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Abstract Weakly-relational numeric constraints provide a compromise between com-

plexity and expressivity that is adequate for several applications in the field of formal

analysis and verification of software and hardware systems. We address the problems

to be solved for the construction of full-fledged, efficient and provably correct abstract

domains based on such constraints. We first propose to work with semantic abstract

domains, whose elements are geometric shapes, instead of the (more concrete) syntactic

abstract domains of constraint networks and matrices on which the previous propos-

als are based. This allows to solve, once and for all, the problem whereby closure by

entailment, a crucial operation for the realization of such domains, seemed to impede

the realization of proper widening operators. In our approach, the implementation of

widenings relies on the availability of an effective reduction procedure for the consid-

ered constraint description: one for the domain of bounded difference shapes already

exists in the literature; we provide algorithms for the significantly more complex cases

of rational and integer octagonal shapes. We also improve upon the state-of-the-art by

presenting, along with their proof of correctness, closure by entailment algorithms of

reduced complexity for domains based on rational and integer octagonal constraints.

The consequences of implementing weakly-relational numerical domains with floating

point numbers are also discussed.
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1 Introduction

Numerical properties are of great interest in the broad area of formal methods for their

complete generality and for the crucial role they often play in the definition of static

analyses and program verification techniques. In the field of abstract interpretation,

classes of numerical properties are captured by numerical abstract domains. These have

been and are widely used, either as the main abstraction for the application at hand,

or as powerful ingredients to improve the precision of other abstract domains.

Among the wide spectrum of numerical abstractions proposed in the literature,

probably the most famous are the (non-relational) abstract domain of intervals [1] and

the (relational) abstract domain of convex polyhedra [2]. As far as the efficiency/precision

trade-off is concerned, these domains occupy the opposite ends of the spectrum: on the

one hand, the operations on convex polyhedra achieve a significant level of precision,

which is however countered by a worst-case exponential time complexity that demands

particular care with its use if scalability problems are to be avoided; on the other hand,

the great efficiency of the corresponding operations on intervals is made unappealing by

the fact that the obtained precision is often unsatisfactory. This well-known dichotomy

(which does not impede that, for some applications, convex polyhedra or intervals are

the right choices) has motivated recent studies on several abstract domains that lie

somewhere between these two extremes, and can therefore be called weakly-relational

abstract domains. Examples include domains based on constraint networks [3–5], the

abstract domain of difference-bound matrices [6,7], the octagon abstract domain [8],

the ‘two variables per inequality’ abstract domain [9], the octahedron abstract domain

[10], and the abstract domain of template constraint matrices [11]. Moreover, similar

proposals that are not abstractions of the domain of convex polyhedra have been put

forward, including the abstract domain of bounded quotients [3], the zone congruence

abstract domain [12] and the one of integer octagonal constraints.

The latter constraints —that is, constraints of the form ax + by ≤ d where a, b ∈
{−1, 0, +1}, d ∈ Z and the variables x and y range over the integers— are also called

Unit Two Variables Per Inequality (UTVPI) integer constraints and constitute an inter-

esting subclass of linear integer constraints admitting polynomial solvability. The place

which these constraints occupy in the complexity/expressivity spectrum is, in fact, pe-

culiar. Concerning complexity, relaxing the restriction of (at most) two variables per

constraint and/or relaxing the restriction on coefficients make the satisfiability problem

NP-complete [13,14]. Concerning expressivity, these constraints have been successfully

used in a number of applications [15–18] in the field of formal analysis and verification

of software and hardware systems. Besides that, integer octagonal constraints can be

used for representing and solving many integer problems in the field of constraint pro-

gramming, such as temporal reasoning and scheduling [13]. When (integer or rational)

octagonal constraints are used to build abstract domains the most critical operation is

closure by entailment.1 This is the procedure whereby a set of octagonal constraints is

augmented with (a finite representation of) all the octagonal constraints that can be

inferred from it. The closure algorithms for rational octagonal constraints are sound

but not complete for integer octagonal constraints. The latter require so-called tight

closure algorithms that fully exploit the integrality of the variables.

In this paper, we address —providing the proofs of all the stated results— several

issues that revolve around the closure by entailment operation: its interaction with

1 In contrast, in constraint programming, satisfiability check is the crucial operation.
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the widening operators that ensure fixpoint computations terminate after a reasonable

number of iterations; its efficient computation, both on rational and integer domain;

its correct realization when floating point numbers are used for the implementation.

