
Under consideration for publication in Formal Aspects of Computing

Not Necessarily Closed Convex

Polyhedra and the Double

Description Method1

Roberto Bagnara1, Patricia M. Hill2, and Enea Zaffanella1

1 Department of Mathematics, University of Parma, Italy, 2 School of Computing, University of Leeds, UK

Abstract. Since the seminal work of Cousot and Halbwachs, the domain of convex polyhedra has been
employed in several systems for the analysis and verification of hardware and software components. Although
most implementations of the polyhedral operations assume that the polyhedra are topologically closed (i.e.,
all the constraints defining them are non-strict), several analyzers and verifiers need to compute on a domain
of convex polyhedra that are not necessarily closed (NNC). The usual approach to implementing NNC
polyhedra is to embed them into closed polyhedra in a higher dimensional vector space and reuse the tools
and techniques already available for closed polyhedra. In this work we highlight and discuss the issues
underlying such an embedding for those implementations that are based on the double description method,
where a polyhedron may be described by a system of linear constraints or by a system of generating rays and
points. Two major achievements are the definition of a theoretically clean, high-level user interface and the
specification of an efficient procedure for removing redundancies from the descriptions of NNC polyhedra.

1. Introduction

Convex polyhedra are regions of some n-dimensional space that are bounded by a finite set of hyperplanes. A
convex polyhedron in Rn describes a relation between n real-valued quantities. The class of all such relations
turns out to be useful for the representation of the abstract properties of various kinds of complex systems.

The seminal work of Cousot and Halbwachs [CH78] introduced the use of convex polyhedra as a do-
main of descriptions to solve, by abstract interpretation [CC77], a number of important data-flow analysis
problems such as array bound checking, compile-time overflow detection, loop invariant computations and
loop induction variables. Convex polyhedra are also used, among many other applications, for the analysis
and verification of synchronous languages [BJT99, Hal93] and of linear hybrid automata (an extension of
finite-state machines that models time requirements) [HPR94, HHWT97], for the computer-aided formal
verification of concurrent and reactive systems based on temporal specifications [MBB+99], for inferring
argument size relationships in logic languages [BK97], and for the automatic parallelization of imperative
programs [Pug92]. Since the work of Cousot and Halbwachs, convex polyhedra have thus played an important
role in the formal methods community and new uses continue to emerge (see, e.g., [CS01, DRS01]). As a

1 This work has been partly supported by MURST projects “Aggregate- and number-reasoning for computing: from decision
algorithms to constraint programming with multisets, sets, and maps” and “Constraint Based Verification of Reactive Systems.”
Correspondence and offprint requests to: R. Bagnara, P. M. Hill, and E. Zaffanella

consequence, several critical tasks, such as checking the correctness of synchronization protocols or verify-
ing the absence of run-time errors of systems whose failure can cause serious damage, rely on the software
implementations of convex polyhedra.

Traditionally, convex polyhedra are assumed to be topologically closed. When adopting the double de-
scription (DD) method [MRTT53], a closed convex polyhedron can be specified in two ways, using a con-
straint system or a generator system: the constraint system contains a finite set of linear non-strict inequality
constraints; the generator system contains two finite sets of vectors, collectively called generators, which are
rays and points of the polyhedron.

However, some applications of static analysis and verification, including recent proposals such as [CS01],
need to compute on the domain of not necessarily closed (NNC) convex polyhedra. By definition, any
NNC polyhedron can be represented by a so-called mixed constraint system, that is, a constraint system
where a further finite set of linear strict inequality constraints is allowed to occur. No similar generalization
of the concept of generator system is available, so that the DD method cannot be directly applied to
the domain of NNC polyhedra. In contrast, the usual approach for implementing NNC polyhedra is to
embed them into closed polyhedra in a vector space with one extra dimension. While this idea, originally
proposed in [HPR94] and also described in [HPR97], proved to be quite effective, its direct application in
the development of software libraries for the manipulation of convex polyhedra results in a low-level user
interface, where most of the geometric intuition of the DD method gets lost under the “implementation
details.” This has a direct, negative impact on the usability of the resulting software (on this subject, see
the discussion in Section 7, which also includes quotations taken from [HKP95, Section 4.5, pp. 10–11] and
[Jea02, Section 1.1.4, page 10]).

In this paper, we propose a much cleaner approach, where the concept of generator of an NNC polyhedron
is extended to also account for the closure points of the polyhedron. In particular, we show that any NNC
polyhedron can be defined directly by means of an extended generator system, namely, a triple of finite sets
containing rays, points and closure points of the polyhedron. By combining the mixed constraint systems
with these extended generator systems for describing NNC polyhedra we can obtain a two-fold improvement
over the proposal in [HPR94, HPR97]: easier generalizations and a natural, implementation-independent
interface.

Easier generalizations: Several operators, whose definition is in terms of the rays and points of the
standard generator systems for closed polyhedra, need to be generalized to NNC polyhedra. Examples are
given by the time-elapse operator of [HPR94, HPR97], the extrapolation operator ‘∝’ defined in [HH95],
the generator-based extrapolation operators sketched in [BJT99], and the new widening operator proposed
in [BHRZ03b]. The notion of extended generator system proves to be very effective in the definition and
justification of these generalizations. As a remarkable example, in Section 4.2 it will be shown how the
usual implementation of the inclusion test for closed polyhedra can be easily adapted to the case of NNC
polyhedra. The elegance of this generalization is better appreciated by comparing it with the specification
of the inclusion test for the low-level implementation of [HPR94], which appears to be much more tricky
and obscure. The reason is that in [HPR94] the reader has no high-level interpretation of the generators
occurring in the low-level encoding.

A natural, implementation-independent interface: The combination of mixed constraint systems and
extended generator systems offers another improvement over the proposal in [HPR94, HPR97]: a high-level
user interface that is completely separate from the implementation. On the one hand, an NNC polyhedron
can be presented to the client application directly in terms of its defining strict and non-strict constraints
or its generating rays, points and closure points; there is no need for the client to be aware of the use of an
additional space dimension in the implementation and all issues related to its correct handling, such as the
side constraints on this space dimension. On the other hand, by relying on the high-level specification only, the
client application will be unaffected by the wider adoption of lazy and incremental computation techniques
in the procedures implementing the operators on convex polyhedra. Moreover, if all the functionalities and
invariants of the interface are maintained, it is then possible to change the low-level data structures without
affecting the application.

In this paper we will also exploit the latter possibility by introducing two alternative classes of closed
polyhedra for implementing the NNC polyhedra, both instances of the same basic class. The basis of this
representation is a simple generalization of the class of polyhedra used in [HPR94, HPR97]. The new class
continues to employ an additional dimension to encode whether or not each affine half-space defining the

2

NNC polyhedron is closed and relies on the same semantic function for extracting the NNC polyhedron it
embeds. We describe two alternative specializations of this class for representing the NNC polyhedra. One of
these, shown to be biased for the use of the constraint representation, corresponds to the embedding defined
in [HPR94] while the other, which is biased for the use of the generator representation, is new to this paper.

The Parma Polyhedra Library2, a modern C++ library for the manipulation of convex polyhedra, has been
extended so as to implement both approaches. One interesting and potentially useful consequence of having
the option of these alternative encodings is that an improved implementation may choose to dynamically
switch between them, depending on the particular descriptions needed to perform a given operation; for
instance, the constraint-biased encodings may be used when computing intersections of polyhedra, whereas
the generator-biased encodings would be preferred when computing convex polyhedral hulls.

Minimization procedures for the descriptions of NNC polyhedra: Another major contribution of
this paper will be the identification of an important issue related to the above mentioned embedding of
an NNC polyhedron into a closed polyhedron. It will be shown that the usual procedures for minimizing
the constraint and generator descriptions of the topologically closed representation of an NNC polyhedron
are not enough to obtain a non-redundant description of the NNC polyhedron itself. We will propose a
solution for this problem, which affects both the constraint-biased and the generator-biased representations
of NNC polyhedra, by providing procedures that are able to efficiently identify the semantically redundant
constraints and generators, therefore allowing for the computation of truly minimal descriptions. A prelimi-
nary experimental evaluation will show how the use of the new minimization procedures may have a great
impact on the efficiency of some of the most important operators on the domain of NNC polyhedra.

The paper is structured as follows: Section 2 recalls the required concepts and notations; Section 3 briefly
presents the theoretical framework underlying the double description method for the representation and
manipulation of closed convex polyhedra; Section 4 provides a generalization of this framework to also allow
for the manipulation of convex polyhedra that are not necessarily closed; Section 5 presents a general class
and two special subclasses of the set of closed polyhedra that are appropriate for the representation of NNC
polyhedra; Section 6 identifies a problem related to the minimization of these NNC polyhedra representations
and proposes a solution based on the notion of ε-minimal forms; Section 7 presents an implementation of the
ideas contained in this paper, providing an informal comparison with other libraries offering some support
for NNC polyhedra and discussing a preliminary experimental evaluation we have conducted. Section 8
concludes. The Appendix contains proofs of the formal results stated in the main part of the paper.

This paper is a combined, extended and improved version of [BHZ03] and [BRZH02].

2. Preliminaries

The set of non-negative reals is denoted by R+. In the paper, all topological arguments refer to the Euclidean
topological space Rn, for any positive integer n. If S ⊆ Rn, then the topological closure of S is defined as

C(S)
def
=

⋂

{C ⊆ Rn | S ⊆ C and C is closed }.
For each i ∈ {1, . . . , n}, vi denotes the i-th component of the (column) vector v ∈ Rn. We denote by 0

the vector of Rn having all components equal to zero. A vector v ∈ Rn can also be interpreted as a matrix in
R

n×1 and manipulated accordingly with the usual definitions for addition, multiplication (both by a scalar
and by another matrix), and transposition, which is denoted by vT. The scalar product of v, w ∈ R

n, denoted
〈v, w〉, is the real number vTw =

∑n
i=1

viwi.
For any relational operator ./ ∈ {=,≥,≤, <, >}, we write v ./ w to denote the conjunctive proposition

∧n
i=1

(vi ./ wi). In contrast, v 6= w will denote the proposition ¬(v = w). We will sometimes use the
convenient notation a ./1 b ./2 c to denote the conjunction a ./1 b ∧ b ./2 c and we will not distinguish
conjunctions of propositions from sets of propositions.

Let S ⊆ R
n be a set of vectors. The orthogonal of S is S⊥ def

=
{

w ∈ R
n

∣

∣ ∀v ∈ S : 〈v, w〉 = 0
}

. If
S has finite cardinality m, then matrix(S) ⊆ R

n×m denotes the set of all matrices having S as the set of

2 Publicly available at URI http://www.cs./unipr.it/ppl/. The library is currently based on the constraint-biased represen-
tation of NNC polyhedra; an implementation of the generator-biased representation is available in the alt nnc branch of the
PPL’s CVS repository.

3

their columns. In the following, we will abuse notation by letting S also denote a fixed arbitrary element of
matrix(S). The context makes it clear when the symbol denotes a set or a matrix.

3. The Double Description Method

For each vector a ∈ Rn and scalar b ∈ R, where a 6= 0, the linear non-strict inequality constraint β =
(

〈a, x〉 ≥ b
)

defines a topologically closed affine half-space of R
n. The linear equality constraint 〈a, x〉 = b

defines an affine hyperplane. A topologically closed convex polyhedron is usually described as a finite system
of linear equality and non-strict inequality constraints. Theoretically speaking, it is simpler to express each
equality constraint as the intersection of the two half-spaces β+ =

(

〈a, x〉 ≥ b
)

and β− =
(

〈−a, x〉 ≥ −b
)

; in
such a case, we say that β+ and β− are singular constraints for polyhedron P and write {β+, β−} ⊆ eq(P).
We do not distinguish between syntactically different constraints defining the same affine half-space so that,
e.g., x ≥ 2 and 2x ≥ 4 are considered to be the same constraint.

Definition 3.1. (Closed polyhedron.) The set P ⊆ Rn is a closed polyhedron if and only if P can be
expressed as the intersection of a finite number of closed affine half-spaces of Rn.

We write con(C) to denote the polyhedron P ⊆ Rn described by the finite constraint system C. Formally,
we define

con(C)
def
=

{

p ∈ R
n

∣

∣

∣
∀β =

(

〈a, x〉 ≥ b
)

∈ C : 〈a, p〉 ≥ b
}

.

The function ‘con’ enjoys an anti-monotonicity property, meaning that C1 ⊆ C2 implies con(C1) ⊇ con(C2).
Alternatively, the definition of a topologically closed convex polyhedron can be based on some of its

geometric features. A vector r ∈ Rn such that r 6= 0 is a ray (or direction of infinity) of a non-empty
polyhedron P ⊆ R

n if, for every point p ∈ P and every non-negative scalar ρ ∈ R+, it holds p + ρr ∈ P ;
the set of all the rays of a polyhedron P is denoted by rays(P). A vector l ∈ R

n is a line of P if both l
and −l are rays of P ; in such a case, we say that l and −l are singular rays for polyhedron P and write
{l,−l} ⊆ lines(P). The empty polyhedron has no rays and no lines. As was the case for equality constraints,
the theory can dispense with the use of lines by using the corresponding pair of singular rays. Moreover,
when vectors are used to denote rays, no distinction will be made between different vectors having the same
direction so that, e.g., r1 = (1, 3)T and r2 = (2, 6)T are considered to be the same ray in R

2. The following
theorem is a simple consequence of well-known theorems by Minkowski and Weyl [SW70].

Theorem 3.2. The set P ⊆ Rn is a closed polyhedron if and only if there exist finite sets R, P ⊆ Rn of
cardinality r and p, respectively, such that 0 /∈ R and

P = gen
(

(R, P)
) def

=
{

Rρ + Pπ ∈ R
n

∣

∣ ρ ∈ R
r
+
, π ∈ R

p
+
,
∑p

i=1
πi = 1

}

.

When P 6= ∅, we say that P is described by the generator system G = (R, P). In particular, the vectors of
R and P are rays and points of P , respectively. Thus, each point of the generated polyhedron is obtained by
adding a non-negative combination of the rays in R and a convex combination of the points in P . Informally
speaking, if no “supporting point” is provided then an empty polyhedron is obtained; formally, P = ∅ if
and only if P = ∅. By convention, the empty system (i.e., the system with R = ∅ and P = ∅) is the only
generator system for the empty polyhedron. We define a partial order relation ‘v’ on generator systems,
which is the component-wise extension of set inclusion. Namely, for any generator systems G1 = (R1, P1)
and G2 = (R2, P2), we have G1 v G2 if and only if R1 ⊆ R2 and P1 ⊆ P2; if, in addition, G1 6= G2, we write
G1 @ G2. The function ‘gen’ enjoys a monotonicity property, as G1 v G2 implies gen(G1) ⊆ gen(G2).

The vector v ∈ P is an extreme point (or vertex) of the polyhedron P if it cannot be expressed as a
convex combination of some other points of P . Similarly, r ∈ rays(P) is an extreme ray of P if it cannot be
expressed as a non-negative combination of some other rays of P . It is worth stressing that, in general, the
vectors in R and P are not the extreme rays and the vertices of the polyhedron: for instance, any half-space
of R2 has two extreme rays and no vertices, but any generator system describing it will contain at least three
rays and one point.

The combination of the two approaches outlined above is the basis of the double description method due to
Motzkin et al. [MRTT53], which exploits the duality principle to compute each representation starting from
the other one, possibly minimizing both descriptions. Clever implementations of this conversion procedure,

4

such as those based on the extension by Le Verge [Le 92] of the Chernikova’s algorithms [Che64, Che65,
Che68], are the starting point for the development of software libraries based on the DD method. While
being characterized by a worst case computational cost which is exponential in the size of the input, these
algorithms turn out to be practically useful for the purposes of many applications in the context of static
analysis.

Definition 3.3. (DD pair and minimal forms). If con(C) = gen(G) = P , then (C,G) is said to be a DD
pair for P , and we write (C,G) ≡ P . We say that

• C is in minimal form if there does not exist C ′ ⊂ C such that con(C′) = P ;

• G is in minimal form if there does not exist G ′
@ G such that gen(G′) = P ;

• the DD pair (C,G) is in minimal form if C and G are both in minimal form.

A polyhedron may be described by different constraint systems (resp., generator systems) in minimal
form. As a matter of fact, since we are expressing the equality constraints (resp., lines) by using non-strict
inequality constraints (resp., rays), these equivalent descriptions in minimal form may also have a different
number of constraints (resp., rays).

Stronger characterizations for the descriptions of a polyhedron may be obtained by specifying further
properties, besides the above minimality requirement. For any constraint β =

(

〈a, x〉 ≥ b
)

, the slope of β is

defined as slope(β) = a; for a constraint system C, let slope(C)
def
=

{

slope(β)
∣

∣ β ∈ C
}

.

Definition 3.4. (Orthogonal forms.) Let (C,G) ≡ P 6= ∅ be a DD pair for the non-empty polyhedron
P . We say that

• C is in orthogonal form if I ⊆ E⊥, where I
def
= slope

(

C \ eq(P)
)

and E
def
= slope

(

C ∩ eq(P)
)

;

• G = (R, P) is in orthogonal form if (R \ L) ∪ P ⊆ L⊥, where L
def
= R ∩ lines(P).

For a topologically closed polyhedron, all descriptions in minimal form that are also in orthogonal form have
the same set of non-singular inequality constraints, the same set of non-singular rays and the same set of
points, whereas the sets of singular constraints and singular rays may still differ. Orthogonal forms can be
computed by applying a simple variant of the well-known Gram-Shmidt orthogonalization procedure to a
description such that, if the original description was in minimal form, then the derived orthogonal description
is still in minimal form.

In the following, minimal forms and orthogonality are not assumed unless explicitly stated.

3.1. Operations on Closed Polyhedra

In this section we show that the ability to switch from a constraint description to a generator description,
or vice versa, can be usefully exploited to provide simple implementations for the basic operations on the
domain of closed polyhedra.

The set of all closed polyhedra on the vector space Rn, denoted CPn, can be partially ordered by set-
inclusion to form a lattice having the empty set and Rn as the bottom and top element, respectively. The
binary meet operation, returning the greatest closed polyhedron smaller than or equal to the two arguments, is
easily seen to correspond to set-intersection. The binary join operation, returning the least closed polyhedron
greater than or equal to the two arguments, is denoted ‘]’ and called convex polyhedral hull (poly-hull, for
short); note that, in general, the poly-hull of two polyhedra is different from their convex hull [SW70].

When adopting the double description method, set-intersection is easily implemented by taking the union
of the constraint systems representing the two arguments, whereas the poly-hull is implemented by taking
the component-wise union of the generator systems representing the two arguments; as said above, the test
for emptiness can be implemented by checking whether the generator system contains no points at all.

Probably, the elegance of this formalization is most appreciated when considering the implementation
of the lattice partial order relation, i.e., subset inclusion. We say that point p ∈ Rn satisfies the constraint
β =

(

〈a, x〉 ≥ b
)

if p belongs to the closed affine half-space defined by β, i.e., if 〈a, p〉 ≥ b holds. Similarly,
a ray r ∈ Rn satisfies β if the corresponding direction of infinity is included in the half-space defined by β,
i.e., if 〈a, r〉 ≥ 0 holds. Now, if P1 = gen(G1) and P2 = con(C2), the inclusion P1 ⊆ P2 holds if and only if
each generator in G1 satisfies all the constraints in C2.

5

Static analysis and verification applications adopting the domain of convex polyhedra need to provide
correct approximations to other concrete semantics operators, besides the lattice theory operators mentioned
above. For instance, in the context of imperative languages, one of the most frequent operations is the
assignment of an expression to a variable. Suppose that the set of all possible current values of the program
variables is approximated by a convex polyhedron; then, if the considered assignment expression is a linear
function of the variables’ values, its effect will be correctly modeled by computing the image of the polyhedron
under the affine transformation corresponding to the considered assignment expression. When adopting the
double description method, the result of such an affine image operator will be the polyhedron described
by the generator system obtained by applying the affine transformation to the generators of the argument
polyhedron. A similar approach, but using the constraint description of the polyhedron, allows for the
computation of the affine pre-image of a polyhedron, which is of interest when considering a backward
semantic construction, where the initial values of program variables are approximated starting from their
final values.

