
Symbolic Analysis of Linear Hybrid Automata –
25 Years Later

Goran Frehse1[0000−0002−5441−0481], Mirco Giacobbe2[0000−0001−8180−0904], and
Enea Zaffanella3[0000−0001−6388−2053]

1 U2IS, ENSTA Paris, Institut Polytechnique de Paris, France
goran.frehse@ensta-paris.fr

2 University of Birmingham, UK m.giacobbe@bham.ac.uk
3 Department of Mathematical, Physical and Computer Sciences,

University of Parma, Italy enea.zaffanella@unipr.it

Abstract. We present a collection of advances in the algorithmic ver-
ification of hybrid automata with piecewise linear derivatives, so-called
Linear Hybrid Automata. New ways to represent and compute with poly-
hedra, in combination with heuristic algorithmic improvements, have
lead to considerable speed-ups in checking safety properties through set
propagation. We also showcase a CEGAR-style approach that iteratively
constructs a polyhedral abstraction. We illustrate the efficiency and scal-
ability of both approaches with two sets of benchmarks.

1 Introduction

Hybrid automata are a modeling paradigm that combines finite state machines
with differential equations in order to capture processes in which discrete, event-
based, behavior interacts with continuous, time-based behavior. They came to
rise in the beginning of the 1990s, through of a collaboration of scientists from
various disciplines, notably computer scientists and control theorists. By that
time, formal methods such as abstract interpretation [15] and model checking
[14, 35] had demonstrated their potential to increase the trustworthiness of safety
critical software and digital hardware designs. The goal was to develop similar
techniques for discrete systems that interact with processes that be described
by differential equations, like some mechanical or biological processes, so-called
hybrid systems. In The Theory of Hybrid Automata, whose first version was
published 25 years ago in 1996, Tom Henzinger pointed out a class of hybrid au-
tomata that hit a particular sweet spot for the purposes of symbolic (set-based)
analysis: linear hybrid automata (LHA). LHA are characterized by linear predi-
cates over the continuous variables and the evolution of the continuous variables
is governed by differential inclusions that depend only on the discrete state,
not the continuous variables themselves. LHA readily lend themselves as sound
abstractions of complex natural and technical processes and as asymptotically
complete approximations of a large class of hybrid automata [27]. While prop-
erties like safety are not decidable for LHA, the states reachable over a given
finite path can be computed exactly and symbolically, in the form of continuous

2 G. Frehse, M. Giacobbe, E. Zaffanella

sets associated to discrete states. In a sense, the continuous time domain can be
abstracted away for LHA, so that the symbolic analysis resembles that of linear
programs. Consequently, techniques from linear program analysis, such as the
polyhedral computations in [23], could be applied. This lead to symbolic anal-
ysis tools such as the pioneering model checker HyTech [25]. Since then, much
research effort has been invested in making symbolic analysis more efficient, in
order to scale up to systems of practical interest.

In this paper, we present a selection of techniques that, applied to the sym-
bolic analysis of LHA, have lead to performance improvements of several orders
of magnitudes since the days of HyTech. We focus entirely on safety properties
encoded as reachability problems, i.e., whether a state is reachable from any state
in a given set of initial states. We start with a simple fixed-point algorithm for
computing reachable sets of states, using convex polyhedra as set representations.
We then present various advances in polyhedral computations as well as efficient
abstractions that serve as heuristics to speed up the fixed-point algorithm, and
illustrate the performance gains with experiments. As an alternative approach,
we also present a technique based on the CEGAR (Counter-Example Guided
Abstraction Refinement) paradigm. Starting from an initial, coarse abstraction,
the finite-path encoding of LHA is used to iteratively refine the abstraction until
either a counterexample has been found or the system is proved safe.

Our overview is far from exhaustive and limited to work by the authors. We
point the reader to the references in [31, 1, 40] for related work. Other CEGAR
approaches are implemented, e.g., in the tools HARE [36] and HyCOMP/IC3
[11]. To take an instance of an entirely different approach, we point to the work
in [34], where LHA are encoded as linear programs, which are then analyzed by
the software model checker ARMC. Bounded model checking for LHA has been
implemented in the tool BACH [12].

The remainder of the paper is structured as follows. In Section 2, we give a for-
mal definition of linear hybrid automata and their semantics and briefly present
the fundamentals of set-based reachability. In Section 3 we show how set-based
reachability can be implemented, either exactly or by resorting to overapproxi-
mations, when using convex polyhedra for the representation of symbolic states;
in doing this, we highlight several optimization techniques and heuristics that are
able to significantly improve the efficiency of the approach. In Section 4 we show
how stronger forms of abstraction, leading to coarser overapproximations, can
be successfully adopted in a CEGAR framework, so as to further enhance scala-
bility. In Section 5 we recall the results of some recent experimental evaluations,
providing evidences for the feasibility of the proposed approaches; in particular,
our analysis focuses on the practical impact of the enhanced implementation
techniques described in Section 3. Finally, we conclude in Section 6.

2 Symbolic Analysis of Linear Hybrid Automata

Hybrid automata describe the evolution of a set of real-valued variables over
time. In this section, we give a formal definition of hybrid automata and their

Symbolic Analysis of Linear Hybrid Automata – 25 Years Later 3

behaviors, and illustrate the concept with an example. But first, we introduce
some notation for describing real-valued variables and sets of these values in the
form of predicates and polyhedra.

2.1 Preliminaries

Variables: Let X = {x1, . . . , xn} be a finite set of variables. A valuation over X is
written as x ∈ RX or x : X → R. We use the primed variables X ′ = {x′1, . . . , x′n}
to denote successor values and the dotted variables Ẋ = {ẋ1, . . . , ẋn} to denote
the derivatives of the variables with respect to time. Given a set of variables
Y ⊆ X, the projection y = x ↓Y is a valuation over Y that maps each variable in
Y to the same value that it has in x. We may simply use a vector x ∈ Rn if it is
clear from the context which index of the vector corresponds to which variable.
We denote the i-th element of a vector x as xi or x(i) if the latter is ambiguous. In
the following, we use Rn instead of RX except when the correspondence between
indices and variables is not obvious, e.g., when valuations over different sets of
variables are involved.

Predicates: A predicate over X is an expression that, given a valuation x over
X, can be evaluated to either true or false. A linear constraint is a predicate

a1x1 + a2x2 + · · ·+ anxn ≤ b,

where a1, . . . an and b are real-valued constants, and whose sign may be strict
(<) or nonstrict (≤). A linear constraint is written in vector notation as

aTx ≤ b,

with coefficient vector a ∈ Rn and inhomogeneous coefficient b ∈ R. A halfspace
H ⊆ Rn is the set of points satisfying a linear constraint. A predicate over
X defines a continuous set, which is the subset of RX on which the predicate
evaluates to true.

Polyhedra: A conjunction of finitely many linear constraints defines a polyhedron
in constraint form, also called H-polyhedron,

P =
{
x
∣∣∣ ∧m

i=1
aTix ./i bi

}
, with ./i∈ {<,≤},

with facet normals ai ∈ Rn and inhomogeneous coefficients bi ∈ R. A bounded
polyhedron is called a polytope. Note that the constraints defining P are not
necessarily unique. The representation of a polyhedron has a big impact on the
computational cost of different geometric operations. Other representations for
polyhedra can be more efficient for model checking, and will be discussed in
detail in Sect. 3.

