctness result, as provided in [22].

Definition 49 (amgu.) The function amgu: SH × Bind → SH captures the
effects of a binding on an SH element. Suppose x ∈ Vars, r ∈ HTerms, and
sh ∈ SH . Let vx

def= {x}, vr
def= vars(r) and vxr

def= vx ∪ vr. Then

amgu(sh, x 7→ r) def= rel(vxr, sh) ∪ bin
(
rel(vx, sh)?, rel(vr, sh)?

)
.

Theorem 50 Let sh ∈ SH and (x 7→ t) ∈ Bind, where {x}∪ vars(t) ⊆ VI . Let
σ ∈ RSubst be such that ssets(σ) ⊆ sh and suppose that µ ∈ mgs

(
{x = t} ∪ σ

)
in the syntactic equality theory T . Then

ssets(µ) ⊆ amgu(sh, x 7→ t).

We now prove Theorem 21, stating that the auxiliary operators introduced
in Definition 20 correctly approximate the intended properties.

Proof of Theorem 21 on page 13. Let d = 〈sh, f, l〉, Vs = vars(s) and
Vt = vars(t). By Definition 18, we have ∀v ∈ Vars : occ(σ, v) ∩ VI ∈ sh ∪ {∅},
f ⊆ fvars(σ), and l ⊆ lvars(σ).

Consider the implication (20). By Definition 20, the hypothesis and Propo-
sition 16, we have

indd(s, t) ⇐⇒ rel(Vs, sh) ∩ rel(Vt, sh) = ∅

⇐⇒ ∀S ∈ sh, w1 ∈ Vs, w2 ∈ Vt : {w1, w2} * S

=⇒ ∀v ∈ Vars, w1 ∈ Vs, w2 ∈ Vt : {w1, w2} * occ(σ, v)

⇐⇒ ∀w1 ∈ Vs, w2 ∈ Vt : vars
(
rt(w1, σ)

)
∩ vars

(
rt(w1, σ)

)
= ∅

⇐⇒ vars
(
rt(s, σ)

)
∩ vars

(
rt(t, σ)

)
= ∅.

Consider the equivalence (21). By Definition 20, we have

indd(y, t) ⇐⇒ rel
(
{y}, sh

)
∩ rel(Vt, sh) = ∅

⇐⇒ ∀S ∈ rel(Vt, sh) : y /∈ S
⇐⇒ y /∈ share withd(t).

Consider now the implication (22). By Definition 20, the hypothesis and
Proposition 16, we have

freed(t) ⇐⇒ t ∈ f
=⇒ t ∈ fvars(σ)
⇐⇒ rt(t, σ) ∈ Vars.

Consider now the implication (23). By Definition 20, the hypothesis and
Proposition 16, we have

groundd(t) ⇐⇒ vars(t) ⊆ VI \ vars(sh)
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=⇒ ∀w ∈ Vt : w ∈ gvars(σ)

⇐⇒ ∀w ∈ Vt : vars
(
rt(w, σ)

)
= ∅

⇐⇒ rt(t, σ) ∈ GTerms.

Finally consider the implication (24). By Definition 20, the hypothesis, the
above results and Proposition 16, we have

lind(t) ⇐⇒ ∀y, z ∈ vars(t) : groundd(y)

∨
(

(y ∈ l) ∧ occ lin(y, t) ∧
(
y 6= z =⇒ indd(y, z)

))
=⇒ ∀y, z ∈ vars(t) : groundd(y)

∨
((
y ∈ lvars(σ)

)
∧ occ lin(y, t) ∧

(
y 6= z =⇒ indd(y, z)

))
=⇒ ∀y, z ∈ vars(t) : rt(y, σ) ∈ GTerms

∨
((

rt(y, σ) ∈ LTerms
)
∧ occ lin(y, t)

∧
(
y 6= z =⇒ vars(rt(y, σ)) ∩ vars(rt(z, σ)) = ∅

))
⇐⇒ rt(t, σ) ∈ LTerms.

The following simple lemma will be systematically used in the following
correctness proofs.

Lemma 51 Assume T is an equality theory and σ ∈ RSubst. Then, for each
s, t ∈ HTerms,

mgs
(
σ ∪ {s = t}

)
= mgs

(
σ ∪ {s = tσ}

)
.

Proof. First, note, using the congruence axioms (6) and (7), that, for any terms
p, q, r ∈ HTerms,

T ` ∀(p = q ∧ q = r)↔ ∀(p = r ∧ q = r).

Secondly note that, using Lemma 33, for any substitution τ ∈ RSubst and term
r ∈ HTerms, T ` ∀

(
τ → (r = rτ)

)
, so that

T ` ∀
(
τ ↔ τ ∪ {r = rτ}

)
.

Using these results,

T ` ∀
(
σ ∪ {s = t} ↔ σ ∪ {s = t, t = tσ}

)
,

T ` ∀
(
σ ∪ {s = t} ↔ σ ∪ {s = tσ, t = tσ}

)
,

T ` ∀
(
σ ∪ {s = t} ↔ σ ∪ {s = tσ}

)
.

The thesis follows by the definition of mgs.

The following Lemma, which will be used several times in the following proofs
without an explicit reference to it, states the well-known result that groundness
is closed by entailment.

Lemma 52 Let σ, τ ∈ RSubst be satisfiable in the syntactic equality theory T
and such that T ` ∀(τ → σ). Then gvars(σ) ⊆ gvars(τ).
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Proof. We prove the result by showing that x /∈ gvars(τ) implies x /∈ gvars(σ).
By Proposition 40, we can assume there exist σ′, τ ′ ∈ VSubst such that T `

∀(σ ↔ σ′) and T ` ∀(τ ↔ τ ′), so that T ` ∀(τ ′ → σ′). Also, by Proposition 17,
we have gvars(σ) = gvars(σ′) and gvars(τ) = gvars(τ ′). Therefore, it is sufficient
to prove that x /∈ gvars(τ ′) implies x /∈ gvars(σ′).

Assume x /∈ gvars(τ ′). By Definition 10, there exists v ∈ Vars such that
x ∈ occ(τ ′, v). By Proposition 42, v ∈ vars(xτ ′) \ dom(τ ′). Also, by Lemma 33,
T ` ∀(τ ′ → xτ ′ = x). Therefore, by Lemma 41 (taking s = xτ ′ and t = x) there
exists z ∈ vars(xσ′) \dom(σ′) such that v ∈ vars(zτ ′). By Definition 8, we have
x ∈ occ(σ′, z) so that, by Definition 10, x /∈ gvars(σ′).

Another useful result is the following.

Lemma 53 Let e ⊆ Eqs be satisfiable in the syntactic equality theory T . If
σ, τ ∈ mgs(e), then ssets(σ) = ssets(τ), fvars(σ) = fvars(τ), gvars(σ) = gvars(τ)
and lvars(σ) = lvars(τ).

Proof. By definition of mgs, we have σ, τ ∈ RSubst and σ ⇐⇒ e ⇐⇒ τ .
Thus, all the above equivalences follow from Proposition 17.

We now introduce a bit of terminology that will be helpful in order to simplify
the notation in the following proofs.

Given V ⊆ Vars, we say that t ∈ HTerms is V -linear if occ lin(v, t) holds
for all variables v ∈ vars(t) ∩ V . Note that if a term is V -linear, then it is
also W -linear, for all W ⊆ V . This terminology also applies to n-tuples of
terms, by simply regarding the n-tuple construction as a term functor of arity
n. Moreover, if s̄, t̄ ∈ HTermsn are such that mgs(s̄ = t̄) 6= ∅, then we write
gvars(s̄ = t̄) to denote the set gvars(µ), where µ ∈ mgs(s̄ = t̄). Note that, by
Lemma 53, this notation is not ambiguous.

Lemma 54 Let s̄, t̄ ∈ HTermsn be such that mgs(s̄ = t̄) 6= ∅. Let also G
def=

gvars(s̄ = t̄). If s̄ is (Vars \ G)-linear, then there exists µ ∈ mgs(s̄ = t̄) such
that, for each z ∈ Vars \ vars(s̄),

1. zµ is (Vars \G)-linear;

2. vars(zµ) ∩ dom(µ) ⊆ G;

3. ∀z′ ∈ Vars \ vars(s̄) : z 6= z′ =⇒ vars(zµ) ∩ vars(z′µ) ⊆ G.

Proof. We assume that the congruence and identity axioms hold.
Let s̄ = (s1, . . . , sn), and t̄ = (t1, . . . , tn), W = vars(s̄) ∪ vars(t̄) and V =

Vars \ G. We assume that s̄ is V -linear and prove that the result holds by
induction on the number of variables in W .

Suppose first that, for some i = 1, . . . , n, we have si = f(r1, . . . , rm) and
ti = f(u1, . . . , um), where m ≥ 0. Let

s̄i
def= (s1, . . . , si−1, r1, . . . , rm, si+1, . . . , sn),

t̄i
def= (t1, . . . , ti−1, u1, . . . , um, ti+1, . . . , tn).

Then mvars(s̄i) = mvars(s̄) and mvars(t̄i) = mvars(t̄) so that, since s̄ is V -
linear, s̄i is V -linear. Moreover, by the congruence axiom (8), we have mgs(s̄i =
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t̄i) = mgs(s̄ = t̄). (Note that in the case that si and ti are identical constants,
the equation si = ti is just removed.) Thus, as s̄ and t̄ are finite sequences of
finite terms, we can assume that si ∈ Vars or ti ∈ Vars, for all i = 1, . . . , n.

Secondly, suppose that for some i = 1, . . . , n, si = ti. By the previous
paragraph, we can assume that si ∈ Vars. Let

s̄i
def= (s1, . . . , si−1, si+1, . . . , sn),

t̄i
def= (t1, . . . , ti−1, ti+1, . . . , tn).

Then mvars(s̄i) ∪ {si} = mvars(s̄) and mvars(t̄i) ∪ {si} = mvars(t̄) so that,
as s̄ is V -linear, s̄i is V -linear. Furthermore, by the congruence axiom (5),
mgs(s̄i = t̄i) = mgs(s̄ = t̄). Thus, as s̄ and t̄ are sequences of finite length n, we
can assume that si 6= ti, for all i = 1, . . . , n.

Therefore, for the rest of the proof, we will assume that si 6= ti and si ∈ Vars
or ti ∈ Vars, for all i = 1, . . . , n.

The base case is when W = ∅, so that we have vars(µ) = ∅ for all µ ∈
mgs(s̄ = t̄). Thus all three properties hold trivially.

To prove the inductive step, we assume that W 6= ∅, so that n > 0. Note
that, in the case that vars(t̄) ⊆ vars(s̄), then all three properties hold trivially.
This is because for all µ ∈ mgs(s̄ = t̄) and for all z ∈ Vars \ vars(s̄), we have
z /∈ vars(µ). Similarly, the three properties hold trivially whenever vars(t̄) ⊆ G.
This is because, if z ∈ dom(µ), then vars(zµ) ⊆ G. We therefore assume for the
rest of the proof that for some i = 1, . . . , n, vars(ti) \

(
vars(s̄) ∪ G

)
6= ∅. As

the order of equations is irrelevant, without loss of generality we assume that
this property holds when i = 1, so that vars(t1) \

(
vars(s̄) ∪G

)
6= ∅. This can

be re-written as
vars(t1) ∩

(
V \ vars(s̄)

)
6= ∅. (37)

Note that this implies that t1 6= s1. By Proposition 16, another consequence
of the above assumption is that, for all µ ∈ mgs(s̄ = t̄), we have rt(t1, µ) /∈
GTerms. Since µ =⇒ {s1 = t1}, by Lemma 35, we obtain rt(s1, µ) /∈ GTerms,
so that again by Proposition 16, vars(s1)\G 6= ∅. This in turn can be re-written
as

vars(s1) ∩ V 6= ∅. (38)

By exploiting (37) and (38), we can identify three different cases:

a. for all i = 1, . . . , n, V ∩ vars(si) ∩ vars(ti) 6= ∅;

b. s1 ∈ V \ vars(t1);

c. t1 ∈ V \ vars(s̄) and s1 /∈ Vars;

Case a. For all i = 1, . . . , n, V ∩ vars(si) ∩ vars(ti) 6= ∅.
For each i = 1, . . . , n, we are assuming that si ∈ V or ti ∈ V . Therefore,

for each i = 1, . . . , n, si ∈ vars(ti) or ti ∈ vars(si) so that, without loss of
generality, we can assume, for some k where 0 ≤ k ≤ n, si ∈ V if 1 ≤ i ≤ k and
ti ∈ V if k + 1 ≤ i ≤ n.