4. Not Necessarily Closed Polyhedra

For each vector a ∈ Rn and scalar b ∈ R, where a 6= 0, the linear strict inequality constraint 〈a, x〉 > b
defines an open affine half-space. By allowing strict inequalities to occur in the system of constraints, it is
possible to define convex polyhedra that are not necessarily closed (NNC polyhedra, for short).

Definition 4.1. (NNC polyhedron.) The set P ⊆ Rn is an NNC polyhedron if and only if P can be
expressed as the intersection of a finite number of (not necessarily closed) affine half-spaces of Rn.

Formally, we overload function ‘con’ so that, for any mixed constraint system C, that is, a constraint
system possibly containing both strict and non-strict inequality constraints, we have

con(C)
def
=

{

p ∈ R
n

∣

∣

∣
∀β =

(

〈a, x〉 ./ b
)

∈ C : 〈a, p〉 ./ b
}

,

where ./ ∈ {≥, >}. Note that ‘con’ still satisfies the anti-monotonicity property.

4.1. The Generators of NNC Polyhedra

One of the fundamental features of the double description method, and the very reason for its name, is the
possibility of representing a closed polyhedron using a system of constraints or a system of generators. As
we have shown when discussing the implementation of operations on closed polyhedra, there are contexts
where each of these equivalent descriptions is the most appropriate.

Any NNC polyhedron can be easily described by using mixed constraint systems, but a similar gener-
alization of the concept of generator system seems to be missing. Since by using lines, rays and points we
can only represent closed polyhedra, the key step for the parametric description of NNC polyhedra is the
introduction of a new kind of generator.

Definition 4.2. (Closure point.) A vector c ∈ Rn is a closure point of S ⊆ Rn if and only if c ∈ C(S).

When considering NNC polyhedra, closure points can be characterized by the following property.

Proposition 4.3. A vector c ∈ R
n is a closure point of the NNC polyhedron P ⊆ R

n if and only if P 6= ∅

and σp + (1 − σ)c ∈ P for every point p ∈ P and every σ ∈ R such that 0 < σ < 1.

In the above proposition, it should be observed that not all of the possible convex combinations of p and c
are considered. In particular, by neglecting the case when σ = 0 we do not force p to belong to P . The case
when σ = 1 would be harmless, but it is left out for the sake of symmetry.

We are now able to provide a parametric description for any NNC polyhedron.

Theorem 4.4. The set P ⊆ Rn is an NNC polyhedron if and only if there exist finite sets R, P, C ⊆ Rn of
cardinality r, p and c, respectively, such that 0 /∈ R and

P = gen
(

(R, P, C)
) def

=

{

Rρ + Pπ + Cγ ∈ R
n

∣

∣

∣

∣

ρ ∈ Rr
+
, π ∈ R

p
+, π 6= 0, γ ∈ Rc

+
,

∑p
i=1

πi +
∑c

i=1
γi = 1

}

.

6

O x

y

A B

CD

E P1

F G

HI

JP2

K

r1

r2L

P3

Fig. 1. Using closure points to define NNC polyhedra on R
2.

When P 6= ∅, we say that P is described by the extended generator system G = (R, P, C). As was the case
for closed polyhedra, the vectors in R and P are rays and points of P , respectively. The condition π 6= 0
ensures that at least one of the points of P plays an active role in any convex combination of the vectors of
P and C. It follows from Proposition 4.3 that the vectors of C are closure points of P . Since both rays and
closure points need a supporting point, we have P = ∅ if and only if P = ∅. The partial order relation ‘v’
on generator systems is easily extended to also take into account the closure points component, so that the
overloading of the function ‘gen’ still satisfies the monotonicity property. It is also worth stressing that, once
we consider both mixed constraint systems and extended generator systems, then the notions of DD pair
and minimal forms, exactly as stated in Definition 3.3, also apply to the representations of NNC polyhedra.
The same observation holds for the notion of orthogonal form stated in Definition 3.4; however, in the case
of an NNC polyhedron, the orthogonality requirement is less useful, as it will be soon clear that minimal
orthogonal forms are insufficient to uniquely identify the non-singular components of a description.

In Figure 1, we provide a few examples of the use of extended generator systems for the description of NNC
polyhedra in R2: (closure) points are represented by small (un-)filled circles, whereas rays are represented by
vectors that, for notational convenience, are applied to points. The NNC polyhedron P1 is an open rectangle
and is described by the closure points A, B, C, D and the point E. Note that all the four closure points
have to be included in any generator system for P1, whereas E could have been replaced by any other point
of P1; moreover, since P1 has no rays, all generator systems for P1 in minimal form are also in orthogonal
form, so that, as said above, minimality with orthogonality are not enough to uniquely identify the points
in a generator system for P1. The NNC polyhedron P2 is another rectangle that is neither closed nor open:
since F is a point, the open segments]F, G[and]F, I[are included in P2; similarly, the open segment]G, H[
is included in P2 because J is a point of the generator system (note that J is needed, since both G and H
are not in P2, but it could have been replaced by any other point lying on this open segment); in contrast,
the closed segment [H, I] is disjoint from P2, because neither H nor I are points of P2. Finally, the NNC
polyhedron P3 can be regarded as the translation by K of the open positive orthant. Thus the generator
system includes the closure point K, the rays r1 and r2 and the point L; again, the latter could have been
replaced by any other point of P3.

4.2. Operations on NNC Polyhedra

We denote by Pn the set of all NNC polyhedra on the vector space Rn. As was the case for the domain CPn,
when partially ordered by set-inclusion, Pn is a lattice having the empty set and Rn as the bottom and top
element, respectively; the set-intersection and poly-hull operators are the binary meet and join of the lattice,
respectively. Obviously, we have CPn ⊆ Pn and, in particular, CPn is a sublattice of Pn.

When representing NNC polyhedra using the double description method as generalized above, all the
lattice operations on Pn can be implemented by following the same approach adopted for the domain CPn.
Thus, a mixed constraint system representing the set-intersection of two NNC polyhedra is obtained by
taking the union of the mixed constraint systems representing the two arguments; an extended generator
system representing the poly-hull of two NNC polyhedra is obtained by taking the component-wise union
of the extended generator systems representing the two arguments; the emptiness test is implemented, as
before, by checking whether the extended generator system has no points at all (disregarding the closure
points).

Even the implementation of the inclusion test P1 ⊆ P2 is still based on checking that each generator in
an extended generator system for P1 satisfies all the constraints in a mixed constraint system for P2. Clearly,

7

Table 1. Testing if the constraint 〈a, x〉 ./ b is satisfied by the generator g.

Generator type
Constraint type ray point closure point

non-strict inequality 〈a, g〉 ≥ 0 〈a, g〉 ≥ b 〈a, g〉 ≥ b

strict inequality 〈a, g〉 ≥ 0 〈a, g〉 > b 〈a, g〉 ≥ b

a suitable extension is needed for these satisfaction tests, covering the new combinations provided by the
additional constraint and generator types, i.e., strict inequalities and closure points. All the possible cases
are shown in Table 1. It can be seen that such an extension is fairly intuitive. As long as we consider non-
strict inequalities, closure points behave the same as points. In contrast, when considering strict inequality
constraints, only the points of the polyhedron are required to respect the strict inequality relation; both
closure points and rays are just required to satisfy the corresponding non-strict inequality. This is because
closure points are limit points of the polyhedron, but are not required to actually belong to it.

Similar generalizations are easily obtained for all the usual semantic operators. For instance, an extended
generator system representing the affine image of an NNC polyhedron can be computed by applying the
affine transformation to all the elements of the extended generator system representing the argument.

5. Implementing NNC Polyhedra Using Closed Polyhedra

In the previous section, we have shown how the representation of closed polyhedra in terms of constraint and
generator systems can be suitably generalized to also allow for the case of NNC polyhedra. Moreover, we
have shown that the availability of these representations naturally leads to corresponding generalizations of
the operations defined on the domain of polyhedra. However, in our path from the original problem toward
the solution, an intermediate, very important step is still missing.

The most critical operation in the DD framework is the so-called conversion algorithm. This comes into
play whenever one of the two possible representations is needed, but only the other one is available. Such
a change of representation is typically needed as a pre-processing step in most of the discussed operations
on both closed and NNC polyhedra, to ensure that the most appropriate representation is available for
each of the arguments of the operation. Thus, a direct implementation of the DD method for the domain
of NNC polyhedra requires the generalization of this conversion algorithm. Even though this would be a
really interesting line of research, the few existing software libraries (based on the DD method) providing
support for the domain of NNC polyhedra all adopt an alternative, indirect approach that, to the best of our
knowledge, was originally proposed in [HPR94] and also described in [HPR97].3 In this section we present a
generalization and formal justification of this approach. We will also show the exact correspondence between
this “low-level implementation” and the “high-level interface” proposed in the previous section.

The basic idea is to encode each NNC polyhedron of Pn into a closed polyhedron of CPn+1. In the follow-
ing, we denote by ε the variable corresponding to the (n + 1)-st Cartesian axis of Rn+1. The interpretation
function [[·]] : CPn+1 → Pn maps any closed polyhedron in CPn+1 to an NNC polyhedron in Pn; in particular,
points in the closed polyhedron with a positive ε coordinate correspond to points in the NNC polyhedron.

Definition 5.1. (Represented NNC polyhedron.) A polyhedron R ∈ CPn+1 is said to represent the
NNC polyhedron P ∈ Pn if and only if

P = [[R]]
def
=

{

v ∈ R
n

∣

∣

∣
∃e ∈ R .

(

e > 0 ∧ (vT, e)T ∈ R
)

}

. (1)

Note that any closed polyhedron that is included in the half-space defined by the constraint ε ≤ 0 actually
represents the empty NNC polyhedron.

Not all the polyhedra in CPn+1 are good candidates for representing an NNC polyhedron in Pn. The
rationale driving the choice of an appropriate subclass of CPn+1 is that most of the operators defined on
the domain of closed polyhedra could be used, with no more than minor modifications, to implement the
corresponding operators on the represented domain Pn of NNC polyhedra. For instance, one would like to

3 According to [HPR97], the idea has to be credited to Pascal Raymond.

8

O x

ε

A B

R1

C D

E

R2

F

G H

I

J

R3

K L

R4

M N

P

P
′ R5

Fig. 2. Only R2, R3 and R4 are ε-polyhedra.

implement the intersection and the poly-hull of two NNC polyhedra by computing the intersection and the
poly-hull of their closed representations, respectively. Under such a requirement, we will define two alternative
representations for NNC polyhedra. The two classes of closed polyhedra used for these representations are
instances of a more general class of closed polyhedra.

Definition 5.2. (ε-polyhedron.) A closed polyhedron R ∈ CPn+1 is said to be an ε-polyhedron if and only
if

∃δ ∈ R .
(

δ > 0 ∧R ⊆ con
(

{ε ≤ δ}
)

)

; (2)

∀v ∈ R
n, e ∈ R : (vT, e)T ∈ R =⇒ (vT, 0)T ∈ R. (3)

The polyhedron R is said to be an ε-polyhedron for P ∈ Pn, denoted R Vε P , if R is an ε-polyhedron and
P = [[R]].

Condition (3) that every point in the ε-polyhedron R has a projection on the hyperplane defined by the
constraint (ε = 0) corresponds to a dual property concerning the constraints for R.

Proposition 5.3. Let R ∈ CPn+1 be such that R ⊆ con
(

{ε ≤ δ}
)

, where δ > 0. Then R is an ε-polyhedron
if and only if

R ⊆ con
(

{

〈a, x〉 + s · ε ≥ b
}

)

=⇒ R ⊆ con
(

{

〈a, x〉 + 0 · ε ≥ b
}

)

. (4)

In Figure 2 we show several examples of polyhedra in CP2 (representing NNC polyhedra in P1), a subset
of which happens to be ε-polyhedra. In particular, the semi-column polyhedron R1, which according to
Definition 1 represents the closed interval P1 = con

(

{1 ≤ x ≤ 3}
)

, is not an ε-polyhedron, because it is not
provided with a finite upper-bound on the ε coordinate, therefore violating condition (2) of Definition 5.2.
The triangle R2 is an ε-polyhedron for the open segment P2 = con

(

{4 < x < 8}
)

. Polyhedron R3 is an

ε-polyhedron for the segment P3 = con
(

{10 < x ≤ 12}
)

, which is neither closed nor open. Similarly, R4 is

an ε-polyhedron for the closed segment P4 = con
(

{14 ≤ x ≤ 16}
)

. Finally, polyhedron R5 represents the

NNC polyhedron P5 = con
(

{18 ≤ x ≤ 20}
)

, but it is not an ε-polyhedron because it violates condition (3)
of Definition 5.2. For instance, even though P ∈ R5, we have P′ /∈ R5.

Figure 3, which shows the poly-hulls of some of the polyhedra in Figure 2, provides a graphical and
informal justification for the two conditions stated in Definition 5.2. Let us suppose we do not enforce
condition (2) of Definition 5.2, thus admitting polyhedra such as R1, and consider the convex polyhedral
hull P1]P2 = con

(

{1 ≤ x < 8}
)

. The poly-hull R1]R2 of the two encodings for P1 and P2 represents a wrong

result, since [[R1]R2]] = con
(

{1 ≤ x ≤ 8}
)

. Suppose now we do not enforce condition (3) of Definition 5.2,

thus allowing for polyhedra such as R5, and consider the poly-hull P4] P5 = con
(

{14 ≤ x ≤ 20}
)

. Again,
the computation of this poly-hull using the closed encodings of its arguments provides a wrong result, since
we have [[R4]R5]] = con

(

{12 < x ≤ 20}
)

.
If we are to provide an implementation-independent interface for the user, we need to be able to extract

from the constraint and generator systems describing an ε-polyhedron, the corresponding mixed constraint
system and extended generator system describing the NNC polyhedron it represents. Reasoning at the
intuitive level, consider an arbitrary ε-polyhedron, such as R3 in Figure 2. Then, it is worth noting that

9

O x

ε

A D

R1

R2

R1] R2

R4

R5

K L

N

R4] R5

Fig. 3. R1]R2 (resp., R4]R5) does not represent the NNC polyhedron P1] P2 (resp., P4] P5).

any facet that is parallel to the ε axis, such as the segment [I, J], corresponding to an inequality constraint
having a zero coefficient for the ε variable, will encode a non-strict inequality constraint of the represented
NNC polyhedron P3 (in this case, the constraint x ≤ 12). On the other hand, any facet such as the segment
[J, F], corresponding to an inequality constraint having a negative coefficient for the ε variable, will encode
a strict inequality constraint of the represented NNC polyhedron P3 (in this case, the constraint x > 10).
Equivalently, we could have noted that in polyhedron R3 the points having a strictly positive ε coordinate
can be chosen arbitrarily close to vertex F = (10, 0)T, but all the points having value 10 for their x coordinate
happen to have a non-positive ε coordinate. Thus, the vector F′ = (10) ∈ R1 represented by F is not a point
of the NNC polyhedron P3, but it is one of its closure points. All of the above observations can be formalized
as follows.

Definition 5.4. (Encoded descriptions.) Let (C,G) ≡ R ∈ CPn+1 be a DD pair for a closed polyhedron.
Then, if [[R]] 6= ∅, the mixed constraint system encoded by C is defined as con enc(C) = CS ∪ CNS , where

CS

def
=

{

〈a, x〉 > b
∣

∣

∣

(

〈a, x〉 + s · ε ≥ b
)

∈ C, a 6= 0, s < 0
}

,

CNS

def
=

{

〈a, x〉 ≥ b
∣

∣

∣

(

〈a, x〉 + 0 · ε ≥ b
)

∈ C,
(

〈a, x〉 > b
)

/∈ CS

}

.

If [[R]] = ∅, then we define con enc(C)
def
= {x1 > 0,−x1 > 0}. Also, the extended generator system encoded

by G = (R, P) is defined as gen enc(G) = (R′, P ′, C ′), where

R′ def
=

{

r
∣

∣ (rT, 0)T ∈ R
}

,

P ′ def
=

{

p
∣

∣ (pT, e)T ∈ P, e > 0
}

,

C ′ def
=

{

c
∣

∣ (cT, 0)T ∈ P, c /∈ P ′
}

.

The following proposition states the correctness of the two mappings introduced above.

Proposition 5.5. Let (C,G) ≡ R ∈ CPn+1 be an ε-polyhedron. Then

[[R]] = con
(

con enc(C)
)

= gen
(

gen enc(G)
)

. (5)

Hence, Definition 5.4 provides a high-level, more user-friendly, interpretation of the constraint and gen-
erator systems describing an ε-polyhedron. Thus the condition (3) of Definition 5.2, can be interpreted as
saying “every point is also a closure point.” Similarly, the dual condition stated in Proposition 5.3 may be
interpreted as “every valid strict inequality is also a valid non-strict inequality.” Even though these two
assertions are trivially true in the encoded domain Pn, the corresponding conditions on the encoding domain
CPn+1 are essential if we are to avoid the problems such as those illustrated in Figure 3 by the computation
of the poly-hull R4]R5.

5.1. Constraint- and Generator-Biased Representations

We now consider two special subclasses of the class of ε-polyhedra. The first of these requires the value zero
to be a lower bound for the ε dimension.

10

Definition 5.6. (C-ε-polyhedron.) An ε-polyhedron R ∈ CPn+1 is said to be constraint-biased and called
a C-ε-polyhedron if and only if R ⊆ con

(

{ε ≥ 0}
)

. We write R VC P if R is a C-ε-polyhedron and R Vε P .

The set of constraint-biased ε-polyhedra corresponds, essentially, to the class of polyhedra originally proposed
in [HPR94, HPR97]. (This is also the same class that was considered in [BRZH02], where these polyhedra
were called ε-representations.)

A C-ε-polyhedron for an NNC polyhedron P can be easily constructed starting from either a mixed
constraint system or an extended generator system for P .

Definition 5.7. (‘con reprC ’ and ‘gen reprC ’.) Let P ∈ Pn be an NNC polyhedron such that (C,G) ≡ P .
The constraint-biased representation of C is the constraint system con reprC(C) on the vector space R

n+1

where

con reprC(C)
def
=

{

0 ≤ ε ≤ 1
}

∪
{

〈a, x〉 − 1 · ε ≥ b
∣

∣

∣

(

〈a, x〉 > b
)

∈ C
}

∪
{

〈a, x〉 + 0 · ε ≥ b
∣

∣

∣

(

〈a, x〉 ≥ b
)

∈ C
}

.

The constraint-biased representation of G = (R, P, C) is the generator system gen reprC(G) = (R′, P ′) on
the vector space Rn+1 where

R′ def
=

{

(rT, 0)T
∣

∣ r ∈ R
}

,

P ′ def
=

{

(pT, 1)T
∣

∣ p ∈ P
}

∪
{

(qT, 0)T
∣

∣ q ∈ P ∪ C
}

.

Observe that, in the mapping defined by the representation function ‘gen reprC ’ and using the notation
in Definition 5.7, each point in P corresponds to two distinct points in P ′, having a positive and a zero
ε coordinate, respectively. This ensures that condition (3) of Definition 5.2 is met. In general, the above
encodings require a constant number of additional constraints versus a linear number of additional generators:
this is the reason why ε-polyhedra in this subclass are called “constraint-biased.”

The second special subclass of ε-polyhedra requires that −eε
def
= (0T,−1)T is a ray of all the non-empty

ε-polyhedra, so that there is no lower bound for the ε dimension.

Definition 5.8. (G-ε-polyhedron.) An ε-polyhedron R ∈ CPn+1 is said to be generator-biased and called
a G-ε-polyhedron if and only if R = ∅ or −eε ∈ rays(R). We write R VG P if R is a G-ε-polyhedron and
R Vε P .

As for the constraint-biased case, generator-biased ε-polyhedra can also be used for representing any
NNC polyhedron. In particular, a G-ε-polyhedron for an NNC polyhedron P may be constructed directly
from any mixed constraint system or extended generator system describing P .

Definition 5.9. (‘con reprG’ and ‘gen reprG’.) Let P ∈ Pn be an NNC polyhedron such that (C,G) ≡ P .
The generator-biased representation of C is the constraint system con reprG(C) on the vector space Rn+1

where

con reprG(C)
def
=

{

ε ≤ 1
}

∪
{

〈a, x〉 − 1 · ε ≥ b
∣

∣

∣

(

〈a, x〉 > b
)

∈ C
}

∪
{

〈a, x〉 + 0 · ε ≥ b
∣

∣

∣

(

〈a, x〉 > b
)

∈ C
}

∪
{

〈a, x〉 + 0 · ε ≥ b
∣

∣

∣

(

〈a, x〉 ≥ b
)

∈ C
}

.