1.1 Closure by Entailment and Widening Operators

For the abstract domain of convex polyhedra, all the widenings that have been pro-

posed are variations of, and/or improvements to, what is commonly referred to as

the standard widening [2,19]. This is based on the general widening principle “drop

the unstable components” applied to constraints. Not surprisingly, most proposals for

widening operators for the weakly relational domains are based on the same principle

and analogous to the standard widening. For instance, for the domain of difference

bound matrices mentioned above, an operator meant to match the standard widening

is given in [7]. Unfortunately, as pointed out by A. Miné in [6,8] and also in his PhD

thesis [18], this operator is not a widening, since it has no convergence guarantee. The

reason is that closure by entailment, which is systematically performed so as to pro-

vide a canonical form for the elements and to improve the precision of several domain

operations, has a negative interaction with the extrapolation operator of [7] that com-

promises the convergence guarantee. Intuitively, what can happen is that, while the

extrapolation operator discards unstable constraints, the closure operation reinserts

them (because they were redundant): failure to drop such unstable constraints can

(and, in practice, quite often does) result in infinite upward iteration sequences. For

this reason, it is proposed in [6,8,18] to apply the same operator given in [7] to the

“syntactic” version of the same abstract domain, that is, where closure is only very

carefully applied during the fixpoint computations.

We have taken a different approach and resolve the apparent conflict by consider-

ing a “semantic” abstract domain whose elements are the geometric shapes themselves.

Since closure by entailment preserves the geometric shapes (even though it does not

preserve their syntactic expressions), the approach is immune from the divergence prob-

lem described above. On the other hand, in order to use the standard widening as the

basis of the proposed widening, it is important that we can compute reduced repre-

sentations of the domain elements that encode non-redundant systems of constraints.

Thus the implementations of any new widenings based on the semantic approach will

need effective reduction procedures for the considered constraint description: here we

provide such an algorithm for the domain of rational and integer octagonal shapes.

1.2 Computing the Closure by Entailment

Building upon the theoretical work required to verifying the correctness of the re-

duction algorithms mentioned above, we show that the algorithm for computing the

strong closure of rational octagonal graphs as described in [6] can be simplified with a

consequential improvement in its efficiency.

We also show that this result can be extended so as to apply to integer octagonal

constraints. This enables us to present and fully justify an O(n3) algorithm to compute

the tight closure of a set of UTVPI integer constraints. In particular, this is the first

time that an algorithm achieving such a complexity bound is provided with a proof of

correctness.
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Finally, we illustrate what happens when floating point numbers are used to im-

plement the rational coefficients of weakly relational abstract domains.

1.3 Plan of the Paper

This paper which combines, improves and extends the work presented in [20,21] and

[22], is structured as follows: Section 2 recalls the required concepts and notations;

Section 3 presents domains based on bounded differences and the solution of widening-

closure conflict on these, simpler numerical abstractions; Section 4 extends such results

to domains based on rational octagonal constraints; Section 5 presents the improved

algorithm for computing closure by entailment of a system of rational octagonal con-

straints; Section 6 generalizes the algorithms for closure and reduction to the case of

integer octagonal constraints; floating point computations are discussed in Section 7;

related work is presented in Section 8; and Section 9 concludes.

2 Preliminaries

The reader is assumed to be familiar with the fundamental concepts of lattice the-

ory [23] and abstract interpretation theory [24,25]. We recall here the definition of

widening operator, providing a general mechanism for enforcing or accelerating termi-

nation of an abstract interpretation. In its simplest form, a widening operator on a

poset 〈P,⊑〉 is a partial function ∇ : P × P ֌ P satisfying:

1. for all x, y ∈ P , if x ∇ y is defined then x ⊑ x ∇ y and y ⊑ x ∇ y;

2. for all increasing chains y0 ⊑ y1 ⊑ · · · , if the increasing chain x0 := y0 and

xi+1 := xi ∇ yi+1 is defined for all i ∈ N, then it is not strictly increasing.

We refer the reader to the classical works on the numeric domains of intervals [1] and

convex polyhedra [2] for the specification of the corresponding widening operators.