Let µ ⊆ Eqs be defined as

µ
def= {s1 = t1, . . . , sk = tk} ∪ {tk+1 = sk+1, . . . , tn = sn}.
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We show that µ ∈ mgs(s̄ = t̄). First we must show that µ ∈ RSubst . As s̄
is V -linear, (s1, . . . , sk) is linear; (tk+1, . . . , tn) is also linear, because s̄ is V -
linear and ti ∈ V ∩ vars(si) if k + 1 ≤ i ≤ n; moreover, for the same reasons,
{s1, . . . , sk}∩{tk+1, . . . , tn} = ∅. As we are assuming that, for all i = 1, . . . , n,
si 6= ti and V ∩ vars(si)∩ vars(ti) 6= ∅, it follows that ti /∈ Vars when 1 ≤ i ≤ k
and si /∈ Vars when k+1 ≤ i ≤ n, so that each equation in µ is a binding and µ
has no circular subsets. Thus µ ∈ RSubst and hence, by the congruence axiom
(6), µ ∈ mgs(s̄ = t̄).

As {tk+1, . . . , tn} ⊆ vars
(
(sk+1, . . . , sn)

)
, we have dom(µ) \ vars(s̄) = ∅ so

that the required result holds trivially.
Case b. Suppose s1 ∈ V \ vars(t1) Let

s̄1
def= (s2, . . . , sn),

t̄1
def=
(
t2[s1/t1], . . . , tn[s1/t1]

)
.

As s̄ is V -linear, s̄1 is V -linear and s1 /∈ vars(s̄1). Also, all occurrences of s1 in
t̄ are replaced in t̄1 by t1 so that, as s1 /∈ vars(t1) (by the assumption for this
case), s1 /∈ vars(t̄1). Thus,

s1 /∈W1
def= vars(s̄1) ∪ vars(t̄1), (39)

so that W1 ⊂ W . Let G1
def= gvars(s̄1 = t̄1) and V1

def= Vars \ G1. Note that
G1 ⊆ G and, by the assumption for this case, s1 ∈ V , so that s1 /∈ G. As
a consequence, G1 = G, V1 = V and s̄1 is V1-linear, so that the inductive
hypothesis applies to s̄1 and t̄1. Thus, there exists µ1 ∈ mgs(s̄1 = t̄1) such that,
for each z ∈ Vars \ vars(s̄1), the three inductive properties hold.

Let µ ⊆ Eqs be defined as

µ
def= {s1 = t1µ1} ∪ µ1.

We show that µ ∈ mgs(s̄ = t̄). By (39), we have s1 /∈ vars(µ1) so that s1 /∈
dom(µ1). Also, since µ1 ∈ RSubst , µ has no identities or circular subsets. Thus
we have µ ∈ RSubst . By Lemma 51, µ ∈ mgs(s̄ = t̄).

Suppose that z ∈ Vars \ vars(s̄). Then, as vars(s̄) = vars(s̄1) ∪ {s1}, z ∈
Vars \ vars(s̄1). Thus, the inductive properties 1, 2 and 3 using µ1 and s̄1 can
be applied to zµ1. Knowing this, we now show that the same properties using
µ and s̄ can be applied to zµ. Since dom(µ) = dom(µ1) ∪ {s1} and z 6= s1, we
have zµ1 = zµ and s1 /∈ vars(zµ). Each property is proved separately.

1. By the inductive property 1, we have zµ1 is V1-linear. As zµ = zµ1 and
V = V1, zµ is V -linear.

2. By inductive property 2, we have vars(zµ1) ∩ dom(µ1) ⊆ G1. Since zµ =
zµ1, G = G1, dom(µ) = dom(µ1) ∪ {s1} and s1 /∈ vars(zµ), we obtain
vars(zµ) ∩ dom(µ) ⊆ G.

3. Let z′ ∈ Vars \ vars(s̄) be such that z 6= z′. Since z′ /∈ vars(s̄), we
have z′ /∈ vars(s̄1) and z′µ = z′µ1. By applying inductive property 3,
vars(zµ1) ∩ vars(z′µ1) ⊆ G1. As zµ = zµ1, z′µ = z′µ1 and G = G1, we
obtain vars(zµ) ∩ vars(z′µ) ⊆ G.
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Case c. Assume that t1 ∈ V \ vars(s̄) and s1 /∈ Vars. Let

s̄1
def= (s2, . . . , sn),

t̄1
def=
(
t2[t1/s1], . . . , tn[t1/s1]

)
.

As s̄ is V -linear, s̄1 is V -linear. Also, since by the assumption for this case
t1 /∈ vars(s̄), we have t1 /∈ vars(s̄1). Moreover, all occurrences of t1 in t̄ are
replaced in t̄1 by s1 so that t1 /∈ vars(t̄1). Thus

t1 /∈W1
def= vars(s̄1) ∪ vars(t̄1), (40)

so that W1 ⊂ W . Let G1
def= gvars(s̄1 = t̄1) and V1

def= Vars \ G1. Note that
G1 ⊆ G and, by the assumption for this case, t1 ∈ V , so that t1 /∈ G. As
a consequence, G1 = G, V1 = V and s̄1 is V1-linear, so that the inductive
hypothesis applies to s̄1 and t̄1. Thus, there exists µ1 ∈ mgs(s̄1 = t̄1) such that,
for each z ∈ Vars \ vars(s̄1), the three inductive properties hold.

Let µ ⊆ Eqs be defined as

µ
def= {t1 = s1µ1} ∪ µ1. (41)

Note that, by (40), t1 /∈ vars(µ1) and, in particular, t1 /∈ dom(µ1). Thus, since
µ1 ∈ RSubst , µ has no identities or circular subsets so that µ ∈ RSubst . By
Lemma 51, µ ∈ mgs(s̄ = t̄).

Suppose that z ∈ Vars \ vars(s̄). Then either z 6= t1, so that zµ = zµ1, or
z = t1, so that zµ = s1µ1. We show in each case that zµ satisfies the three
required properties.

1. Suppose z 6= t1. By inductive property 1, zµ1 is V1-linear. As zµ = zµ1

and V = V1, zµ is V -linear.

Otherwise, let z = t1, so that zµ = s1µ1. Consider an arbitrary variable
u ∈ vars(s1). Then u ∈ Vars \ vars(s̄1) and the inductive properties using
µ1 and s̄1 can be applied to uµ1. Therefore, by property 1, uµ1 is V1-linear.
Moreover, by property 3, we have

∀u′ ∈ Vars \ vars(s̄1) : u 6= u′ =⇒ vars(uµ1) ∩ vars(u′µ1) ⊆ G1.

In particular, this holds for all u′ ∈ vars(s1) such that u 6= u′. As a
consequence, zµ = s1µ1 is V1-linear. As V = V1, zµ is V -linear.

2. Suppose z 6= t1. By property 2, we have vars(zµ1)∩dom(µ1) ⊆ G1. Since
zµ = zµ1, G = G1, dom(µ) = dom(µ1)∪{t1} and t1 /∈ vars(zµ), we obtain
vars(zµ) ∩ dom(µ) ⊆ G.

Otherwise, let z = t1 so that zµ = s1µ1. Consider u ∈ vars(s1). Then
u ∈ Vars \ vars(s̄1), so that the inductive properties using µ1 and s̄1

can be applied to uµ1. By property 2, vars(uµ1) ∩ dom(µ1) ⊆ G1. As
this holds for all u ∈ vars(s1), we have vars(s1µ1) ∩ dom(µ1) ⊆ G1. As
zµ = s1µ1, G = G1, dom(µ) = dom(µ1) ∪ {t1} and t1 /∈ vars(zµ), we
obtain vars(zµ) ∩ dom(µ) ⊆ G.
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3. Suppose z 6= t1 and let z′ ∈ Vars \ vars(s̄) be such that z 6= z′. Then,
by inductive property 3, we have vars(zµ1) ∩ vars(z′µ1) ⊆ G1. Since
zµ = zµ1 and G = G1, if also z′ 6= t1 (so that z′µ = z′µ1) we obtain
vars(zµ)∩ vars(z′µ) ⊆ G. Otherwise, let z′ = t1 (so that z′µ = s1µ1). We
will show that

∀u ∈ vars(s1) : vars(zµ1) ∩ vars(uµ1) ⊆ G1. (42)

In fact, in the case that u ∈ G1 then vars(uµ1) ⊆ G1. On the other
hand, if u ∈ vars(s1) \ G1, then we have u 6= z. As s̄ is V -linear, u ∈
Vars \ vars(s̄1) so that the property holds by inductive property 3 (taking
z′ = u). As (42) holds, we have vars(zµ1) ∩ vars(s1µ1) ⊆ G1. Thus,
by observing that zµ = zµ1, z′µ = s1µ1 and G = G1, we can conclude
vars(zµ) ∩ vars(z′µ) ⊆ G.

Otherwise, let z = t1 so that zµ = s1µ1. Let z′ ∈ Vars \ vars(s̄) be such
that z 6= z′ (note that this implies z′ 6= t1, so that z′µ = z′µ1). We will
prove that, for all u ∈ vars(s1),

vars(uµ1) ∩ vars(z′µ1) ⊆ G1. (43)

In fact, if u ∈ G1 then vars(uµ1) ⊆ G1. Suppose now u ∈ vars(s1) \ G1.
As s̄ is V -linear, u ∈ Vars \ vars(s̄1) so that the inductive property 3
can be applied to uµ1. Thus, for all u′ ∈ Vars \ vars(s̄1), if u 6= u′ we
have vars(uµ1) ∩ vars(u′µ1) ⊆ G1. In particular, since u ∈ vars(s1) and
z′ /∈ vars(s̄), we have u 6= z′ so that, by taking u′ = z′, we obtain (43). As
the choice of u ∈ vars(s1) is arbitrary, we have vars(s1µ1) ∩ vars(z′µ1) ⊆
G1. By observing that zµ = s1µ1, z′µ = z′µ1 and G = G1 we obtain
vars(zµ) ∩ vars(z′µ) ⊆ G.

Corollary 55 There exists µ′ ∈ VSubst that (under the same hypotheses) sat-
isfies all the properties stated for µ ∈ RSubst in Lemma 54.

Proof. We start by proving that the properties stated for µ ∈ RSubst in
Lemma 54 are invariant under the application of an S-step.

Suppose that µ ∈ RSubst satisfies the properties stated in Lemma 54 and
µ

S7−→ µ′. First note that, by Theorem 47, we have µ′ ∈ mgs(s̄ = t̄) and
dom(µ′) = dom(µ). Also, by Lemma 53, gvars(µ′) = gvars(µ) = G. By defini-
tion of S-step, there exist {x 7→ t, y 7→ s} ⊆ µ such that x 6= y and

µ′
def=
(
µ \ {y 7→ s}

)
∪ {y 7→ s[x/t]}.

Let z ∈ Vars \ vars(s̄) and consider the term zµ′. If z 6= y or x /∈ vars(s) then
we have zµ′ = zµ and there is nothing to prove. Therefore, assume z = y,
so that zµ = s, and x ∈ vars(zµ), so that zµ′ = zµ[x/t]. Note that x ∈
vars(zµ) ∩ dom(µ) so that, by property 2, we have x ∈ G. As a consequence,
vars(t) ⊆ G and we obtain

vars(zµ) \G = vars(zµ′) \G.

From this, it is easy to conclude that properties 1, 2 and 3 hold for µ′.
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By a simple induction, the above result generalizes to any finite sequence
of S-steps. Then, by Theorem 48 it follows than we can construct such a
µ′ ∈ VSubst .

In the following three sections, we prove the correctness of the abstract
unification operator on each component of the SFL domain. A further section
will join all of these results to establish the whole correctness of amguS.

C.1 The Correctness for Set-Sharing

Proposition 56 Let d = 〈sh, f, l〉 ∈ SFL, σ ∈ γS(d) ∩ VSubst and (x 7→ t) ∈
Bind, where {x}∪vars(t) ⊆ VI and y ∈ dom(σ)∩range(σ) implies y ∈ vars(yσ).
Suppose that {r, r′} = {x, t} and freed(r) holds. For all τ ∈ mgs

(
σ ∪ {x = t}

)
in the syntactic equality theory T , letting

sh− = rel
(
{x} ∪ vars(t), sh

)
,

shr = rel
(
vars(r), sh

)
,

shr′ = rel
(
vars(r′), sh

)
,

we have
sh− ∪ bin(shr, shr′) ⊇ ssets(τ). (44)

Proof. We assume that the congruence and identity axioms hold. Note that if
σ ∪ {x = t} is not satisfiable, then the result is trivial. We therefore assume,
for the rest of the proof, that σ ∪ {x = t} is satisfiable in T . It follows from
Lemma 53 that we just have to show that there exists τ ∈ mgs

(
σ ∪ {x = t}

)
such that (44) holds.

Since freed(r) holds, by Theorem 21, rt(r, σ) ∈ Vars and hence, by Proposi-
tion 42,

rσ ∈ Vars \ dom(σ). (45)

Let

R− = rel
(
{x} ∪ vars(t), ssets(σ)

)
,

Rr = rel
(
vars(r), ssets(σ)

)
,

Rr′ = rel
(
vars(r′), ssets(σ)

)
.

Since σ ∈ γS(d), we have sh ⊇ ssets(σ) so that, using the monotonicity of rel,
rel and bin, we obtain

sh− ∪ bin(shr, shr′) ⊇ R− ∪ bin(Rr, Rr′).