4 G. Frehse, M. Giacobbe, E. Zaffanella

2.2 Linear Hybrid Automata

We now give a formal definition of a hybrid automaton and its run semantics.

Definition 1 (Hybrid automaton). [2, 28] A hybrid automaton H = (Loc,
Lab,Edg, X, Init, Inv,Flow, Jump) consists of

– a finite set of locations Loc = {`1, . . . , `m} representing the discrete states;
– a finite set of synchronization labels Lab;
– a finite set of edges Edg ⊆ Loc × Lab × Loc, also called transitions, which

determines which discrete state changes are possible using which label;
– a finite set of variables X = {x1, . . . , xn}, partitioned into uncontrolled vari-

ables U and controlled variables Y ; a state of H consists of a location ` and
a value for each of the variables, and is denoted by s = (`, x);

– a set of states Inv called invariant or staying condition; it restricts for each
location the values that x can possibly take and so determines how long the
system can remain in the location;

– a set of initial states Init ⊆ Inv; every behavior of H must start in one of
the initial states;

– a flow relation Flow, where Flow(`) ⊆ RẊ × RX gives for each state (`, x)
the set of possible derivatives ẋ, e.g., using a differential equation such as

ẋ = f(x);

given a location `, a trajectory of duration δ ≥ 0 is a continuously dif-
ferentiable function ξ : [0, δ] → RX such that for all t ∈ [0, δ], (ξ̇(t), ξ(t)) ∈
Flow(`); the trajectory satisfies the invariant if for all t ∈ [0, δ], ξ(t) ∈ Inv(`);

– a jump relation Jump, where Jump(e) ⊆ RX×RX′ defines for each transition
e ∈ Edg the set of possible successors x′ of x; jump relations are typically
given by a guard set G ⊆ RX and an assignment (or reset) x′ = r(x) as

Jump(e) = {(x, x′) | x ∈ G ∧ x′ = r(x)}.

In a linear hybrid automaton (LHA), all continuous sets and relations in Inv, Init,
Flow, Jump are defined by linear constraints (polyhedra), and the flow relation is
independent of the continuous state. Typically, the flow relation in a LHA is
given in the form of differential inclusions ẋ ∈ P(`), where P(`) is a polyhedron.

We define the behavior of a hybrid automaton with a run: starting from one of
the initial states, the state evolves according to the differential equations whilst
time passes, and according to the jump relations when taking an (instantaneous)
transition. Special events, which we call uncontrolled assignments, model an
environment that can make arbitrary changes to the uncontrolled variables.

Definition 2 (Run semantics). A run of H is a sequence

(`0, x0)
δ0,ξ0−−−→ (`0, ξ0(δ0))

α0−→ (`1, x1)
δ1,ξ1−−−→ (`1, ξ1(δ1)) . . .

αN−1−−−−→ (`N , xN),

with αi ∈ Lab ∪ {τ}, satisfying for i = 0, . . . , N − 1:

Symbolic Analysis of Linear Hybrid Automata – 25 Years Later 5

1. The first state is an initial state of the automaton, i.e., (`0, x0) ∈ Init.
2. Trajectories: In location `i, ξi is a trajectory of duration δi that satisfies the

invariant.
3. Jumps: If αi ∈ Lab, there exists a transition (`i, αi, `i+1) ∈ Edg with jump

relation Jump(e) such that (ξi(δi), xi+1) ∈ Jump(e) and xi+1 ∈ Inv(`i+1).
4. Uncontrolled assignments: If αi = τ , then `i = `i+1, ξi(δi) ↓Y = xi+1 ↓Y ,

and xi+1 ∈ Inv(`i+1). This represents arbitrary assignments that the envi-
ronment might perform on the uncontrolled variables U = X \ Y .

A state (`, x) is reachable if there exists a run with (`i, xi) = (`, x) for some i.

The existence of a run can be reduced to satisfiability of a conjunction of linear
constraints. This has been exploited to synthesise parameters [20] and in Counter
Example Guided Abstraction Refinement (CEGAR) frameworks [30], which we
will discuss in more detail in Sect. 4. It also follows from these semantics that
with a simple model transformation,4 a LHA can be verified by model checkers
able to handle linear constraints over the rationals, see [34].

2.3 Symbolic Analysis

A standard method to compute the reachable states is to iterate the following
one-step successor operators for discrete and continuous transitions. Given a set
of states S, let postC(S) be the set of states reachable by letting time elapse
from any state in S,

postC(S) =
{(
`, ξ(δ)

) ∣∣∣ ∃δ ∈ R≥0, (`, x) ∈ S : (`, x)
δ,ξ−−→

(
`, ξ(δ)

)}
.

Let postD(S) be the set of states resulting from a jump from any state in S,

postD(S) =
{

(`′, x′)
∣∣∣ ∃(`′, x′) ∈ S, ∃α ∈ Lab ∪ {τ} : (`, x)

α−→ (`′, x′)
}
.

Starting from the initial states, postC and postD are applied to obtain the se-
quence

R0 = postC(Init),
Ri+1 = Ri ∪ postC(postD(Ri)).

(1)

If the sequence reaches a fixed-point, i.e., when Ri+1 = Ri, then Ri is the set of
reachable states.

In model checkinger such as HyTech [25], PHAVer [17] and SpaceEx [21],
the sequence (1) is computed using symbolic states s = (`,P), where ` ∈ Loc
and P is a continuous set, e.g., a polyhedron. Computing the timed successors
postC of a symbolic state s = (`,P) produces a new symbolic state s′ = (`,P ′).
Computing the jump successors postD of s = (`,P) involves iterating over all
outgoing transitions of `, and produces a set of symbolic states {s′1, . . . , s′N},
each in one of the target locations. A waiting list contains the symbolic states
whose successors still need to be explored, and a passed list contains all symbolic
states computed so far. The fixed-point computation proceeds as follows:

4 It suffices to introduce a variable for the elapsed time in each location.

6 G. Frehse, M. Giacobbe, E. Zaffanella

1. Initialization: Compute the continuous successors of the initial states and
put them on the waiting list.

2. Pop a symbolic state s from the waiting list and compute its one-step suc-
cessors {s′1, . . . , s′N} = postC(postD(s)).

3. Containment checking: Discard the s′i that have previously been encoun-
tered, i.e., those contained in any symbolic state on the passed list. Add the
remaining symbolic states to the passed and waiting list.

4. If the waiting list is empty, terminate and return the passed list as the
reachable states. Otherwise, continue with step 2.

Avoiding the processing of redundant states

An improvement on the fixed point algorithm outlined above can be obtained
by modifying step 3 as follows:

3.1 Containment checking: discard the s′i that are contained in any symbolic
state on the passed list.

3.2 Waiting list filtering : remove from the waiting list those states that are
(strictly) contained in any remaining s′i.

3.3 State addition: add the remaining s′i to the passed and waiting lists.

The change with respect to the original algorithm is in step 3.2: any state si
which is removed from the waiting list need not be processed, as it is made
redundant by the newly added s′i. Note that this is a heuristic optimization,
since we are going to perform some more containment checks, causing a potential
overhead, in the hope that the filtering phase will actually remove some states;
when successful, it leads to greater savings in computational time, compensating
any previous overhead.