The generator-biased representation of G = (R, P, C) is the generator system gen reprG(G) = (R′, P ′) on the
vector space Rn+1 where

R′ def
=

{

−eε

}

∪
{

(rT, 0)T
∣

∣ r ∈ R
}

,

P ′ def
=

{

(pT, 1)T
∣

∣ p ∈ P
}

∪
{

(qT, 0)T
∣

∣ q ∈ C
}

.

11

It can be seen that, for each strict inequality contained in C, the representation function ‘con reprG’
adds both the strict and the non-strict inequality encodings. This is similar to what is done for points
in Definition 5.7 and, by virtue of Proposition 5.3, ensures that condition (3) of Definition 5.2 is met. In
contrast, for each point in the generator system, the function ‘gen reprG’ does not add the corresponding
closure point. In fact, these closure points are not needed, because they can be generated by combining the
corresponding point with the ray −eε, which is always added. Since the encodings for ε-polyhedra in this
subclass require a linear number of additional constraints versus a constant number of additional generators,
they are called “generator-biased.”

For both the constraint-biased and generator-biased representations, it should be noted that the choice
of the value −1 for the ε coefficients in the constraints representing strict inequalities is arbitrary: any
other negative value will do. Also, the side constraint ε ≤ 1 could be replaced, as stated in condition (2)
of Definition 5.2, by any other constraint ε ≤ δ such that δ > 0. Dually, the choice of the value 1 for the ε
coordinate of the points of P ′ encoding the points of P could be replaced by any other positive value.

Returning to Figure 2, it can be observed that R2 is a constraint-biased ε-polyhedron, R4 is a generator-
biased ε-polyhedron, whereas the ε-polyhedron R3 is neither constraint-biased nor generator-biased. By
comparing R3 with R2 and R4 it can be seen that those ε-polyhedra that are not members of one of the
two subclasses can require both a linear number of additional constraints and a linear number of additional
generators (with respect to the original NNC descriptions), resulting in a significant waste of both memory
space and computation time.

The following result formalizes the correctness of the encodings introduced in Definitions 5.7 and 5.9.

Proposition 5.10. Let (C,G) ≡ P ∈ Pn. Then

1. con
(

con reprC(C)
)

VC P , con
(

con reprG(C)
)

VG P ;

2. gen
(

gen reprC(G)
)

VC P , gen
(

gen reprG(G)
)

VG P .

By suitably combining the previous definitions and formal results, we are now able to systematically
convert a mixed constraint system C for the NNC polyhedron P = con(C) ∈ Pn into a corresponding
extended generator system G such that gen(G) = P ; or, viceversa, we can start from any extended generator
system for P to obtain a corresponding mixed constraint system.

The first of these conversions is obtained as follows, where we assume that the constraint-biased rep-
resentation is adopted. We first apply Definition 5.7 to obtain the constraint system representation of a
C-ε-polyhedron for P , i.e., we compute C ′ = con reprC(C); then, by letting R = con(C ′) ∈ CPn+1, we
apply to C′ the usual conversion algorithm for closed polyhedra to obtain a (standard) generator system
G′ such that gen(G′) = R; finally, we apply Definition 5.4 to extract from G ′ the extended generator sys-
tem G = gen enc(G′). By virtue of Propositions 5.5 and 5.10, we obtain gen(G) = P . The dual conversion
can be obtained similarly. By combining the above conversion procedure with the specifications provided
in Section 4.2, we obtain a complete implementation of all the operations defined on the domain of NNC
polyhedra.

5.2. Operations on ε-Polyhedra

It should be noted that the encoding of operations’ arguments from Pn into corresponding arguments of
CPn+1 and the decoding of the corresponding results are only needed when performing input-output oper-
ations, to provide the end-user with the high-level view presented in Section 4. In all the other cases (and,
in particular, for all the intermediate results obtained during the computation of a sequence of operations)
these translations can be easily and efficiently filtered away. Namely, the next proposition shows that most
of the operators defined on the domain of NNC polyhedra Pn can be easily mapped into the corresponding
operators on the class of ε-polyhedra defined on CPn+1.

Proposition 5.11. Letting VY ∈ {Vε, VC , VG}, suppose that R VY P , R1 VY P1 and R2 VY P2.
Then

1. R1 ∩R2 VY P1 ∩ P2;

2. (P1 6= ∅ ∧ P2 6= ∅) =⇒ (R1]R2 VY P1] P2);

12

O
x

ε

ε = 1

R3

R1

A

B

R2

C

D

Fig. 4. The ε-representations of P1 and P2 and of their poly-hull.

3. let f
def
= λx ∈ Rn . Ax + b be any affine transformation defined on Pn; then g(R) VY f(P), where

g
def
= λ

(

x
ε

)

∈ R
n+1 .

(

A 0
0T 1

) (

x
ε

)

+

(

b
0

)

is the corresponding affine transformation on CPn+1.

Hence, operations such as the intersection of NNC polyhedra and the application of affine transformations
can be safely performed on any ε-polyhedra for the arguments; the same is true for the poly-hull operation,
provided neither of the arguments is empty. Moreover, both the constraint-biased and the generator-biased
subclasses are closed under the application of these operators.

6. The Issue of Minimization

When adopting the ε dimension approach proposed in [HPR94], no matter if constraint- or generator-biased,
each NNC polyhedron P ∈ Pn may be represented by different (actually, an infinite number of) closed
polyhedra in CPn+1. In the previous section we have shown that all of these possible representations are
equally good for computing many operations required by applications such as static analysis. However, the
choice of a particular ε-polyhedron R ∈ CPn+1 for representing an NNC polyhedron P ∈ Pn turns out to be
critical when trying to provide a non-redundant high-level description for P .

The problem is that the computation of minimal forms for the descriptions of an arbitrary closed repre-
sentation R Vε P is not enough to ensure that the encoded NNC descriptions for P are in minimal form
too. Namely, letting (C,G) ≡ R, even though the DD pair (C,G) is in minimal form, it may well happen
that con enc(C) or gen enc(G) are a mixed constraint system and an extended generator system containing
redundant constraints and generators, respectively. The following example illustrates this point.

Consider the two NNC polyhedra P1 = con(C1) and P2 = con(C2) of P1, where

C1 = {0 < x < 2}, C2 = {2 < x < 3}.

These polyhedra can be represented by the C-ε-polyhedra R1,R2 ∈ CP2 such that

R1 = con
(

con reprC(C1)
)

=

{

(x, ε)T ∈ R
2

∣

∣

∣

∣

∣

0 ≤ ε ≤ 1
x − ε ≥ 0

−x − ε ≥ −2

}

,

R2 = con
(

con reprC(C2)
)

=

{

(x, ε)T ∈ R
2

∣

∣

∣

∣

∣

0 ≤ ε ≤ 1
x − ε ≥ 2

−x − ε ≥ −3

}

.

In Figure 4, these two polyhedra correspond to the triangles having vertices O, A, B and A, C, D, respectively.
Note that, in both cases, the ε upper bound constraint ε ≤ 1 happens to be redundant.

Suppose now that the user wants to compute the poly-hull of the two original NNC polyhedra, therefore
obtaining the NNC polyhedron

P3 = P1] P2 = con
(

{0 < x < 3}
)

.

At the representation level, as shown in Figure 4, P3 will be described by the ε-polyhedron R3 generated

13

O
x

ε

ε = 1

R1

A

B

R4

GH

R5

E F

I

J

Fig. 5. The “minimized” trapezium EFIJ , obtained by intersecting R1 and R4 and still representing the topologically closed
NNC polyhedron P4, also encodes the strict inequality x > 0.

by the four vertices O, C, D, and B, whereas point A is identified as redundant. Formally,

R3 = R1]R2 =

(x, ε)T ∈ R
2

∣

∣

∣

∣

∣

∣

∣

∣

ε ≥ 0

x − ε ≥ 0

x + ε ≤ 3

x + 3ε ≤ 4

.

Note that the chosen constraint system

C3 = {ε ≥ 0, x − ε ≥ 0, x + ε ≤ 3, x + 3ε ≤ 4}

describing polyhedron R3 is in minimal form; in particular, the last non-strict inequality constraint x+3ε ≤ 4,
which corresponds to the segment [B, D] in Figure 4, is not redundant as far as the ε-polyhedron R3 is
concerned. However, this non-strict inequality is actually encoding the strict inequality constraint x < 4,
which is clearly redundant when considering the encoded polyhedron P3 = [[R3]]. Formally, the mixed
constraint system encoded by C3 is

C′
3 = con enc(C3) = {0 < x < 3, x < 4},

which, according to Definition 3.3, is not in minimal form. In this case, we say that x + 3ε ≤ 4 is an
ε-redundant constraint in C3.

The same problem as above can be observed when considering a generator system for the ε-polyhedron
R3. Namely, we have R3 = gen(G3), where G3 = (∅, P3) and

P3 =
{

(0, 0)T, (3, 0)T, (2.5, 0.5)T, (1, 1)T
}

.

Even though G3 is a generator system in minimal form, by Definition 5.4 we obtain

G′
3 = gen enc(G3) = (∅, P ′

3, C
′
3),

where P ′
3 = {1, 2.5} and C ′

3 = {0, 3}. Since the point 1 ∈ P ′
3 (resp., 2.5 ∈ P ′

3) is redundant in G′
3, the encoded

generator system is not in minimal form. In this case, we say that (2.5, 0.5)T ∈ P3 (resp., (1, 1)T ∈ P3) is an
ε-redundant generator in G3.

The problem outlined above is even more critical when dealing with higher dimension vector spaces: it is
straightforward to devise examples where more than half of the constraints or generators in any minimized
description for an ε-polyhedron happen to be ε-redundant. Even when disregarding these pathological cases,
this form of redundancy can have a serious negative impact on the efficiency of most of the operations
computed on the ε-polyhedron; in particular, this is true when converting between constraint and generator
systems. Moreover, it must be stressed that efficiency degradation is not the only issue. It turns out that the
unnoticed presence of ε-redundant constraints may also cause headaches to the users of a software library
computing on the domain of NNC polyhedra (and adopting the ε dimension approach). As an example, sup-
pose one wants to know if a given NNC polyhedron is not topologically closed. Ordinary users of the software
library (i.e., all the users but the experts) may be tempted to implement such a test by checking whether
the constraint system in minimal form contains any strict inequality constraint. If the considered software
library merely computes a minimal description for the ε-polyhedron representing the NNC polyhedron, then
such an approach would be unsound, as illustrated by the scenario proposed in Figure 5. Here, the NNC
polyhedron P1 defined previously is intersected with the NNC polyhedron

P4 = con
(

{5 ≤ 4x ≤ 7}
)

∈ P1,

14

whose representation R4 = con
(

con reprC(P4)
)

∈ CP2 is the rectangle having vertices E, F , G and H. The
resulting trapezium (having vertices E, F , I and J) is another ε-representation for the NNC polyhedron
P4, which is clearly topologically closed. However, any constraint system describing the trapezium will also
encode the (redundant) strict inequality constraint x < 2, corresponding to the closed segment [I, J].

It is therefore meaningful to address the problem of providing a minimization operator that, starting from
an arbitrary description of an ε-polyhedron R Vε P , is able to compute a description of a (possibly different)
ε-polyhedron R′

Vε P that encodes a non-redundant high-level description for the NNC polyhedron P . The
result of this computation is said to be a description in ε-minimal form.

Definition 6.1. (ε-minimal forms.) Let R ∈ CPn+1 and P ∈ Pn be such that R Vε P and let (C,G) ≡ R
be a DD pair for R. Then

• C is in ε-minimal form if and only if con enc(C) is in minimal form;

• G is in ε-minimal form if and only if gen enc(G) is in minimal form.

The computation of ε-minimal forms will be based on the identification of all the ε-redundant constraints
and generators. These will be either removed or replaced by other constraints and generators that are not
ε-redundant in the resulting description.

While still reasoning at the informal level, it is worth stressing that this notion of redundancy has a
double nature. In the examples just presented, ε-redundancy shows its semantic nature, meaning that the
redundant information is encoded in the ε-polyhedron itself, rather than in one of its constraint or generator
descriptions. Namely, all constraint systems and generator systems describing R3 necessarily contain the
ε-redundant constraint and generators identified above. As a consequence, this kind of redundancy can only
be eliminated by choosing a different ε-polyhedron R′

3 representing the same NNC polyhedron P3.
There are also examples where ε-redundancy only has a syntactic nature, meaning that the redundancy

can be eliminated by choosing a particular constraint or generator description for the same ε-polyhedron.
Clearly, this happens when a description contains some constraints or generators that are redundant (in the
classical sense) for the ε-polyhedron itself. However, this may also happen when starting from a description
in minimal form. For instance, let R = con(C) ∈ CP2 be the ε-polyhedron defined by the constraint system

C = {0 ≤ x ≤ 0, ε ≥ 0, x + ε ≤ 1}.

Even though C is in minimal form, it is not in ε-minimal form, because the mixed constraint system
con enc(C) = {0 ≤ x ≤ 0, x < 1} contains the redundant strict inequality constraint x < 1. However,
the ε-polyhedron R can also be described by the constraint system

C′ = {0 ≤ x ≤ 0, 0 ≤ ε ≤ 1},

where the ε-redundant constraint x + ε ≤ 1 has been replaced by the ε upper bound constraint ε ≤ 1,
obtaining a description in ε-minimal form for the same ε-polyhedron R. It will be shown that this syntactic
kind of ε-redundancy cannot occur if we consider minimal descriptions in orthogonal form. As a matter of
fact, for the particular example considered above, the constraint system C ′ is in orthogonal form, whereas
this property does not hold for C.

6.1. The Computation of ε-Minimal Forms

The efficient detection of ε-redundant constraints and generators is based on the checking of particular
saturation conditions. The following notation is needed for a formal definition of these conditions.

We say that a point p (resp., a ray r) saturates a constraint β =
(

〈a, x〉 ≥ b
)

if and only if 〈a, p〉 = b
(resp., 〈a, r〉 = 0). For any point p and constraint system C, we define

sat con(p, C)
def
= {β ∈ C | p saturates β };

and, for any constraint β and generator system G = (R, P), we define

sat gen(β,G)
def
=

(

{ r ∈ R | r saturates β }, {p ∈ P | p saturates β }
)

.

Let (C,G) ≡ R ∈ CPn+1 be a DD pair for an ε-polyhedron. The set of strict and non-strict inequality

15

encodings C> and C≥ of the constraint system C are defined as

C>
def
=

{

(

〈a, x〉 + s · ε ≥ b
)

∈ C
∣

∣

∣
a 6= 0, s < 0

}

;

C≥
def
=

{

(

〈a, x〉 + s · ε ≥ b
)

∈ C
∣

∣

∣
a 6= 0, s = 0

}

.

The sets of ray encodings GR ⊆ R, point encodings GP ⊆ P and closure point encodings GC ⊆ P of the
generator system G = (R, P) are defined as

GR
def
=

{

(vT, e)T ∈ R
∣

∣ e = 0
}

;

GP
def
=

{

(vT, e)T ∈ P
∣

∣ e > 0
}

;

GC
def
=

{

(vT, e)T ∈ P
∣

∣ e = 0
}

.

We are now ready to provide the formal definition of strong ε-redundancy. As the name suggests, this no-
tion gives sufficient conditions for the identification of an ε-redundant constraint or generator in a description
of an ε-polyhedron.

Definition 6.2. (Strong ε-redundancy.) Let (C,G) ≡ R ∈ CPn+1. A constraint β is strongly ε-redundant
in C if β ∈ C> and at least one of the following conditions holds:

sat gen
(

β, (GR,GC)
)

v (GR, ∅);

∃β′ ∈ C> \ {β} . sat gen
(

β, (GR,GC)
)

v sat gen(β′,G).

A generator p is strongly ε-redundant in G if p ∈ GP and

∃p′ ∈ GP \ {p} . sat con(p, C≥) ⊆ sat con(p′, C).

The next proposition shows that strongly ε-redundant constraints and generators can be safely removed
from (or replaced in) the descriptions of an ε-polyhedron without affecting the represented NNC polyhe-
dron. If the ε-polyhedron was constraint- or generator-biased, it remains constraint- or generator-biased,
respectively.

Proposition 6.3. Let VY ∈ {Vε, VC , VG}. Assume (C,G) ≡ R ∈ CPn+1 and P ∈ Pn are such that
R VY P 6= ∅. Suppose that β is a strongly ε-redundant constraint in C and p is a strongly ε-redundant
generator in G = (R, P). Then the following hold:

con
(

(

C \ {β}
)

∪ {ε ≤ 1}
)

VY P ; (6)

gen
(

(

R, P \ {p}
)

)

VY P . (7)

According to Definition 6.2, only the strict inequality encodings and the point encodings of an ε-
polyhedron can be identified as strongly ε-redundant constraints and generators, respectively. The following
result shows that such a restriction is inconsequential; intuitively, all the non-strict inequality encodings, the
ray encodings and the closure point encodings can only give rise to the syntactic kind of ε-redundancy.

Proposition 6.4. Let R,R′ ∈ CPn+1 and P ∈ Pn be such that R Vε P 6= ∅ and R′
Vε P ; let also

(C,G) ≡ R. Then

∀β ∈ C≥ : R′ ⊆ con
(

{β}
)

; (8)

∀r ∈ GR : r ∈ rays(R′); (9)

∀p ∈ GC : p ∈ R′. (10)

When all the strongly ε-redundant constraints or generators have been filtered away, the descriptions of
an ε-polyhedron no longer contain ε-redundancies of the semantic kind. Thus, descriptions in ε-minimal form
can be obtained by the computation of minimal orthogonal forms.

Proposition 6.5. Let R ∈ CPn+1 and P ∈ Pn be such that R Vε P 6= ∅ and let (C,G) ≡ R be a DD pair
in minimal orthogonal form. Then the following hold:

16

O
x

ε

ε = 1B

C

D

K

Fig. 6. The trapezium OCKB is an ε-representations for P3, obtained by applying the ε-minimization process to the constraint
system describing R3.

O
x

ε

ε = 1B

C

D

Fig. 7. The triangles OCB and OCD are other two different ε-representations for P3, which can be obtained by applying the
ε-minimization process to the generator system describing R3.

1. If C contains no strongly ε-redundant constraint, then it is in ε-minimal form;

2. If G contains no strongly ε-redundant generator, then it is in ε-minimal form.

It is worth stressing that, even if (C,G) is a DD pair for R VC P , after removing all strongly ε-redundant
constraints and generators the resulting descriptions C ′ and G′ may be such that con(C ′) 6= gen(G′), so that
(C′,G′) is not a DD pair. Moreover, having one of the systems in ε-minimal form does not imply that the
corresponding dual description will also be in ε-minimal form.

As an example, we now compute the ε-minimal forms for the polyhedron R3 represented in Figure 4.
Let us first consider the constraint system. The two strict inequality encodings x − ε ≥ 0 and −x − ε ≥ −3,
which correspond to segments [O, B] and [C, D], are not strongly ε-redundant, because they are saturated
by the closure point encodings O and C, respectively. In contrast, the constraint x − 3ε ≥ 4, corresponding
to segment [B, D], is identified as strongly ε-redundant (no closure point encoding saturates it) and can
be replaced by the ε upper bound constraint ε ≤ 1. The resulting constraint system, which is in ε-minimal
form, defines the trapezium of vertices O, C, K, and B represented in Figure 6. Note that the generator
system for this trapezium is not in ε-minimal form. It is worth noting that, after removing an ε-redundant
constraint, the addition of the ε upper bound constraint ε ≤ 1 is in general required to obtain another
ε-representation. For instance, this happens when computing the ε-minimal form of the constraint system
describing the trapezium EFIJ of Figure 5: the removal of the constraint corresponding to segment [I, J]
would yield a strip which is unbounded from above, so that it would not satisfy condition 2 of Definition 5.2;
the addition of the ε upper bound constraint results in the rectangle EFGH (i.e., the ε-representation R4

of P4).
Starting again from polyhedron R3, let us now apply the ε-minimization process to its generator system,

which is made up of the four points O, C, D, and B. It is easy to observe that each one of the two point
encodings is made strongly ε-redundant by the other one (they both saturate the empty set of non-strict
inequality encodings); as a consequence, one of them can be removed, obtaining either one of the triangles
OCB and OCD represented in Figure 7, whose corresponding generator systems are both in ε-minimal form.

