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Abstract

The domain of convex polyhedra plays a special role in the collection of numerical domains considered for
program analysis and verification. As far as precision is concerned, it would be the most natural choice in
many contexts but, due to its worst case exponential complexity, it is sometimes considered an unaffordable
option. This has led to a systematic quest for simpler domains that are capable of reasonable precision using
less computational resources. There are anyway cases where the use of the domain of convex polyhedra
turns out to be feasible, also due to recent progress in their implementation. After reviewing a few known
approaches to decrease the amount of resources needed when computing on this domain, we will introduce
a couple of novel techniques that can be used to further improve its efficiency, without incurring precision
losses.
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1 Introduction

Among the collection of the numerical domains that are usually considered by the

designers of program analysis and verification tools, the abstract domain of convex

polyhedra [12] plays a special role.

As far as precision is concerned, the domain of convex polyhedra would be the

most natural choice in many contexts. However, due to its worst case exponential

complexity, it is often considered an unaffordable option from a practical point of

view. This has led to a systematic quest for domains that are simpler than convex

polyhedra, so as to be less demanding in terms of computational resources, and

yet capable of reasonable precision. An incomplete list of so-called weakly relational

abstract domains can be filled by a review of the relevant literature of the past years:

bounded differences [26,33], bounded logahedra [21], octagons [27], octahedra [10],

parallelotopes [1], pentagons [25], subpolyhedra [23], template polyhedra [32], two

variables per inequality [35], weighted hexagons [16].

An alternative approach, used less frequently, is to keep the abstract domain

of convex polyhedra but, in order to recover efficiency, replace the most expensive

operations with less precise, approximated versions. The usual target for such
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dim cons gens w/o test with test ratio

13 26 8192 0.12 0.03 4.0

14 28 16384 0.45 0.05 9.0

15 30 32768 1.66 0.12 13.8

16 32 65536 7.00 0.26 26.9

Table 1
Impact of the quick adjacency test of [17] when computing hypercube vertices (time is in seconds).

a replacement is the computation of the convex polyhedral hull of two (or more)

polyhedra, corresponding to the join (also known as strong join) of the abstract

domain. During a static analysis, joins model the merging of explicit control flow

paths; perhaps less intuitively, they may also be needed when modeling the so-called

weak assignments, e.g., assignments whose target variable is obtained by pointer

dereferencing but for which the analysis is unable to deterministically identify the

affected variable. In [31] a few alternatives to the strong join operator are proposed,

ranging from the less precise weak join (called envelope in [6]) to the more precise

family of k-restricted joins; choosing k = 2 results in the definition of the inversion

join, which has been further studied in [34].

In other contexts, even the precision of convex polyhedra is still not enough for

the considered goals, due to the limitations resulting from linearity and convexity.

In these cases the designers of formal verification tools may adopt a domain based on

sets of convex polyhedra [8,15], accepting the corresponding impact on efficiency, or

domains that directly deal with non-linear constraints, such as the abstract domain

of ellipsoids [7] and the arithmetic-geometric progression domain [13].

There are anyway cases where the use of the domain of convex polyhedra, either

considered in isolation or subject to a powerset construction, turns out to be fea-

sible. The reasons are twofold. On the one hand, state-of-the-art implementations

of the domain of convex polyhedra are surprisingly effective (taking into account

the exponential complexity bound); these include those based on the Double De-

scription (DD) method, such as the Parma Polyhedra Library [4] (PPL) or the

Apron library [22], as well as new ones using a constraint-only representation [14],

typically based on the Fourier-Motzkin elimination procedure. Such an efficiency

not only results from the careful coding of the corresponding core algorithms, but

also from the application of several incremental improvements arising from some

newer results from the literature. As an example, in the conversion algorithm of the

PPL, the integration of the quick (incomplete) adjacency test recalled in [17, Corol-

lary 4.3], complementing the well-known quick (incomplete) non-adjacency test of

[24], resulted in a significant reduction of the computation times for some frequently

occurring classes of polyhedra (see Table 1).