3 Implementing Symbolic Analysis using Polyhedra

In this section we briefly describe how to implement the symbolic analysis out-
lined in Section 2.3 when adopting a domain of convex polyhedra for the repre-
sentation of symbolic states.

The Double Description method

Even though there exist polyhedra libraries that are exclusively based on the
constraint form,5 the classical approach [16] is based on the Double Description
(DD) method [33], where the constraint form is paired with a generator form
and conversion algorithms [13] allow for obtaining each representation from the
other, removing redundancies so as to obtain minimal descriptions, as well as
keeping them in synch after an incremental update. Polyhedra libraries based
on the DD method include PolyLib (www.irisa.fr/polylib/), ELINA [39],
NewPolka in Apron [29], PPL (Parma Polyhedra Library) [4], and PPLite [8];
the last three also support strict linear constraints.

5 For instance, VPL (Verified Polyhedron Library) [10].

Symbolic Analysis of Linear Hybrid Automata – 25 Years Later 7

Generator form and V-polyhedra. The classical definition of generators for closed
polyhedra has been extended in [4] to the case of NNC (not necessarily closed)
polyhedra. Namely, an H-polyhedron can be equivalently represented in gener-
ator form by three finite sets (P,C,R), where P ⊆ Rn is a set of points of P
(including its vertices), C ⊆ Rn is a set of closure points, and R ⊆ Rn is a set of
rays. The generator form defines a V-polyhedron as

P =

 ∑
pi∈P

πi · pi +
∑
cj∈C

γj · cj +
∑
rk∈R

ρk · rk

∣∣∣∣∣πi ≥ 0, γj ≥ 0, ρk ≥ 0,∑
i πi +

∑
j γj = 1,

∑
i πi 6= 0,

which consists of the convex hull of points and closure points, extended towards
infinity along the directions of the rays; the requirement that at least one point pi
positively contributes to the convex combination means that the closure points,
which are in the topological closure of P, are not necessarily contained in P.

Both NewPolka and PPL, following the approach outlined in [23, 24] and
further developed in [3], use an additional slack variable (usually named ε) to
encode the strict constraints as nonstrict ones, obtaining closed ε-representations
of the NNC polyhedra. While allowing for a simple reuse of the classical conver-
sion algorithms, this choice easily leads to a significant computation overhead.
In contrast, the PPLite library is based on a direct representation for the strict
constraints, leveraging on enhanced versions of the Chernikova procedures [5, 6]
fully supporting the use of strict constraints and closure points.

Converting between H and V representations. No matter if using the direct or
the slack variable representation, the core algorithmic step of the DD method

〈H,V〉 β−→ 〈H′,V ′〉 modifies a DD pair by adding a single constraint (resp., gen-
erator) β. From this, the conversion procedure computing the generator form
V = Vm for a given constraint form H = {β0, . . . , βm} is obtained by incre-
mentally processing the constraints, starting from a DD pair 〈H0,V0〉 ≡ Rn
representing the whole vector space:

〈H0,V0〉
β0−→ . . .

βk−1−−−→ 〈Hk,Vk〉
βk−→ 〈Hk+1,Vk+1〉

βk+1−−−→ . . .
βm−−→ 〈Hm,Vm〉.

The conversion from generators to constraints works similarly, starting from a
DD pair representing the empty polyhedron and incrementally adding the gen-
erators. The same approach can also be used to compute the set intersection
P1 ∩ P2 (resp., the convex polyhedral hull P1] P2) of polyhedra P1 ≡ 〈H1,V1〉
and P2 ≡ 〈H2,V2〉: the constraints in H2 (resp., the generators in V2) are incre-
mentally added to the DD pair describing P1.

Cartesian factoring. In general, converting between H and V polyhedra has a
worst case complexity which is exponential in the size of the input represen-
tation; it is therefore essential that these representations are kept as small as
possible (hence the interest in detecting and removing redundancies as soon as
possible). Cartesian factoring [22] is another technique that, in some interesting

8 G. Frehse, M. Giacobbe, E. Zaffanella

and rather common cases, can greatly reduce the space needed to represent a
V-polyhedron. Informally, the space dimensions X = {x1, . . . , xn} of the polyhe-
dron P are partitioned into a sequence of blocks (B1, . . . , Bk) so that each linear
constraint in the H-representation mentions the dimensions of a single block Bi;
then, the H-polyhedron P is factored in the corresponding sequence of k poly-
hedra (P1, . . . ,Pk); if needed, these H-polyhedra are converted to a sequence of
V-polyhedra, achieving significant time and space efficiency improvements with
respect to the direct conversion of polyhedron P. The ELINA library [39] is char-
acterized by a very efficient implementation of Cartesian factoring; the technique
is also implemented in PPLite.

Implementation of containment checks

The overall efficiency of the procedure computing the set of reachable states is
deeply affected by the efficiency of the polyhedra containment check.

When using the DD method, the inclusion test P1 ⊆ P2 is implemented by
checking that all the m1 generators of P1 satisfy all the m2 constraints of P2.
In the worst case, i.e., when the inclusion holds, this amounts to the compu-
tation of m1 ·m2 scalar products, each one requiring O(n) arbitrary precision
multiplications and additions, where n is the number of variables.

As shown in [7], impressive efficiency improvements can be obtained by ex-
ploiting the fact that each one-step successor state s′i is checked against all the
states stored in the passed list before being added to the passed and waiting
lists. It is therefore possible to compute, and cache for reuse, simpler abstrac-
tions of the polyhedra that are enough to quickly semi-decide the containment
check. The boxed polyhedra proposal in [7] uses a two level scheme, where each
polyhedron Pi is abstracted into its bounding box Bi, which in turn is further
abstracted in the pseudo-volume information.6

x1

x2

P1

B1

P2

B2

P3

B3 P4

B4
P5

B5

P6

B6

Fig. 1. Incomplete decision procedures speed up the containment checks.

While referring the interested reader to [7] for the formal definitions and
technical details, a few examples are provided in Figure 1, where for each poly-
hedron Pi we draw, using a dashed black border, the corresponding bounding

6 Roughly speaking, the volume of the box, in the case of a polytope; or the number
of rays of the box, in the case of an unbounded polyhedron.

Symbolic Analysis of Linear Hybrid Automata – 25 Years Later 9

box Bi. Intuitively, we know that P1 6⊆ P2 holds because vol(B1) > vol(B2); we
know that P3 6⊆ P1 holds because num rays(B3) = 1 > 0 = num rays(B1); we
know that P2 6⊆ P4 holds because B2 6⊆ B4 (even though vol(B2) = vol(B4) and
num rays(B2) = num rays(B4)); finally, when checking whether or not P5 ⊆ P6,
since B5 ⊆ B6 holds no semi-decision procedure applies and we need to resort to
the more expensive polyhedra containment check to discover that neither this
last inclusion holds.