7. Implementation and Evaluation

All the ideas presented in this paper have been implemented and incorporated into the Parma Polyhedra
Library (PPL, http://www.cs.unipr.it/ppl/). The PPL is a collaborative project started in January 2001
at the Department of Mathematics of the University of Parma and it aims at becoming a truly professional

17

library for the handling of approximations based on (not necessarily closed) convex polyhedra targeted at
abstract interpretation and computer-aided verification.

This implementation allowed us, first of all, to demonstrate the real benefits of having an implementation-
independent interface based on mixed constraint and generator systems. In order to fully appreciate the
advantages from the users’ point of view, it is instructive to compare the new interface with the ones provided
by the only two polyhedra libraries —among those based on the DD method that provide the services required
by applications in static analysis and computer-aided verification— that support NNC polyhedra. These are
“Polka” [HKP95] by Halbwachs, A. Kerbrat, and Y.-E. Proy, and “New Polka”, by B. Jeannet [Jea02].
While the “Polka” polyhedra library is not available in source format and binaries are distributed under
rather restrictive conditions (until about the year 1996 they could be freely downloaded), “New Polka” is
free software. Both libraries can be compiled so as to work with strict inequalities. However, this support
is incomplete, incurring avoidable inefficiencies and leaving the client application with the non-trivial task
of a correct interpretation of the obtained results. In particular, even though an NNC polyhedron can be
easily described by using constraint systems containing strict inequalities, the libraries lack the corresponding
generalization of generator systems (i.e., the introduction of closure points), resulting into an asymmetric
user interface. For instance, the following sentence comes from the documentation of “New Polka” [Jea02,
Section 1.1.4, page 10] (where s denotes the ε coefficient):
Don’t ask me the intuitive meaning of s 6= 0 in rays and vertices !

The problem is also present in “Polka” and discussed in more detail in [HKP95, Section 4.5, pp. 10–11]:
While strict inequations handling is transparent for constraints (being displayed accurately), the extra dimension added to the
variables space is apparent when it comes to generators : one extra coefficient, resp. extra vertices (as epsilon is bounded),
materialize this dimension in every generator, resp. generators system.

This makes more difficult to define polyhedra with the only help of generators : one should carefully study the extra vertices
with non null epsilon coefficients added to constraints defined polyhedra, in the case of large inequations, and the case of strict
inequations.

This kind of approach, which requires the user to be aware of so many implementation details, is far from
being satisfactory. Finally, neither “Polka” nor “New Polka” provide support for the minimization of the
descriptions of an NNC polyhedron, therefore suffering from the issues exposed in Section 6.

In order to asses the practical relevance of the minimization procedures proposed in this paper, we have
conducted a preliminary experimental evaluation. Table 2 summarizes the results for four simple experiments,
where a pair of rows corresponds to a single experiment. Each of the four experiments, takes four NNC
polyhedra P1, P2, P3, P4 defined by extended generator systems G ′

1, G
′
2, G

′
3, G

′
4, respectively and aims to

compute a constraint description for the NNC polyhedron P = (P1∩P2)](P3∩P4). The four input polyhedra
all have the same shape (they are equivalent up to translation and scaling transformations); in particular,
if G′

i = (∅, P ′
i , C

′
i), then # P ′

i and # C ′
i are invariant for i = 1, . . . , 4 (# P ′

i and # C ′
i are given in the first

column of the table). Each row of a pair of rows corresponds to one of two alternative evaluation strategies:

• the first row reports the measurements obtained when adopting the standard evaluation strategy which
does not compute the ε-minimal forms;

• the second row reports the measurements obtained when adopting the enhanced evaluation strategy
which computes the ε-minimal forms of the polyhedra descriptions just before the application of each
operator (i.e., before computing the two intersections and before computing the poly-hull), as well as at
the end of the overall computation.

All experiments start by computing the constraint-biased representation Gi of G′
i, as given in Defini-

tion 5.7, which define the C-ε-polyhedra Ri = gen(Gi) VC Pi; they then compute a constraint system C
for the C-ε-polyhedron R = (R1 ∩ R2)] (R3 ∩ R4). To compute the two intersections R12 = R1 ∩ R2

and R34 = R3 ∩ R4, the conversion algorithm is applied to obtain the constraint systems Ci such that
Ri = con(Ci). In the second and third columns we give the cardinalities of Gi and Ci, respectively. Note that,
in the case of the enhanced evaluation strategy, these constraint systems are in ε-minimal form, so that # Ci

for the enhanced evaluation strategy is less than that for the standard evaluation strategy. The constraint
systems for R12 and R34 are then computed and the conversion algorithm applied so as to obtain the gen-
erator systems G12 and G34 such that R12 = gen(G12) and R34 = gen(G34); the corresponding cardinalities
are shown in the fourth and fifth columns where again, in the case of the enhanced evaluation strategy, the
generator systems G12 and G34 are in ε-minimal form. Then, the poly-hull R = R12]R34 is computed and
the conversion algorithm is again applied to obtain a constraint description C of R; the cardinality of C is
reported in the sixth column. Even though not necessary for the correctness of the computation, in the case
of the enhanced evaluation strategy C is put into ε-minimal form. Note that, by Definitions 5.4 and 6.1, the
cardinality of a minimal constraint system for P is just one or two less than the value of # C reported for

18

Table 2. Exploiting ε-minimal forms to improve efficiency.

4 × (# P ′

i
+ # C′

i
) 4 × #Gi 4 × # Ci #G12 #G34 # C overall time (s) ε-mf time (s)

4 × (4 + 8) 4 × 16 4 × 37 130 76 332 0.36
4 × 16 4 × 22 39 16 33 0.02 0.00

4 × (8 + 8) 4 × 24 4 × 55 208 124 520 1.05
4 × 24 4 × 30 49 20 43 0.07 0.00

4 × (8 + 10) 4 × 26 4 × 109 413 304 2693 52.84
4 × 26 4 × 46 57 24 127 0.48 0.01

4 × (16 + 10) 4 × 42 4 × 163 696 656 4994 503.27
4 × 42 4 × 66 77 28 152 2.18 0.05

the enhanced evaluation strategy. The last two columns give the time in seconds taken for the computations.
The first of these reports the total time for computing C while, for the enhanced evaluation strategy only,
the final column reports just the time spent computing the ε-minimal form for the constraint system for R.

Note that the results are explained in terms of the low-level implementation details of the two evaluation
strategies; these inner steps are in fact transparent to an end-user of the library. Also, we adopted the
constraint-biased implementation supported by the Parma Polyhedra Library [BHRZ03a, BRZH02], but
similar results have been obtained when considering the generator-biased implementation.

Even though the considered examples are not meant to provide a faithful representation of typical com-
putation patterns, we can make a couple of observations based on these experiments. The application of even
a few operators on the closed representations of NNC polyhedra may produce a huge number of constraints
and/or generators that are strongly ε-redundant; these can slow-down subsequent computations considerably
and are likely to confuse anyone who looks at the final output. Moreover, the computation of ε-minimal forms
seems to have a negligible cost (see the last column in Table 2), so the adoption of the enhanced evaluation
strategy is likely to result in significant efficiency gains even when considering more general computation
patterns. On the other hand, the enhanced evaluation strategy does not come with an improved efficiency
guarantee, because there can be cases where the representations in ε-minimal form, even though having
fewer constraints or generators, happen to be more expensive. The conjecture, which is fully justified by our
experiments, is that any efficiency losses will be both less frequent and less significant than efficiency gains.

As a final remark, it must be observed that the enhanced computation strategy can be made smarter than
in the above example. It can be observed that the standard evaluation strategy allows for the application
of the incremental version of the conversion algorithm: for instance, we start from the DD pair (C1,G1) for
the ε-polyhedron R1 and incrementally add the constraints C2 describing the ε-polyhedron R2, keeping the
generator system of the result up-to-date so that, at the end of the computation of the intersection R1 ∩R2,
we still have a DD pair (i.e., the generator system G12 will be already up-to-date). In contrast, the enhanced
evaluation strategy does not fit very well with this incremental approach, because after computing the ε-
minimal form for C1, we no longer have a DD pair; thus, the generator representation for the intersection
R1 ∩ R2 has to be recomputed from scratch. The same happens when computing the other intersection
and the poly-hull operation. Since the number of strongly ε-redundant elements contained in a description
can be efficiently computed, an improved evaluation strategy may heuristically predict and compare the
gains coming from the computation of ε-minimal forms with respect to the losses coming from the lack
of incrementality, therefore choosing the evaluation strategy that seems to be more appropriate for the
considered context.

8. Conclusion

Convex polyhedra provide the basis for several abstractions used in static analysis and computer-aided
verification of complex system. Some of these applications require the manipulation of convex polyhedra that
are not necessarily closed. In this work we have proposed an elegant way of decoupling the essential geometric
features of NNC polyhedra from their traditional implementation. This separation, besides providing a
natural and easy to use interface, enables the search for new implementation techniques and makes their
eventual integration into existing software libraries seamless (i.e., transparent to the client application). In

19

fact, we have shown that the standard implementation of NNC polyhedra, which happens to be biased
for constraint-intensive computations, has a dual that is biased for generator-intensive computations. For
both kinds of implementations, we have provided new minimization procedures that allow to extract a
non-redundant constraint or generator description of an NNC polyhedron from its low level encodings.

We have implemented all these ideas in the Parma Polyhedra Library a modern C++ library for the
manipulation of convex polyhedra. Since it is based on the high level interface for the specification of NNC
polyhedra and it implements the new minimization procedures introduced in this work, the Parma Polyhedra
Library can be regarded as the first software library (based on the DD method) providing full support for
the domain of NNC polyhedra. Some very preliminary experiments on purely synthetic benchmarks have
shown that a careful use of the new minimization procedures for NNC polyhedra can have a dramatic effect
on the size of the representations and, thus, on the efficiency of the algorithms operating upon them.

The Parma Polyhedra Library has also been extended to experiment with the two alternative implemen-
tations of NNC polyhedra. In this respect, it seems likely that the performance of one encoding with respect
to the other will depend on the particular application and, more specifically, on the kind of polyhedra and
operations that are more common in that application. For future work, given the dual characteristics of the
two representations, it would be interesting to investigate whether efficient techniques can be devised so as
to use both constraint- and generator-biased encodings, switching dynamically from one to the other in an
attempt to maximize performance.

Acknowledgments. We would like to thank Elisa Ricci, who participated to the early stage of this work,
and the anonymous reviewers of [BRZH02] for their helpful comments and observations.

References

[BHRZ03a] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. The Parma Polyhedra Library User’s Manual. Department
of Mathematics, University of Parma, Parma, Italy, release 0.5 edition, April 2003. Available at http://www.cs.
unipr.it/ppl/.

[BHRZ03b] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex polyhedra. In R. Cousot,
editor, Static Analysis: Proceedings of the 10th International Symposium, volume 2694 of Lecture Notes in Com-
puter Science, pages 337–354, San Diego, California, USA, 2003. Springer-Verlag, Berlin.

[BHZ03] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding and implementation of not necessarily closed convex
polyhedra. In M. Leuschel, S. Gruner, and S. Lo Presti, editors, Proceedings of the 3rd Workshop on Automated
Verification of Critical Systems, pages 161–176, Southampton, UK, 2003. Published as TR Number DSSE-TR-
2003-2, University of Southampton.

[BJT99] F. Besson, T. P. Jensen, and J.-P. Talpin. Polyhedral analysis for synchronous languages. In A. Cortesi and
G. Filé, editors, Static Analysis: Proceedings of the 6th International Symposium, volume 1694 of Lecture Notes
in Computer Science, pages 51–68, Venice, Italy, 1999. Springer-Verlag, Berlin.

[BK97] F. Benoy and A. King. Inferring argument size relationships with CLP(R). In J. P. Gallagher, editor, Logic
Program Synthesis and Transformation: Proceedings of the 6th International Workshop, volume 1207 of Lecture
Notes in Computer Science, pages 204–223, Stockholm, Sweden, 1997. Springer-Verlag, Berlin.

[BRZH02] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra and the Parma Polyhedra
Library. In M. V. Hermenegildo and G. Puebla, editors, Static Analysis: Proceedings of the 9th International
Symposium, volume 2477 of Lecture Notes in Computer Science, pages 213–229, Madrid, Spain, 2002. Springer-
Verlag, Berlin.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Proceedings of the Fourth Annual ACM Symposium on Principles
of Programming Languages, pages 238–252, New York, 1977. ACM Press.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. In Conference
Record of the Fifth Annual ACM Symposium on Principles of Programming Languages, pages 84–96, Tucson,
Arizona, 1978. ACM Press.

[Che64] N. V. Chernikova. Algorithm for finding a general formula for the non-negative solutions of system of linear
equations. U.S.S.R. Computational Mathematics and Mathematical Physics, 4(4):151–158, 1964.

[Che65] N. V. Chernikova. Algorithm for finding a general formula for the non-negative solutions of system of linear
inequalities. U.S.S.R. Computational Mathematics and Mathematical Physics, 5(2):228–233, 1965.

[Che68] N. V. Chernikova. Algorithm for discovering the set of all solutions of a linear programming problem. U.S.S.R.
Computational Mathematics and Mathematical Physics, 8(6):282–293, 1968.

[CS01] M. A. Colón and H. B. Sipma. Synthesis of linear ranking functions. In T. Margaria and W. Yi, editors, Tools and
Algorithms for Construction and Analysis of Systems, 7th International Conference, TACAS 2001, volume 2031
of Lecture Notes in Computer Science, pages 67–81, Genova, Italy, 2001. Springer-Verlag, Berlin.

[DRS01] N. Dor, M. Rodeh, and S. Sagiv. Cleanness checking of string manipulations in C programs via integer analysis.
In P. Cousot, editor, Static Analysis: 8th International Symposium, SAS 2001, volume 2126 of Lecture Notes in
Computer Science, pages 194–212, Paris, France, 2001. Springer-Verlag, Berlin.

20

[Hal93] N. Halbwachs. Delay analysis in synchronous programs. In C. Courcoubetis, editor, Computer Aided Verification:
Proceedings of the 5th International Conference, volume 697 of Lecture Notes in Computer Science, pages 333–346,
Elounda, Greece, 1993. Springer-Verlag, Berlin.

[HH95] T. A. Henzinger and P.-H. Ho. A note on abstract interpretation strategies for hybrid automata. In P. J. Antsaklis,
W. Kohn, A. Nerode, and S. Sastry, editors, Hybrid Systems II, volume 999 of Lecture Notes in Computer Science,
pages 252–264. Springer-Verlag, Berlin, 1995.

[HHWT97] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid systems. Software Tools for
Technology Transfer, 1(1+2):110–122, 1997.

[HKP95] N. Halbwachs, A. Kerbrat, and Y.-E. Proy. POLyhedra INtegrated Environment. Verimag, France, version 1.0 of
POLINE edition, September 1995. Documentation taken from source code.

[HPR94] N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems by means of convex approxima-
tions. In B. Le Charlier, editor, Static Analysis: Proceedings of the 1st International Symposium, volume 864 of
Lecture Notes in Computer Science, pages 223–237, Namur, Belgium, 1994. Springer-Verlag, Berlin.

[HPR97] N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems using linear relation analysis.
Formal Methods in System Design, 11(2):157–185, 1997.

[Jea02] B. Jeannet. Convex Polyhedra Library, release 1.1.3c edition, March 2002. Documentation of the “New Polka”
library available at http://www.irisa.fr/prive/Bertrand.Jeannet/newpolka.html.

[Le 92] H. Le Verge. A note on Chernikova’s algorithm. Publication interne 635, IRISA, Campus de Beaulieu, Rennes,
France, 1992.

[MBB+99] Z. Manna, N. S. Bjørner, A. Browne, M. Colón, B. Finkbeiner, M. Pichora, H. B. Sipma, and T. E. Uribe. An
update on STeP: Deductive-algorithmic verification of reactive systems. In R. Berghammer and Y. Lakhnech,
editors, Tool Support for System Specification, Development and Verification, Advances in Computing Sciences,
pages 174–188. Springer-Verlag, Berlin, 1999.

[MRTT53] T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double description method. In H. W. Kuhn and
A. W. Tucker, editors, Contributions to the Theory of Games – Volume II, number 28 in Annals of Mathematics
Studies, pages 51–73. Princeton University Press, Princeton, New Jersey, 1953.

[Pug92] W. Pugh. A practical algorithm for exact array dependence analysis. Communications of the ACM, 35(8):102–114,
1992.

[SW70] J. Stoer and C. Witzgall. Convexity and Optimization in Finite Dimensions I. Springer-Verlag, Berlin, 1970.

A. Proofs

As already observed, Theorem 3.2 is a simple consequence of well known theorems by Minkowski (stating
the ‘only if ’ part) and Weyl (stating the ‘if ’ part). We provide here proofs of the other formal results stated
in the main part of the paper.

A.1. Proofs of the Results Stated in Section 4

In order to simplify the proof of Proposition 4.3, we introduce the following lemma.

Lemma A.1. Let P = con(C) ∈ Pn and v ∈ C(P). Let also
(

〈a, x〉 ./ b
)

∈ C, where ./ ∈ {≥, >}. Then
〈a, v〉 ≥ b.

Proof. Let H be the set of affine half-spaces corresponding to the set of constraints C. Since C(·) is an upper
closure operator,

C(P) = C

(
⋂

H
)

⊆ C

(

⋂
{

C(H)
∣

∣ H ∈ H
}

)

=
⋂

{

C(H)
∣

∣ H ∈ H
}

.

As v ∈ C(P), we have v ∈ C(H), for all H ∈ H. Let Hβ ∈ H denote the affine half-space corresponding to
β =

(

〈a, x〉 ./ b
)

. Hence v ∈ C(Hβ). If ./ ∈ {≥}, then C(Hβ) = con
(

{β}
)

. On the other hand, if ./ ∈ {>},

then C(Hβ) = con
(

{β′}
)

, where β′ =
(

〈a, x〉 ≥ b
)

. Thus, as v ∈ C(Hβ), we obtain the thesis 〈a, v〉 ≥ b.

Proof of Proposition 4.3 on page 6. Let P = con(C) ∈ Pn be an NNC polyhedron defined by the mixed
constraint system C = {β1, . . . , βm}.

To prove the ‘only if ’ branch, suppose that c is a closure point of P , so that c ∈ C(P). Then P 6= ∅,
because the topological closure of the empty set is still empty. Considering an arbitrary point p ∈ P and a
scalar σ such that 0 < σ < 1, we have to prove that vector v = σp + (1 − σ)c is such that v ∈ P . To this
end, we show that v satisfies all constraints βi =

(

〈ai, x〉 ./i bi

)

∈ C. Since p ∈ P , it holds 〈ai, p〉 ./i bi;
moreover, by applying Lemma A.1, we also have 〈ai, c〉 ≥ bi. Therefore, we obtain

〈ai, v〉 =
〈

ai, σp + (1 − σ)c
〉

= σ〈ai, p〉 + (1 − σ)〈ai, c〉 ./i σbi + (1 − σ)〈ai, c〉 ≥ σbi + (1 − σ)bi = bi.

21

It follows that if ./i ∈ {≥}, then 〈ai, v〉 ≥ bi and, if ./ ∈ {>}, 〈ai, v〉 > bi. Therefore, in both cases we
obtain 〈ai, v〉 ./i bi

To prove the ‘if ’ branch, suppose now that P 6= ∅ and σp + (1 − σ)c ∈ P , for all p ∈ P and 0 < σ < 1.
We have to show that c ∈ C(P). To this end, for each i ∈ N, let σi = 1

i
, Bi be the open ball centered in c

with radius σi, and vi = σi+1p+(1−σi+1)c; then, as 0 < σi+1 < σi < 1, we have vi ∈ P ∩Bi. As this holds
for any i ∈ N, c ∈ C(P).

A direct proof of Theorem 4.4 would require a generalization of Minkowski’s and Weyl’s theorems. In
contrast, we will provide an indirect proof: this will be based on the standard (i.e., non-generalized) version
of Minkowski’s and Weyl’s theorems, stated as Theorem 3.2, as well as on Propositions 5.5 and 5.10. Thus,
the proof of Theorem 4.4 will appear at the end of the next section.