Thus, in order to prove (44) it is sufficient to show that

R− ∪ bin(Rr, Rr′) ⊇ ssets(τ). (46)

Note that, by Definition 8 and (45), we obtain

Rr =
{

occ(σ, rσ)
}
. (47)
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Suppose first xσ = tσ. Then we have σ ∈ mgs
(
σ ∪ {xσ = tσ}

)
, so that by

Lemma 51, σ ∈ mgs
(
σ∪{x = t}

)
. Thus, take τ def= σ. Moreover, by (47), we also

have Rr′ =
{

occ(σ, rσ)
}

= Rr, so that Rr = bin(Rr, Rr′). As a consequence,

R− ∪ bin(Rr, Rr′) =
(
ssets(σ) \Rr

)
∪Rr

= ssets(σ)
= ssets(τ).

Otherwise, let xσ 6= tσ and let ν, µ, τ ∈ RSubst be defined as

ν
def=
{

(y 7→ s) ∈ σ
∣∣ y /∈ vars(xσ) ∪ vars(tσ)

}
,

µ
def= {rσ 7→ r′σ},

τ
def= ν ◦ µ.

As ν ⊆ σ ∈ VSubst , by Lemma 38 we have ν ∈ VSubst ; also, µ ∈ VSubst because
it has a single binding; moreover, by construction, dom(ν) ∩ vars(µ) = ∅; thus
we can apply Lemma 39 to obtain τ ∈ VSubst . By applying Lemma 51, we also
have τ ∈ mgs

(
σ ∪ {x = t}

)
.

Suppose S ∈ ssets(τ). By Definition 49 and Theorem 50, we have

S ∈ R− ∪ bin(R?r , R
?
r′).

If S ∈ R−, then (46) holds trivially. Therefore suppose S ∈ bin(R?r , R
?
r′), so that

there exist Sr ∈ R?r and Sr′ ∈ R?r′ such that S = Sr ∪ Sr′ . Note that, by (47),
R?r = Rr. Thus, to prove (46) holds, it is sufficient to show that Sr′ ∈ Rr′ .

As S ∈ ssets(τ), by Proposition 42, there exists v ∈ Vars \dom(τ) such that
S = { y ∈ VI | v ∈ vars(yτ) }. As v /∈ dom(τ), v 6= rσ.

Let y ∈ S. We show that y ∈ occ(σ, rσ) ∪ occ(σ, v). Using Lemma 33,
we have T ` ∀(τ → yτ = y). Therefore, since T ` ∀(τ → σ), by Lemma 41
(replacing s = t by yτ = y), there exists z ∈ vars(yσ) \ dom(σ) such that
v ∈ vars(zτ). If z = rσ, then y ∈ Sr. If z 6= rσ, then z /∈ dom(τ) and zτ = z.
Therefore v = z and y ∈ occ(σ, v).

Proposition 57 Let d = 〈sh, f, l〉 ∈ SFL, σ ∈ γS(d) ∩ VSubst and (x 7→ t) ∈
Bind, where {x}∪vars(t) ⊆ VI and y ∈ dom(σ)∩range(σ) implies y ∈ vars(yσ).
Suppose that lind(x) and lind(t) hold. For all τ ∈ mgs

(
σ ∪ {x = t}

)
in the

syntactic equality theory T , letting

sh− = rel
(
{x} ∪ vars(t), sh

)
,

shx = rel
(
{x}, sh

)
,

sht = rel
(
vars(t), sh

)
,

shxt = shx ∩ sht,

we have

sh− ∪ bin
(
shx ∪ bin(shx, sh?xt), sht ∪ bin(sht, sh?xt)

)
⊇ ssets(τ). (48)

Proof. We assume that the congruence and identity axioms hold. Note that if
σ ∪ {x = t} is not satisfiable, then the result is trivial. We therefore assume,

40



for the rest of the proof, that σ ∪ {x = t} is satisfiable in T . It follows from
Lemma 53 that we just have to show that there exists τ ∈ mgs

(
σ ∪ {x = t}

)
such that (48) holds.

For every r ∈ {x, t}, by hypothesis, lind(r) holds. Then, by Theorem 21,
rt(r, σ) ∈ LTerms and hence, by Proposition 16, vars(r) ⊆ lvars(σ). Thus, by
Proposition 42,

∀v ∈ vars(rσ) \ dom(σ) : occ lin(v, rσ),
vars(rσ) ∩ dom(σ) ⊆ gvars(σ). (49)

Therefore, by defining Vσ
def= Vars \gvars(σ), we obtain that both terms xσ and

tσ are Vσ-linear. Let

{u1, . . . , uk}
def= dom(σ) ∩

(
vars(xσ) ∪ vars(tσ)

)
,

s̄
def= (u1, . . . , uk, xσ),

t̄
def= (u1σ, . . . , ukσ, tσ).

Since xσ is Vσ-linear, it follows from (49) (letting r = x) that s̄ is Vσ-linear.
It also follows from (49) (applied twice, once with r = x and once with r = t)
that, for each i = 1, . . . , k we have ui ∈ gvars(σ), so that vars(uiσ) ⊆ gvars(σ).
Therefore, since tσ is Vσ-linear, t̄ is also Vσ-linear. By Lemma 51 and the
congruence axioms, σ ∪ {x = t} =⇒ s̄ = t̄. Thus, as σ ∪ {x = t} is satisfiable,
there exists µ ∈ mgs(s̄ = t̄). Let Vµ = Vars\gvars(µ); since gvars(σ) ⊆ gvars(µ),
then Vµ ⊆ Vσ and s̄, t̄ are also Vµ-linear. Therefore, we can apply Lemma 54
and Corollary 55 so that, by case (3), there exists µ ∈ mgs(s̄ = t̄)∩VSubst such
that, for all w,w′ ∈ Vars where w 6= w′ and either {w,w′} ∩ vars(s̄) = ∅ or
{w,w′} ∩ vars(t̄) = ∅,

vars(wµ) ∩ vars(w′µ) ⊆ gvars(µ). (50)

Note that, since σ ∈ VSubst , we have vars(uiσ) ⊆ vars(xσ) ∪ vars(tσ) for each
i = 1, . . . , k. Therefore

vars(µ) ⊆ vars(xσ) ∪ vars(tσ). (51)

Let ν, τ ∈ RSubst be defined as

ν
def=
{

(y 7→ s) ∈ σ
∣∣ y /∈ vars(xσ) ∪ vars(tσ)

}
,

τ
def= ν ◦ µ.

As ν ⊆ σ ∈ VSubst , by Lemma 38 we have ν ∈ VSubst ; moreover, by (51),
dom(ν) ∩ vars(µ) = ∅; thus we can apply Lemma 39 to obtain τ ∈ VSubst . By
applying Lemma 51, we also have τ ∈ mgs

(
σ ∪ {x = t}

)
.

Let

R− = rel
(
{x} ∪ vars(t), ssets(σ)

)
,

Rx = rel
(
{x}, ssets(σ)

)
,

Rt = rel
(
vars(t), ssets(σ)

)
,

Rxt = Rx ∩Rt.
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Since σ ∈ γS(d), we have sh ⊇ ssets(σ) so that, using the monotonicity of rel,
rel, (·)? and bin, we obtain

sh− ∪ bin
(
shx ∪ bin(shx, sh?xt), sht ∪ bin(sht, sh?xt)

)
⊇ R− ∪ bin

(
Rx ∪ bin(Rx, R?xt), Rt ∪ bin(Rt, R?xt)

)
.

It follows that, in order to prove (48), it is sufficient to show

R− ∪ bin
(
Rx ∪ bin(Rx, R?xt), Rt ∪ bin(Rt, R?xt)

)
⊇ ssets(τ). (52)

Let S be an arbitrary sharing set in ssets(τ). By Definition 49 and Theo-
rem 50, we have

S ∈ R− ∪ bin(R?x, R
?
t ).

If S ∈ R−, then (52) holds trivially. Therefore suppose S ∈ bin(R?x, R
?
t ), so that

there exist Sx ∈ R?x and St ∈ R?t such that S = Sx ∪ St. We prove that (52)
holds by showing that Sx ∈ Rx ∪ bin(Rx, R?xt) and St ∈ Rt ∪ bin(Rt, R?xt).

We first show that St ∈ Rt ∪ bin(Rt, R?xt). As St ∈ R?t , St = S1 ∪ S2

where S1 ∈ (Rt \ Rxt)? ∪ {∅} and S2 ∈ R?xt ∪ {∅}. Note that as St 6= ∅, we
cannot have S1 = S2 = ∅. Suppose first that S1 = ∅ so that St = S2 6= ∅.
Then St ∈ R?xt. However, since Rxt ⊆ Rt, R?xt ⊆ bin(Rt, R?xt). Thus St ∈
bin(Rt, R?xt). Suppose next that S1 6= ∅. As Rt \ Rxt = Rt \ Rx, we have
S1 =

⋃{
occ(σ,w)

∣∣ w ∈ S1 \ vars(xσ)
}

. However, as occ(σ,w) = ∅ for all
w ∈ dom(σ) and vars(s̄) \ vars(xσ) ⊆ dom(σ),

S1 =
⋃{

occ(σ,w)
∣∣∣ w ∈ S1 \

(
dom(σ) ∪ vars(s̄)

)}
Let w1, w2 ∈ S1 \

(
dom(σ) ∪ vars(s̄)

)
. Then, as S1 ⊆ S, S ∈ ssets(τ) and

τ ∈ VSubst , by Proposition 42, there exists v ∈ Vars \ dom(τ) such that v ∈
vars(w1τ) ∩ vars(w2τ). However, since wi /∈ dom(σ), we have wiτ = wiµ, for
i ∈ {1, 2}. Thus, noting that v /∈ dom(τ) implies v /∈ gvars(τ), we can apply (50)
to conclude that w1 = w2. As the choice of w1 and w2 was arbitrary, there exists
a unique variable w ∈ S1 \

(
dom(σ) ∪ vars(s̄)

)
such that S1 = occ(σ,w). Thus

S1 ∈ Rt. If S2 = ∅ then St = S1 ∈ Rt. If S2 6= ∅, then St = S1 ∪ S2 ∈
bin(Rt, R?xt). Hence, in both cases, St ∈ Rt ∪ bin(Rt, R?xt).

By the same reasoning, (replacing x by t, t by x and s̄ by t̄ in the previous
paragraph) we obtain Sx ∈ Rx ∪ bin(Rx, R?xt), thus completing the proof.

Corollary 58 Let d = 〈sh, f, l〉 ∈ SFL, σ ∈ γS(d) ∩ VSubst and (x 7→ t) ∈
Bind, where {x}∪vars(t) ⊆ VI and y ∈ dom(σ)∩range(σ) implies y ∈ vars(yσ).
Suppose that lind(x), lind(t) and indd(x, t) hold. For all τ ∈ mgs

(
σ ∪ {x = t}

)
in the syntactic equality theory T , letting

sh− = rel
(
{x} ∪ vars(t), sh

)
,

shx = rel
(
{x}, sh

)
,

sht = rel
(
vars(t), sh

)
we have

sh− ∪ bin(shx, sht) ⊇ ssets(τ).
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Proof. Since indd(x, t) holds, by Definition 20 we have shx ∩ sht = ∅. The
result then follows from Proposition 57.

Proposition 59 Let d = 〈sh, f, l〉 ∈ SFL, σ ∈ γS(d) ∩ VSubst and (x 7→ t) ∈
Bind, where {x}∪vars(t) ⊆ VI and y ∈ dom(σ)∩range(σ) implies y ∈ vars(yσ).
Suppose that {r, r′} = {x, t} and lind(r) holds. For all τ ∈ mgs

(
σ ∪ {x = t}

)
in

the syntactic equality theory T , letting

sh− = rel
(
{x} ∪ vars(t), sh

)
,

shr = rel
(
vars(r), sh

)
,

shr′ = rel
(
vars(r′), sh

)
,

we have
sh− ∪ bin(sh?r , shr′) ⊇ ssets(τ). (53)

Proof. We assume that the congruence and identity axioms hold. Note that if
σ ∪ {x = t} is not satisfiable, then the result is trivial. We therefore assume,
for the rest of the proof, that σ ∪ {x = t} is satisfiable in T . It follows from
Lemma 53 that we just have to show that there exists τ ∈ mgs

(
σ ∪ {x = t}

)
such that (53) holds.

Since lind(r) holds, by Theorem 21, rt(r, σ) ∈ LTerms and hence, by Propo-
sition 16, vars(r) ⊆ lvars(σ). Thus, by Proposition 42,

∀v ∈ vars(rσ) \ dom(σ) : occ lin(v, rσ),
vars(rσ) ∩ dom(σ) ⊆ gvars(σ). (54)

Therefore, by defining Vσ
def= Vars \ gvars(σ), we obtain that the term rσ is

Vσ-linear. Let

{u1, . . . , uk}
def= dom(σ) ∩

(
vars(xσ) ∪ vars(tσ)

)
,

s̄
def= (u1, . . . , uk, rσ),

t̄
def= (u1σ, . . . , ukσ, r

′σ).