Implementing the continuous post operator

For a fixed location `, the flow relation of an LHA is specified by a polyhedron
Q ⊆ Rn describing the possible values of the first time derivatives of the system
variables. The possible trajectories starting from the states in polyhedron P are
obtained by the time-elapse operator:

P↗Q = { p+ t · q | p ∈ P, q ∈ Q, t ∈ R, t ≥ 0 }.

Assuming that Q is a closed V-polyhedron described by generators (P,C,R),
where C = ∅, the set P↗Q is a convex polyhedron that can be computed by
(incrementally) adding to P the finite set of rays R′ = P ∪R [23].7

An example of application of the continuous post operator to a symbolic
state (`,P) is shown on the left hand side of Figure 2. Suppose that I and Q
are the polyhedra representing the invariant and the flow condition for location
`. Then, postC(P) = (P↗Q)∩I = R,8 is computed by first adding rays r1 and
r2 to P and then computing set intersection to restore the invariant I.

Q

r1

r2
P

R

G

S
I

fr

I ′

P ′

S ′

I1

P1 B1

G2
B2

x1

x2

Fig. 2. Continuous and discrete post operators.

Implementing the discrete post operator

The discrete post operator can be implemented by combining several lower level
operators on the polyhedra domain.

7 Not all polyhedra libraries directly support this operator: PPL/PPLite provide an
operator named time elapse assign; the Apron interface defines an equivalent func-
tion named add ray array ; the operator is not available in ELINA and VPL.

8 Polyhedron R is shown with a blue border; it contains both P and S.

10 G. Frehse, M. Giacobbe, E. Zaffanella

Uncontrolled assignments. Consider first the case of an uncontrolled assignment
to the variables in the set U ⊆ X. In order to avoid projection (which would
imply a change of space dimension), this can be implemented by the existential
quantification of the variables in U , followed by the intersection with the location
invariant. When using the DD method, existential quantification is obtained by
(incrementally) adding the set of rays RU = { eu,−eu | u ∈ U }, where each eu
is the standard basis vector for variable u.9

Guarded assignments. Let e ∈ Edg be a transition composed by a polyhedral
guard G and a reset x′ = r(x) only containing affine assignments. Then, the
image of relation Jump(e) on input P can be computed as P ′ = fr(P ∩ G),
where fr : Rn → Rn is the linear transformation modeling the reset r. To
avoid inefficiencies, particular care has to be taken when implementing the linear
transformation fr. Most polyhedra libraries implement a sequential assignment
operator, which can be directly used when the (parallel) reset operator r does
not contain cyclic dependencies, so that the assignments can be topologically
sorted without affecting their semantics. The sequential assignment further dis-
tinguishes between invertible and non-invertible assignments. In the invertible
case (e.g., x′1 = 2 · x1 + x2), both the constraint and the generator forms can
be updated by simply applying f−1r and fr, respectively. In the non-invertible
case (e.g., x′1 = x2 + 3), only the generator form is updated (using fr), while
the constraint form has to be recomputed from scratch using the conversion
procedure. An alternative approach, better exploiting the incrementality of the
DD method, implements the non-invertible assignment by temporarily adding a
fresh variable. Letting X ′ = X \ {x1} ∪ {x′1}, the assignment x′1 = rhs can be
computed as10 (

(P ↑{x′1}) ∩ {x
′
1 − rhs ≤ 0, rhs− x′1 ≤ 0}

)
↓X′ ,

followed by a renaming of x′1 into x1. This approach has been extended in [7]
so as to be also applicable to parallel assignments having cyclic dependencies:
the parallel assignment is compiled into an equivalent sequence of sequential
assignments, taking care to introduce a minimal number of fresh variables (only
when breaking a dependency cycle).

An example of application of the discrete post operator is shown in the middle
of Figure 2. Suppose that there exists a single transition (`, e, `′) exiting from
source location `, having the polyhedron G as guard component and a reset
component modeled by affine transformation fr (which combines a rotation and
a translation); let also I ′ be the invariant for the target location `′. Then, starting
from R, we obtain postD(R) = fr(R ∩ G) ∩ I ′ = fr(S) ∩ I ′ = S ′ ∩ I ′ = P ′.
On the right hand side of Figure 2 we also show an example where, by using
the boxed polyhedra proposal of [7], it is sometimes possible to efficiently detect

9 Polyhedra libraries often directly support the existential quantification operator;
e.g., the unconstrain operator in PPL/PPLite and the forget operator in Apron.

10 We denote by P ↑Y the addition to polyhedron P of the fresh, i.e., unconstrained,
variables in Y , where X ∩ Y = ∅.

Symbolic Analysis of Linear Hybrid Automata – 25 Years Later 11

disabled transitions. Namely, the cheaper (but incomplete) check for disjointness
B1 ∩ B2 = ∅ on the bounding boxes B1 and B2 for the polyhedron state P1 and
the polyhedral guard G2, when successful, is enough to conclude that P1 and G2
are disjoint too.

Computing overapproximations for scalability

While some verification tasks require the exact symbolic computation of the set
of reachable states, there exists cases where an overapproximation may be good
enough (e.g., when trying to prove a safety property of the hybrid automaton).
One possibility is to choose a less precise symbolic domain, such as octagons [32]
or template polyhedra [38]. A less radical alternative is to maintain the full gen-
erality of the domain of convex polyhedra and give up some precision in specific
contexts or on specific operators. As a classical example, in [24] all symbolic
states (`i,Pi) for location `i are merged into a single state (`i,]{Pi}). Since the
computation of the convex polyhedral hull might still be expensive, it can be fur-
ther approximated by computing, for instance, their constraint hull (`i,]w{Pi})
(also called weak join [37]): this resembles the join operator defined on template
polyhedra, since it is restricted to only use those constraint slopes that already
occur in the arguments. Figure 3 shows a simple example of the different levels
of overapproximation obtained.

P1 ∪ P2 ⊆ P1 ⊎ P2 ⊆ P1 ⊎w P2

Fig. 3. Set union overapproximations: polyhedral hull vs. constraint hull.

At the implementation level, the constraint hull of a set of polyhedra can
be computed either by solving many Linear Programming problems or by enu-
merating the generators of the arguments. The latter approach is adopted in
PPLite, which is the only library based on the DD method directly supporting
this operator. Some tools (e.g., PHAVer) allow for the user to choose if and how
to approximate set union by using a single polyhedron per location.

4 Symbolic Analysis using CEGAR

Polyhedral representations enable the exact symbolic analysis of linear hybrid
automata. Exact analysis provides strong soundness guarantees in the sense that,

12 G. Frehse, M. Giacobbe, E. Zaffanella

if a counterexample to a safety property is identified over the symbolic repre-
sentation, then a trajectory corresponding to this counterexample must exist
also over the system dynamics. Also, if the analysis terminates by finding a
fixed point and without identifying any counterexample, then the system is safe.
However, safety verification by exact symbolic analysis may be limiting in some
cases for the following two reasons. First, it is computationally costly in general.
Computing the result of a post operator amounts to computing a projection of a
system of linear inequalities, that is, the projection over the output variables of
a system that represents time-elapse (in the continuous case) or discontinuous
update (in the discrete case). Methods for computing these projections include
quantifier elimination methods as, e.g., the Fourier-Motzkin algorithm [41], or
double-description methods (see Sect. 3). Whereas modern solvers for computing
projections are efficient in many practical instances, they may suffer from expo-
nential complexity blow-ups in the worst case. Moreover, a second limitation of
exact analysis is that it may produce overly tight representations of the state
space. It may in some cases prevent the overall safety analysis from identifying
a fixed point and, therefore, produce an answer at all. A method that tackles
both shortcomings is abstraction.