Let Q∞ := Q∪{+∞} be totally ordered by the extension of ‘<’ such that d < +∞
for each d ∈ Q. A rational-weighted directed graph (graph, for short) G in the finite set

of nodes N is a pair (N , w), where w : N ×N → Q∞ is the weight function for G. A

pair (ni, nj) ∈ N ×N is an arc of G if w(ni, nj) < +∞; the arc is proper if ni 6= nj . A

path π = n0 · · ·np in G is a non-empty and finite sequence of nodes such that (ni−1, ni)

is an arc of G, for all i = 1, . . . , p. Each node ni where i = 0, . . . , p and each arc

(ni−1, ni) where i = 1, . . . , p is said to be in the path π. The length of the path π is

the number p of occurrences of arcs in π and denoted by ‖π‖; the weight of the path π

is
Pp

i=1
w(ni−1, ni) and denoted by w(π). The path π is simple if each node occurs at

most once in π; it is proper if all the arcs in it are proper; it is a proper cycle if it is a

proper path, n0 = np and p ≥ 2; it is a zero-cycle if it is a proper cycle and w(π) = 0. A

graph is zero-cycle free if it has no zero-cycles. If π1 = n0 · · ·nh and π2 = nh · · ·np are

paths, where 0 ≤ h ≤ p, then the path concatenation π = n0 · · ·nh · · ·np of π1 and π2

is denoted by π1 :: π2; if π1 = n0n1 (so that h = 1), then π1 :: π2 will also be denoted

by n0 · π2. Note that path concatenation is not the same as sequence concatenation.

A graph (N , w) can be interpreted as the system of potential constraints

C :=
˘

ni − nj ≤ w(ni, nj)
˛

˛ ni, nj ∈ N
¯

.
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The graph (N , w) is consistent if and only if the system of constraints it represents

is satisfiable in Q, i.e., there exists a rational valuation ρ : N → Q such that, for each

constraint (ni−nj ≤ d) ∈ C, the relation ρ(ni)−ρ(nj) ≤ d holds. It is well-known that

a graph is consistent if and only if it has no negative weight cycles (see [26, Section

25.5] and [27]).

The set of consistent graphs in N is denoted by G. This set is partially ordered by

the relation ‘E’ defined, for all G1 = (N , w1) and G2 = (N , w2), by

G1 E G2 ⇐⇒ ∀i, j ∈ N : w1(i, j) ≤ w2(i, j).

When augmented with a bottom element ⊥ representing inconsistency, this partially

ordered set becomes a non-complete lattice G⊥ =
˙

G∪{⊥}, E,⊓,⊔
¸

, where ‘⊓’ and ‘⊔’

denote the finitary greatest lower bound and least upper bound operators, respectively.

A graph G′ = (N , w′) is a subgraph of G = (N , w) if, for all i, j ∈ N , we have

w′(i, j) = w(i, j) or w′(i, j) = +∞; the subgraph is proper if G′ 6= G. If G′ is a

subgraph of G, then G E G′ (the converse does not necessarily hold).

Definition 1 (Closed graph.) A consistent graph G = (N , w) is closed if the fol-

lowing properties hold:

∀i ∈ N : w(i, i) = 0; (1)

∀i, j, k ∈ N : w(i, j) ≤ w(i, k) + w(k, j). (2)

The (shortest-path) closure of a consistent graph G in N is

closure(G) :=
G

˘

G′ ∈ G
˛

˛ G′
E G and G′ is closed

¯

.

Although the lattice of rational graphs is not complete, it will include all the infinite

least upper bounds defining the closures of rational graphs. Informally, this must hold

since the weights of closure(G) must be linear combinations of the rational weights of

G and hence are also rational.

When trivially extended so as to behave as the identity function on the bottom

element ⊥, shortest-path closure is a kernel operator (monotonic, idempotent and re-

ductive) on the lattice G⊥, therefore providing a canonical form.

3 Bounded Difference Graphs and Shapes

The typical way to simplify the domain of convex polyhedra is by restricting attention

to particular subclasses of linear inequalities. One possibility, which has a long tradition

in computer science [28], is to only consider potential constraints, also known as bounded

differences: these are restricted to take the form vi − vj ≤ d or ±vi ≤ d, where d is a

constant. Systems of bounded differences have been used by the artificial intelligence

community as a way to reason about temporal quantities [29,30], as well as by the

model checking community as an efficient yet precise way to model and propagate

timing requirements during the verification of various kinds of concurrent systems [31,

32]. In the abstract interpretation field, the idea of using an abstract domain of bounded

differences was put forward in [3].
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3.1 Bounded Difference Graphs

A finite system C of bounded differences on variables V = {v0, . . . , vn−1} can be rep-

resented by a weighted directed graph G = (N0, w) where N0 = {0} ∪ V, 0 /∈ V is the

special variable, and the weight function w is defined, for each vi, vj ∈ N0, by

w(vi, vj) :=

8

>

>

>

>

<

>

>

>

>

:

min
˘

d ∈ Q
˛

˛ (vi − vj ≤ d) ∈ C
¯

, if vi 6= 0 and vj 6= 0;

min
˘

d ∈ Q
˛

˛ (vi ≤ d) ∈ C
¯

, if vi 6= 0 and vj = 0;

min
˘

d ∈ Q
˛

˛ (−vj ≤ d) ∈ C
¯

, if vi = 0 and vj 6= 0;

0, if vi = vj = 0.