On the other hand, no matter how good the underlying implementation is, a

blind adoption of the domain of convex polyhedra in a static analysis or verification

tool is likely to result in unacceptable inefficiencies, due to the intrinsic exponential

complexity: special care has to be taken so as to avoid common efficiency bugs, i.e.,

issues that in principle do not directly affect the correctness or the precision of the

analysis, but only its efficiency. 2

2 Efficiency bugs can become precision bugs, e.g., when a timeout causes a switch to a less precise abstract
domain or operators.
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The most common reason for an efficiency bug is the attempt to keep track of too

many program variables at once, without resorting to well-known techniques such

as program slicing or variable packing, either statically [7] or dynamically [18,36]

computed. 3 Such an efficiency bug can be worsened by the systematic inlining of

function calls and/or by analysis tools accepting partially compiled code as input:

for instance, if used without precautions, the SSA form tends to artificially increase

the number of program variables.

In the following we will consider new algorithms and implementation techniques

that can be used to decrease the amount of resources needed when computing on

the domain of convex polyhedra. In particular, we will focus on those approaches

that have the potential of improving the efficiency of the analysis without incurring

precision losses. The techniques presented, which are the result of ongoing collabo-

rations, have all been implemented in the context of the Parma Polyhedra Library.

Being work in progress, only preliminary experimental evaluations have been con-

ducted so far. The initial results, besides confirming the absence of precision losses,

are encouraging in terms of the efficiency gains that can be obtained.

The paper is structured as follows. Section 2, after introducing some notation

and terminology, provides an informal presentation for the DD method. In the

next two sections we present some of the work in progress on the domain of convex

polyhedra: Section 3 discusses the use of domain wrappers to improve the efficiency

in specific contexts; Section 4 describes a new approach for the representation and

manipulation of NNC polyhedra. We conclude in Section 5.

2 Preliminaries

Assuming the reader is familiar with the notions of static analysis based on Abstract

Interpretation [11] and the use of convex polyhedra as an abstract domain [12], we

recall some terminology and notation, mostly adapted from [3].

We write Rn to denote the Euclidean topological space of dimension n > 0 and

R+ for the set of non-negative reals; for S ⊆ Rn, cl(S) and relint(S) denote the

topological closure and the relative interior of S, respectively. The scalar product

of two vectors a1,a2 ∈ Rn is denoted by aT
1a2. For each vector a ∈ Rn, where

a 6= 0, and scalar b ∈ R, the linear non-strict inequality constraint β = (aTx ≥ b)

defines a closed affine half-space of Rn. A topologically closed convex polyhedron

(for short, closed polyhedron) is defined as the set of solutions of a finite system C
of linear non-strict inequality constraints.

A vector r ∈ Rn such that r 6= 0 is a ray of a non-empty polyhedron P ⊆ Rn if,

for every point p ∈ P and every non-negative scalar ρ ∈ R+, it holds p + ρr ∈ P.

The empty polyhedron has no rays. If both r and −r are rays of P, then we say

that r is a line of P. By Minkowski and Weyl theorems [37], the set P ⊆ Rn is a

closed polyhedron if and only if there exist finite sets R,P ⊆ Rn of cardinality r

3 It may be worth recalling that, for the static analysis described in [7], which was tracking linear relations
using octagons rather than convex polyhedra, the analyzed program had 10K global variables, while the
average size of variable packs was 4.
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and p, respectively, such that 0 /∈ R and

P = gen
(
〈R,P 〉

) def
=

{
Rρ+ Pπ ∈ Rn

∣∣∣∣ ρ ∈ Rr+,π ∈ Rp+,
p∑
i=1

πi = 1

}
.

When P 6= ∅, we say that P is described by the generator system G = 〈R,P 〉.
The Double Description method due to Motzkin et al. [29], by exploiting the

duality principle, allows to combine the constraints and the generators of a poly-

hedron P into a DD pair (C,G): a conversion procedure is used to obtain each

description starting from the other one, also removing the redundant elements. 4

For presentation purposes, we focus on the conversion from constraints to genera-

tors. We also omit the description of important concepts such as polyhedral cones,

homogenization, the lattice of faces and adjacency; the interested reader is referred

to [37] for the theory and to [9,24] for the details related to implementation.