(a) (b) (c)

Fig. 4. The wrapping effect.

Abstractions for hybrid systems come with a wide variety of flavors which
typically depend both on the kind of systems under analysis and the safety
specifications of interest. Examples are abstractions based on interval arithmetic,
which enjoy a high generality as they can even account for system dynamics
described using polynomial and transcendental functions (that is, more general
than LHA) and also enjoy high efficiency. On the other hand, interval analysis
suffers from the wrapping effect. An example for the wrapping effect is shown
in Fig. 4. The system in this example rotates an ellipse counterclockwise by 45
degrees in discrete time steps, that is, a two-dimensional systems whose dynamic
is governed by a linear difference equation. An abstraction based on interval
analysis constructs rectangles (1) whose facets are orthogonal to the axes of the
state space of interest and (2) that over-approximate the initial set of states
(the init set) and the result of every computation of the post operator. In this
instance, at the first step (Fig. 4a) the abstraction constructs a rectangle that

Symbolic Analysis of Linear Hybrid Automata – 25 Years Later 13

encloses the init but also includes states that do not belong to it, introducing
a small error. At the second step (Fig. 4b) the post operator is first applied
to the abstract set of states (depicted with dashed lines) and then abstracted
again within a larger rectangle, which introduces a further error with respect
to the original set of states (the ellipse). The process is repeated over the third
(Fig. 4c) and all successive steps, and this causes an ever increasing accumulation
of over-approximation error.

Abstract safety analysis based on over-approximation conserves soundness
with respect to exact analysis in the sense that, upon termination, if the abstract
reach set is disjoint from an unsafe region then the system is safe. However, it
loses the property for which counterexamples are always genuine. An example
can be constructed over Fig. 4, considering a bad region that intersect an ab-
stract set of states (a rectangle) but does not intersect the concrete set of states
(the ellipse). In this case, an abstract safety analyser would produce a spurious
counterexample to safety. On the other hand, it should be clear that if a bad re-
gion is disjoint from the abstract states then it is also disjoint from the concrete
states.

δ1

δ2

δ3

Rectangle Octagon {δ1, δ2, δ3}-polyhedron
(a) (b) (c)

Fig. 5. Template polyhedra.

Abstractions are lightweight to compute, but may produce spurious coun-
terexamples. Exact safety analysis always produces genuine counterexamples,
but relies on heavy machinery. The approach that capitalises over the advantages
of both worlds is counterexample-guided abstraction refinement (CEGAR) []. It
consists of two phases, one that abstracts the system and another which refines
the abstraction, which interact in a loop. The fundamental ingredient of a CE-
GAR loop is an abstraction that admits refinement, that is, an abstraction whose
precision can be made tighter and tighter by changing some parameters. One
successful example of parameterised abstraction is that of template polyhedra [].
This is a generalisation of the classic rectangular and octagonal to polyhedra
whose facets are normal to the vectors in a finite set (see Fig. 5), which we call
the template. More formally, where X ⊆ Rn is a set of states and ∆ ⊂ Rn is a
template, we call the ∆-polyhedron of X the set defined as follows:

∩{{x : 〈x, δ〉 ≤ ρX(δ)}︸ ︷︷ ︸
supporting halfspace

: δ ∈ ∆}, (2)

14 G. Frehse, M. Giacobbe, E. Zaffanella

where ρX(d) = sup{〈x, δ〉 : x ∈ X} denotes the support function ofX in direction
δ. In other words, a template polyhedron a finite intersection of supporting
halfspaces of X; a supporting halfspace in the tightest halfspace that is normal
to a given direction. The intersection of these halfspaces is thus defined by the
directions template ∆. Rectangular and octagonal abstractions are special cases
of templates polyhedra, as Fig. 5 exemplifies. Abstract safety analysis can be
seen as the fixed point iteration of Eq. 1, but where postD and postC over-
approximate sets of states using template polyhedra.

Abstraction

Refinement

safe

counterexample

unsafe

refined

template

initial

template

Fig. 6. Architecture of a CEGAR loop.

Refining a template polyhedron amounts to adding directions to the tem-
plate. Intuitively, the more the directions are, the tighter the abstraction is. The
objective of an abstraction refinement scheme for template polyhedra is identi-
fying a template that avoids finding any spurious counterexamples. A CEGAR
loop constructs this template incrementally. As depicted in Fig. 6, the initial
phase computes an abstraction using some initial template. If the abstraction is
determined safe then the system is also safe and then the loop terminates and
returns safe. If the abstraction identifies a counterexample then this is passed
to the refinement phase. Refinement determines whether the counterexample
is genuine or proposes a new template. In the earlier case the loop terminates
and returns unsafe. In the latter case, refinement computes a template, that
is, adds new directions to the existing template, which excludes the latest spu-
rious counterexample from the abstraction. This refined template is passed to
the abstraction phase and the loop is repeated. As a result, the loop enumer-
ates spurious counterexamples and adds directions to the template until either
all counterexamples are eliminated or some genuine counterexample is found.
While the loop may in general never terminate, we ensure that the same coun-
terexample is never encountered twice; this ensures progress.

A counterexample is a path over the control graph of the hybrid automaton
for which abstract symbolic analysis encounters a bad state. The region that
results from this path can be seen as a sequence of post operators from initial to
bad state. Refining the template so as to eliminate the counterexample amounts
to identifying exactly one direction for each step along the counterexample.
In turn, this amounts to identifying a sequence of halfspace interpolant along

Symbolic Analysis of Linear Hybrid Automata – 25 Years Later 15

X Y

H

H ′

X

X + Y

H

H ′

Intersection Minkowski sum
(a) (b)

X

coniX

H ′

H X
AX

H

H ′

Conical hull Linear map
(c) (d)

Fig. 7. Halfspace interpolants.

16 G. Frehse, M. Giacobbe, E. Zaffanella

these steps such that the last halfspace separates the result from the bad region
[]. More precisely, if X0 is the set of initial states, B is the bad state, and
post1, . . . , postk is the sequence of post operators, we construct a sequence of
halfspaces H1, . . . ,Hk ⊆ Rn such that

post1(X0) ⊆ H1, post2(H1) ⊆ H2 . . . , postk(Hk−1) ⊆ Hk, Hk ∩B = ∅. (3)

To compute these halfspaces we break down these post operators into combina-
tions of basic operations over sets. As indicated in Sect. 3, four operations are
sufficient for the symbolic analysis of LHA: intersection between sets X ∩ Y ,
Minkowski sum X +Y = {x+ y : x ∈ X, y ∈ Y }, conical hull coniX = {λx : x ∈
X,λ > 0}, and linear map AX = {Ax : x ∈ X} where A ∈ Rn×m. Then, we
reason inductively over every operation. In other words, for any halfspace H that
contains the result of an operation, i.e., X ∩ Y ⊆ H, X + Y ⊆ H, coniX ⊆ H,
or AX ⊆ H, we compute a second halfspace H ′ that includes one operand, i.e.,
X ⊆ H ′, and abstracts it so as to preserve inclusion of the result into H, i.e.,
H ′ ∩ Y ⊆ H, H ′ + Y ⊆ H, coniH ′ ⊆ H, or AH ′ ⊆ H respectively. Exemplars
are depicted in Fig. 7. As it turns out, these sequences of halfspace interpolants
always exists if and only if the counterexample is spurious and can be computed
efficiently by solving a large linear program [9]. The performance of this CEGAR
approach will be illustrated by some experiments in the next section.