A.2. Proofs of the Results Stated in Section 5

Proof of Proposition 5.3 on page 9. Let R = con(C). We first assume that (4) holds for any constraint
β ∈ C and show that R is an ε-polyhedron. Condition (2) of Definition 5.2 holds by hypothesis. We prove

condition (3) holds. Let β =
(

〈a, x〉+ s · ε ≥ b
)

. Then, by (4), R ⊆ con
(

{

〈a, x〉+ 0 · ε ≥ b
}

)

. Thus, for any

point (vT, e)T ∈ R we have 〈a, v〉+ 0 · e ≥ b, so that also 〈a, v〉+ s · 0 ≥ b and hence (vT, 0)T satisfies β. As
β was an arbitrary constraint in C, (vT, 0)T ∈ R and condition (3) holds.

Second we assume that R is an ε-polyhedron and prove that (4) holds. Suppose β =
(

〈a, x〉+s·ε ≥ b
)

and

that R ⊆ con
(

{β}
)

. Then, any point (vT, e)T ∈ R satisfies β. By condition (3) of Definition 5.2, (vT, 0)T ∈ R

and therefore satisfies β. Thus we have 〈a, v〉 ≥ b. Hence, if β0 =
(

〈a, x〉+ 0 · ε ≥ b
)

, (vT, e)T satisfies β0. As

(vT, e)T was an arbitrary point in R, R ⊆ con
(

{β0}
)

.

To prove Proposition 5.5, we need a few additional lemmas.

Lemma A.2. Let R ∈ CPn+1 be an ε-polyhedron. If (rT, e)T ∈ rays(R) and r 6= 0, then (rT, 0)T ∈ rays(R).

Proof. Since R has a ray, it is not empty. Thus, let (vT, e′)T ∈ R. By condition (3) of Definition 5.2, we have

(vT, 0)T ∈ R. Since (rT, e)T is a ray of R, we have (vT, 0)T +ρ(rT, e)T =
(

(v +ρr)T, ρe
)T

∈ R for all ρ ∈ R+.

From this, again by condition (3) of Definition 5.2, we obtain
(

(v + ρr)T, 0
)T

= (vT, 0)T + ρ(rT, 0)T ∈ R,
proving that also (rT, 0)T is a ray of R.

Lemma A.3. Let R ∈ CPn+1 be an ε-polyhedron. If (rT, e)T ∈ rays(R), then e ≤ 0. Moreover, if R is a
C-ε-polyhedron, then e = 0.

Proof. Since R is an ε-polyhedron, condition (2) of Definition 5.2 holds so that, for some δ > 0 every
point in R satisfies the constraint ε ≤ δ. Since R has a ray, it is non-empty, so that there exists a point
(vT, e0)

T ∈ R such that e0 ≤ δ. Thus, for all ρ ∈ R+, (vT

ρ , eρ)
T = (vT, e0)

T + ρ(rT, e)T ∈ R. By condition (2)
of Definition 5.2, eρ = e0 + ρe ≤ δ. Therefore, as this holds for all ρ ∈ R+, we have e ≤ 0.

By Definition 5.6, if R is a C-ε-polyhedron then it also satisfies the constraint ε ≥ 0. By repeating the
above argument, we obtain eρ = e0 +ρe ≥ 0. As this holds for all ρ ∈ R+, we also have e ≥ 0, i.e., e = 0.

In the following lemmas, for any (C,G) ≡ R ∈ CPn+1 such that R Vε P 6= ∅, we assume the notations
C>, C≥, GR, GP , and GC introduced in Section 6.1. Moreover, we will denote the set of ε upper bounds of
the constraint system C as

Cε
def
=

{

(

〈a, x〉 + s · ε ≥ b
)

∈ C
∣

∣

∣
a = 0, s < 0

}

.

A constraint β ∈ Cε will be usually denoted as ε ≤ δ. Since P 6= ∅, we have δ > 0.

Lemma A.4. Let R = gen(G) ∈ CPn+1 be an ε-polyhedron, where G = (R, P). Let also (vT, e′)T ∈ R
for some e′ ∈ R and take emax ∈ R to be the maximal ε coordinate such that (vT, emax)

T ∈ R. Then
(vT, emax)

T ∈ gen
(

(GR,GP ∪ C ′)
)

, where C ′ =
{

(cT, 0)T ∈ GC

∣

∣ ∀e′ ∈ R : (cT, e′)T /∈ GP

}

.

Proof. By hypothesis, (vT, emax)
T ∈ gen

(

(R, P)
)

so that

(vT, emax)
T =

(

ρ1r1 + · · · + ρrrr

)

+
(

π1p1 + · · · + πppp

)

, (11)

22

where r ≥ 0, {r1, . . . , rr} ⊆ R, ρ1, . . . , ρr > 0 and p > 0, {p1, . . . , pp} ⊆ P , π1, . . . , πp > 0 and
∑p

i=1
πi = 1.

For all 1 ≤ i ≤ r, let ri = (vT

i , ei)
T. Suppose that, for some 1 ≤ j ≤ r, we have ej 6= 0. Then, as R is an

ε-polyhedron, by Lemma A.3, ej < 0. If vj = ∅ then, by removing the ray rj in (11), we would obtain

(vT, emax)
T − ρjrj = (vT, emax − ρjej)

T ∈ R.

On the other hand, if vj 6= ∅, then, by Lemma A.2, r0 = (vT

j , 0)T ∈ rays(R). Thus, in this case, by replacing
the ray rj by r0 in (11), we again obtain

(vT, emax)
T − ρjrj + ρjr0 = (vT, emax − ρjej)

T ∈ R,

In both cases, as ρj > 0 and ej < 0, emax − ρjej > emax. contradicting the maximality of emax. Thus we
must have ej = 0 so that rj ∈ GR. As the choice of 1 ≤ j ≤ r was arbitrary, {r1, . . . , rr} ⊆ GR.

For all 1 ≤ i ≤ p, let pi = (vT

i , ei)
T. Suppose that, for some 1 ≤ j ≤ p, we have ej < 0. Then, as R is an

ε-polyhedron, by condition (3) of Definition 5.2, p0 = (vT

j , 0)T ∈ R. Replacing the point pj by p0 in (11),
we would obtain

(vT, emax)
T − πjpj + πjp0 = (vT, emax − πjej)

T ∈ R,

where, since πj > 0, emax − πjej > emax, contradicting the maximality of emax. Hence, for all 1 ≤ i ≤ p,
we have ei ≥ 0. Now suppose that, for some 1 ≤ j ≤ p, we have ej = 0 and there exists e+

j > 0 such that

p+
j = (vT

j , e+
j)T ∈ R. Replacing the point pj by p+

j in (11), we would obtain

(vT, emax)
T − πjpj + πjp

+
j = (vT, emax + πje

+
j)T ∈ R,

where, since πj > 0, emax + πje
+
j > emax, again contradicting the maximality of emax. It follows that, for all

1 ≤ i ≤ p, the point pi ∈ GP , if ei > 0, and pi ∈ C ′, otherwise. Thus, (vT, emax)
T ∈ gen

(

(GR,GP ∪C ′)
)

.

Proof of Proposition 5.5 on page 10. Let G = (R, P) and gen enc(G) = (R1, P1, C1) be the corresponding
extended generator system, where R1 = {r1, . . . , rr}, P1 = {p1, . . . , pp}, and C1 = {c1, . . . , cc}.

Suppose first that [[R]] = ∅. Then, by Definition 5.4, con
(

con enc(C)
)

= ∅. Also, by Definition 5.1,

R ⊆ con
(

{ε ≤ 0}
)

so that, by Definition 5.4, P1 = ∅ and gen((R1, P1, C1)
)

= ∅. Thus (5) holds.

Suppose now that [[R]] 6= ∅. We will first prove that con
(

con enc(C)
)

⊆ [[R]] and gen
(

gen enc(G)
)

⊆ [[R]].
To this end, we assume that one of the following holds:

v ∈ con
(

con enc(C)
)

, (12)

v ∈ gen
(

gen enc(G)
)

, (13)

and, in each case, we show that there exists ev > 0 such that (vT, ev)T ∈ R.
Suppose that (12) holds. By Definition 5.2, the set C> ∪ Cε is non-empty so that, as the value of the ε

coefficient in each constraint in the set is non-zero, the set
{

e ∈ R

∣

∣

∣
e = −s−1

(

〈a, v〉 − b
)

,
(

〈a, x〉 + s · ε ≥ b
)

∈ C> ∪ Cε

}

is also non-empty. Let ev be the least element of this set. Suppose β =
(

〈a, x〉 + s · ε ≥ b
)

∈ C> ∪ Cε.

By Definition 5.4, if β ∈ C>, then
(

〈a, x〉 > b
)

∈ con enc(C) so that, as (12) holds, 〈a, v〉 > b. On the
other hand, if β ∈ Cε then a = 0 and, as [[R]] is non-empty, by Definition 5.2, b < 0. Thus, in both cases
〈a, v〉−b > 0 so that, as s < 0, −s−1

(

〈a, v〉−b
)

> 0. It follows that ev > 0. For each
(

〈a, x〉+0 ·ε ≥ b
)

∈ C≥,

for some ./ ∈ {≥, >}, the constraint
(

〈a, x〉 ./ b
)

∈ con enc(C) so that, by (12), 〈a, v〉 ≥ b holds. Hence
(vT, ev)T satisfies all the constraints in C≥. It follows that (vT, ev)T satisfies every constraint in C> ∪C≥ ∪Cε.
Reasoning toward a contradiction, suppose that (vT, ev)T /∈ R. As [[R]] 6= ∅, by Definition 5.1, there exists
(wT, ew)T ∈ R such that ew > 0; in particular, (wT, ew)T satisfies all constraints in C. Thus there exists a
point (wT

0 , e0)
T ∈ R which lies on the line segment joining (wT, ew)T and (vT, ev)T and saturates a constraint

β′ =
(

〈a′, x〉 + s′ · ε ≥ b′
)

∈ C \ (C> ∪ C≥ ∪ Cε).

Thus 〈a′, w0〉+s′ ·e0 = b′. However, since s′ > 0 and e0 > 0, 〈a′, w0〉 < b′ so that (wT

0 , 0)T /∈ R, contradicting
condition (3) of Definition 5.2. Thus (vT, ev)T ∈ R.

23

Suppose next that (13) holds. By definition of function ‘gen’ in Theorem 4.4,

v =
r

∑

i=1

ρiri +

p
∑

i=1

πipi +
c

∑

i=1

γici

where p > 0, {r1, . . . , rr} ⊆ R1, {p1, . . . , pp} ⊆ P1, {c1, . . . , cc} ⊆ C1, ρ ∈ Rr
+
, π ∈ R

p
+ \ {0}, γ ∈ Rc

+
and

∑p
i=1

πi +
∑c

i=1
γi = 1. By Definition 5.4, for some e1, . . . , ep > 0,

{

(rT

1 , 0)T, . . . , (rT

r , 0)T
}

⊆ R,
{

(pT

1 , e1)
T, . . . , (pT

p , ep)
T
}

∪
{

(cT

1 , 0)T, . . . , (cT

c , 0)T
}

⊆ P.

Thus, letting

(vT, ev)T =
r

∑

i=1

ρi(r
T

i , 0)T +

p
∑

i=1

πi(p
T

i , ei)
T +

c
∑

i=1

γi(c
T

i , 0)T

we obtain (vT, ev)T ∈ gen(G) = R. Since p > 0 and π 6= 0, we also obtain ev > 0.
We now prove that [[R]] ⊆ con

(

con enc(C)
)

and [[R]] ⊆ gen
(

gen enc(G)
)

. To this end, let (vT, e)T ∈ R,
where e > 0; since R is an ε-polyhedron, by condition (2) of Definition 5.2, the ε dimension is bounded from
above and thus there exists a value emax > 0 such that (vT, emax)

T ∈ R and, for all e′ > emax, (vT, e′)T /∈ R.
We show that both (12) and (13) hold.

Suppose that β′ =
(

〈a, x〉 ./ b
)

∈ con enc(C), where ./ ∈ {≥, >}. Then, by Definition 5.4, there exists

s ≤ 0 such that β =
(

〈a, x〉 + s · ε ≥ b
)

∈ C. Since (vT, emax)
T ∈ R, then 〈a, v〉 + s · emax ≥ b so that, as

emax > 0 holds, we obtain 〈a, v〉 ≥ b. Moreover, if ./ ∈ {>}, then s < 0 and we obtain 〈a, v〉 > b. Thus, for
any ./ ∈ {≥, >}, v satisfies β′. As β′ ∈ con enc(C) was chosen arbitrarily, (12) holds.

We next prove (13). Since emax was chosen to be maximal for v, we can apply Lemma A.4, so that
(vT, emax)

T ∈ gen
(

(GR,GP ∪ C ′)
)

, where

C ′ =
{

(cT, 0)T ∈ GC

∣

∣ ∀e′ ∈ R : (cT, e′)T /∈ GP

}

.

By definition of ‘gen’, we obtain

(vT, emax)
T =

r
∑

i=1

ρi(r
T

i , 0)T +

p
∑

i=1

πi(p
T

i , ei)
T +

c
∑

i=1

γi(c
T

i , 0)T;

where
{

(rT

1 , 0)T, . . . , (rT

r , 0)T
}

⊆ GR,
{

(pT

1 , e1)
T, . . . , (pT

p , ep)
T
}

⊆ GP ,
{

(cT

1 , 0)T, . . . , (cT

c , 0)T
}

⊆ C ′,

ρ ∈ Rr
+
, π ∈ R

p
+, γ ∈ Rc

+
and

∑p
i=1

πi +
∑c

i=1
γi = 1. As emax > 0, we obtain p > 0 and π 6= 0. By

Definition 5.4, {r1, . . . , rr} ⊆ R1, {p1, . . . , pp} ⊆ P1 and {c1, . . . , cc} ⊆ C1 so that

v =

r
∑

i=1

ρiri +

p
∑

i=1

πipi +

c
∑

i=1

γici

and hence v ∈ gen
(

(R1, P1, C1)
)

. Thus (13) holds.

A.3. Proofs of the Results Stated in Section 5.1

Proof of Proposition 5.10 on page 12. To prove item (1), we first show that, for any Y ∈ {C, G},

con(C) = con
(

con enc
(

con reprY (C)
)

)

. (14)

Let C1 = con reprY (C) and C2 = con enc(C1). Let β =
(

〈a, x〉 ./ b
)

∈ C, for some ./ ∈ {≥, >}. If ./ ∈ {>},

then, by Definitions 5.7 and 5.9,
(

〈a, x〉 − 1 · ε ≥ b
)

∈ C1 and hence, by Definition 5.4,
(

〈a, x〉 > b
)

∈ C2. If

otherwise ./ ∈ {≥}, then, by Definitions 5.7 and 5.9,
(

〈a, x〉 + 0 · ε ≥ b
)

∈ C1 and hence, by Definition 5.4,

either
(

〈a, x〉 ≥ b
)

∈ C2 or
(

〈a, x〉 > b
)

∈ C2. Thus β is satisfied by all the points in con(C2). As β was an
arbitrary constraint in C, we obtain con(C2) ⊆ con(C).

24

Now let β =
(

〈a, x〉 ./ b
)

∈ C2, for some ./ ∈ {≥, >}. If ./ ∈ {>}, then
(

〈a, x〉 + s · ε ≥ b
)

∈ C1, where

s < 0. By Definitions 5.7 and 5.9,
(

〈a, x〉 > b
)

∈ C. If ./ ∈ {≥}, then, by Definition 5.4,
(

〈a, x〉+0·ε ≥ b
)

∈ C1.

Thus, by Definitions 5.7 and 5.9, either
(

〈a, x〉 ≥ b
)

∈ C or
(

〈a, x〉 > b
)

∈ C. Thus β is satisfied by all the
points in con(C). As β was an arbitrary constraint in C2, we obtain the other inclusion con(C) ⊆ con(C2).
Thus (14) holds. As a consequence, by Proposition 5.5, we have con(C1) Vε con(C).

Suppose now that Y = C. Then, by Definition 5.7, con(C1) ⊆ con
(

{ε ≥ 0}
)

so that, by Definition 5.6,
con(C1) is a C-ε-polyhedron. Otherwise, suppose that Y = G. If con(C1) = ∅ then, by Definition 5.8,
it is a G-ε-polyhedron. Otherwise, let (vT, e)T ∈ con(C1) and consider β′ ∈ C1. By Definition 5.9, either
β′ = (ε ≤ 1) or, for some a ∈ R

n \ {0}, b ∈ R and s ∈ {0,−1}, β′ =
(

〈a, x〉+ s · ε ≥ b
)

. Thus, for all ρ ∈ R+,

(vT, e′)T = (vT, e)T +ρ(−eε) satisfies β′, so that −eε is a ray in con
(

{β′}
)

. As the choice of β′ was arbitrary,

−eε ∈ rays
(

con(C1)
)

so that, by Definition 5.8, con(C1) is a G-ε-polyhedron. Therefore the proof of item (1)
is complete.

To prove item (2), we show that for any Y ∈ {C, G},

gen(G) = gen
(

gen enc
(

gen reprY (G)
)

)

. (15)

Let G = (R, P, C), G1 = gen reprY (G) = (R1, P1) and G2 = gen enc(G1) = (R2, P2, C2). Suppose first that
v ∈ R∪P ∪C. If v ∈ R, then, by Definitions 5.7 and 5.9, (vT, 0)T ∈ R1 and hence, by Definition 5.4, v ∈ R2.
If v ∈ P , then, by Definitions 5.7 and 5.9, (vT, 1)T ∈ P1 and hence, by Definition 5.4, v ∈ P2. If v ∈ C, then,
by Definitions 5.7 and 5.9, (vT, 0)T ∈ P1 and hence, by Definition 5.4, v ∈ P2 ∪ C2. Therefore, by definition
of ‘gen’, we obtain gen(G) ⊆ gen(G2).

Now suppose v ∈ R2 ∪ P2 ∪ C2. If v ∈ R2, then, by Definition 5.4, (vT, 0)T ∈ R1. By Definitions 5.7
and 5.9, v ∈ R. If v ∈ P2, then, by Definition 5.4, (vT, e)T ∈ P1, for some e > 0. Thus, by Definitions 5.7
and 5.9, v ∈ P . If v ∈ C2, then, by Definition 5.4, (vT, e)T ∈ P1, for some e ≥ 0. Thus, by Definitions 5.7
and 5.9, v ∈ P ∪ C. Thus, by definition of ‘gen’, we obtain the other inclusion gen(G2) ⊆ gen(G) and (15)
holds. As a consequence, by Proposition 5.5, we have gen(G1) Vε gen(G).

Suppose now that Y = G. Then, by Definition 5.9, −eε ∈ R1 so that, by Definition 5.8, gen(G1) is a G-ε-
polyhedron. Otherwise, suppose that Y = C. By Definition 5.7, for each vector (vT

1 , e1)
T ∈ R1 ∪P1, we have

e1 ≥ 0; this implies that, for any point (vT, e)T ∈ gen(G1), we still have e ≥ 0. Thus gen(G1) ⊆ con
(

{ε ≥ 0}
)

so that, by Definition 5.6, gen(G1) is a C-ε-polyhedron. This completes the proof of item (2).

We are now ready to provide the formal proof of the generalization of Minkowski and Weyl’s theorems
for the domain of NNC polyhedra.

Proof of Theorem 4.4 on page 6. To prove the ‘only if ’ branch, letting P ∈ Pn we will prove that there
exists an extended generator system G = (R, P, C) such that P = gen(G). If P = ∅, then we simply take
G = (∅, ∅, ∅). Otherwise, let P 6= ∅. By definition of NNC polyhedron, there exists a mixed constraint
system C such that P = con(C). Let R ∈ CPn+1 be such that R Vε P . Note that we can always find such an
ε-polyhedron for P ; e.g., by Proposition 5.10, we can consider con

(

con reprC(C)
)

or con
(

con reprG(C)
)

. By
Theorem 3.2, there exists a (standard) generator system G ′ = (R′, P ′) such that R = gen(G′). By defining
G = gen enc(G′), the thesis P = [[R]] = gen(G) follows from Proposition 5.5.

To prove the ‘if ’ branch, letting G = (R, P, C) be an extended generator system, we will show that
P = gen(G) is an NNC polyhedron. If P = ∅, then we obtain P = ∅ and the empty set is an NNC
polyhedron. Otherwise, let P 6= ∅, so that P 6= ∅. Let R ∈ CPn+1 be such that R Vε P . As said above, we
can always find such an ε-polyhedron for P ; e.g., by Proposition 5.10, we can consider gen

(

gen reprC(G)
)

or gen
(

gen reprG(G)
)

. By Theorem 3.2, there exists a constraint system C ′, containing non-strict linear
inequalities only, such that R = con(C ′). By defining C = con enc(C ′), the thesis P = [[R]] = con(C) follows
from Proposition 5.5.