The conversion procedure starts from a DD pair (Cuniv ,Guniv ) representing the

whole vector space and adds, one at a time, the elements of the input constraint

system Cin, keeping the DD pair up-to-date. At each iteration, when adding the

constraint β to polyhedron P = gen(G), the generator system G is partitioned into

the three components G+, G0, G−, based on the sign of the scalar products of the

generators with β (those in G0 are the saturators of β); the new generator system

is computed as G′ def
= G+ ∪ G0 ∪ G?, where

G? def
=
{

combineβ(g+, g−)
∣∣ g+ ∈ G+, g− ∈ G−, adjacentP(g+, g−)

}
;

function ‘combineβ’ computes a linear combination of its arguments, yielding a

generator that saturates the constraint β; predicate ‘adjacentP ’ is used to discard

those pairs of generators that are not adjacent in P (since these would only produce

redundant generators).

If linear strict inequality constraints (aTx > b) are allowed, a not necessarily

closed (NNC) polyhedron is obtained. The generator system is extended to become

a triple G = 〈R,P,C〉 where those in C are closure points [3] for the polyhedron P,

i.e., they belong to its topological closure cl(P). Namely,

P = gen
(
〈R,P,C〉

) def
=

{
Rρ+ Pπ + Cγ ∈ Rn

∣∣∣∣∣ρ ∈ Rr+,π ∈ Rp+,π 6= 0,γ ∈ Rc+,∑p
i=1 πi +

∑c
i=1 γi = 1

}
.

Implementations of the DD method for closed polyhedra can be extended to

also work on NNC polyhedra by adding a slack variable [3,19]: this satisfies the

non-strict constraints 0 ≤ ε ≤ 1, but it is interpreted to allow only for strictly

positive values. A strict inequality constraint is encoded as (aTx − eε ≥ b) and a

point p ∈ Rn is encoded as (pT, e)T ∈ Rn+1, where in both cases e > 0; all the other

constraints/generators (in particular, the closure points) have a 0 coefficient for ε.

Hence, an NNC polyhedron P ⊆ Rn is represented as a closed polyhedronR ∈ Rn+1,

4 Implementations are based on a stronger minimality concept, taking into special account equality con-
straints and lines.
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join assign

test sloc .bc size calls avg dim max dim calls unconstr alias

decompress 495 72312 9636 21.9 62 22357 22044 20395

filter 417 14968 32910 18.2 34 14949 12446 8412

adpcm 468 69028 17803 22.3 42 3697 3530 2474

cover 228 33588 15997 2.2 5 2746 2707 2707

fft1 136 20256 6277 8.4 24 2012 1812 788

Table 2
Test programs for PAGAI: data on abstract operations for the convex polyhedra domains.

which is said to be an ε-representation [3] for P. Its semantic interpretation is

P = [[R]]
def
=
{
p ∈ Rn

∣∣∣ ∃e ∈ R .
(
e > 0 ∧ (pT, e)T ∈ R

)}
.

When completed with the addition of suitable strong minimization procedures [3],

this technique allows to reuse, almost unchanged, all the algorithms and techniques

developed for topologically closed polyhedra.

3 Wrappers for Convex Polyhedra

Designers of static analysis and verification tools try hard to implement their soft-

ware so as to be parametric with respect to the abstract domain chosen. To this

end, they often provide wrappers (i.e., thin layers of software) to interface their tool

with the implementation of the abstract domain. In this section we similarly pro-

pose a few abstract domain wrappers, but with a different goal: these are meant to

provide a workaround to a few commonly occurring efficiency bugs. For clarity, we

will sometimes say “shell” to refer to the wrapper object (for a convex polyhedron),

while calling “kernel” the wrapped one (i.e., the convex polyhedron itself).

As a running example, we consider PAGAI [20], a static analyzer for invariant

generation built on top of the LLVM infrastructure and the Apron library. PAGAI

analyzes the bitcode generated by LLVM, possibly combining classical Abstract

Interpretation and SMT-solving techniques; we consider the “simple” static analysis,

so as to factor out the computational cost of SMT decision procedures.

When using PAGAI with convex polyhedra, it is possible to choose between

the native Apron domain (pk) or the Apron layer for the PPL domain (ppl poly).