5 Experiments

We now provide some experimental evidence of the feasibility of the proposed
approaches for the analysis of Linear Hybrid Automata and of the practical
impact of the enhanced implementation techniques.

One of the most important aspects of an experimental evaluation is the selec-
tion of a suitable set of benchmarks. In particular, in order to obtain significant
experimental results, it is necessary to collect a sufficiently varied set of bench-
marks, possibly originating from different applicative contexts. At the same time,
the complexity of the benchmarks needs to be tunable, e.g., by changing the val-
ues of a few parameters: tunable benchmarks allow to easily switch from simple
instances, useful to test prototype implementations based on novel analysis ap-
proaches, to challenging instances that are more effective when testing mature
implementations, for instance to record their incremental progresses in terms of
efficiency and scalability. A step in this direction has been taken by the ARCH
(Applied Verification for Continuous and Hybrid System) workshops,11 which
have hosted several editions of the ARCH-COMP friendly competition on the
analysis and verification of hybrid systems. Here we focus our attention on a
subset of the tests collected for the category of hybrid system with piecewise
constant dynamics [11], which includes several (variants of) benchmarks that
have been proposed in the relevant literature. In total, the 2020 edition of the

11 https://cps-vo.org/group/ARCH

Symbolic Analysis of Linear Hybrid Automata – 25 Years Later 17

competition was considering 28 instances of verification problems,12 divided in
19 safe instances (where the goal is to prove that the system definitely satisfies
a given safety property) and 9 unsafe instances (where the goal is to prove that
the system definitely violates a safety property).

In the following, we present experimental results obtained with tools that
implement fixed-point algorithm in Sect. 2.3, the polyhedral computations from
Sect. 3 to different degrees, and the CEGAR approach from Sect. 4:

– PHAVer [17] is a formal verification tool for computing reachability and
equivalence (simulation relation) of hybrid systems. PHAVer uses standard
operations on polyhedra for the reachability computation in a way similar to
HyTech, but calls on the Parma Polyhedra Library [3] and its infinite preci-
sion arithmetic do the heavy lifting.13 PHAVer/SX is a subset of PHAVer,
included as a plugin in the tool platform SpaceEx [21].

– PHAVerLite is a variant of PHAVer that uses the polyhedra library PPLite [6],
which employs a novel representation and conversion algorithm [5] for NNC
(Not Necessarily Closed) polyhedra. PHAVer-lite is an earlier version, im-
plemented as a SpaceEx plugin.

– Lyse [19] is a tool for the reachability analysis of convex hybrid automata,
namely hybrid automata with piecewise constant dynamics, whose constraints
are possibly non-linear but required to be convex. In this class are LHA but
also HA whose flow is contrained in ellipses and parabolae. Lyse performs for-
ward reachability analysis by means of template-polyhedra, whose directions
are incrementally extracted from spurious counterexamples. The extraction
is performed by a technique that generates interpolants by means of convex
programming [9], as outlined in Sect. 4.

5.1 Distributed Controller

In Table 1 we provide some evidence of the incremental efficiency improvements
that have been obtained in recent years. To this end, we consider the Distributed
Controller (DISC) benchmarks [26], which model a distributed controller for a
robot, reading data from multiple sensors and processing them according to
multiple priorities. The instances DISCn are parametric on n ∈ {2, 3, 4, 5},
which is the number of sensors: the product automaton has 1 + 4n variables
and 4× (1+n)×4n locations. The verification goal is to prove a safety property,
so that overapproximations are allowed. The rows in Table 1 are labeled by a
year corresponding to the edition of the competition; they provide the overall
execution time spent by the corresponding model checking tool (we focus on
the tools derived from PHAVer). In editions 2017 and 2018 the tools were both
configured to compute the exact set of reachable states, so that instances with

12 We count instances of unbounded verification problems; each of these was paired by
a bounded instance, where the search is limited up to a certain computation depth.

13 While PHAVer provides overapproximation and widening operators that can force
termination at the cost of reduced precision, these operators were not used in the
experiments presented in this section.

18 G. Frehse, M. Giacobbe, E. Zaffanella

Table 1. The progress on computation times for the DISC benchmarks.

DISC2 DISC3 DISC4 DISC5

edition tool computation time in [s]

2017 PHAVer/SX 1.1 — — —

2018 PHAVer-lite/SX 0.1 548.0 — —

2019 PHAVerLite-0.1 0.04 0.68 77.51 —

2020 PHAVerLite-0.3.1 0.04 0.35 2.59 27.99

n > 3 were timing out.14 In edition 2019, PHAVerLite-0.1 was configured to over-
approximate set unions using the constraint hull operator, thereby also solving
the instance with n = 4; finally, in edition 2020 the adoption of the Cartesian
factoring representation allowed to solve the instance with n = 5. Note that, in
Table 1, the computation times obtained by the different versions of PHAVerLite
in editions 2018, 2019 and 2020 can be meaningfully compared, since they have
been obtained on the very same computer hardware.

In Table 2, which considers the specific instance DISC3, we present a more
detailed view of the efficiency contributions provided by the implementation
improvements and techniques discussed in Section 3. The first four columns of
the table show the tool configuration indicating: (filter w-list) whether redundant
polyhedra are removed from the waiting list; (boxing) whether polyhedra are
boxed to speed up inclusion tests; (con-hull) whether set union is approximated
using the constraint hull; and (factoring) whether polyhedra are represented
using Cartesian factoring. For each of the considered combinations, in the next
four columns we show: (iter) the number of iterations of the algorithm; (p-list)
the final length of the passed list of polyhedra; (r-loc) the number of the reachable
locations of the automaton; (time) the overall time spent by the tool.

The first three rows in Table 2 show that, when the exact reachable set
needs to be computed, the filtering and boxing techniques are quite effective
in improving efficiency. The last two rows show that, for the considered bench-
mark, the constraint hull approximation provides another significant efficiency
improvement; note that precision is degraded (for instance, we obtain 78 reach-
able locations instead of the 67 recorded in the exact case), but the overapprox-
imation is precise enough to prove the required safety property. For this specific
instance, the Cartesian factoring technique only yields a marginal improvement
(in absolute terms); its effects become more relevant when considering the bigger
instances: for instance, as shown in Table 1, for n = 4 the time drops from 77.51
to 2.59 seconds.