A.4. Proofs of the Results Stated in Section 5.2

The proof of Proposition 5.11 on page 12 requires a number of additional preliminary results.
For any ε-polyhedron, closure points in the NNC polyhedron are represented by points lying on the

hyperplane defined by ε = 0.

25

Lemma A.5. Let R ∈ CPn+1 be such that R Vε P 6= ∅. Then C(P) =
{

v ∈ R
n

∣

∣ (vT, 0)T ∈ R
}

.

Proof. Letting P ′ =
{

v ∈ R
n

∣

∣ (vT, 0)T ∈ R
}

, we will prove P ′ = C(P).
First, we show that P ′ ⊆ C(P). Let v ∈ P ′, so that (vT, 0)T ∈ R, and consider any point p ∈ P (note

that such a point exists by hypothesis). Then, since R Vε P , there exists e > 0 such that (pT, e)T ∈ R.
Since R is a convex set, for all σ ∈ R such that 0 < σ < 1 we have

σ(pT, e)T + (1 − σ)(vT, 0)T =
(

σpT + (1 − σ)vT, σe
)T

∈ R.

Since σe > 0, by Definition 5.1, we obtain σp + (1 − σ)v ∈ P . As the choices of p ∈ P and σ were both
arbitrary, we can apply Proposition 4.3 and conclude v ∈ C(P).

Now we show that C(P) ⊆ P ′. Let v ∈ C(P) and, for all i ∈ N such that i > 1, define σi = 1

i
, so that

0 < σi < 1. Then, by Proposition 4.3, for all p ∈ P we have vi = σip + (1 − σi)v ∈ P . Since R Vε P , by
applying the fact that P = [[R]] and then property (3) of Definition 5.2, we obtain (vT

i , 0)T ∈ R. If p = v,
then vi = v, so that the thesis holds. Otherwise, let p 6= v. For any open ball of Rn+1 centered in (vT, 0)T

and having radius δ > 0, there exists j ∈ N such that σj < δ; thus, (vT

j , 0)T ∈ R belongs to the ball and,
as the choice of δ is arbitrary, (vT, 0)T ∈ C(R). However, R ∈ CPn+1 is a topologically closed set, so that
R = C(R) and (vT, 0)T ∈ R. Hence, v ∈ P ′, completing the proof.

Lemma A.6. Let R ∈ CPn+1 be such that R Vε P 6= ∅. Then r ∈ rays(P) if and only if (rT, 0)T ∈ rays(R).

Proof. Assuming that r ∈ rays(P), let v ∈ P and ρ ∈ R+. Then v + ρr ∈ P . By Definition 5.1, for some

e1, e2 > 0, we have (vT, e1)
T ∈ R and

(

(v + ρr)T, e2

)T

∈ R and hence, by condition (2) of Definition 5.2,

(vT, 0)T ∈ R and
(

(v + ρr)T, 0
)T

∈ R. Thus (vT, 0)T + ρ(rT, 0)T ∈ R. As this holds for all ρ ∈ R+, (rT, 0)T

is a ray of R.
To prove the other direction, assume that (rT, 0)T is a ray of R. Let v ∈ P and ρ ∈ R+. By Definition 5.1,

for some e > 0, we have (vT, e)T ∈ R; by assumption, (vT, e)T + ρ(rT, 0)T ∈ R and hence, by Definition 5.1,
v + ρr ∈ P , proving that r ∈ rays(P).

Lemma A.7. Let R = gen
(

(R, P)
)

∈ CPn+1 be such that R Vε P 6= ∅. Let also

R′ =
{

(rT, 0)T
∣

∣ (rT, e)T ∈ R, r 6= 0
}

∪
{

−eε

∣

∣ (rT, e)T ∈ R, e < 0
}

and R′ = gen
(

(R′, P)
)

. Then R′
Vε P .

Proof. Suppose that for all (rT, e)T ∈ R we have e = 0. Then, the result holds by observing that, in such a
case, we obtain R′ = R and thus R′ = R. Otherwise, suppose that there exists (rT, e)T ∈ R such that e 6= 0.
By Lemma A.3, it holds e < 0. It follows from the hypothesis that (−eε) ∈ R′.

We first show that [[R′]] = P by proving the two inclusions separately.
Consider a ray (rT, e)T ∈ R. If e = 0, then r 6= 0 so that, by hypothesis, (rT, e)T ∈ R′. If e < 0 and r = 0,

then we can write (rT, e)T = −e(−eε), where (−eε) ∈ R′ and −e > 0 is a positive factor. Otherwise, if e < 0
and r 6= 0, then, by the hypothesis,

{

(rT, 0)T,−eε

}

⊆ R′ and we can write (rT, e)T = (rT, 0)T − e(−eε).
Thus, each element of R can be obtained as a non-negative combination of elements of R′, therefore proving
that R ⊆ R′ and, by monotonicity, P ⊆ [[R′]].

To prove the other inclusion, let R′′ = R′ \ {−eε} and R′′ = gen
(

(R′′, P)
)

. For each ray (rT, 0)T ∈ R′′,
by hypothesis, we have (rT, e)T ∈ R so that, by Lemma A.2, (rT, 0)T is also a ray of R. Hence, R′′ ⊆ R. By
the above observations, we obtain

∀(pT, e)T ∈ R′ : ∃(pT, e0)
T ∈ R, ρ ∈ R+ . (pT, e)T = (pT, e0)

T + ρ(−eε). (16)

Let now p ∈ [[R′]], so that there exists (pT, e)T ∈ R′ such that e > 0. By applying (16), we obtain that
(pT, e0)

T ∈ R, where e0 = e + ρ > 0, proving that p ∈ [[R]] = P . As the choice of p was arbitrary, [[R′]] ⊆ P .
To complete the proof, we have to show that R′ is an ε-polyhedron. Condition (2) of Definition 5.2 easily

follows from (16), because R is an ε-polyhedron: namely, we can consider the same ε upper bound constraint
ε ≤ δ used for R. To prove condition (3) of Definition 5.2, let (pT, e)T ∈ R′. By (16), there exist (pT, e0)

T ∈ R
and ρ ∈ R+ such that (pT, e)T = (pT, e0)

T + ρ(−eε). As R is an ε-polyhedron, we also have (pT, 0)T ∈ R.
Since we already observed that R ⊆ R′, this completes the proof.

Lemma A.8. Let VY ∈ {Vε, VC , VG}, R1 VY P1 and R2 VY P2. Then R1 ∩R2 VY P1 ∩ P2.

26

Proof. We first prove condition (2) of Definition 5.2. Since both R1 and R2 are ε-polyhedra there exist
δ1 > 0 and δ2 > 0 such that R1 ⊆ con

(

{ε ≤ δ1}
)

and R2 ⊆ con
(

{ε ≤ δ2}
)

. Letting δ = min{δ1, δ2}, we have

R1 ∩R2 ⊆ con
(

{ε ≤ δ}
)

.
To prove condition (3) of Definition 5.2, let (vT, e)T ∈ R1 ∩ R2. Then, as R1 and R2 are ε-polyhedra,

(vT, 0)T ∈ R1 and (vT, 0)T ∈ R2. Hence (vT, 0)T ∈ R1 ∩R2.
Having shown that R1 ∩R2 is an ε-polyhedron, we next show that [[R1 ∩R2]] = P1 ∩P2. By hypothesis,

R1 Vε P1 and R2 Vε P2, so that, by Definition 5.2, P1 = [[R1]] and P2 = [[R2]]. By Definition 5.1, we
have to show that v ∈ P1 ∩ P2 if and only if there exists e > 0 such that (vT, e)T ∈ R1 ∩ R2. First, let
v ∈ P1 ∩ P2. Hence, by Definition 5.1, there exist e1, e2 > 0 such that (vT, e1)

T ∈ R1 and (vT, e2)
T ∈ R2.

Suppose, without loss of generality, that e1 ≤ e2. By condition (3) of Definition 5.2, (vT, 0)T ∈ R2. Thus,
since R2 is a convex set, (vT, e1)

T ∈ R2. Hence (vT, e1)
T ∈ R1 ∩ R2. Secondly, suppose that there exists

e > 0 such that (vT, e)T ∈ R1 ∩ R2. Then (vT, e)T ∈ R1 and (vT, e)T ∈ R2. By Definition 5.1, v ∈ P1 and
v ∈ P2, so that v ∈ P1 ∩ P2. It follows that [[R1 ∩R2]] = P1 ∩ P2. By Definition 5.2, R1 ∩R2 Vε P1 ∩ P2.

We now prove that R1 ∩R2 is a C-ε-polyhedron when R1 and R2 are C-ε-polyhedra. By Definition 5.6,
for j ∈ {1, 2} we have Rj ⊆ con

(

{ε ≥ 0}
)

. Thus R1 ∩R2 ⊆ con
(

{ε ≥ 0}
)

so that, by Definition 5.6, R1 ∩R2

is a C-ε-polyhedron.
To prove that R1∩R2 is a G-ε-polyhedron when R1 and R2 are G-ε-polyhedra, we consider two subcases.

If R1 ∩R2 = ∅, then there is nothing to prove. Suppose instead that R1 ∩R2 6= ∅. Then, by Definition 5.8,
−eε ∈ rays(R1) and −eε ∈ rays(R2). Let v′ ∈ R1 ∩ R2 and consider, for any ρ ∈ R+, v′

ρ = v′ + ρ(−eε).
As v′ ∈ R1, v′

ρ ∈ R1 and, as v′ ∈ R2, v′
ρ ∈ R2; hence v′

ρ ∈ R1 ∩ R2. As this holds for any ρ ∈ R+,
−eε ∈ rays(R1 ∩R2). Thus, by Definition 5.8, R1 ∩R2 is a G-ε-polyhedra.

Lemma A.9. For j ∈ {1, 2}, let Pj = gen
(

(Rj , Pj , Cj)
)

be a non-empty NNC polyhedron. Then x ∈ P1]P2

if and only if there exist r1 ∈ {0} ∪ rays(P1), r2 ∈ {0} ∪ rays(P2), x1 ∈ C(P1), x2 ∈ C(P2), and 0 ≤ σ ≤ 1
such that x = r1 + r2 + σx1 + (1 − σ)x2, where (x1 ∈ P1 ∧ σ > 0) ∨ (x2 ∈ P2 ∧ σ < 1).

Proof. For j ∈ {1, 2}, let rj , pj and cj be the cardinalities of Rj , Pj and Cj , respectively. By definition of
the poly-hull operation, P1] P2 = gen

(

(R, P, C)
)

, where R = R1 ∪ R2, P = P1 ∪ P2 and C = C1 ∪ C2,
having cardinalities r, p and c, respectively. (In general, we have r ≤ r1 + r2, p ≤ p1 + p2 and c ≤ c1 + c2,
since there may be generators that occur in both generator systems.)

Suppose first that x ∈ P1] P2. Then, by the definition of function ‘gen’,

x = Rρ + Pπ + Cγ

where ρ ∈ Rr
+
, π ∈ R

p
+, γ ∈ Rc

+
,
∑

π +
∑

γ = 1 and π 6= 0. Therefore, we can also rewrite it as

x = R1ρ1 + R2ρ2 + P1π1 + P2π2 + C1γ1 + C2γ2

= R1ρ1 + R2ρ2 + (P1π1 + C1γ1) + (P2π2 + C2γ2),

where ρj ∈ R
rj

+ , πj ∈ R
pj

+ and γj ∈ R
cj

+ , for j ∈ {1, 2},
∑

π1+
∑

π2+
∑

γ1+
∑

γ2 = 1 and
∑

π1+
∑

π2 > 0.
It follows that either π1 6= 0 or π2 6= 0.

For each j ∈ {1, 2}, let rj = Rjρj , so that rj is a non-negative combination of the rays of Pj . Note
that either rj = 0 (e.g., if ρj = 0) or rj ∈ rays(Pj). If

∑

π1 +
∑

γ1 = 1 (so that π2 = γ2 = 0 and
π1 6= 0), then, by the definition of function ‘gen’, we obtain x1 = P1π1 +C1γ1 ∈ P1. Taking σ = 1, we have
1 − σ = 0, so that we can take an arbitrary x2 ∈ C(P2) (there must exist one, since P2 6= ∅). Similarly,
if

∑

π2 +
∑

γ2 = 1 (so that π1 = γ1 = 0 and π2 6= 0), we obtain x2 = P2π2 + C2γ2 ∈ P2, so that we
can take σ = 0 and an arbitrary x1 ∈ C(P1). Otherwise, let both

∑

π1 +
∑

γ1 6= 0 and
∑

π2 +
∑

γ2 6= 0.
Then, by taking σ =

∑

π1 +
∑

γ1 we have σ > 0 and 1 − σ =
∑

π2 +
∑

γ2 > 0. Therefore we can define
x1 = 1

σ
(P1π1 + C1γ1) and x2 = 1

1−σ
(P2π2 + C2γ2). Thus x1 ∈ C(P1) and x2 ∈ C(P2). Moreover, by the

definition of function ‘gen’, as π1 6= 0 or π2 6= 0, either x1 ∈ P1 or x2 ∈ P2. Thus, in all cases we obtain

x = r1 + r2 + σx1 + (1 − σ)x2,

with rj ∈ {0} ∪ rays(Pj) and xj ∈ C(Pj) for j = {1, 2}, where either x1 ∈ P1 and σ > 0 or x2 ∈ P2 and
σ < 1, as required.

To prove the other direction, suppose that rj ∈ {0} ∪ rays(Pj) and xj ∈ C(Pj), for j ∈ {1, 2}, and there
exists 0 ≤ σ ≤ 1 such that

x = r1 + r2 + σx1 + (1 − σ)x2,

27

where either x1 ∈ P1 and σ > 0 or x2 ∈ P2 and σ < 1.
For j ∈ {1, 2}, there exists %j ∈ R

rj

+ such that rj = Rj%j ; moreover, since xj ∈ C(Pj), there exist
ρj ∈ R

rj

+ , πj ∈ R
pj

+ and γj ∈ R
cj

+ such that xj = Rjρj + Pjπj + Cjγj , where
∑

πj +
∑

γj = 1. Thus,

x = R1%1 + R2%2 + σ(R1ρ1 + P1π1 + C1γ1) + (1 − σ)(R2ρ2 + P2π2 + C2γ2)

= R1(%1 + σρ1) + R2

(

%2 + (1 − σ)ρ2

)

+ P1σπ1 + P2(1 − σ)π2 + C1σγ1 + C2(1 − σ)γ2.

Note that %1 + σρ1 ∈ Rr1
+

, %2 + (1 − σ)ρ2 ∈ Rr2
+

, and σ
∑

π1 + (1 − σ)
∑

π2 + σ
∑

γ1 + (1 − σ)
∑

γ2 = 1.
Moreover, as either x1 ∈ P1 and σ > 0 or x2 ∈ P2 and σ < 1, we obtain σπ1 6= 0 or (1 − σ)π2 6= 0. Thus,
there exist ρ ∈ R

r
+
, π ∈ R

p
+ and γ ∈ R

c
+

such that
∑

π +
∑

γ = 1, π 6= 0, and x = Rρ + Pπ + Cγ. Then,
by the definition of function ‘gen’, x ∈ P1] P2, completing the proof.

Lemma A.10. Letting VY ∈ {Vε, VC , VG}, suppose that R1 VY P1 6= ∅ and R2 VY P2 6= ∅. Then
R1]R2 VY P1] P2.

Proof. For j ∈ {1, 2}, let Pj = gen
(

(Rj , Pj , Cj)
)

, where the three components of the extended generator

system have cardinalities rj , pj and cj , respectively; similarly, let Rj = gen
(

(R′
j , P

′
j)

)

, with cardinalities r′j
and p′j , respectively. Note that each Rj ∈ CPn+1 is also an NNC polyhedron in Pn+1. Thus, we can write

Rj = gen
(

(R′
j , P

′
j , ∅)

)

and observe that Rj = C(Rj). By applying Lemma A.9, if (vT, e)T ∈ R1] R2,

then for some r′
1 = (rT

1 , e′1)
T ∈ {0} ∪ rays(R1), r′

2 = (rT

2 , e′2)
T ∈ {0} ∪ rays(R2), v′

1 = (v1
T, e1)

T ∈ R1,
v′

2 = (v2
T, e2)

T ∈ R2, and 0 ≤ σ ≤ 1, we have
(

v
e

)

= r′
1 + r′

2 + σv′
1 + (1 − σ)v′

2 =

(

r1

e′1

)

+

(

r2

e′2

)

+

(

σv1 + (1 − σ)v2

σe1 + (1 − σ)e2

)

. (17)

For each j ∈ {1, 2}, since r′
j ∈ {0} ∪ rays(Rj), by Lemma A.3 we obtain e′j ≤ 0.

We first show that R1]R2 is an ε-polyhedron. As R1,R2 are ε-polyhedra, by condition (2) of Definition 5.2
there exist δ1, δ2 > 0 such that R1 ⊆ con

(

{ε ≤ δ1}
)

and R2 ⊆ con
(

{ε ≤ δ2}
)

. Suppose that (vT, e)T ∈ R1]R2

and rewrite it according to (17). By letting δ = max{δ1, δ2}, we obtain e1 ≤ δ and e2 ≤ δ. Since e′1 ≤ 0 and
e′2 ≤ 0, we obtain e = σe1 + (1− σ)e2 + e′1 + e′2 ≤ δ, so that R1]R2 satisfies condition (2) of Definition 5.2.

To prove condition (3) of Definition 5.2, suppose that (vT, e)T ∈ R1] R2, so that we can rewrite it
according to (17). For each j ∈ {1, 2}, as Rj is an ε-polyhedron, by Lemma A.2, (rT

j , 0)T ∈ {0} ∪ rays(Rj);
also, by condition (3) of Definition 5.2, (vT

j , 0)T ∈ Rj . Thus, by applying again Lemma A.9, we obtain
(

v
0

)

=

(

r1

0

)

+

(

r2

0

)

+ σ

(

v1

0

)

+ (1 − σ)

(

v2

0

)

∈ R1]R2.

Having shown that R1]R2 is an ε-polyhedron, we next show that it represents P1]P2. By hypothesis,
R1 Vε P1 and R2 Vε P2, so that, by Definition 5.2, P1 = [[R1]] and P2 = [[R2]]. By Definition 5.1, we have
to prove that v ∈ P1] P2 if and only if there exists e > 0 such that (vT, e)T ∈ R1]R2. First suppose that
v ∈ P1] P2. Then, by Lemma A.9, there exist rj ∈ {0} ∪ rays(Pj) and vj ∈ C(Pj), for each j ∈ {1, 2},
and 0 ≤ σ ≤ 1 such that v = r1 + r2 + σv1 + (1 − σ)v2, where v1 ∈ P1 and σ > 0 or v2 ∈ P2 and σ < 1.
Suppose, without loss of generality, that v1 ∈ P1 and σ > 0. By Definition 5.1, there exists e1 > 0 such
that (vT

1 , e1)
T ∈ R1. As R2 Vε P2 and v2 ∈ C(P2), by Lemma A.5, we obtain (vT

2 , 0)T ∈ R2. Moreover, by
Lemma A.6, for j ∈ {1, 2} we have (rT

j , 0)T ∈ {0} ∪ rays(Rj). Therefore, by letting
(

v
e1

)

=

(

r1

0

)

+

(

r2

0

)

+ σ

(

v1

e1

)

+ (1 − σ)

(

v2

0

)

,

we obtain, again by Lemma A.9, (vT, e1)
T ∈ R1]R2, where e1 > 0 as required. Secondly, suppose that there

exists e > 0 such that (vT, e)T ∈ R1]R2, so that we can rewrite it according to (17). As e > 0 and σ ≥ 0,
either e1 > 0 and σ > 0 or e2 > 0 and σ < 1. Without loss of generality, we assume that e1 > 0 and σ > 0.
By Definition 5.1, we have v1 ∈ P1. By hypothesis, R2 Vε P2. Thus, as (vT

2 , e2)
T ∈ R2 for some e2 ∈ R, by

condition (3) of Definition 5.2, (vT

2 , 0)T ∈ R2. Therefore, by Lemma A.5, v2 ∈ C(P2). Thus, by Lemma A.9,
v = σv1 + (1 − σ)v2 + r1 + r2 ∈ P1] P2. Therefore R1]R2 Vε P1] P2.