In both cases, the domain has to support strict inequality constraints (hence, it is

the domain of NNC polyhedra): these are used to model strict conditional tests

involving floating point variables. 5 To experimentally evaluate the wrappers for

NNC polyhedra presented below, PAGAI and Apron have been modified to make

available a new ppl wpoly abstract domain. Some information on (a selection of)

the tests used for the experimental evaluation is reported in Table 2, which also

summarizes data on the joins and abstract assignment operators computed during

a run of the analyzer (these are independent from the specific convex polyhedra

domain tested).

5 If all the variables mentioned in the conditional test are integral, it is automatically tightened into a more
precise non-strict test.
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3.1 On Demand NNC polyhedra

Since in many programs conditional tests on floating point variables are very unlikely

to occur (some programs have no floating point variable at all), the systematic use of

NNC polyhedra, even where a domain of topologically closed (C) polyhedra would

suffice, can be regarded as an efficiency bug: in critical contexts, NNC polyhedra

can be significantly slower than C polyhedra (see the first three columns in Table 5).

The first wrapper we propose (denoted D) is meant to dynamically switch be-

tween the domains of C and NNC polyhedra; in order to avoid the NNC overhead

as much as possible, the switch from C to NNC is done only when needed, while

the switch from NNC to C is done whenever possible (i.e., as soon as detecting that

the polyhedron is topologically closed).

The implementation of this wrapper is quite simple: 6 the kernel object is either

a C or an NNC polyhedron; the shell object only needs to perform the switches,

delegating everything else to the kernel. Switches are rarely needed, since almost

all of the operations on the convex polyhedra domain preserve topological closure:

intersection, convex polyhedral hull, affine images and preimages, addition and re-

moval of space dimensions, widening, addition of non-strict constraints, plus all of

the read only operators; the one exception is the addition of strict inequality con-

straints (plus a few other operators, such as the convex polyhedral difference or the

addition of closure points, which however are not used in PAGAI).

3.2 A Wrapper for Unconstrained Variables

The approximation of assignments is one of the most frequently executed abstract

operations. A closer look at the assignments computed during the runs of the static

analyzer revealed that the variable assigned is very likely to be unconstrained (com-

pare the 7th and 8th columns in Table 2; this is probably due to the fact that the

analyzed bitcode is the result of the SSA transformation). In implementations of

polyhedra based on the DD method, each unconstrained space dimension is rep-

resented as a line in the generator system. In all the constraints and the other

generators the unconstrained dimension occurs with a zero coefficient (explicitly

represented in most implementations based on the DD method).

The idea underlying our second wrapper (denoted U) is to keep track of the set of

unconstrained space dimensions, so that the kernel only knows about the constrained

variables. In practice, we record a partial, injective map from the set {0, . . . , n− 1}
of the shell dimensions to the set {0, . . . ,m − 1} of the kernel dimensions, where

m ≤ n. The unmapped shell dimensions are known to be unconstrained and when a

dimension becomes constrained (resp., unconstrained), it is added to (resp., removed

from) the kernel polyhedron, keeping the map up-to-date.

The knowledge of the set of unconstrained dimensions can also be exploited

to optimize a few abstract operators. In particular, when computing the convex

polyhedral hull, all the unconstrained dimensions of the arguments will be uncon-

strained in the result too: hence, the kernel polyhedron of each argument can be

preprocessed to remove those (constrained) dimensions that are unconstrained in

6 The coding and testing of the DNNC Polyhedron class were completed in a single day in October 2015.
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the other argument, yielding a reduction of the number of dimensions when actually

computing the join on the kernels.

Another possible optimization can be applied to the approximation of invert-

ible affine assignments, i.e., those where the variable assigned also occurs in the

right hand side affine expression (e.g., x = x + 1). If the variable is known to be

unconstrained, then the affine map modeling the assignment is the identity func-

tion. However, the Apron interface layer to the PPL domains seems to prevent the

use of domain operators computing affine images: an assignment such as x = x +

1 is implemented by (a) adding the primed variable x′, (b) adding the constraint

x′ = x + 1, (c) projecting away the unprimed variable x and finally (d) renaming

x′ to x. Also, invertible assignments rarely occur when analyzing programs using

PAGAI (we conjecture this is another side effect of the SSA transformation).

3.3 A Wrapper for Aliased Variables

The last column in Table 2 shows that a good percentage of all the assignments

computed are of the form x = y, i.e., the right hand side expression is a single

variable (once again, this is likely due to the SSA form).