Since rσ is Vσ-linear it follows from (54) that s̄ is Vσ-linear. By Lemma 51 and
the congruence axioms, σ∪{x = t} =⇒ s̄ = t̄. Thus, as σ∪{x = t} is satisfiable,
there exists µ ∈ mgs(s̄ = t̄). Let Vµ = Vars\gvars(µ); since gvars(σ) ⊆ gvars(µ),
then Vµ ⊆ Vσ and s̄ is also Vµ-linear. Therefore, we can apply Lemma 54 and
Corollary 55 so that, by case (3), there exists µ ∈ mgs(s̄ = t̄) ∩ VSubst such
that, for all w,w′ ∈ Vars \ vars(s̄) where w 6= w′,

vars(wµ) ∩ vars(w′µ) ⊆ gvars(µ). (55)

Note that, since σ ∈ VSubst , we have vars(uiσ) ⊆ vars(xσ) ∪ vars(tσ) for each
i = 1, . . . , k. Therefore

vars(µ) ⊆ vars(xσ) ∪ vars(tσ). (56)

Let ν, τ ∈ RSubst be defined as

ν
def=
{

(y 7→ s) ∈ σ
∣∣ y /∈ vars(xσ) ∪ vars(tσ)

}
,
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τ
def= ν ◦ µ.

As ν ⊆ σ ∈ VSubst , by Lemma 38 we have ν ∈ VSubst ; moreover, by (56),
dom(ν) ∩ vars(µ) = ∅; thus we can apply Lemma 39 to obtain τ ∈ VSubst . By
applying Lemma 51, we also have τ ∈ mgs

(
σ ∪ {x = t}

)
.

Let

R− = rel
(
{x} ∪ vars(t), ssets(σ)

)
,

Rr = rel
(
vars(r), ssets(σ)

)
,

Rr′ = rel
(
vars(r′), ssets(σ)

)
.

Since σ ∈ γS(d), we have sh ⊇ ssets(σ) so that, using the monotonicity of rel,
rel, (·)? and bin, we obtain

sh− ∪ bin(sh?r , shr′) ⊇ R− ∪ bin(R?r , Rr′).

Thus, in order to prove (53) it is sufficient to show that

R− ∪ bin(R?r , Rr′) ⊇ ssets(τ). (57)

Suppose S ∈ ssets(τ). By Definition 49 and Theorem 50, we have

S ∈ R− ∪ bin(R?r , R
?
r′).

If S ∈ R−, then (57) holds trivially. Therefore suppose S ∈ bin(R?r , R
?
r′), so

that there exist Sr ∈ R?r and Sr′ ∈ R?r′ such that S = Sr ∪ Sr′ . First note that,
since Sr′ ∈ R?r′ , there exists S′ ⊆ Sr′ such that S′ ∈ Rr′ . Moreover, if Sr′ ∈ R?r ,
then we have S ∈ R?r , so that S = S ∪ S′ ∈ bin(R?r , Rr′), proving (57). Thus,
we now assume that Sr′ /∈ R?r .

As Sr′ ∈ R?r′ , we have Sr′ =
⋃{

occ(σ,w)
∣∣ w ∈ Sr′ \ dom(σ)

}
. From this,

as Sr′ /∈ R?r , vars(s̄) ⊆ dom(σ) ∪ vars(rσ) and vars(rσ) ⊆ vars(s̄), we obtain

Sr′ =
⋃{

occ(σ,w)
∣∣∣ w ∈ Sr′ \ (dom(σ) ∪ vars(s̄)

)}
.

Let w1, w2 ∈ Sr′ \
(
dom(σ) ∪ vars(s̄)

)
. Note that, as Sr′ ⊆ S, S ∈ ssets(τ)

and τ ∈ VSubst , by Proposition 42 there exists v ∈ Vars \ dom(τ) such that
v ∈ vars(w1τ)∩vars(w2τ). However, since wi /∈ dom(σ), we have wiτ = wiµ, for
i ∈ {1, 2}. Thus, noting that v /∈ dom(τ) implies v /∈ gvars(τ), we can apply (55)
to conclude that w1 = w2. As the choice of w1 and w2 was arbitrary, there exists
a unique variable w ∈ Sr′ \

(
dom(σ) ∪ vars(s̄)

)
such that Sr′ = occ(σ,w). Thus

Sr′ ∈ Rr′ and (57) holds.

Lemma 60 Let sh ∈ SH and V,W ⊆ VI , where rel(V, sh) ⊆ rel(W, sh). Let
(x 7→ t) ∈ Bind and sh ′ def= amgu(sh, x 7→ t), where {x} ∪ vars(t) ⊆ VI . Then,
rel(V, sh ′) ⊆ rel(W, sh′).

Proof. Suppose that S ∈ rel(V, sh ′). By Definition 49, we have two cases.

1. Suppose first that S ∈ rel
(
{x} ∪ vars(t), sh). Then, S ∈ sh and, in par-

ticular, S ∈ rel(V, sh). Thus, by hypothesis, S ∈ rel(W, sh) and we can
conclude S ∈ rel(W, sh ′).
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2. Otherwise, let S ∈ bin
(

rel
(
{x}, sh

)?
, rel
(
vars(t), sh

)?). Then, it holds
S = S0 ∪ · · · ∪ Sn where n ∈ N and Si ∈ sh, for each 0 ≤ i ≤ n.
Moreover, since S ∈ rel(V, sh ′), there exists an index j ∈ {0, . . . , n} such
that Sj ∈ rel(V, sh). Hence, by the hypothesis, Sj ∈ rel(W, sh) and, since
Sj ⊆ S, we can conclude S ∈ rel(W, sh ′).

Proposition 61 Let sh ∈ SH , (x 7→ t) ∈ Bind, where x ∈ vars(t) ⊆ VI . Let
τ ∈ RSubst be satisfiable in the syntactic equality theory T and suppose that
T ` ∀(τ → x = t) and ssets(τ) ⊆ sh. Then ssets(τ) ⊆ cyclictx(sh).

Proof. Take Vx = {x} and Wt = vars(t)\{x}. Let τ = {x1 7→ t1, . . . , xn 7→ tn},
where n = #τ . Define

τ0
def= {x 7→ t}, sh0

def= ssets
(
{x 7→ t}

)
,

and, for each i = 1, . . . , n,

τi ∈ mgs
(
{x1 = t1, . . . , xi = ti} ∪ {x = t}

)
, shi

def= amgu(shi−1, xi 7→ ti).

We show by induction on i = 0, . . . , n that ssets(τi) ⊆ shi and

rel(Vx, shi) ⊆ rel(Wt, shi). (58)

The base case, when i = 0, follows directly from Definition 8; note that (58)
holds because x ∈ dom(τ0), so that occ(τ0, x) = ∅.

Consider the inductive case, when 0 < i ≤ n. By the inductive hypothesis,
ssets(τi−1) ⊆ shi−1 so that, by Theorem 50, ssets(τi) ⊆ shi. By the inductive
hypothesis, (58) holds for shi−1. Thus, by Lemma 60 (taking V = Vx and
W = Wt), we obtain that (58) also holds for shi.

By taking i = n, we obtain rel(Vx, shn) ⊆ rel(Wt, shn). Note that, by
hypothesis, we have τ ∈ mgs

(
τ ∪ {x = t}

)
= mgs(τn), so that T ` ∀(τ ↔ τn).

By Lemma 53, we have ssets(τ) = ssets(τn), so that ssets(τ) ⊆ shn. As a
consequence, ssets(τ) ⊆ sh ∩ shn. Thus, by Definition 20, we obtain ssets(τ) ⊆
cyclictx(sh).

C.2 The Correctness for Freeness

Proposition 62 Let σ ∈ VSubst and (x 7→ y) ∈ Bind, where {x, y} ⊆ VI .
Suppose also that {x, y} ⊆ fvars(σ). Then, for all τ ∈ mgs

(
σ ∪ {x = y}

)
in the

syntactic equality theory T , we have

fvars(σ) ⊆ fvars(τ). (59)

Proof. We assume that the congruence and identity axioms hold. Note that if
σ∪{x = y} is not satisfiable in T , then the result is trivial. We therefore assume,
for the rest of the proof, that σ ∪ {x = y} is satisfiable in T . It follows from
Lemma 53 that we just have to show that there exists τ ∈ mgs

(
σ ∪ {x = y}

)
such that (59) holds.

As {x, y} ⊆ fvars(σ) we have, using Proposition 42,

{xσ, yσ} ⊆ Vars \ dom(σ). (60)
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Suppose first xσ = yσ. Then we have σ ∈ mgs
(
σ ∪ {xσ = yσ}

)
, so that by

Lemma 51, σ ∈ mgs
(
σ ∪ {x = y}

)
. Thus, by taking τ def= σ, we trivially obtain

fvars(σ) = fvars(τ).
Otherwise, let xσ 6= yσ and take τ def= σ ∪ {xσ = yσ}. Then, since σ ∈

RSubst , it follows from (60) that τ ∈ Eqs has no identities or circular subsets
so that τ ∈ RSubst . Note that dom(τ) = dom(σ) ∪ {xσ}. By Lemma 51,
τ ∈ mgs

(
σ ∪ {x = t}

)
. Suppose z ∈ fvars(σ), so that by Proposition 42,

zσ ∈ Vars \ dom(σ). Then we show that z ∈ fvars(τ). If zσ = xσ then
zτ = yσ. On the other hand, if zσ 6= xσ, we have zτ = zσ. In both cases,
zτ ∈ Vars \ dom(τ), which implies z ∈ fvars(τ).

Lemma 63 Let d ∈ SFL and σ ∈ γS(d) ∩ VSubst. Let also y ∈ VI and
t ∈ HTerms be such that vars(t) ⊆ VI and y /∈ share withd(t). Then vars(yσ)∩
vars(tσ) ⊆ dom(σ).

Proof. Let d = 〈sh, f, l〉 and Vt = vars(t) so that, by Definition 20, y /∈
vars

(
rel(Vt, sh)

)
. Thus

∀w ∈ Vt, S ∈ sh : {y, w} * S.

By Definition 18, since σ ∈ γS(d), this implies

∀v ∈ Vars, w ∈ Vt : {y, w} * occ(σ, v).

Thus, since σ ∈ VSubst , by Proposition 42 we obtain

∀w ∈ Vt : vars(yσ) ∩ vars(wσ) ⊆ dom(σ),

which is equivalent to the thesis.

Proposition 64 Let d ∈ SFL, σ ∈ γS(d) ∩ VSubst and (x 7→ t) ∈ Bind,
where {x} ∪ vars(t) ⊆ VI . Suppose also that x ∈ fvars(σ). Then, for all
τ ∈ mgs

(
σ ∪ {x = t}

)
in the syntactic equality theory T , we have

fvars(σ) \ share withd(x) ⊆ fvars(τ). (61)

Proof. We assume that the congruence and identity axioms hold. Note that if
σ ∪ {x = t} is not satisfiable, then the result is trivial. We therefore assume,
for the rest of the proof, that σ ∪ {x = t} is satisfiable in T . It follows from
Lemma 53 that we just have to show that there exists τ ∈ mgs

(
σ ∪ {x = t}

)
such that (61) holds.

As x ∈ fvars(σ) we have, using Proposition 42,

xσ ∈ Vars \ dom(σ). (62)

Suppose first xσ = tσ. Then we have σ ∈ mgs
(
σ ∪ {xσ = tσ}

)
, so that by

Lemma 51, σ ∈ mgs
(
σ ∪ {x = t}

)
. Thus, by taking τ def= σ, we trivially obtain

fvars(σ) = fvars(τ), which implies the thesis.
Otherwise, let xσ 6= tσ and take τ def= σ∪{xσ = tσ}. Then, since σ ∈ RSubst ,

it follows from (62) that τ ∈ Eqs has no identities or circular subsets so that
τ ∈ RSubst . By Lemma 51, τ ∈ mgs

(
σ ∪ {x = t}

)
.
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Suppose y ∈ fvars(σ) \ share withd(x). Then we show that y ∈ fvars(τ).
Since y ∈ fvars(σ), it follows by Proposition 42 that

yσ ∈ Vars \ dom(σ). (63)

Since y /∈ share withd(x) and σ ∈ VSubst , it follows by Lemma 63 that we have
vars(yσ) ∩ vars(xσ) ⊆ dom(σ). From this, by using (62) and (63), we obtain
yσ 6= xσ; from this, again by (62), we derive y 6= xσ. Thus yτ = yσ, so that
y ∈ fvars(τ).

Proposition 65 Let d ∈ SFL, σ ∈ γS(d) ∩VSubst and (x 7→ t) ∈ Bind, where
{x} ∪ vars(t) ⊆ VI . Then, for all τ ∈ mgs

(
σ ∪ {x = t}

)
in a syntactic equality

theory T , we have

fvars(σ) \
(
share withd(x) ∪ share withd(t)

)
⊆ fvars(τ). (64)

Proof. We assume that the congruence and identity axioms hold. Note that if
σ ∪ {x = t} is not satisfiable, then the result is trivial. We therefore assume,
for the rest of the proof, that σ ∪ {x = t} is satisfiable in T . It follows from
Lemma 53 that we just have to show that there exists τ ∈ mgs

(
σ ∪ {x = t}

)
such that (64) holds.