To prove that R1] R2 is a C-ε-polyhedron when R1 and R2 are C-ε-polyhedra, we have to show that
R1]R2 ⊆ con

(

{ε ≥ 0}
)

. Let (vT, e)T ∈ R1]R2, so that we can rewrite it according to (17). As R1 and R2

28

are both C-ε-representations, we obtain e1 ≥ 0 and e2 ≥ 0; moreover, by Lemma A.3 we have e′1 = 0 and
e′2 = 0. Thus e = σe1 + (1 − σ)e2 + e′1 + e′2 satisfies e ≥ 0.

To prove that R1]R2 is a G-ε-polyhedron when R1 and R2 are G-ε-polyhedra, since R1]R2 6= ∅, we
have to show that −eε is a ray in R1]R2. To this end, it is sufficient to observe that all the rays of R1 are
also rays of R1]R2 and −eε is a ray of R1, because R1 is a non-empty G-ε-polyhedron.

Lemma A.11. Let VY ∈ {Vε, VC , VG} and suppose that R VY P . Let also f
def
= λx ∈ R

n . Ax + b be
any affine transformation defined on Pn and define

g
def
= λ

(

x
ε

)

∈ R
n+1 .

(

A 0
0T 1

) (

x
ε

)

+

(

b
0

)

to be the corresponding affine transformation on CPn+1. Then g(R) VY f(P).

Proof. Observe that, by definition of g, for any (vT, e)T ∈ R we have g
(

(vT, e)T
)

=
(

f(v)T, e
)T

. Thus the
coefficient of the ε coordinate is not affected at all by the affine transformation, so that conditions (2) and (3)
of Definition 5.2 and f(P) = [[g(R)]] follow trivially from the hypothesis. Thus, g(R) Vε f(P).

To complete the proof, we have to consider the cases when VY ∈ {VC , VG}. First note that, if R = ∅,
then also g(R) = ∅ and there is nothing to prove. Now assume R 6= ∅. If R is a C-ε-polyhedron, then all the
points in R satisfy the constraint ε ≥ 0. Since the ε coordinates are unaffected by the affine transformation,
all the points in g(R) satisfy the constraint ε ≥ 0, so that g(R) is a C-ε-polyhedron too. Otherwise, R is
a non-empty G-ε-polyhedron, so that −eε ∈ rays(R). We have g(R) 6= ∅ and the ray is unaffected by the
affine transformation, so that −eε ∈ rays

(

g(R)
)

.

Proof of Proposition 5.11 on page 12. Items (1), (2) and (3) follow from Lemmas A.8, A.10 and A.11, re-
spectively.

A.5. Proofs of the Results Stated in Section 6

The proof of Proposition 6.3 requires a few preliminary lemmas.

Lemma A.12. Let R = con(C) ∈ CPn+1 be a non-empty ε-polyhedron. Then −eε ∈ rays(R) if and only if
C = C> ∪ C≥ ∪ Cε.

Proof. Suppose that −eε ∈ rays(R). Let (vT, e)T ∈ R. Then, for all ρ ∈ R+, (vT, e)T + ρ(−eε) ∈ R. If
β =

(

〈a, x〉 + s · ε ≥ b
)

∈ C, we have 〈a, v〉 + s · (e − ρ) ≥ b for all ρ ∈ R+. Thus s ≤ 0. Since our choice of
β ∈ C was arbitrary, we obtain C = C> ∪ C≥ ∪ Cε.

Now suppose C = C> ∪ C≥ ∪ Cε. This means that, if β =
(

〈a, x〉+ s · ε ≥ b
)

∈ C, then s ≤ 0. As R is non-
empty, there exists a point p = (vT, e)T ∈ R. Also, since s ≤ 0, for all ρ ∈ R+ we have 〈a, v〉+ s · (e− ρ) ≥ b.
As our choice of β ∈ C is arbitrary, p + ρ(−eε) satisfies all the constraints in C and is therefore in R. Thus
−eε ∈ rays(R), because also the choice of p ∈ R was arbitrary.

Lemma A.13. Let R = con(C) ∈ CPn+1 be such that R Vε P 6= ∅. Let also C′ = C> ∪ C≥ ∪ Cε ∪ {ε ≥ 0}
and C′′ = C ∪ {ε ≥ 0}. Then con(C ′) Vε P and con(C′) = con(C′′).

Proof. Let R′ = con(C′), R′′ = con(C′′), and C∗ = C \ (C> ∪ C≥ ∪ Cε). Note that, by Definition 1, we have
P = [[R]] = [[R′′]]. Moreover, by Proposition 5.3, since R is an ε-polyhedron, R′′ is also an ε-polyhedron. It
remains for us to prove that R′ = R′′. Observe that, since C ′ ⊆ C′′, R′′ ⊆ R′.

We now show that R′ ⊆ R′′. Let p = (vT, e)T ∈ R′ so that e ≥ 0. By hypothesis, P 6= ∅ so that, as
P = [[R]]′′, by Definition 5.1, there exists a point q = (wT, ew)T ∈ R′′ such that ew > 0. By hypothesis, both
p and q must satisfy every constraint in C ′ = C> ∪ C≥ ∪ Cε ∪ {ε ≥ 0}. We show that p also satisfies all the
constraints in C∗, so that p ∈ R′′. Suppose, by contraposition, that p does not satisfy a constraint in C∗.
Let

{

σp + (1 − σ)q
∣

∣ 0 ≤ σ ≤ 1
}

be the set of points lying on the segment between p and q. As p /∈ R′′

and q ∈ R′′, there must exists a minimum value 0 ≤ τ < 1 such that p′ = (vτ , eτ) = τp + (1− τ)q ∈ R′′, so
that p′ saturates some constraint β∗ =

(

〈a, x〉 + s · ε ≥ b
)

∈ C∗. Note that, as e ≥ 0, ew > 0 and τ < 1, we
have eτ > 0. Also, by definition of C∗, we have s > 0. As a consequence, (vT

τ , 0)T does not satisfy β∗, which
implies (vT

τ , 0)T /∈ R′′. However, since R′′ is an ε-polyhedron, this contradicts condition (3) of Definition 5.2.
Thus p ∈ R′′. As the choice of p ∈ R′ was arbitrary, R′ ⊆ R′′.

29

Lemma A.14. Let R = con(C) ∈ CPn+1 be an ε-polyhedron. Let p ∈ R be such that p = (vT, e)T, where
e > 0, and consider p0 = (vT, 0)T. Then sat con(p0, C> ∪ C≥ ∪ Cε) = sat con(p, C≥).

Proof. Let β ∈ C≥, so that β =
(

〈a, x〉+0 ·ε ≥ b
)

; then β ∈ sat con(p, C≥) if and only if β ∈ sat con(p0, C≥),

so that sat con(p0, C≥) = sat con(p, C≥). Consider now β ∈ C>, so that β =
(

〈a, x〉+ s · ε ≥ b
)

where s < 0;
since e > 0, we obtain 〈a, v〉 > b, so that p0 satisfies but does not saturate β; thus sat con(p0, C>) = ∅.
Consider now β ∈ Cε, so that β = (ε ≤ δ) for some δ > 0; then it follows that sat con(p0, Cε) = ∅. By all the
above relations, we obtain

sat con(p0, C> ∪ C≥ ∪ Cε) = sat con(p0, C>) ∪ sat con(p0, C≥) ∪ sat con(p0, Cε)

= sat con(p, C≥).

Lemma A.15. Let (C,G) ≡ R ∈ CPn+1 be an ε-polyhedron. Let β ∈ C> be such that β =
(

〈a, x〉+s ·ε ≥ b
)

and consider β0 =
(

〈a, x〉 + 0 · ε ≥ b
)

. Then sat gen
(

β0, (GR,GC)
)

= sat gen
(

β, (GR,GC)
)

.

Proof. If p = (vT, e)T ∈ GR ∪GC , then e = 0. Thus 〈a, v〉+ s · e = 0 if and only if 〈a, v〉+0 · e = 0. Similarly,
〈a, v〉+ s · e = b if and only if 〈a, v〉+ 0 · e = b. Thus, if p is a ray encoding or p is a closure point encoding,
p saturates β if and only if it saturates β0. As p is an arbitrary ray or closure point encoding in GR ∪ GC ,
we have the required result.

Lemma A.16. Let (C,G) ≡ R ∈ CPn+1 be an ε-polyhedron. Let also β ∈ C> be saturated by the point
(vT, 0)T ∈ R. Then (vT, 0)T ∈ gen

(

(GR,GC)
)

.

Proof. Let G = (R, P) and β =
(

〈a, x〉 + s · ε ≥ b
)

. Then, as β ∈ C>, s < 0. Since (vT, 0)T ∈ R saturates
β, it holds 〈a, v〉 = b, so that for all e > 0 we have (vT, e)T /∈ R. Therefore we can apply Lemma A.4,
taking emax = 0, so that we obtain (vT, 0)T ∈ gen

(

(GR,GP ∪ GC)
)

. By definition of ‘gen’, we conclude

(vT, 0)T ∈ gen
(

(GR,GC)
)

.

Lemma A.17. Let VY ∈ {Vε, VC , VG}. Let (C,G) ≡ R ∈ CPn+1 and P ∈ Pn be such that R VY P 6= ∅.
If β is a strongly ε-redundant constraint in C, then con(C ′) VY P , where C′ =

(

C \ {β}
)

∪ {ε ≤ 1}.

Proof. Suppose that β =
(

〈a, x〉 + s · ε ≥ b
)

is strongly ε-redundant in C so that, by Definition 6.2, we have
β ∈ C>, a 6= 0 and s < 0. Let R′ = con(C′). As P 6= ∅, by Definition 5.1, there exists (wT, e′w)T ∈ R for
some e′w > 0. As R is an ε-polyhedron, by condition (3) of Definition 5.2, (wT, 0)T ∈ R. Thus, as R is a
convex set, for some 0 < ew ≤ 1, (wT, ew)T ∈ R. Since ew ≤ 1, we also have (wT, ew)T ∈ R′.

We show that, for all (vT, e)T ∈ R′ \ R,

e ≥ 0, (18)

(vT, 0)T ∈ R, (19)

(vT, 0)T does not saturate β. (20)

We first prove (18). To do this we assume that e < 0 and derive a contradiction. Consider the line
segment between (vT, e)T ∈ R′ \R and (wT, 0)T ∈ R′∩R. Then there must be a point (vT

1 , e1)
T ∈ R on this

segment that saturates β. As (wT, ew)T satisfies β, ew > 0 and s < 0, (wT, 0)T does not saturate β so that
v1 6= w and e1 < 0. Thus (vT

1 , 0)T does not satisfy β and hence (vT

1 , 0)T /∈ R; contradicting condition (3) of
Definition 5.2. Therefore (18) holds.

We next show that (19) and (20) hold. Consider the closed segment between (vT, e)T ∈ R′ \ R and
(wT, ew)T ∈ R′ ∩R. As R′ is a convex set, for each 0 ≤ σ ≤ 1, we have (vT

σ, eσ)T ∈ R′, where

(vT

σ, eσ)T = σ(vT, e)T + (1 − σ)(wT, ew)T. (21)

Let τ be the maximum value between 0 and 1 such that (vT

τ , 0)T ∈ R. Observe that, as ew > 0 and,
by (18), e ≥ 0, eτ ≥ 0. However, when eτ = 0, we have e = 0 and τ = 1 contradicting the assumption
that (vT, e)T /∈ R. It follows that eτ > 0. Suppose that (vT

τ , 0)T saturates β. Then, by Lemma A.16,
(vT

τ , 0)T ∈ gen
(

(GR,GC)
)

so that sat gen
(

β, (GR,GC)
)

6v (GR, ∅). As a consequence, since by hypothesis β is

strongly ε-redundant in C, by Definition 6.2 there exists β ′ =
(

〈a′, x〉 + s′ · ε ≥ b′
)

∈ C′
> such that

sat gen
(

β, (GR,GC)
)

v sat gen(β′,G).

30

Thus the point (vT

τ , 0)T also saturates β′. Since, by (21), (vT, e)T and (wT, ew)T both satisfy β′, (vT

τ , eτ)T, also
satisfies β′ so that, as s′ < 0, we have eτ ≤ 0 which is a contradiction. Thus (vT

τ , 0)T does not saturate β. For
all τ < σ ≤ 1, (vT

σ, 0)T /∈ R so that, as R is an ε-polyhedron, by condition (3) of Definition 5.2, (vT

σ, eσ)T /∈ R.
Thus, as (vT

τ , 0)T ∈ R does not saturate β, we must have τ = 1. Hence, by (21), (vT, 0)T = (vT

τ , 0)T and
therefore (19) and (20) hold.

To prove R′
Vε P , we show that R′ is an ε-polyhedron and [[R]] = [[R′]].

By taking δ = 1, the inclusion R′ ⊆ con
(

{ε ≤ δ}
)

holds trivially, because the constraint ε ≤ 1 has been
explicitly added in C′. Thus condition (2) of Definition 5.2 holds. By (19), if (vT, e)T is an arbitrary point in
R′, we have (vT, 0)T ∈ R. Since (vT, 0)T obviously satisfies the constraint ε ≤ 1, we have (vT, 0)T ∈ R′, so
that condition (3) of Definition 5.2 also holds and R′ is an ε-polyhedron.

To prove the inclusion [[R]] ⊆ [[R′]], let v ∈ [[R]]. Thus, there exists e > 0 such that (vT, e)T ∈ R. By
condition (3) of Definition 5.2, we also have (vT, 0)T ∈ R so that, as R is a convex set, there exists 0 < e′ ≤ 1
such that (vT, e′)T ∈ R. Note that (vT, e′)T satisfies all the constraints in C and it also satisfies the constraint
ε ≤ 1; as a consequence, (vT, e′)T ∈ R′ and v ∈ [[R′]], as required.

To show the other inclusion [[R′]] ⊆ [[R]], let v ∈ [[R′]]. Thus, there exists e > 0 such that (vT, e)T ∈ R′.

By (19) and (20), we know that 〈a, v〉 > b. Thus, by letting e′ = min
(

{

e, b−〈a,v〉
s

}

)

, we obtain e′ > 0 and

(vT, e′)T ∈ R. Thus v ∈ [[R]].
Suppose next that R VC P . Thus R ⊆ con

(

{ε ≥ 0}
)

. By the first part of the proof, R′
Vε P so that

it remains to show that R′ ⊆ con
(

{ε ≥ 0}
)

. Suppose (uT, eu)T ∈ R′. If (uT, eu)T ∈ R, then, as R is a
C-ε-polyhedron, eu ≥ 0. On the other hand, if (uT, eu)T ∈ R′ \R, then, by (18), we again have eu ≥ 0. Thus
con(C′) ⊆ con

(

{ε ≥ 0}
)

and R′
VC P .

Finally, suppose that R VG P . By the first part of the proof R′
Vε P . Note that, since P 6= ∅, we

also have R 6= ∅ and R′ 6= ∅. Thus, by Definition 5.8, −eε ∈ rays(R) and, to complete the proof, we
need to show that −eε ∈ rays(R′). By Lemma A.12, C = C> ∪ C≥ ∪ Cε. Since (ε ≤ 1) ∈ C′

ε, we also have
C′ = C′

> ∪ C′
≥ ∪ C′

ε so that, again by Lemma A.12, −eε ∈ rays(R′). Thus, R′
VG P .

Lemma A.18. Let (C,G) ≡ R ∈ CPn+1 and P ∈ Pn be such that R Vε P 6= ∅ and {p, p′} ⊆ GP , where
sat con(p, C≥) ⊆ sat con(p′, C≥). Let also G = (R, P), G′ =

(

R, P \ {p}
)

and R′ = gen(G′). Then

R∩ con
(

{ε = 0}
)

= R′ ∩ con
(

{ε = 0}
)

.

Proof. Since G′
@ G, we have R′ ⊆ R. To prove R ⊆ R′, we assume that q = (wT, 0)T ∈ R and show that

q is also in R′.
Let p = (vT, ev)T and p′ = (yT, ey)T so that, since they are both in GP , we obtain ev > 0 and ey > 0.

Consider p0 = (vT, 0)T and p′
0 = (yT, 0)T. As R is an ε-polyhedron, by condition (3) of Definition 5.2, we

have {p0, p
′
0} ⊆ R. Thus, p0 can be rewritten as p0 = σp + (1 − σ)p−, where 0 ≤ σ ≤ 1 and the point

p− = (vT, e−)T is such that p− ∈ gen(G′) = R′. Since ev > 0, we obtain e− ≤ 0. Since p′ ∈ R′, which is a
convex set, then R′ contains the whole segment [p−, p′] and, in particular, by taking q1 = (wT

1 , 0)T to be the
point on this segment having a zero ε coordinate, we obtain q1 ∈ R′ (note that there exists exactly one such a
q1, because ey > 0). Thus, by applying Lemma A.14 to p and p′ we obtain sat con(p0, C≥) = sat con(p, C≥)
and sat con(p′

0, C≥) = sat con(p′, C≥) so that, by hypothesis, sat con(p0, C≥) ⊆ sat con(p′
0, C≥). Thus, as q1

lies on the segment [p0, p
′
0], we obtain sat con(p0, C≥) ⊆ sat con(q1, C≥) and hence,

sat con(p, C≥) ⊆ sat con(q1, C≥). (22)

Let r = q − q1. If r = 0, then q = q1 ∈ R′. Otherwise, let r 6= 0. By hypothesis, rays(R) = rays(R′). Thus,
if r ∈ rays(R), we also have r ∈ rays(R′) so that q = q1 + r ∈ R′.

Suppose now that r 6= 0 and that r /∈ rays(R). Then there must exist a minimum value 0 < ρ2 < 1
such that, for all ρ > ρ2, we have q1 + ρr /∈ R. Thus let q2 = q1 + ρ2r = (wT

2 , 0)T ∈ R. Note that, as
ρ2 > 0, q2 6= q1. Thus, by choice of ρ2, there must exist a constraint β ∈ C that saturates q2 but not
q1. Since no constraint in Cε can be saturated by q2, we have β /∈ Cε. Suppose that β ∈ C>. Then, by
Lemma A.16, q2 ∈ gen

(

(GR,GC)
)

; since (GR,GC) v G′, we obtain q2 ∈ R′. Suppose now that β ∈ C≥; then,
as β /∈ sat con(q1, C≥), by (22), we obtain β /∈ sat con(p, C≥). Similarly, supposing now β ∈ C\(C>∪C≥∪Cε),
then s > 0 so that, as p0 ∈ R, β /∈ sat con(p, C). In both cases, as β ∈ sat con(q2, C), q2 is generated by
sat gen

(

β, (GR,GC)
)

, so that q2 ∈ gen(G′) = R′. Thus in all cases q2 ∈ R′. As q lies on the segment [q1, q2]
and R′ is a convex set, we have q ∈ R′ as required.

31

Lemma A.19. Let VY ∈ {Vε, VC , VG}. Let (C,G) ≡ R ∈ CPn+1 and P ∈ Pn be such that R VY P 6= ∅.
If p is a strongly ε-redundant generator in G = (R, P), then gen(G ′) VY P , where G′ =

(

R, P \ {p}
)

.

Proof. Let R′ = gen(G′) and P ′ = P \{p}, so that G′ = (R, P ′). Note that G′ v G and hence, as the function
‘gen’ is monotonic, R′ ⊆ R.

Suppose that p = (vT, e)T is strongly ε-redundant in G so that, by Definition 6.2, p ∈ P , e > 0 and there
exists a point p′ = (yT, e′)T such that p′ ∈ P ′, e′ > 0 and

sat con(p, C≥) ⊆ sat con(p′, C). (23)

Note that p′ ∈ R′. Letting p0 = (vT, 0)T and p′
0 = (yT, 0)T, by condition (3) of Definition 5.2, we have

{p0, p
′
0} ⊆ R.

As (23) holds, we can use Lemma A.18, to obtain that, for all w ∈ R
n,

(wT, 0)T ∈ R ⇐⇒ (wT, 0)T ∈ R′. (24)

In order to show that R′
Vε P , we first prove that R′ is an ε-polyhedron. Consider condition (2) of

Definition 5.2. As R′ ⊆ R, R′ satisfies condition (2) by taking the same value δ used for R. Consider now
condition (3) of Definition 5.2. Let (wT, ew)T ∈ R′. Since R′ ⊆ R, we have (wT, ew)T ∈ R; since R is an
ε-polyhedron, (wT, 0)T ∈ R. Then, by (24), we obtain (wT, 0)T ∈ R′. Thus R′ is an ε-polyhedron.