Note that this incremental progress is not really specific of the considered
benchmark: while referring the interested reader to the series of reports of the
competition, we note that in the 2017 edition the considered tool was able to

14 The time improvement in 2018 is due to replacing the PPL library with PPLite.

Symbolic Analysis of Linear Hybrid Automata – 25 Years Later 19

Table 2. The effect of implementation techniques on DISC3.

filter w-list boxing con-hull factoring iter p-list r-loc time

no no no no 63805 63805 67 1379.4

yes no no no 9652 5506 67 93.1

yes yes no no 9652 5506 67 10.3

— — yes no 189 78 78 0.7

— — yes yes 189 78 78 0.4

successfully prove/disprove 13 of the 20 verification tasks in about 4 hours and
40 minutes, whereas in the 2020 edition 27 of the 28 verification tasks were
completed in less than 3 minutes.

5.2 Adaptive Cruise Controller

With this next benchmark, we compare the performance of the set-propagation
approach implemented in PHAVer with the CEGAR approach implemented in
the tool Lyse. The adaptive cruise controller is a distributed system for assuring
that safety distances in a platoon of cars are satisfied [9]. For n cars, the number
of discrete states is 2n and the number of continuous variables is n. Each variable
xi encodes the relative position of the i-th car. The relative velocity of each car
has a drift |ẋi− ẋi+1| ≤ 1 when cruising and |ẋi− ẋi+1−ε| ≤ 1 when recovering,
where ε is a slow-down parameter. The cars can stay in cruise mode as long
as the distance to the preceding vehicle is greater 1. The can go into recovery
mode when the distance is smaller than 2. The specification is that the distance
between adjacent cars should be positive.

Table 3 shows the computation times for instances of different complexity.
First, we observe that the set propagation approach shows similar performance
characteristics as in the DISC benchmark: The advances associated with the
polyhedra library PPLite, as well as the heuristic improvements to the fixed-
point algorithm lead to drastic gains in speed. The CEGAR approach clearly
outshines the early versions of the set propagation approach. It also has a clear
advantage in unsafe instances, where a counterexample can be found by solving
a SAT instance. Somewhat surprisingly, however, the latest generation of set
propagation tools seems to outperform CEGAR.

6 Conclusions

In this paper, we tried to draw the arc from straightforward to more sophisticated
symbolic analysis methods for linear hybrid automata (LHA). We presented two
flavors, one based on set propagation and one based on counterexample-guided
abstraction refinemend (CEGAR). The set propagation approach starts from an
initial set and then repeatedly computes one-step successors until no new states

20 G. Frehse, M. Giacobbe, E. Zaffanella

Table 3. Computation Times of the Adaptive Cruise Controller [19, 18].

edition instance (n) 5-safe 5-unsafe 6-safe 6-unsafe 7-safe 7-unsafe 8-safe 8-unsafe

#locs. 32 32 64 64 128 128 256 256

tool computation time in [s]

2017 Lyse 1.08 ≈ 0 – – 573.35 0.233 – –

2017 PHAVer/SX 9.4 13.7 461 13430 ∞ ∞ – –

2018 PHAVer-lite 1.0 0.9 38.1 22.4 – – – –

2019 PHAVerLite 0.10 0.06 0.55 0.27 4.26 1.39 47.10 7.15

are found. The performance of this approach hinges on the chosen set representa-
tion and how efficiently the required operations can be realized. A natural choice
for LHA are convex polyhedra in constraint representation. Despite the fact that
convex polyhedra are used, e.g., in program analysis, since the seventies, we re-
mark that several advances were made over the years that lead to progressively
more efficient libraries for standard operations. In particular, a novel representa-
tion for polyhedra with strict as well as non-strict inequalities has lead to gains
on this fundamental level. Further gains have been achieved through heuristics
in the fixed-point computation algorithm. The common denominator of these
heuristics is the use of multiple levels of abstraction: A property like contain-
ment is decided by going progressively through different levels of abstraction, so
that the most precise and expensive checks are only carried out when cheaper
checks have failed. The accumulated gains from both efficient encodings and
heuristics are substantial.

The CEGAR approach constructs an abstraction in the form of polyhedra
iteratively, by checking whether the abstraction admits a path from the initial
states to a given bad set of states, and then refining the abstraction to exclude
this path if it turns out to be spurious. CEGAR easily outperformed earlier
versions of the set propagation approach and in our experiments it outperforms
for unsafe instances, quickly returning an unsafe path as a witness. Compared to
more recent implementations of set propagation that leverage efficient encodings
and a series of heuristics, CEGAR seems to lose some of the advantage.

This paper provided a small sample of implementations and benchmark in-
stances in order to outline some of the improvements that can be had through
clever encodings and heuristics. Further experimentation is needed to evaluate
in which application domains such gains translate to successful analysis results.

References

1. R. Alur. Formal verification of hybrid systems. In S. Chakraborty, A. Jerraya,
S. K. Baruah, and S. Fischmeister, editors, EMSOFT, pages 273–278. ACM, 2011.

Symbolic Analysis of Linear Hybrid Automata – 25 Years Later 21

2. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1):3–34, 1995.

3. R. Bagnara, P. M. Hill, and E. Zaffanella. Not necessarily closed convex polyhedra
and the double description method. Formal Aspects Comput., 17(2):222–257, 2005.

4. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming, 72(1–2):3–21, 2008.

5. A. Becchi and E. Zaffanella. A direct encoding for NNC polyhedra. In H. Chockler
and G. Weissenbacher, editors, Computer Aided Verification - 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14-17, 2018, Proceedings, Part I, volume 10981 of Lecture Notes
in Computer Science, pages 230–248. Springer, 2018.

6. A. Becchi and E. Zaffanella. An efficient abstract domain for not necessarily closed
polyhedra. In A. Podelski, editor, Static Analysis - 25th International Symposium,
SAS 2018, Freiburg, Germany, August 29-31, 2018, Proceedings, volume 11002 of
Lecture Notes in Computer Science, pages 146–165. Springer, 2018.

7. A. Becchi and E. Zaffanella. Revisiting polyhedral analysis for hybrid systems. In
B. E. Chang, editor, Static Analysis - 26th International Symposium, SAS 2019,
Porto, Portugal, October 8-11, 2019, Proceedings, volume 11822 of Lecture Notes
in Computer Science, pages 183–202. Springer, 2019.

8. A. Becchi and E. Zaffanella. PPLite: Zero-overhead encoding of NNC polyhedra.
Inf. Comput., 275:104620, 2020.

9. S. Bogomolov, G. Frehse, M. Giacobbe, and T. A. Henzinger. Counterexample-
guided refinement of template polyhedra. In A. Legay and T. Margaria, editors,
Tools and Algorithms for the Construction and Analysis of Systems - 23rd Interna-
tional Conference, TACAS 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,
2017, Proceedings, Part I, volume 10205 of Lecture Notes in Computer Science,
pages 589–606, 2017.

10. S. Boulmé, A. Maréchal, D. Monniaux, M. Périn, and H. Yu. The verified poly-
hedron library: an overview. In 20th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, SYNASC 2018, Timisoara, Roma-
nia, September 20-23, 2018, pages 9–17. IEEE, 2018.

11. L. Bu, A. Abate, D. Adzkiya, M. S. Mufid, R. Ray, Y. Wu, and E. Zaffanella.
ARCH-COMP20 category report: Hybrid systems with piecewise constant dynam-
ics and bounded model checking. In ARCH20. 7th International Workshop on Ap-
plied Verification of Continuous and Hybrid Systems (ARCH20), Berlin, Germany,
July 12, 2020, volume 74 of EPiC Series in Computing, pages 1–15. EasyChair,
2020.