Let

{u1, . . . , uk}
def= dom(σ) ∩

(
vars(xσ) ∪ vars(tσ)

)
,

s̄
def= (u1, . . . , uk, xσ),

t̄
def= (u1σ, . . . , ukσ, tσ).

Note that, since σ ∈ VSubst , for each i = 1, . . . , k, we have

vars(uiσ) ⊆ vars(xσ) ∪ vars(tσ).

Thus, for any µ ∈ mgs(s̄ = t̄), we have

vars(µ) ⊆ vars(xσ) ∪ vars(tσ). (65)

Let

ν
def=
{
z = zσµ

∣∣∣ z ∈ dom(σ) \
(
vars(xσ) ∪ vars(tσ)

)}
,

τ
def= ν ∪ µ.

Then, as σ, µ ∈ RSubst , it follows from (65) that ν, τ ∈ Eqs have no identities
or circular subsets so that ν, τ ∈ RSubst . Thus, using Lemma 51 and the
assumption that σ ∪ {x = t} is satisfiable, τ ∈ mgs

(
σ ∪ {x = t}

)
.

Suppose y ∈ fvars(σ) \
(
share withd(x) ∪ share withd(t)

)
. We show that

y ∈ fvars(τ). As y ∈ fvars(σ), by Proposition 42,

yσ ∈ Vars \ dom(σ). (66)

As y /∈ share withd(x) ∪ share withd(t), it follows from Lemma 63 that

vars(yσ) ∩
(
vars(xσ) ∪ vars(tσ)

)
⊆ dom(σ).
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From this, by using (66), we obtain

yσ /∈ vars(xσ) ∪ vars(tσ). (67)

By using either (67), if y /∈ dom(σ), or the fact that σ ∈ VSubst , if y ∈ dom(σ),
it follows that

y /∈ vars(xσ) ∪ vars(tσ). (68)

Thus, by (68), yτ = yν and, by (67), yν = yσ, so that yτ = yσ and y ∈ fvars(τ).

C.3 The Correctness for Linearity

Lemma 66 Let σ ∈ VSubst and y ∈ dom(σ). If y ∈ lvars(σ) \ gvars(σ) then
y /∈ vars(yσ).

Proof. Suppose, by contraposition, that y ∈ vars(yσ). Since σ ∈ VSubst and
y ∈ lvars(σ), by Proposition 42 we have

vars(yσ) ∩ dom(σ) ⊆ gvars(σ).

Therefore y ∈ gvars(σ), contradicting the assumption.

The following simple consequence of Proposition 16 will be used in the sequel.

Lemma 67 If σ ∈ RSubst then fvars(σ) ∪ gvars(σ) ⊆ lvars(σ).

Proof. Let y ∈ fvars(σ)∪gvars(σ). It follows from Proposition 16 that we have
rt(y, σ) ∈ Vars ∪ GTerms. However, Vars ∪ GTerms ⊂ LTerms so that, again
by Proposition 16, y ∈ lvars(σ).

Proposition 68 Let d ∈ SFL, σ ∈ γS(d) ∩VSubst and (x 7→ t) ∈ Bind, where
{x} ∪ vars(t) ⊆ VI and y ∈ dom(σ) ∩ range(σ) implies y ∈ vars(yσ). Suppose
that {r, r′} = {x, t} and lind(r) holds. For all τ ∈ mgs

(
σ ∪ {x = t}

)
in the

syntactic equality theory T , we have

lvars(σ) \ share withd(r) ⊆ lvars(τ). (69)

Proof. We assume that the congruence and identity axioms hold. Note that if
σ ∪ {x = t} is not satisfiable, then the result is trivial. We therefore assume,
for the rest of the proof, that σ ∪ {x = t} is satisfiable in T . It follows from
Lemma 53 that we just have to show that there exists τ ∈ mgs

(
σ ∪ {x = t}

)
such that (69) holds.

Since lind(r) holds, then vars(r) ⊆ lvars(σ). Thus, by Proposition 42,

∀v ∈ vars(rσ) \ dom(σ) : occ lin(v, rσ), (70)
vars(rσ) ∩ dom(σ) ⊆ gvars(σ). (71)

Therefore, by defining Vσ
def= Vars \ gvars(σ), we obtain that the term rσ is

Vσ-linear. Let

{u1, . . . , uk}
def= dom(σ) ∩

(
vars(xσ) ∪ vars(tσ)

)
,

s̄
def= (u1, . . . , uk, rσ),
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t̄
def= (u1σ, . . . , ukσ, r

′σ).

Since rσ is Vσ-linear it follows from (71) that s̄ is Vσ-linear. By Lemma 51
and the congruence axioms, σ ∪ {x = t} =⇒ s̄ = t̄. Thus, as σ ∪ {x = t}
is satisfiable, there exists µ ∈ mgs(s̄ = t̄). Let Vµ = Vars \ gvars(µ); since
gvars(σ) ⊆ gvars(µ), then Vµ ⊆ Vσ and s̄ is also Vµ-linear. Therefore, we
can apply Lemma 54 so that there exists µ ∈ mgs(s̄ = t̄) such that, for all
w ∈W def= Vars \ vars(s̄),

wµ is Vµ-linear; (72)
vars(wµ) ∩ dom(µ) ⊆ gvars(µ); (73)

∀w′ ∈W : w 6= w′ =⇒ vars(wµ) ∩ vars(w′µ) ⊆ gvars(µ). (74)

Note that, since σ ∈ VSubst , we have vars(uiσ) ⊆ vars(xσ) ∪ vars(tσ) for each
i = 1, . . . , k. Therefore

vars(µ) ⊆ vars(xσ) ∪ vars(tσ). (75)

Let ν, τ ⊆ Eqs be defined as

ν
def=
{
z = zσµ

∣∣∣ z ∈ dom(σ) \
(
vars(xσ) ∪ vars(tσ)

)}
,

τ
def= ν ∪ µ.

Then, as σ, µ ∈ RSubst , it follows from (75) that ν and τ have no identities
or circular subsets so that ν, τ ∈ RSubst . By applying Lemma 51, we obtain
τ ∈ mgs

(
σ ∪ {x = t}

)
.

Suppose y ∈ lvars(σ) \ share withd(r). Then we show that y ∈ lvars(τ).
If y ∈ gvars(σ) then y ∈ gvars(τ). Thus, by Lemma 67, y ∈ lvars(τ).

Therefore, for the rest of the proof, we assume y ∈ lvars(σ)\gvars(σ). Thus, by
Lemma 66, we have y ∈ dom(σ) implies y /∈ vars(yσ) so that, by the hypothesis,

y /∈ dom(σ) ∩ range(σ). (76)

As y ∈ lvars(σ), by Proposition 42,

∀v ∈ vars(yσ) \ dom(σ) : occ lin(v, yσ), (77)
vars(yσ) ∩ dom(σ) ⊆ gvars(σ). (78)

As y /∈ share withd(r), by Definition 20 and Theorem 21, we have vars(yσ)∩
vars(rσ) ⊆ gvars(σ), so that, by (78), we obtain

vars(yσ) ∩ vars(s̄) ⊆ gvars(σ). (79)

We now prove that y ∈ lvars(τ), by showing that

∀v ∈ vars(yτ) \ dom(τ) : occ lin(v, yτ), (80)
vars(yτ) ∩ dom(τ) ⊆ gvars(τ). (81)

Since dom(τ) = dom(ν) ∪ dom(µ), we have three cases.

1. Suppose first that y /∈ dom(τ). Then (80) holds because occ lin(y, y) is
always true; similarly, (81) is true, because vars(yτ) = {y}.
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2. Next, suppose that y ∈ dom(ν), so that yτ = yν = yσµ.

To prove (80) we have to prove, for all w ∈ vars(yσ),

∀v ∈ vars(wµ) \ gvars(τ) : occ lin(v, wµ), (82)
∀w′ ∈ vars(yσ) \ {w} : vars(wµ) ∩ vars(w′µ) ⊆ gvars(τ). (83)

We consider two subcases. If w ∈ vars(s̄) then, by (79), w ∈ gvars(σ).
This implies w ∈ gvars(τ) and, as a consequence, vars(wµ) ⊆ gvars(τ).
Thus, both (82) and (83) hold. Otherwise, if w /∈ vars(s̄), then we have
w ∈W and both (72) and (74) hold. Therefore, since gvars(µ) ⊆ gvars(τ),
(82) follows from (72). As for (83), this follows either from (74), when
w′ /∈ vars(s̄), or from (79), when w′ ∈ vars(s̄).

In order to prove (73), note that

vars(yσµ) ∩ dom(τ) =
⋃{

vars(wµ) ∩ dom(τ)
∣∣ w ∈ vars(yσ)

}
.

We will prove that, for all w ∈ vars(yσ), vars(wµ) ∩ dom(τ) ⊆ gvars(τ).
Let w ∈ vars(yσ). Suppose first that w ∈ gvars(σ). As a consequence,
w ∈ gvars(τ), which implies vars(wτ) ⊆ gvars(τ). In particular, vars(wτ)∩
dom(τ) ⊆ gvars(τ). Otherwise, let w /∈ gvars(σ) so that, by (78), w /∈
dom(σ). If also w /∈ dom(µ), then w = wµ /∈ dom(τ) and there is nothing
to prove. If w ∈ dom(µ), then vars(wµ) ⊆ vars(µ) so that, by (75) and
the definition of ν, vars(wµ) ∩ dom(ν) = ∅. Moreover, by (79), we have
w /∈ vars(s̄). Thus (73) applies so that, as gvars(µ) ⊆ gvars(τ), vars(wµ)∩
dom(τ) ⊆ gvars(τ).

3. Finally, suppose y ∈ dom(µ), so that yτ = yµ. First, we prove that
y /∈ vars(s̄). In fact, by definition of s̄, if y ∈ vars(s̄) then y ∈ vars(rσ) ∪
vars(r′σ). Now, if y ∈ dom(σ), then y ∈ range(σ), therefore contradict-
ing (76). Otherwise, if y /∈ dom(σ), then y ∈ vars(yσ) and, by (79),
y ∈ gvars(σ), contradicting our previous assumption.

Thus, we have y /∈ vars(s̄), so that y ∈W and (72) holds. Note that (80)
follows because gvars(µ) ⊆ gvars(τ) ⊆ dom(τ), so that vars(yτ)\dom(τ) ⊆
Vµ.

Similarly, (73) holds and we can obtain (81) by observing that gvars(µ) ⊆
gvars(τ).

Proposition 69 Let d ∈ SFL, σ ∈ γS(d) ∩VSubst and (x 7→ t) ∈ Bind, where
{x} ∪ vars(t) ⊆ VI and y ∈ dom(σ) ∩ range(σ) implies y ∈ vars(yσ). For all
τ ∈ mgs

(
σ ∪ {x = t}

)
in the syntactic equality theory T , we have

lvars(σ) \
(
share withd(x) ∪ share withd(t)

)
⊆ lvars(τ). (84)

Proof. We assume that the congruence and identity axioms hold. Note that if
σ ∪ {x = t} is not satisfiable, then the result is trivial. We therefore assume,
for the rest of the proof, that σ ∪ {x = t} is satisfiable in T . It follows from
Lemma 53 that we just have to show that there exists τ ∈ mgs

(
σ ∪ {x = t}

)
such that (84) holds.

Let

{u1, . . . , uk}
def= dom(σ) ∩

(
vars(xσ) ∪ vars(tσ)

)
,
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s̄
def= (u1, . . . , uk, xσ),

t̄
def= (u1σ, . . . , ukσ, tσ).

By Lemma 51 and the congruence axioms, σ ∪ {x = t} =⇒ s̄ = t̄. Thus,
as σ ∪ {x = t} is satisfiable, there exists µ ∈ mgs(s̄ = t̄). Note that, since
σ ∈ VSubst , we have vars(uiσ) ⊆ vars(xσ) ∪ vars(tσ) for each i = 1, . . . , k.
Therefore

vars(µ) ⊆ vars(xσ) ∪ vars(tσ). (85)

Let ν, τ ⊆ Eqs be defined as

ν
def=
{
z = zσµ

∣∣∣ z ∈ dom(σ) \
(
vars(xσ) ∪ vars(tσ)

)}
,

τ
def= ν ∪ µ.

Then, as σ, µ ∈ RSubst , it follows from (85) that ν and τ have no identities
or circular subsets so that ν, τ ∈ RSubst . By applying Lemma 51, we obtain
τ ∈ mgs

(
σ ∪ {x = t}

)
.

Suppose y ∈ lvars(σ) \
(
share withd(x) ∪ share withd(t)

)
. Then we show

that y ∈ lvars(τ).
If y ∈ gvars(σ) then y ∈ gvars(τ). Thus, by Lemma 67, y ∈ lvars(τ).