Following the same line of reasoning used above for the U wrapper, we propose

a third wrapper (denoted A) that keeps track of the set of aliased space dimensions.

In practice, the wrapper keeps a partition of the shell dimensions and only one

dimension for each partition block is made known to the kernel polyhedron. In this

case, maintaining the partition information up-to-date (in particular, discovering

new alias relations after modifying the kernel polyhedron) may require non-trivial

computational work: the implementation may range between a fully eager approach,

where all aliasing is extracted as soon as possible, and several lazy alternatives, with

quite different effects on the efficiency of the wrapper.

Note that this wrapper could be generalized to another one (E) keeping track

of arbitrary affine equations (or some intermediate forms of equations, such as the

octagonal ones). On its surface, the idea seems similar to the symbolic constant

propagation domain proposed in [7,28]; a closer look shows several differences. The

main one regards their motivations: the domain in [28] was proposed as a way to

enhance the precision of numerical domains (in particular, the non-relational or

weakly relational ones); in contrast, in our context we only care about efficiency, as

there should be no precision gain/loss. This different point of view becomes evident,

for instance, when modeling the join operator: in the symbolic domain of [28] the

join is typically very imprecise; in our wrapper, those equations that can not be

preserved at the shell level are communicated down to the kernel level, thereby

preserving the precision of the join.

It is also worth noting that, apart from D, the wrappers proposed could be

applied to other numerical domains, such as the weakly relational ones. For in-

stance, the alias domain A (or even its generalization E) could use the domain of

parallelotopes [1] as its kernel.
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ppl wpoly (composed) wrappers

test box oct pk ppl D U A UD AU AUD

decompress 8.32 17.84 20.96 15.59 14.57 10.34 17.65 9.76 9.53 9.31

filter 2.76 7.79 82.47 89.72 49.45 43.23 64.26 21.35 36.69 18.75

adpcm 1.76 4.29 22.27 15.30 11.73 5.21 17.88 3.84 5.31 4.01

cover 1.38 1.44 2.83 3.56 3.01 2.68 3.58 2.45 2.69 2.53

fft1 0.45 0.87 2.39 2.18 1.96 1.25 2.30 1.18 1.33 1.25

Table 3
Testing wrappers for convex polyhedra in PAGAI (box = intervals; oct = octagons; pk = Apron’s NNC;

ppl = PPL’s NNC; D/U/A= wrappers on PPL’s NNC; time is in seconds).

3.4 Experimental Evaluation

In Table 3 we summarize the results of the experimental evaluation on the tests of

Table 2. 7 After the name of the test, in the first three columns we report, for refer-

ence, the times obtained when using the Apron’s native domains (boxes, octagons

and polyhedra). The 4th column reports the times obtained by the (unwrapped)

ppl poly domain. The next three columns report the times for ppl wpoly, using

the wrappers D, U and A discussed above. The wrappers U and A have been imple-

mented in C++ as class templates and some care has been explicitly taken to make

them composable. Hence, in the last three columns of Table 3, we also report on

the use of the composed wrappers UD, AU and AUD; a name such as UD can be

read as U ◦ D, i.e., the U wrapper having D as the kernel.

Each time reported is the total time for running the pagai executable on the

bitcode for the test program, including the input and output phases: the time

actually spent in the abstract domains is just a portion of it. As an example, when

using the ppl poly domain on the test decompress, 50% of the total time is spent

outside of the code giving access to the abstract domain operations; another 10% is

spent in the Apron layer for the PPL domain; the remaining 40% (6.15 secs) is spent

in the PPL code itself. This should be taken into proper account when reasoning

on the speedups obtained by using the wrappers. Also note that the composition

of the wrappers may incur some avoidable overhead.

According to the times shown in Table 3, the wrappers D and U provide signifi-

cant efficiency improvements; moreover, further efficiency gains are obtained when

using their composition UD, somehow confirming that the two wrappers are actually

solving orthogonal efficiency bugs.

The alias wrapper A only improves efficiency on filter, whereas on the other

tests the improvement (if any) is hidden by the corresponding computational over-

head. The results are marginally better when using AU and AUD, in particular for

the tests requiring more time, making the full composition AUD the fastest of all

considered domains when analysing decompress and filter.