To show that R′ is an ε-polyhedron for P , it remains to prove that [[R]] = [[R′]]. Since R′ ⊆ R, the
inclusion [[R′]] ⊆ [[R]] holds by monotonicity of function [[·]]. To prove the other inclusion, suppose that
w ∈ [[R]]. Then, by Definition 5.1, there exists ew > 0 such that q = (wT, ew)T ∈ R. By condition (3) of
Definition 5.2, we obtain q0 = (wT, 0)T ∈ R and hence, by (24), q0 ∈ R′. As q ∈ R, by Theorem 4.4 there
exist 0 ≤ π ≤ 1 and p1 ∈ R′ such that q = πp + (1 − π)p1. If π = 0, then q = p1 ∈ R′; by Definition 5.1,
w ∈ [[R′]] as required. Suppose now that π > 0; then sat con(q, C) ⊆ sat con(p, C). Thus, by (23), we obtain
sat con(q, C≥) ⊆ sat con(p′, C). By applying Lemma A.14 twice, we obtain

sat con
(

q0, C> ∪ C≥ ∪ Cε

)

= sat con(q, C≥) ⊆ sat con(p′, C≥) = sat con(p′
0, C> ∪ C≥ ∪ Cε)

⊆ sat con(p′
0, C). (25)

Now let β =
(

〈a, x〉 + s · ε ≥ b
)

∈ (C> ∪ C≥ ∪ Cε) \ sat con
(

q, C
)

. Then 〈a, w〉 > b. Let

ρc =

{

〈a,y〉−〈a,w〉
〈a,y〉−b

if 〈a, y〉 > 〈a, w〉;

1 otherwise;
qc = (1 + ρc)q0 − ρcp

′
0.

Then 0 < ρc ≤ 1 and qc = (wT

c , 0)T satisfies β. Let β vary in the set of constraints (C>∪C≥∪Cε)\sat con(q, C)
and take ρ > 0 to be the minimum of all the ρc obtained as above. Consider the affine combination

qρ = (1 + ρ)q0 − ρp′
0.

Then qρ = (wT

ρ , 0)T satisfies all the constraints in (C>∪C≥∪Cε)\sat con(q, C). As qρ is an affine combination
of q0 and p′

0, it is on the line passing through these two points and therefore, by (25), saturates every
constraint in sat con(q, C). Thus sat con(qρ, C>∪C≥∪Cε) = sat con(q, C) so that qρ satisfies every constraint
in sat con(q, C). By Lemma A.13, qρ also satisfies every constraint in C \(C>∪C≥∪Cε). Therefore qρ satisfies
every constraint in C so that qρ ∈ R and hence, by (24), qρ ∈ R′. Letting σ = 1

1+ρ
we obtain 0 < σ < 1

and w = σwρ + (1 − σ)y. Thus
(

wT, (1 − σ)e′
)T

= σqρ + (1 − σ)p′ ∈ R′. As e′ > 0 and σ < 1, we have
(1 − σ)e′ > 0 and hence, by Definition 5.1, w ∈ [[R′]] as required.

Suppose next that R VC P . By the first part of the proof R′
Vε P . By Definition 5.6, R ⊆ con

(

{ε ≥ 0}
)

.

Since R′ ⊆ R, we also obtain R′ ⊆ con
(

{ε ≥ 0}
)

, so that, by Definition 5.6, R′
VC P .

Finally, suppose that R VG P . By the first part of the proof, R′
Vε P . By hypothesis, G′ = (R, P \{p}

)

so
that rays(R) = rays(R′). Since R 6= ∅, by Definition 5.8, we have that −eε ∈ rays(R). Thus −eε ∈ rays(R′)
and R′

VG P , as required.

Proof of Proposition 6.3 on page 16. Properties (6) and (7) follow from Lemmas A.17 and A.19, respectively.

Proof of Proposition 6.4 on page 16. Since, by hypothesis P 6= ∅, we can apply Lemma A.5 twice to obtain

(vT, 0)T ∈ R ⇐⇒ v ∈ C(P) ⇐⇒ (vT, 0)T ∈ R′. (26)

32

To prove property (8), let β =
(

〈a, x〉+0 ·ε ≥ b
)

be a non-strict inequality encoding in C and q = (vT, e)T

be any point of R′. By condition (3) of Definition 5.2, q0 = (vT, 0)T ∈ R′ so that, by (26), we have q0 ∈ R.
In particular, q0 satisfies β and, since the coefficient of ε in β is 0, q also satisfies β. As the choice of q ∈ R′

is arbitrary, R′ ⊆ con
(

{β}
)

.
To prove property (9), let r = (sT, 0)T ∈ GR. By hypothesis, R is not empty; thus, considering any

q = (vT, e)T ∈ R, by condition (3) of Definition 5.2, we obtain q0 = (vT, 0)T ∈ R. Since r ∈ rays(R), for all
ρ ∈ R+ we also have

qρ = q0 + 2ρr =
(

(v + 2ρs)T, 0)T ∈ R.

By (26), we have q0 ∈ R′ and qρ ∈ R′, for all ρ ∈ R+. Thus, for all ρ ∈ R+,

q′
ρ = q + ρr = 0.5q + 0.5qρ ∈ R.

Thus r ∈ rays(R′).
To prove property (10), let p ∈ GC , so that p = (vT, 0)T ∈ R. Then, by (26), p ∈ R′ as required.

The proof of Proposition 6.5 is based on some preliminary lemmas. In the following proofs, for each (strict
or non-strict) linear constraint β =

(

〈a, x〉 ./ b
)

, where a ∈ Rn \ {0} and ./ ∈ {≥, >}, the corresponding

non-strict constraint is denoted by geq(β)
def
=

(

〈a, x〉 ≥ b
)

. Similarly, for each constraint system C, we define

geq(C)
def
=

{

geq(β)
∣

∣ β ∈ C
}

.

Lemma A.20. Let con(C) = R ∈ CPn+1 and P ∈ Pn be such that R Vε P 6= ∅. Then the constraint
(

〈a, x〉 + s · ε ≥ b
)

∈ C is singular for R if and only if s = 0 and
(

〈a, x〉 ≥ b
)

∈ con enc(C) is singular for P .

Proof. Suppose that β =
(

〈a, x〉 + s · ε ≥ b
)

∈ C is singular for R. Then every point in R must saturate β.
As P 6= ∅, by Definition 5.1, there exists a point (wT, e)T ∈ R with e 6= 0; by condition (3) of Definition 5.2,
we also have (wT, 0)T ∈ R; since both these points saturate β, it must be s = 0. By Definition 5.4, we have
β1 =

(

〈a, x〉 ≥ b
)

∈ con enc(C). Let v ∈ P so that, by Definition 5.1 and 5.2, (vT, 0)T ∈ R; as β is singular,
(vT, 0)T saturates β so that v saturates β1. As v ∈ P was arbitrary, every point in P saturates β1; and hence
β1 is singular for P .

Conversely, suppose there is a constraint β1 ∈ con enc(C) that is singular for P 6= ∅; thus, β1 must be non-
strict so that, for some a ∈ Rn and b ∈ R, β1 =

(

〈a, x〉 ≥ b
)

. By Definition 5.4, β =
(

〈a, x〉+ 0 · ε ≥ b
)

∈ C.
As β1 is singular for P , every point v ∈ C(P) saturates β1; thus every point (vT, 0)T ∈ R saturates β. By
condition (3) of Definition 5.2, (vT, e)T ∈ R only if (vT, 0)T ∈ R; thus every point in R saturates β; and
hence β is singular for R.

Lemma A.21. Let R = con(C) ∈ CPn+1 and P ∈ Pn be such that R Vε P 6= ∅ and suppose that C is in
minimal and orthogonal form, but not in ε-minimal form. Then C contains a strongly ε-redundant constraint.

Proof. Suppose R = gen(G), where G = (R, P). Let C1 = con enc(C) and G1 = (R1, P1, C1) = gen enc(G). It
follows from Proposition 5.5 that P = con(C1) = gen(G1); also, C(P) = con

(

geq(C1)
)

= gen
(

(R1, P1 ∪ C1)
)

.

Let eq(C) = eq(R) ∩ C and eq(C1) = eq(P) ∩ C1 so that, by Lemma A.20, eq(C1) = con enc
(

eq(C)
)

.
Let also ineq(C) = C \ eq(C) and ineq(C1) = C1 \ eq(C1). As P 6= ∅, eq(C1) contains no strict constraints
so that, by Definition 5.4, we also have ineq(C1) = con enc

(

ineq(C)
)

. Since C is in orthogonal form, for all

β =
(

〈a, x〉 + s · ε ≥ b
)

∈ eq(C) and β′ =
(

〈a′, x〉 + s′ · ε ≥ b′
)

∈ ineq(C) we have
〈

slope(β), slope(β′)
〉

= 0;
by Lemma A.20, s = 0 and hence 〈a, a′〉 = 0, so that C1 is in orthogonal form too.

As C is not in ε-minimal form, by Definition 6.1, C1 is not in minimal form. Thus there exists a constraint
η =

(

〈a, x〉 ./ b
)

∈ C1, where ./ ∈ {≥, >}, which is redundant for C1. By Definition 5.4, there exists s ≤ 0

such that β =
(

〈a, x〉 + s · ε ≥ b
)

∈ C. We distinguish two main cases:

Case 1. geq(η) is saturated by none of the closure points of P ;

Case 2. geq(η) is saturated by at least one closure point of P .

Consider first Case 1. By the assumption for this case, we obtain sat gen
(

geq(η), (R1, P1∪C1)
)

v (R1, ∅).
It is easy to observe that η is non-singular for P , because any singular constraint has to be saturated by all
the points of C(P) 6= ∅, including those in P1 ∪C1. We now show that η is a strict constraint. To do this we

33

assume by contraposition η is non-strict. Thus η = geq(η) and, by Definition 5.4, s = 0. Since no point in
P1 ∪C1 saturates η, then no point in P saturates β. Thus β is redundant in C, contradicting the hypothesis
that C is in minimal form. Therefore, η is a strict constraint, so that, by Definition 5.4, s < 0 and β ∈ C>.
The above saturation assumption implies sat gen

(

β, (GR,GC)
)

v (GR, ∅) and hence, by Definition 6.2, β is
strongly ε-redundant in C.

Consider now Case 2. As η is redundant in C1 and geq(η) is saturated by at least one closure point of

P , there exists k > 0 such that a =
∑k

i=1
ρiai and b =

∑k
i=1

ρibi where, for 1 ≤ i ≤ k, we have ρi > 0,

ηi =
(

〈ai, x〉 ./i bi

)

∈ C1 \ {η} and ./i ∈ {≥, >}. Therefore, for 1 ≤ i ≤ k, we have

sat gen
(

geq(η), (R1, P1 ∪ C1)
)

v sat gen
(

geq(ηi), (R1, P1 ∪ C1)
)

. (27)

By Definition 5.4, for 1 ≤ i ≤ k, there exists si ≤ 0 such that βi =
(

〈ai, x〉 + si · ε ≥ bi

)

∈ C \ {β}.
Suppose first that {η1, . . . , ηk} ⊆ eq(C1) so that η ∈ eq(C1). By Lemma A.20, β ∈ eq(C), s = 0 and, for

each 1 ≤ i ≤ k, βi ∈ eq(C) \ {β} and si = 0. As a consequence, slope(β) =
∑k

i=1

(

ρi slope(βi)
)

so that β is
redundant in eq(C); contradicting the hypothesis that C is in minimal form. Thus {η1, . . . , ηk} \ eq(C1) 6= ∅.

It follows that {η1, . . . , ηk}∩ ineq(C1) 6= ∅, so that η ∈ ineq(C1) and hence, by Lemma A.20, β ∈ ineq(C).
Since, by the hypothesis for this case, geq(η) is saturated by at least one closure point of P , if η is a strict
constraint, then at least one constraint in {η1, . . . , ηk}∩ineq(C1) must be strict. Thus we will assume, without
losing generality, that ηk ∈ ineq(C1) and ηk is strict if η is strict. By Lemma A.20, we have βk ∈ ineq(C)\{β}.

We show that η is a strict constraint. To do this we assume by contraposition η is non-strict. Thus
η = geq(η) and, by Definition 5.4, s = 0. Let β ′

k =
(

〈ak, x〉+ 0 · ε ≥ bk

)

; by Proposition 5.3, R ⊆ con
(

{β′
k}

)

,
so that β′

k is a valid constraint for R. Consider the generator systems H = (Rβ , Pβ) = sat gen(β,G) and
H′

k = (R′
k, P ′

k) = sat gen(β′
k,G) defined by the saturators of β and β′

k; we now prove that H v H′
k. Let

r = (vT, ev)T ∈ Rβ . As s = 0, v saturates η. If v = 0, then we trivially obtain r ∈ R′
k. Suppose now that

v 6= 0; thus, by Lemma A.2, we have (vT, 0)T ∈ rays(R) and, by Lemma A.6, v ∈ rays(P), which also
implies v ∈ rays

(

C(P)
)

. Since v saturates η, it can also be obtained as a non-negative combination of the
rays in R1 that saturate η so that, by (27), v also saturates geq(ηk). As a consequence, r saturates β ′

k and
hence r ∈ R′

k. Now let p = (vT, ev)T ∈ Pβ . By Definition 5.2, p0 = (vT, 0)T ∈ R so that, by Lemma A.5,
v ∈ C(P). As s = 0, v saturates η. Thus, by (27), v also saturates geq(ηk), so that p saturates β′

k and
p ∈ P ′

k. Hence H v H′
k. Note that, as β′

k is non-singular, C is in minimal form and β ∈ C, we cannot have
H @ H′

k, so that H = H′
k. Since C is also in orthogonal form, β = β′

k. Therefore, by Definition 5.4, as
{η, ηk} ⊆ C1 = con enc(C), η = ηk; a contradiction. It follows that η must be a strict constraint.

By construction, since η is strict, ηk is also strict so that, by Definition 5.4, we have s < 0 and sk < 0;
hence {β, βk} ⊆ C>. Suppose that the constraint β is saturated by a ray encoding r = (vT, 0)T ∈ GR. Then,
v ∈ R1 saturates geq(η); by (27), v also saturates geq(ηk) and hence, r saturates βk. Similarly, suppose that
β is saturated by a closure point encoding p0 = (vT, 0)T ∈ GC . By Definition 5.4, either v ∈ C1 or v ∈ P1; in
both cases, v saturates geq(η) and, by (27), v also saturates geq(ηk); hence, the closure point encoding p0

saturates βk. Thus we obtain sat gen
(

β, (GR,GC)
)

v sat gen(βk,G) so that, by Definition 6.2, β is strongly
ε-redundant in C.

Lemma A.22. Let R = gen(G) ∈ CPn+1 and P ∈ Pn be such that R Vε P 6= ∅ and suppose that G is in
minimal and orthogonal form, but not in ε-minimal form. Then G contains a strongly ε-redundant generator.

Proof. Let C1 = con enc(C). Observe that, by Definition 5.4, for each constraint
(

〈a, x〉 + s · ε ≥ b
)

∈ C

where a 6= 0 ∈ Rn and s, b ∈ R, we have
(

〈a, x〉 ≥ b
)

∈ geq(C1). Let G = (R, P) and suppose that
G1 = (R1, P1, C1) = gen enc(G). It follows from Proposition 5.5 that P = con(C1) = gen(G1); moreover,

C(P) = con
(

geq(C1)
)

= gen
(

(R1, P1 ∪ C1)
)

. By hypothesis, P 6= ∅ so that, by Definition 5.1, there exists a
point in R having an ε coordinate strictly greater than 0. Since G is not in ε-minimal form, by Definition 6.1,
the generator system G1 is not in minimal form. Thus there exists a redundant generator v in G1. To prove
the thesis, we will show that v ∈ P1 and, for some ev > 0, (vT, ev)T ∈ GP is strong ε-redundant in G.

We first show that v /∈ R1. To do this we assume by contraposition v ∈ R1. Since it is redundant in G1,
then v is a non-negative combination of the rays in R1 \ {v}. By Definition 5.4, for each w ∈ R1 there exists
(wT, 0)T ∈ R. As a consequence (vT, 0)T ∈ R is a non-negative combination of the rays in R \

{

(vT, 0)T
}

, so
that (vT, 0)T ∈ R is redundant in G; contradicting the hypothesis that G is in minimal form.

It follows that v ∈ P1 ∪C1. By Definition 5.4, P1 ∩C1 = ∅. Thus, since v is redundant in G1, there must

34

exist another vector w ∈ (P1 ∪ C1) \ {v} such that

sat con
(

v, geq(C1)
)

⊆ sat con
(

w, geq(C1)
)

. (28)

By Definition 5.4, there exist ev, ew ∈ R+ such that p = (vT, ev)T, q = (wT, ew)T and {p, q} ⊆ P .
We next show that v /∈ C1. To do this we assume by contraposition v ∈ C1 so that, by Definition 5.4,

ev = 0. Let q0 = (wT, 0)T so that, by condition (3) of Definition 5.2, q0 ∈ R. Consider ` ∈ lines(R). Since G
is in orthogonal form and q ∈ P , we have 〈q, `〉 = 0. Since {`,−`} ⊆ rays(R), by applying Lemma A.3 twice
we obtain ` = (`T

1 , 0)T. Thus 〈w, `1〉 = 0, so that 〈q0, `〉 = 〈w, `1〉 + 0 · 0 = 0. As this holds for all vectors
in lines(R), we obtain q0 ∈ lines(R)⊥. Consider now β =

(

〈a, x〉 + s · ε ≥ b
)

∈ sat con(p, C). Suppose first

that a 6= 0. Then, by Definition 5.4, there exists η ∈ C1 such that geq(η) =
(

〈a, x〉 ≥ b
)

∈ geq(C1). Since p

saturates β and ev = 0, then v saturates geq(η). Thus, by (28), w saturates geq(η). Then β ∈ sat con(q0, C).
On the other hand, if a = 0, since p saturates β and ev = 0, we obtain 〈0, v〉 + s · 0 = b. Thus b = 0
and again β ∈ sat con(q0, C). Therefore we obtain sat con(p, C) ⊆ sat con(q0, C). From this property, since
q0 ∈ lines(R)⊥ and G is a generator system in minimal form, we obtain p = q0 and hence v = w, which is
a contradiction.

It follows that v ∈ P1 so that, by Definition 5.4, ev > 0 and p ∈ GP . Consider the constraint system

C′
1 = con enc

(

sat con(p, C≥)
)

=
{

〈a, x〉 ≥ b
∣

∣

∣

(

〈a, x〉 + 0 · ε ≥ b
)

∈ sat con(p, C≥)
}

.

Then v saturates all the constraints in C ′
1. As p ∈ R and ev > 0, for all

(

〈a, x〉 + 0 · ε ≥ b
)

∈ sat con(p, C≥)

and all s < 0, we have
(

〈a, x〉 + s · ε ≥ b
)

/∈ C. Thus, by Definition 5.4, C ′
1 ⊆ C1 and hence P ⊆ con(C′

1).

Let G′ =
(

R, P \ {p}
)

and G′
1 = gen enc(G′) =

(

R1, P1 \ {v}, C1

)

. As v ∈ P is redundant in G1, we have
gen(G1) = gen(G′

1) and, in particular, v ∈ gen(G ′
1). Thus v = σy + (1 − σ)z where 0 < σ < 1, y ∈ P1 \ {v}

and z ∈ C(P). This implies that sat con
(

v, C1

)

⊆ sat con
(

y, C1

)

; in particular, since C′
1 ⊆ C1, we obtain

sat con(v, C′
1) ⊆ sat con(y, C′

1). By Definition 5.4, p′ = (yT, ey)T ∈ P \ {p}, where ey > 0, so that p′ ∈ G′
P .

Observe that, as y saturates every constraint in C ′
1, p′ saturates every constraint in sat con(p, C≥). It follows

that sat con(p, C≥) ⊆ sat con(p′, C≥) and, by Definition 6.2, p is strongly ε-redundant in G.

Proof of Proposition 6.5 on page 16. Items (1) and (2) follow from Lemmas A.21 and A.22, respectively.

35