Therefore, for the rest of the proof, we assume y ∈ lvars(σ)\gvars(σ). Thus, by
Lemma 66, we have y ∈ dom(σ) implies y /∈ vars(yσ) so that, by the hypothesis,

y /∈ dom(σ) ∩ range(σ). (86)

As y ∈ lvars(σ), by Proposition 42,

∀v ∈ vars(yσ) \ dom(σ) : occ lin(v, yσ), (87)
vars(yσ) ∩ dom(σ) ⊆ gvars(σ). (88)

As y /∈ share withd(x) ∪ share withd(t), by Definition 20 and Theorem 21,
we have

vars(yσ) ∩
(
vars(xσ) ∪ vars(tσ)

)
⊆ gvars(σ). (89)

Moreover, by (85), this implies

vars(yσ) ∩ vars(µ) ⊆ gvars(σ). (90)

We now prove that y ∈ lvars(τ), by showing that

∀v ∈ vars(yτ) \ dom(τ) : occ lin(v, yτ), (91)
vars(yτ) ∩ dom(τ) ⊆ gvars(τ). (92)

Since dom(τ) = dom(ν) ∪ dom(µ), we have three cases.

1. Suppose first that y /∈ dom(τ). Then (91) holds because occ lin(y, y) is
always true; similarly, (92) is true, because vars(yτ) = {y}.

2. Next, suppose that y ∈ dom(ν), so that yτ = yν = yσµ.

To prove (91), consider v ∈ vars(yσµ) \ dom(τ). If v ∈ vars(µ) then
there exists a variable w ∈ vars(yσ) ∩ vars(µ) such that v ∈ vars(wµ).
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By (90), we have w ∈ gvars(σ), which implies w ∈ gvars(τ). Thus,
vars(wµ) ⊆ gvars(τ) ⊆ dom(τ), therefore contradicting our assumption
that v /∈ dom(τ). Therefore, v /∈ vars(µ), so that v ∈ vars(yσ). Since
dom(σ) ⊆ dom(τ), by (87), we have occ lin(v, yσ). Moreover, for all
w ∈ vars(yσ)∩dom(µ), we have v /∈ vars(wµ), because v /∈ vars(µ). Thus,
we obtain occ lin(v, yσµ).

In order to prove (92), note that

vars(yσµ) ∩ dom(τ) =
⋃{

vars(wµ) ∩ dom(τ)
∣∣ w ∈ vars(yσ)

}
.

We will prove that, for all w ∈ vars(yσ), vars(wµ) ∩ dom(τ) ⊆ gvars(τ).
Let w ∈ vars(yσ). If w ∈ vars(µ) then, by (90), w ∈ gvars(σ), which
implies w ∈ gvars(τ). Thus, we obtain vars(wµ) ⊆ gvars(τ). Otherwise,
let w /∈ vars(µ), so that w = wµ. Thus, w /∈ dom(µ). If also w /∈ dom(σ),
then w /∈ dom(τ) and there is nothing to prove. If w ∈ dom(σ), by (88),
w ∈ gvars(σ), which implies w ∈ gvars(τ). Thus, vars(wµ) ⊆ gvars(τ).

3. Finally, suppose y ∈ dom(µ), so that yτ = yµ. Suppose also that
y ∈ vars(xσ) ∪ vars(tσ). Now, if y ∈ dom(σ), then y ∈ range(σ), thus
contradicting (86). Otherwise, if y /∈ dom(σ), then y ∈ vars(yσ) and,
by (89), y ∈ gvars(σ), contradicting our previous assumption.

Thus, we have y /∈ vars(xσ)∪vars(tσ), so that, by (85), we obtain yµ = y.
As a consequence, (91) holds trivially. As for (92), this follows from (88)
if y ∈ dom(σ), while being trivial if y /∈ dom(σ).

C.4 Putting Results Together

By exploiting the correctness results regarding each of the three components
of the domain SFL, we now prove the correctness of the amguS operator. We
start by proving a restricted result that only applies to variable-idempotent
substitutions.

Lemma 70 Let d = 〈sh, f, l〉 ∈ SFL and σ ∈ γS(d) ∩ VSubst be such that
y ∈ dom(σ) ∩ range(σ) implies y ∈ vars(yσ). Let also (x 7→ t) ∈ Bind, where
vars(σ) ∪ vars(x 7→ t) ⊆ VI , and suppose there exists τ ∈ mgs

(
σ ∪ {x = t}

)
in

the syntactic equality theory T . Then τ ∈ γS
(
amguS(d , x 7→ t)

)
.

Proof. Let d ′ = 〈sh ′, f ′, l′〉 def= amguS(d , x 7→ t). Note that, by the existence
of σ, τ as specified in the hypotheses, we have both d 6= ⊥S and d ′ 6= ⊥S. Since
σ ∈ γS(d), it follows from Definition 18 that ssets(σ) ⊆ sh, fvars(σ) ⊇ f and
lvars(σ) ⊇ l. Therefore, to prove τ ∈ γS(d ′), we have to show that

ssets(τ) ⊆ sh ′, (93)
fvars(τ) ⊇ f ′, (94)
lvars(τ) ⊇ l′. (95)

We prove each inclusion separately.
(93). By Definition 22, we have sh ′ = cyclictx(sh− ∪ sh ′′). We will show that

ssets(τ) ⊆ sh− ∪ sh ′′. (96)
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From this, the thesis will follow by Proposition 61. To prove (96) we need to
consider five cases.

1. freed(x) ∨ freed(t) holds.

We can apply Proposition 56, taking r = x when freed(x) holds and r = t
when freed(x) does not hold, to conclude that ssets(τ) ⊆ sh ′.

2. lind(x) ∧ lind(t) holds.

We can apply Proposition 57, obtaining

ssets(τ) ⊆ sh− ∪ bin
(
shx ∪ bin(shx, sh?xt), sht ∪ bin(sht, sh?xt)

) def= sh ′.

3. lind(x) holds.

We can apply Proposition 59, taking r = x to conclude that

ssets(τ) ⊆ sh− ∪ bin(sh?x, sht)
def= sh ′.

4. lind(t) holds. This case is symmetric to the previous one.

5. When nothing is known about x and t, we can apply Theorem 50 to
conclude that

ssets(τ) ⊆ sh− ∪ bin(sh?x, sh?t )
def= sh ′.

(94). In order to show that fvars(τ) ⊇ f ′, according to Definition 22, we
consider four cases.

1. freed(x) ∧ freed(t) holds.

By Definition 20, {x, t} ⊆ f ⊆ fvars(σ). Therefore we can apply Proposi-
tion 62 (where y is replaced by t ∈ VI ) to conclude that

f ′
def= f ⊆ fvars(σ) ⊆ fvars(τ).

2. freed(x) holds.

By Definition 20, x ∈ f ⊆ fvars(σ). Therefore we can apply Proposition 64
to conclude that

f ′
def= f \ share withd(x)
⊆ fvars(σ) \ share withd(x)
⊆ fvars(τ).

3. freed(t) holds.

This case is symmetric to the previous one.

4. When nothing is known about x and t, we can apply Proposition 65 to
conclude that

f ′
def= f \

(
share withd(x) ∪ share withd(t)

)
⊆ fvars(σ) \

(
share withd(x) ∪ share withd(t)

)
⊆ fvars(τ).

53



(95). In order to show that lvars(τ) ⊇ l′, according to Definition 22, we start
by proving lvars(τ) ⊇ l′′. There are four cases that have to be considered.

1. lind(x) ∧ lind(t) holds.
We can apply Proposition 68 twice, the first time taking r = x and the
second time taking r = t, to conclude that

l′′
def= l \

(
share withd(x) ∩ share withd(t)

)
=
(
l \ share withd(x)

)
∪
(
l \ share withd(t)

)
⊆
(
lvars(σ) \ share withd(x)

)
∪
(
lvars(σ) \ share withd(t)

)
⊆ lvars(τ).

2. lind(x) holds.
We can apply Proposition 68 (where we take r = x) to conclude that

l′′
def= l \ share withd(x)
⊆ lvars(σ) \ share withd(x)
⊆ lvars(τ).

3. lind(t) holds.
This case is symmetric to the previous one.

4. When nothing is known about x and t, we can apply Proposition 69 to
conclude that

l′′
def= l \

(
share withd(x) ∪ share withd(t)

)
⊆ lvars(σ) \

(
share withd(x) ∪ share withd(t)

)
⊆ lvars(τ).

Therefore, we have lvars(τ) ⊇ l′′. By (93) proved above, ssets(τ) ⊆ sh ′. By
Definition 10, VI \ vars(sh ′) ⊆ gvars(τ). Moreover, by (94) proved above, we
have fvars(τ) ⊇ f ′. Thus, by applying Lemma 67 we obtain the thesis:

lvars(τ) ⊇ gvars(τ) ∪ fvars(τ) ∪ lvars(τ)

⊇
(
VI \ vars(sh ′)

)
∪ f ′ ∪ l′′

def= l′.

Finally, by exploiting the results of Subsection 3.1, we drop the assumption
about variable-idempotent substitutions.

Proof of Theorem 23 on page 14. Let d ′ = amguS(d , x 7→ t).
If d = ⊥S then we have d ′ = ⊥S and the result holds trivially, since γS(d) =

∅. Similarly, if T = FT is the theory of finite trees and x ∈ vars(t), then
d ′ = ⊥S. Again, the result holds trivially, since the equation {x = t} is not
satisfiable in FT , so that mgs

(
σ ∪ {x = t}

)
= ∅.

Therefore suppose there exists σ ∈ γS(d) and τ ∈ mgs
(
σ ∪ {x = t}

)
. By

Proposition 40, there exists σ′ ∈ VSubst such that T ` ∀(σ ↔ σ′) and y ∈
dom(σ′) ∩ range(σ′) implies y ∈ vars(yσ′). By Corollary 19 and Definition 18,
we have σ ∈ γS(d) if and only if σ′ ∈ γS(d). Therefore, the result follows by
application of Lemma 70.
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D Proofs of the Results of Section 4

We will use results from [3], that show that the domain PSD is the weakest ab-
straction of SH achieving the same precision for the computation of groundness
and pair-sharing.

Theorem 71 Suppose sh1, sh2 ∈ SH . Then, for each (x 7→ t) ∈ Bind,

ρ(sh1) = ρ(sh2) =⇒ ρ
(
amgu(sh1, x 7→ t)

)
= ρ
(
amgu(sh2, x 7→ t)

)
.

Theorem 72 Let sh1, sh2 ∈ SH be such that ρPSD(sh1) 6= ρPSD(sh2). Then there
exist σ ∈ RSubst such that

ρPSD

(
aunify(sh1, σ)

)
6= ρPSD

(
aunify(sh2, σ)

)
.

The following result in [3] shows that, for groundness and pair-sharing in-
formation, the exponential star-union operator can be replaced by a quadratic
operation without loss of precision.

Theorem 73 Let sh ∈ SH and (x 7→ t) ∈ Bind. Let also

sh−
def= rel

(
{x} ∪ vars(t), sh

)
, shx

def= rel
(
{x}, sh

)
, sht

def= rel
(
vars(t), sh

)
.

Then
ρ
(
amgu(sh, x 7→ t)

)
= ρ
(
sh− ∪ bin(sh2

x, sh2
t )
)
.

The next three lemmas show that the precision of the abstract evaluation of
the operators specified in Definition 20 is not affected by ρPSD .

Lemma 74 For each V ⊆ VI and sh ∈ SH it holds

vars
(
rel(V, sh)

)
= vars

(
rel
(
V, ρPSD(sh)

))
.

Proof. If V = ∅, the result is trivial. Thus, assume V 6= ∅.
The first inclusion (⊆) follows from the extensivity of ρPSD and the mono-

tonicity of the operators rel and vars. To prove the other inclusion, let S ∈
rel
(
V, ρPSD(sh)

)
. By Definition 6, we have

∀x ∈ S : S =
⋃{

T ∈ sh
∣∣ {x} ⊆ T ⊆ S }.

In particular, for all x ∈ S ∩ V , it holds

S =
⋃{

T ∈ sh
∣∣ {x} ⊆ T ⊆ S }

=
⋃{

T ∈ rel(V, sh)
∣∣ {x} ⊆ T ⊆ S }

⊆
⋃

rel(V, sh)

= vars
(
rel(V, sh)

)
.

Since the choice of S was arbitrary, we obtain the desired inclusion

vars
(
rel(V, sh)

)
⊇ vars

(
rel
(
V, ρPSD(sh)

))
.
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Lemma 75 For each V,W ⊆ VI and sh ∈ SH it holds(
rel(V, sh) ∩ rel(W, sh) = ∅

)
⇐⇒

(
rel
(
V, ρPSD(sh)

)
∩ rel

(
W,ρPSD(sh)

)
= ∅

)
.

Proof. To prove the first implication (⇒), we reason by contraposition and
suppose

rel
(
V, ρPSD(sh)

)
∩ rel

(
W,ρPSD(sh)

)
6= ∅.

Thus, there exists S ∈ ρPSD(sh) such that S ∩ V 6= ∅ and S ∩W 6= ∅. Consider
x ∈ S ∩ V and y ∈ S ∩W , so that we have {x, y} ⊆ S.

By Definition 6, we have

∀v ∈ S : S =
⋃{

T ∈ sh
∣∣ {v} ⊆ T ⊆ S }.