7 All tests have been performed on a laptop with an Intel Core i7-3632QM CPU, 16 GB of RAM and
running GNU/Linux.
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1 2 3 4 5 6 7 8 9

G+ R R R C C C P P P

G− R C P R C P R C P

≥ R C P C C P P P P

> R C C+P C C C+P C C C

10 11 12

G+ R C P

G0 P P P

≥
> C+P C+P C

Table 4
Case analyses for the linear combination of generators (R = ray, C = closure point, P = point) when

adding non-strict (≥) and strict (>) inequality constraints.

4 An Improved Representation for NNC Polyhedra

As recalled in Section 2, implementations of NNC polyhedra based on the DD

method require the addition of a supplementary space dimension (the ε-dimension).

While being completely adequate from the theoretical point of view and behaving

reasonably well from a practical one, this approach has a couple of drawbacks.

First, the use of the ε-dimension may result in a significant increase in the num-

ber of generators used in the low-level representation of NNC polyhedra, for instance

doubling the number of vertices in the case of a polytope that happens to be topo-

logically closed. Second, operations on NNC polyhedra tend to generate a very high

number of ε-redundant constraints and/or generators; the strong minimization pro-

cedures defined in [3], while effective, are not incremental: their use in the middle

of a sequence of operations on NNC polyhedra may trigger a complete recomputa-

tion of the DD pair. In principle, incremental strong minimization procedures can

be obtained by exploiting the work in [2], where an algorithm for the removal of

constraints/generators from a DD pair is defined. However, the algorithm turns out

to be effective mainly when removing a small number of elements from a DD pair,

which is seldom the case in the considered context.

Both issues above simply disappear if a new, more direct encoding for NNC

polyhedra, with no additional ε-dimension, is used. A first attempt along this

line of reasoning was performed in [30], where a variant of Chernikova’s conversion

algorithm was defined for the NNC case. The new algorithm works like the classical

one, incrementally adding one (strict or non-strict) inequality constraint at each

iteration and partitioning the generators into the sets G+, G0, G−. However, when

linearly combining the generators, it performs a systematic case analysis on the

generator kind, as described in Table 4, so as to identify the kind of generator

resulting from each combination.

Consider for example polyhedron (a) in Figure 1, defined by closure points C1,

C2 and point P1. The addition of the non-strict inequality (in green in the figure)

makes C1 an element of G−, while C2 and P1 are in G+; therefore, C2 is combined

with C1 yielding closure point C3 (see column 5 in Table 4); similarly, P1 is combined

with C1 yielding point P2 (column 8); hence, we obtain the polyhedron having points

P1, P2 and closure points C2, C3.

Consider now polyhedron (b) in Figure 1, where a strict inequality constraint is

being added. In this case, the component G− is empty; however, the right hand side

portion of Table 4 indicates that, when processing a strict inequality, the generators

in G+ also need to be combined with the points in G0: in our example, when

combining P4 or P5 with P3, the latter is transformed into the closure point C4

(column 12), since a point can not saturate a strict inequality.
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C1

C3 P2 P3

C4

P6

C7 C8

P7 P8

P9

C9 C10C12

P10

Fig. 1. Examples of linear combinations for generators: (unfilled) circles represent (closure) points; (dashed)
lines represent (strict) inequality constraints.

The polyhedron (c) in Figure 1 shows a special case occurring when processing

a strict constraint: the closure point C5 in G+ has to be combined with P6 in G−,

yielding closure point C7 (column 6); however, in order to include the open segment

(C5, C7) in the resulting polyhedron, we also need to generate a point on the open

segment itself (P7 in our example). The entries in Table 4 for this special case are

thus marked as ‘C+P’. The same reasoning applies when combining C6 and P6,

yielding C8 and P8.

The polyhedron (d) in Figure 1 is a minor variation of (c) that is meant to

highlight the main limitation of the proposed algorithm. When adding the strict

inequality constraint, closure point C11 in G+ is combined with point P9 in G−
according to column 6 of Table 4, obtaining closure point C12 (which is later detected

as redundant and removed) and point P10 (which is not redundant). This is going

to compute the correct result, but the attentive reader may have noted that the

generators C11 and P9 are not adjacent in the input polyhedron. Thus, in order to

be correct, we can not exploit the adjacency tests when combining the generators

using Table 4, potentially incurring into high inefficiencies.