12. L. Bu, Y. Li, L. Wang, X. Chen, and X. Li. BACH 2 : Bounded reachability
checker for compositional linear hybrid systems. In Design, Automation and Test
in Europe, DATE 2010, Dresden, Germany, March 8-12, 2010, pages 1512–1517,
2010.

13. N. V. Chernikova. Algorithm for discovering the set of all solutions of a linear
programming problem. U.S.S.R. Computational Mathematics and Mathematical
Physics, 8(6):282–293, 1968.

14. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Logic of Programs, Workshop, page 52–71,
Berlin, Heidelberg, 1981. Springer-Verlag.

22 G. Frehse, M. Giacobbe, E. Zaffanella

15. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’77, page 238–252, New York, NY, USA, 1977. Association for
Computing Machinery.

16. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among vari-
ables of a program. In A. V. Aho, S. N. Zilles, and T. G. Szymanski, editors,
Conference Record of the Fifth Annual ACM Symposium on Principles of Pro-
gramming Languages, Tucson, Arizona, USA, January 1978, pages 84–96. ACM
Press, 1978.

17. G. Frehse. PHAVer: algorithmic verification of hybrid systems past HyTech. STTT,
10(3):263–279, 2008.

18. G. Frehse, A. Abate, D. Adzkiya, A. Becchi, L. Bu, A. Cimatti, M. Giacobbe,
A. Griggio, S. Mover, M. S. Mufid, I. Riouak, S. Tonetta, and E. Zaffanella. Arch-
comp19 category report: Hybrid systems with piecewise constant dynamics. In
G. Frehse and M. Althoff, editors, ARCH19. 6th International Workshop on Ap-
plied Verification of Continuous and Hybrid Systems, volume 61 of EPiC Series in
Computing, pages 1–13. EasyChair, 2019.

19. G. Frehse, A. Abate, D. Adzkiya, L. Bu, M. Giacobbe, M. S. Mufid, and E. Zaf-
fanella. Arch-comp18 category report: Hybrid systems with piecewise constant
dynamics. In G. Frehse, editor, ARCH18. 5th International Workshop on Ap-
plied Verification of Continuous and Hybrid Systems, volume 54 of EPiC Series in
Computing, pages 1–13. EasyChair, 2018.

20. G. Frehse, S. K. Jha, and B. H. Krogh. A counterexample-guided approach to
parameter synthesis for linear hybrid automata. In M. Egerstedt and B. Mishra,
editors, HSCC, volume 4981 of LNCS, pages 187–200. Springer, 2008.

21. G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,
A. Girard, T. Dang, and O. Maler. SpaceEx: Scalable verification of hybrid systems.
In G. Gopalakrishnan and S. Qadeer, editors, CAV, volume 6806 of LNCS, pages
379–395. Springer, 2011.

22. N. Halbwachs, D. Merchat, and L. Gonnord. Some ways to reduce the space
dimension in polyhedra computations. Formal Methods Syst. Des., 29(1):79–95,
2006.

23. N. Halbwachs, Y. Proy, and P. Raymond. Verification of linear hybrid systems by
means of convex approximations. In B. L. Charlier, editor, Static Analysis, First
International Static Analysis Symposium, SAS’94, Namur, Belgium, September
28-30, 1994, Proceedings, volume 864 of Lecture Notes in Computer Science, pages
223–237. Springer, 1994.

24. N. Halbwachs, Y. Proy, and P. Roumanoff. Verification of real-time systems using
linear relation analysis. Formal Methods Syst. Des., 11(2):157–185, 1997.

25. T. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid
systems. Software Tools for Technology Transfer, 1:110–122, 1997.

26. T. A. Henzinger and P. Ho. HYTECH: the cornell hybrid technology tool. In
P. J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors, Hybrid Systems II,
Proceedings of the Third International Workshop on Hybrid Systems, Ithaca, NY,
USA, October 1994, volume 999 of Lecture Notes in Computer Science, pages 265–
293. Springer, 1994.

27. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic analysis of nonlinear
hybrid systems. IEEE Transactions on Automatic Control, 43:540–554, 1998.

28. T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about
hybrid automata? Journal of Computer and System Sciences, 57:94–124, 1998.

Symbolic Analysis of Linear Hybrid Automata – 25 Years Later 23

29. B. Jeannet and A. Miné. Apron: A library of numerical abstract domains for static
analysis. In A. Bouajjani and O. Maler, editors, Computer Aided Verification, 21st
International Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009.
Proceedings, volume 5643 of Lecture Notes in Computer Science, pages 661–667.
Springer, 2009.

30. S. K. Jha, B. H. Krogh, J. E. Weimer, and E. M. Clarke. Reachability for linear
hybrid automata using iterative relaxation abstraction. In HSCC, pages 287–300,
2007.

31. O. Maler. Algorithmic verification of continuous and hybrid systems. In Int.
Workshop on Verification of Infinite-State System (Infinity), 2013.

32. A. Miné. The octagon abstract domain. High. Order Symb. Comput., 19(1):31–100,
2006.

33. T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double de-
scription method. In H. W. Kuhn and A. W. Tucker, editors, Contributions to
the Theory of Games – Volume II, number 28 in Annals of Mathematics Studies,
pages 51–73. Princeton University Press, Princeton, New Jersey, 1953.

34. A. Podelski and A. Rybalchenko. Armc: The logical choice for software model
checking with abstraction refinement. In PADL, pages 245–259, 2007.

35. J. P. Queille and J. Sifakis. Specification and verification of concurrent systems
in cesar. In M. Dezani-Ciancaglini and U. Montanari, editors, International Sym-
posium on Programming, pages 337–351, Berlin, Heidelberg, 1982. Springer Berlin
Heidelberg.

36. N. Roohi, P. Prabhakar, and M. Viswanathan. Hybridization based cegar for
hybrid automata with affine dynamics. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 752–769. Springer,
2016.

37. S. Sankaranarayanan, M. Colón, H. B. Sipma, and Z. Manna. Efficient strongly
relational polyhedral analysis. In E. A. Emerson and K. S. Namjoshi, editors,
Verification, Model Checking, and Abstract Interpretation, 7th International Con-
ference, VMCAI 2006, Charleston, SC, USA, January 8-10, 2006, Proceedings,
volume 3855 of Lecture Notes in Computer Science, pages 111–125. Springer, 2006.

38. S. Sankaranarayanan, T. Dang, and F. Ivancic. Symbolic model checking of hybrid
systems using template polyhedra. In C. R. Ramakrishnan and J. Rehof, editors,
Tools and Algorithms for the Construction and Analysis of Systems, 14th Interna-
tional Conference, TACAS 2008, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-
April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science,
pages 188–202. Springer, 2008.

39. G. Singh, M. Püschel, and M. T. Vechev. Fast polyhedra abstract domain. In
G. Castagna and A. D. Gordon, editors, Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017, pages 46–59. ACM, 2017.

40. P. Tabuada. Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer, 2009.

41. H. P. Williams. Fourier’s method of linear programming and its dual. The Amer-
ican mathematical monthly, 93(9):681–695, 1986.