In particular, by taking v = x, there must exist a sharing group T ∈ sh such
that {x, y} ⊆ T , so that

T ∈ rel(V, sh) ∩ rel(W, sh) 6= ∅.

The other implication (⇐) follows by the extensivity of ρPSD and the mono-
tonicity of rel.

Lemma 76 For each i ∈ {1, 2}, let di = 〈shi, f, l〉 ∈ SFL and suppose that
ρPSD(sh1) = ρPSD(sh2). Then, for all s, t ∈ HTerms and y ∈ VI ,

indd1(s, t) ⇐⇒ indd2(s, t); (97)
freed1(t) ⇐⇒ freed2(t); (98)

groundd1
(t) ⇐⇒ groundd2

(t); (99)
occ lind1(y, t) ⇐⇒ occ lind2(y, t); (100)

lind1(t) ⇐⇒ lind2(t); (101)
share withd1(t) = share withd2(t). (102)

Proof. Consider equivalence (97) and let V = vars(s), W = vars(t). By Defi-
nition 20, Lemma 75 and the hypothesis, we obtain

indd1(s, t) ⇐⇒ rel(V, sh1) ∩ rel(W, sh1) 6= ∅

⇐⇒ rel
(
V, ρPSD(sh1)

)
∩ rel

(
W,ρPSD(sh1)

)
6= ∅

⇐⇒ rel
(
V, ρPSD(sh2)

)
∩ rel

(
W,ρPSD(sh2)

)
6= ∅

⇐⇒ rel(V, sh2) ∩ rel(W, sh2) 6= ∅

⇐⇒ indd2(s, t).

The proof of (98) follows easily from Definition 20, since the predicate
freedi(t) does not depend on the sharing component shi of di.

Consider now (99). By Definition 20, Lemma 74 and the hypothesis, we
obtain

groundd1
(t) ⇐⇒ vars(t) ⊆ VI \ vars(sh1)

⇐⇒ vars(t) ⊆ VI \ vars
(
rel(VI , sh1)

)
⇐⇒ vars(t) ⊆ VI \ vars

(
rel
(
VI , ρPSD(sh1)

))
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⇐⇒ vars(t) ⊆ VI \ vars
(

rel
(
VI , ρPSD(sh2)

))
⇐⇒ vars(t) ⊆ VI \ vars

(
rel(VI , sh2)

)
⇐⇒ vars(t) ⊆ VI \ vars(sh2)
⇐⇒ groundd2

(t).

The proof of (100) follows easily from Definition 20, by applying the equiv-
alences (97) and (99). Similarly, the proof of (101) follows from Definition 20
and (100). Finally, equation (102) follows from Definition 20 and Lemma 74.

Since both ρ (by [22, Theorem 7]) and (·)? are upper closure operators it
follows that

sh1 ⊆ ρ(sh2) ⇐⇒ ρ(sh1) ⊆ ρ(sh2), (103)
sh1 ⊆ sh?2 ⇐⇒ sh?1 ⊆ sh?2. (104)

The following lemma needed below is stated and proved as Lemma 19 in [22].

Lemma 77 For each sh1, sh2 ∈ SH and each V ∈ ℘f(Vars),

sh1 ⊆ ρ(sh2) =⇒ rel(V, sh1)? ⊆ rel(V, sh2)?.

Lemma 78 Let sh1, sh2 ∈ SH be such that sh1 ⊆ ρPSD(sh2). For each V,W ⊆
VI and each i ∈ {1, 2}, let also

sh−,i = rel(V ∪W, shi),
shx,i = rel(V, shi),
sht,i = rel(W, shi).

Then, we have

bin(shx,1, sht,1) ⊆ ρPSD

(
sh−,2 ∪ bin(shx,2, sht,2)

)
; (105)

bin(shx,1, sh?t,1) ⊆ ρPSD

(
sh−,2 ∪ bin(shx,2, sh?t,2)

)
. (106)

Proof. Let S def= Sx ∪ St ∈ bin(shx,1, sht,1) where Sx ∈ shx,1 and St ∈ sht,1.
Consider an arbitrary variable y ∈ S.

Suppose first that y ∈ Sx and let w ∈ W ∩ St. Since Sx, St ∈ sh1, by
hypothesis Sx, St ∈ ρPSD(sh2). By Definition 6, S =

⋃
(A ∪B), where

A
def=
{
S′ ∈ sh2

∣∣ {y} ⊆ S′ ⊆ Sx },
B

def=
{
S′ ∈ sh2

∣∣ {w} ⊆ S′ ⊆ St }.
In particular, we can write A ∪B = sh ′− ∪ sh ′x ∪ sh ′t, where

sh ′−
def= rel(V ∪W,A),

sh ′x
def= rel(V,A),

sh ′t
def= rel(W,A ∪B).
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Since V ∩ Sx 6= ∅ and v ∈ W ∩ St, we have sh ′x 6= ∅ and sh ′t 6= ∅. Therefore⋃
(sh ′x ∪ sh ′t) =

⋃
bin(sh ′x, sh ′t), so that

S =
⋃(

sh ′− ∪ bin(sh ′x, sh ′t)
)
.

By construction, we have {y} ⊆ S′ ⊆ S for all S′ ∈ A. Thus, it also holds
{y} ⊆ S′ ⊆ S for all S′ ∈ sh ′− ∪ bin(sh ′x, sh ′t), so that

S =
⋃{

S′ ∈ sh ′− ∪ bin(sh ′x, sh ′t)
∣∣ {y} ⊆ S′ ⊆ S }.

By a symmetric argument, the same conclusion can be obtained when y ∈ St.
As the choice of y was arbitrary, by Definition 6,

S ∈ ρPSD

(
sh ′− ∪ bin(sh ′x, sh ′t)

)
. (107)

Note that sh ′− ⊆ sh−,2, sh ′x ⊆ shx,2 and sh ′t ⊆ sht,2, so that it holds

sh ′− ∪ bin(sh ′x, sh ′t) ⊆ sh−,2 ∪ bin(shx,2, sht,2).

Then, (105) follows from (107) by the monotonicity of ρPSD .
To prove (106), let S def= Sx ∪ Tt ∈ bin(shx,1, sh?t,1), where Sx ∈ shx,1 and

Tt ∈ sh?t,1. Consider an arbitrary variable y ∈ S.
Suppose that y ∈ Sx. Since Sx ∈ sh1, by hypothesis Sx ∈ ρPSD(sh2), so that

by Definition 6 we have S =
⋃(
A ∪ {Tt}

)
, where

A
def=
{
S′ ∈ sh2

∣∣ {y} ⊆ S′ ⊆ Sx }.
In particular, we can write S =

⋃
(sh ′− ∪ sh ′x ∪ sh ′t), where

sh ′−
def= rel(V ∪W,A),

sh ′x
def= rel(V,A),

sh ′t
def= rel(W,A) ∪ {Tt}.

Since V ∩ Sx 6= ∅, we have sh ′x 6= ∅. Since it also holds sh ′t 6= ∅, we have⋃(
sh ′x ∪ sh ′t

)
=
⋃

bin
(
sh ′x, sh ′t

)
, so that

S =
⋃(

sh ′− ∪ bin(sh ′x, sh ′t)
)
.

By construction, we have {y} ⊆ S′ ⊆ S for all S′ ∈ A. Thus, it also holds
{y} ⊆ S′ ⊆ S for all S′ ∈ sh ′− ∪ bin(sh ′x, sh ′t), so that

S =
⋃{

S′ ∈ sh ′− ∪ bin(sh ′x, sh ′t)
∣∣ {y} ⊆ S′ ⊆ S }. (108)

Suppose now that y ∈ Tt and let v ∈ V ∩ Sx. Since Sx ∈ sh1 ⊆ ρPSD(sh2),
by Definition 6 we have S =

⋃(
B ∪ {Tt}

)
, where

B
def=
{
S′ ∈ sh2

∣∣ {v} ⊆ S′ ⊆ Sx }.
In particular, we can write S =

⋃
(sh ′− ∪ sh ′x ∪ sh ′t), where

sh ′−
def= ∅,
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sh ′x
def= rel(V,B) = B,

sh ′t
def= {Tt}.

Since v ∈ V ∩ Sx, we have sh ′x 6= ∅; since it also holds sh ′t 6= ∅, we obtain⋃
(sh ′x ∪ sh ′t) =

⋃(
bin(sh ′x, sh ′t)

)
. Since y ∈ Tt and sh ′− = ∅, we have {y} ⊆

S′ ⊆ S for all S′ ∈ sh ′− ∪ bin(sh ′x, sh ′t), so that (108) holds even in this case.
As the choice of y was arbitrary, by (108) and Definition 6,

S ∈ ρPSD

(
sh ′− ∪ bin(sh ′x, sh ′t)

)
. (109)

Clearly, sh ′− ⊆ sh−,2 and sh ′x ⊆ shx,2; also, by Lemma 77, Tt ∈ sh?t,2, so
that sh ′t ⊆ sh?t,2. Thus, sh ′− ∪ bin(sh ′x, sh ′t) ⊆ sh−,2 ∪ bin(shx,2, sh?t,2). The
thesis (106) follows from (109) by the monotonicity of ρPSD .

Lemma 79 Let sh ∈ SH and V,W ⊆ VI . Let also shx
def= rel(V, sh), sht

def=
rel(W, sh), shxt

def= shx ∩ sht and

sh� def= bin
(
shx ∪ bin(shx, sh?xt), sht ∪ bin(sht, sh?xt)

)
.

Then, ρPSD(sh�) = ρPSD

(
bin(shx, sht)

)
.

Proof. Observe that, since shxt ⊆ shx and shxt ⊆ sht,

bin
(
bin(shx, sh?xt),bin(sht, sh?xt)

)
= bin

(
bin(shx, sht), sh?xt

)
.

Thus
sh� = bin(shx, sht) ∪ bin

(
bin(shx, sht), sh?xt

)
. (110)

Thus, the inclusion ρPSD(sh�) ⊇ ρPSD

(
bin(shx, sht)

)
follows by the monotonicity

of ρPSD . We now prove the other inclusion

ρPSD(sh�) ⊆ ρPSD

(
bin(shx, sht)

)
. (111)

Let S ∈ sh�. Then, by (110), S = Sx ∪ St ∪ Txt, where Sx ∈ shx, St ∈ sht,
Txt ∈ sh?xt ∪∅. Thus, for some k ≥ 0, Txt = T1 ∪ · · · ∪ Tk, where Ti ∈ shxt for
each i = 1, . . . , k.

Consider an arbitrary variable y ∈ S. We will show that

S =
⋃{

S′ ∈ bin(shx, sht)
∣∣ {y} ⊆ S′ ⊆ S }. (112)

Suppose first that y ∈ Sx. Then, since

S = (Sx ∪ St) ∪ (Sx ∪ T1) ∪ · · · ∪ (Sx ∪ Tk),

it follows that (112) holds. By a similar argument, (112) holds also when y ∈ St,
by taking

S = (Sx ∪ St) ∪ (St ∪ T1) ∪ · · · ∪ (St ∪ Tk).

On the other hand, suppose now y /∈ Sx ∪ St, so that k > 0 and there exists
j ∈ {1, . . . , k} such that y ∈ Tj . In this case we have

S = (Sx ∪ Tj) ∪ (Tj ∪ St) ∪ (T1 ∪ Tj) ∪ · · · ∪ (Tk ∪ Tj),

so that, since Tj ∈ shxt, (112) still holds.
As the choice of y ∈ S was arbitrary, by (112) and Definition 6 it follows

S ∈ ρPSD

(
bin(shx, sht)

)
. Thus, by monotonicity and idempotence of ρPSD , (111)

holds.
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Lemma 80 Let sh ∈ SH and (x 7→ t) ∈ Bind, where {x} ∪ vars(t) ⊆ VI .
Consider W = vars(t) \ {x} and let shx, sht, shW ∈ SH be defined as

shx = rel
(
{x}, sh

)
,

sht = rel
(
vars(t), sh

)
,

shW = rel(W, sh).

Then

bin(shx, shW ) = cyclictx
(
bin(shx, sht)

)
; (113)

bin(sh?x, shW ) = cyclictx
(
bin(sh?x, sht)

)
; (114)

bin(sh?x, sh?W ) = cyclictx
(
bin(sh?x, sh?t )

)
. (115)

Proof. We start by proving equations (113) and (114) at the same time. There-
fore, let sh ′x ∈ {shx, sh?x}.

To prove the first inclusions (⊆), we assume S ∈ bin(sh ′x, shW ) and show
that S ∈ cyclictx

(
bin(sh ′x, sht)

)
. Since shW ⊆ sht, we have S ∈ bin(sh ′x, sht).

Moreover, S = Sx ∪SW , where x ∈ Sx and W ∩SW 6= ∅. Thus W ∩S 6= ∅ and
hence, by Definition 20, S ∈ cyclictx

(
bin(sh ′x, sht)

)
.