4.1 The Adjacency Problem: Towards a Solution

In order to recover from the efficiency loss we have pointed out, we have to further

refine the case analysis of Table 4 so as to identify those cases (or subcases) where the

optimizations based on the adjacency tests can be restored without compromising

the correctness of the algorithm. A decisive step towards such a goal is being made

in [5]. For space reasons, we are not going to provide a full description of the new

algorithm, which is work in progress; we will informally describe the main idea

underlying it and show the initial experimental results obtained.

The key observation in [5] is that the generators of an NNC polyhedron P can

be split into two components: the first one, named the skeleton 8 of P, is made by

those generators that “contribute” to the topological closure of P. More precisely,

for a non-redundant generator system G = 〈R,P,C〉 describing P, we define its set

of skeleton points SP ⊆ P as those points that are not redundant in cl(P); then,

the skeleton of G is defined as skel
(
〈R,P,C〉

) def
= 〈R,SP , C〉.

The non-skeleton component only contains the points in P \ SP . Examples of

non-skeleton points are P7 and P8 in polyhedron (c) and P10 in polyhedron (d) of

8 This term is unrelated to the concept of p-skeleton used in algebraic topology.
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C ε-based NNC new NNC

test time time ratio time ratio

sampleh8 6.95 26.91 3.87 4.89 0.70

trunc10 1.64 6.40 3.90 1.02 0.62

mit31-20 1.35 4.72 3.50 0.77 0.57

kkd38 6 0.66 2.49 3.77 0.28 0.42

Table 5
Measuring the overhead of the conversion procedure for NNC polyhedra; the topologically closed

polyhedra used as tests are part of the ppl lcdd test suite (time is in seconds).

Figure 1. When representing a non-skeleton point p, its precise geometric position

is an overkill: p can be abstracted by representing instead the minimal face Fp

such that p ∈ relint(Fp). The face Fp ⊆ P is itself an NNC polyhedron, so that we

can compute its skeleton skel(Fp), which is component-wise included in skel(G); by

the minimality assumption above, skel(Fp) contains only rays and closure points;

hence, Fp is described by its skeleton plus any single non-skeleton point taken from

relint(Fp). We say that skel(Fp) is the support for the non-skeleton point p. In our

examples from Figure 1, the support for P7 is
〈
∅,∅, {C5, C7}

〉
and the support for

P10 is
〈
∅,∅, {C9, C10, C11}

〉
(where C12 is omitted as it is redundant).

To summarize, the skeleton component of an NNC polyhedron is represented ge-

ometrically, while the non-skeleton component is only provided with a combinatorial

representation. The new conversion algorithm in [5], by keeping a clear distinction

of the two components, is able to optimize several computation steps:

• scalar products and saturation matrices are only computed for the skeleton;

• Table 4 is simplified by considering only the skeleton generators, since the non-

skeleton points are subject to ad hoc treatment;

• the adjacency tests can be restored when combining the skeleton generators to

produce other skeleton generators;

• the removal of redundancies from the non-skeleton component is made easier by

the separate combinatorial representation.

A preliminary experimental evaluation, passing all of the regression tests of the

PPL, shows important efficiency improvements on many benchmarks. Besides the

expected gains on the NNC tests, we also observed a few unexpected efficiency gains

on the topologically closed tests, i.e., when comparing the new algorithm with the

C Polyhedron implementation of the PPL (see Table 5).

The new algorithm has been specified, implemented and tested for the conversion

from the constraint to the generator representation; the undergoing generalization

to the conversion from generators to constraints is based on the usual duality results.

5 Conclusions

Despite the intrinsic limitations implied by its theoretical complexity bounds, the

domain of convex polyhedra turns out to be a feasible option in several contexts [36].

This is due not only to the recent progress on their implementation, but also to the

understanding of the common efficiency bugs that a static analysis tool using this

11
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domain should definitely avoid. In this paper we have proposed a few domain wrap-

pers that are able to provide an automatic workaround to some of these efficiency

bugs. We have also sketched a new idea for the representation and manipulation

of NNC polyhedra that seems to have a great potential in terms of efficiency with

respect to the currently available implementations.
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