To prove the opposite inclusions (⊇), let S ∈ cyclictx
(
bin(sh ′x, sht)

)
. Then,

S ∈ bin(sh ′x, sht), so that S = Sx∪St, where Sx ∈ sh ′x and St ∈ sht. Thus x ∈ S
and, by Definition 20, S ∈ rel(W, sh). If vars(t) ∩ St 6= {x}, then St ∈ shW and
S ∈ bin(sh ′x, shW ), so that the two inclusions hold. Otherwise, let vars(t)∩St =
{x}, so that St ∈ sh ′x and St /∈ shW . Since we know S ∈ rel(W, sh), there exists
w ∈W ∩ Sx, so that Sx ∈ shW . First, consider the case when sh ′x = shx. Then
St ∈ shx and we have S ∈ bin(shx, shW ), proving the second inclusion for (113).
Secondly, consider the case when sh ′x = sh?x. Then we can write Sx = SW ∪ Sx,
where SW ∈ shW . Thus S = (Sx∪St)∪SW ∈ bin(sh?x, shW ), proving the second
inclusion for (114).

Finally, we prove equation (115).
To prove the first inclusion (⊆), we assume S ∈ bin(sh?x, sh?W ) and show

that S ∈ cyclictx
(
bin(sh?x, sh?t )

)
. As shW ⊆ sht, we have S ∈ bin(sh?x, sh?t ).

Moreover, S = Sx ∪SW , where x ∈ Sx and W ∩SW 6= ∅. Thus W ∩S 6= ∅ and
hence, by Definition 20, S ∈ cyclictx

(
bin(sh?x, sh?t )

)
.

To prove the opposite inclusion (⊇), let S ∈ cyclictx
(
bin(sh?x, sh?t )

)
. Then, we

have S ∈ bin(sh?x, sh?t ), so that S = Sx∪St, where Sx ∈ sh?x and St ∈ sh?t . Thus
x ∈ S and, by Definition 20, S ∈ rel(W, sh). Suppose first that vars(t) ∩ St 6=
{x}. Then St = SW ∪ Sxt, where SW ∈ sh?W and Sxt ∈ sh?x ∪ {∅}. Thus
S = (Sx ∪ Sxt) ∪ SW ∈ bin(sh?x, sh?W ). Suppose next that vars(t) ∩ St = {x},
so that St ∈ sh?x W ∩ Sx 6= ∅. Then Sx = SW ∪ Sx, where SW ∈ sh?W . Thus
S = (Sx ∪ St) ∪ SW ∈ bin(sh?x, sh?W ), completing the proof.

For the next theorem, we will use the following lemma corresponding to
Lemmas 18 in [3].

Lemma 81 For each sh ∈ SH and V ∈ ℘f(Vars), rel
(
V, ρ(sh)

)
= ρ
(
rel(V, sh)

)
.

Theorem 82 Let d1, d2 ∈ SFL be such that ρPSD(d1) = ρPSD(d2). Then, for all
(x 7→ t) ∈ Bind,

ρPSD

(
amguS(d1, x 7→ t)

)
= ρPSD

(
amguS(d2, x 7→ t)

)
.

60



Proof. Let d1 = 〈sh1, f, l〉. Then, by definition of ρPSD on SFL, it holds d2 =
〈sh2, f, l〉, where ρPSD(sh1) = ρPSD(sh2).

For each i ∈ {1, 2}, let 〈sh ′i, f
′
i , l
′
i〉 = amguS

(
di, x 7→ t

)
. We will prove the

following results:

ρPSD(sh ′1) = ρPSD(sh ′2), (116)
f ′1 = f ′2, (117)
l′1 = l′2. (118)

Equation (116). We will prove the result

sh1 ⊆ ρPSD(sh2) =⇒ sh ′1 ⊆ ρPSD(sh ′2). (119)

Then, by using (104), we obtain

ρPSD(sh1) ⊆ ρPSD(sh2) =⇒ ρPSD(sh ′1) ⊆ ρPSD(sh ′2),

from which the thesis follows by symmetry.
Let W = vars(t) \ {x}. For each i ∈ {1, 2}, let

sh−,i = rel
(
{x} ∪ vars(t), shi

)
,

shx,i = rel
(
{x}, shi

)
,

sht,i = rel
(
vars(t), shi

)
,

shxt,i = shx,i ∩ sht,i,
shW,i = rel(W, shi).

To prove (119), assume that sh1 ⊆ ρPSD(sh2). By Definitions 22 and 20, for each
i = 1, 2 we have

sh ′i = cyclictx(sh−,i ∪ sh ′′i ) = sh−,i ∪ cyclictx(sh ′′i ).

We first show that sh−,1 ⊆ ρPSD

(
sh−,2 ∪ cyclictx(sh ′′2)

)
. By the definition of

sh−,1, the assumption and the monotonicity of rel, we have

sh−,1 ⊆ rel
(
{x} ∪ vars(t), ρPSD(sh2)

)
.

Thus, by Lemma 81, sh−,1 ⊆ ρPSD(sh−,2), from which the required result follows
by monotonicity of ρPSD .

We next show that cyclictx(sh ′′1) ⊆ ρPSD

(
sh−,2 ∪ cyclictx(sh ′′2)

)
. By applying

cases (98) and (101) of Lemma 76, it can be seen that sh ′′1 and sh ′′2 are each
computed by selecting the same alternative branch of Definition 22. We have
five cases.

1. In the first case, for each i = 1, 2, we have sh ′′i = bin(shx,i, sht,i). By
case (113) of Lemma 80, cyclictx(sh ′′i ) = bin(shx,i, shW,i), for each i = 1, 2.
Thus, by case (105) of Lemma 78, where we take V = {x},

bin(shx,1, shW,1) ⊆ ρPSD

(
sh−,2 ∪ bin(shx,2, shW,2)

)
,

from which the thesis follows.
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2. In the second case we have, for each i = 1, 2,

sh ′′i = bin
(
shx,i ∪ bin(shx,i, sh?xt,i), sht,i ∪ bin(sht,i, sh?xt,i)

)
.

There are two cases.

First suppose that x /∈ vars(t), so that cyclictx(sh ′′i ) = sh ′′i . Then, by
Lemma 79, for each i = 1, 2, we have sh ′′i ⊆ ρPSD

(
bin(shx,i, sht,i)

)
. There-

fore, by case (105) of Lemma 78 and the monotonicity of ρPSD , we obtain

sh ′′1 ⊆ ρPSD

(
sh−,2 ∪ bin(shx,2, sht,2)

)
,

so that the thesis holds.

Secondly, suppose that x ∈ vars(t). In this case, for each i = 1, 2, we
have shxt,i = shx,i, so that sh ′′i = bin(sh?x,i, sht,i). This case is therefore
equivalent to the third case, proven below.

3. In the third case, for each i = 1, 2, we have sh ′′i = bin(sh?x,i, sht,i).
By case (114) of Lemma 80, cyclictx(sh ′′i ) = bin(sh?x,i, shW,i). Thus, by
case (106) of Lemma 78, where we take V = {x}, we obtain

sh ′′1 ⊆ ρPSD

(
sh−,2 ∪ bin(sh?x,2, shW,2)

)
,

so that the thesis holds.

4. In the fourth case, for each i = 1, 2, we have sh ′′i = bin(shx,i, sh?t,i).
Moreover, as lind(t) holds and lind(x) does not hold, we can assume that
x /∈ vars(t), so that cyclictx(sh ′′i ) = sh ′′i . Thus, by case (106) of Lemma 78,
where we exchange the usual roles of V and W , we obtain

sh ′′1 ⊆ ρPSD

(
sh−,2 ∪ bin(shx,2, sh?t,2)

)
,

so that the thesis holds.

5. In the fifth case we have, for i = 1, 2, sh ′′i = bin(sh?x,i, sh?t,i). By case (115)
of Lemma 80, cyclictx(sh ′′i ) = bin(sh?x,i, sh?W,i). The thesis follows from
Theorem 71, by replacing the term t by an arbitrary term t′ ∈ HTerms
such that vars(t′) = W .

Equation (117). Consider the computation of f ′i as specified in Definition 22.
By applying case (98) of Lemma 76, it can be seen that f ′1 and f ′2 are computed
by selecting the same alternative branch. The thesis f ′1 = f ′2 thus follows from
case (102) of Lemma 76.

Equation (118). Consider the computation of l′i as specified in Definition 22:
for each i ∈ {1, 2} we have

l′i =
(
VI \ vars(sh ′i)

)
∪ f ′i ∪ l′′i .

Let r ∈ HTerms be such that vars(r) = VI . Then, for each i ∈ {1, 2}, we have
vars(sh ′i) = share withd′i

(r); also, by equation (116), we know that ρPSD(sh ′1) =
ρPSD(sh ′2); thus, by case (102) of Lemma 76, we obtain vars(sh ′1) = vars(sh ′2).
By equation (117), we also know that f ′1 = f ′2. Therefore, to complete the
proof, we only need to prove that l′′1 = l′′2 . Consider the computation of l′′i as
specified in Definition 22. By case (101) of Lemma 76, it can be seen that, in
the computations of l′′1 and l′′2 , the same alternative branch is selected. Hence,
the thesis is obtained by applying case (102) of Lemma 76.
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Theorem 83 Let d1, d2 ∈ SFL be such that ρPSD(d1) = ρPSD(d2). Then, for
each sequence of bindings bs ∈ Bind?,

ρPSD

(
aunifyS(d1, bs)

)
= ρPSD

(
aunifyS(d2, bs)

)
.

Proof. The proof is by induction on the length of bs. The base case, when
|bs| = 0 and thus bs = ε, is obvious from the definition of aunifyS. For the
inductive case, when |bs| = m > 0, let bs = (x 7→ t) . bs ′. By the hypothesis
and Theorem 82, we have

ρPSD

(
amguS(d1, x 7→ t)

)
= ρPSD

(
amguS(d2, x 7→ t)

)
. (120)

Moreover, for each i ∈ {1, 2}, by definition of aunifyS we have

aunifyS(di, bs) = aunifyS
(
amguS(di, x 7→ t), bs ′

)
.

Thus, by (120), we can apply the inductive hypothesis and conclude the proof,
since |bs ′| = m− 1 < m.

For the next theorem, we will use the following lemma, corresponding to
Lemma 24 in [3].

Lemma 84 Let sh1, sh2 ∈ SH be such that ρPSD(sh1) = ρPSD(sh2). Then, for
each V ⊆ VI ,

ρPSD

(
aexists(sh1, V )

)
= ρPSD

(
aexists(sh2, V )

)
.

Theorem 85 Let d1, d2 ∈ SH be such that ρPSD(d1) = ρPSD(d2). Then, for each
V ⊆ VI ,

ρPSD

(
aexistsS(d1, V )

)
= ρPSD

(
aexistsS(d2, V )

)
.

Proof. Let di = 〈shi, fi, li〉, for each i = 1, 2. By applying Definitions 27
and 29, for each i = 1, 2, we have

ρPSD

(
aexistsS(di, V )

)
= ρPSD

(〈
aexists(shi), fi ∪ V, li ∪ V

〉)
=
〈
ρPSD

(
aexists(shi)

)
, fi ∪ V, li ∪ V

〉
.

By the hypothesis and Definition 29, we also have ρPSD(sh1) = ρPSD(sh2), f1 = f2

and l1 = l2. Thus, to complete the proof, we only need to show that

ρPSD

(
aexists(sh1)

)
= ρPSD

(
aexists(sh2)

)
.

This follows from Lemma 84.

Proof of Theorem 30 on page 18. The congruence properties for aunifyS
and aexistsS follow from Theorems 83 and 85, respectively. The congruence
property for alubS holds, as usual, because ρPSD is an upper closure operator.

Proof of Theorem 31 on page 19. Suppose ρPSD(d1) 6= ρPSD(d2). By Defini-
tion 29, we have three cases:
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1. Suppose ρPSD(sh1) 6= ρPSD(sh2). Let t be a ground and finite term and let

σ
def= {x 7→ t | x ∈ VI \ S }.

Since σ binds all of its domain variables to terms that are ground and
finite, then no binary union and/or star-union needs to be computed. As a
consequence, the behavior of amguS on the sharing component is the same
as the behavior of ‘amgu’. The proof therefore follows from Theorem 72.

2. Suppose now f1 6= f2. In this case, by taking ρ = ρF and bs = ε, we
obtain

ρF
(
aunifyS(d1, ε)

)
= ρF (d1)
= 〈SG , f1,∅〉
6= 〈SG , f2,∅〉
= ρF (d2)

= ρF
(
aunifyS(d2, ε)

)
.

3. Finally, suppose l1 6= l2. Similarly to the previous case, by taking ρ = ρL
and bs = ε, we obtain

ρL
(
aunifyS(d1, ε)

)
= ρL(d1)
= 〈SG ,∅, l1〉
6= 〈SG ,∅, l2〉
= ρL(d2)

= ρL
(
aunifyS(d2, ε)

)
.

Proof of Theorem 32 on page 19. Suppose first that x /∈ vars(t). Then it
holds

cyclictx(sh− ∪ sh�) = sh− ∪ sh�,

so that the thesis is a simple corollary of Lemma 79, where V = {x} and
W = vars(t).

Suppose now x ∈ vars(t). Then we have shx = shxt, so that sh� =
bin(sh?x, sht). In this case the thesis is a corollary of Theorem 73.

64