Notice that we assume that min ∅ = +∞; moreover, unary constraints are encoded

by means of the special variable, which is meant to always have value 0. A possible

representation of (the weight function of) the graph G is by means of a matrix-like data

structure called Difference-Bound Matrix (DBM) [28]. However, this representation

provides no conceptual advantage over the isomorphic graph (or constraint network

[30]) representation. For this reason we will consistently adopt the terminology and

notation introduced in Section 2 for weighted directed graphs. In particular, a graph

encoding a consistent system of bounded differences will be called a Bounded Difference

Graph (BDG).

The first fully developed application of bounded differences in the field of abstract

interpretation can be found in [7], where an abstract domain of closed BDGs is defined.

In this case, the shortest-path closure requirement was meant as a simple and well

understood way to obtain a canonical form for the domain elements by abstracting

away from the syntactic details; basically, it corresponds to the closure by entailment

of the encoded system of bounded differences with respect to the transitivity inference

rule:
i − k ≤ d1 k − j ≤ d2

i − j ≤ d1 + d2

(3)

In [7] the specification of all the required abstract semantics operators is provided,

including an operator that is meant to match the widening operators defined on more

classical numeric domains. This operator can be interpreted either as a generalization

for closed BDGs of the widening operator defined on the abstract domain of inter-

vals [1], or as a restriction on the domain of closed BDGs of the standard widening

defined on the abstract domain of convex polyhedra [2,19]: its implementation is based

on the following upper bound operator on the set of consistent graph representations.

Definition 2 (Widening graphs.) Let G1 = (N , w1) and G2 = (N , w2) be consis-

tent graphs. Then G1∇G2 := (N , w), where the weight function w is defined, for each

i, j ∈ N , by

w(i, j) :=

(

w1(i, j), if w1(i, j) ≥ w2(i, j);

+∞, otherwise.

Unfortunately, as pointed out in [6,8], when used in conjunction with shortest-path

closure, this extrapolation operator does not provide a convergence guarantee for fix-

point computations, hence it is not a widening. The reason is that, whereas the closure

operation adds redundant constraints to the input BDG, a key requirement in the

specification of the standard widening is that the first argument polyhedron must be
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described by a non-redundant system of constraints.2 Thus we have a “conflict of in-

terest” between the use of a convenient canonical form for the abstract domain —a

form that also allows for increased precision of several domain operations— and the

requirements of the widening.

The abstract domain of BDGs has been reconsidered in [6]. Differently from [7],

in [6] BDGs are not required to be closed. In this more concrete, syntactic domain,

the shortest-path closure operator maps each domain element into the smallest BDG

encoding the same geometric shape. Closure is typically used as a preprocessing step

before the application of most, though not all, of the abstract semantic operators,

allowing for improved accuracy in the results of the abstract computation. The same

widening operator proposed in [7] is also used in [6]; however, it is observed that

this widening “could have intriguing interactions” with shortest-path closure, therefore

identifying the divergence issue faced in [7]. This observation led the author of [6] to

the adoption of the syntactic domain of BDGs, where closure is not enforced.

3.2 Bounded Difference Shapes

While the analysis of the divergence problem is absolutely correct, the solution identi-

fied in [6] is sub-optimal since, as is usually the case, resorting to a syntactic domain

(such as the one of BDGs) has a number of negative consequences, some of which will

be recalled in Section 3.4.

To identify a simpler, more natural solution, we first have to acknowledge that an

element of our abstract domain should be a geometric shape, rather than (any) one

of its graph representations. To stress this concept, such an element will be called a

Bounded Difference Shape (BDS). A BDS corresponds to the equivalence class of all the

BDGs representing it. The implementation of the abstract domain can freely choose

between these possible representations, switching at will from one to the other, as long

as the semantic operators are implemented as expected. Notice that, in such a context,

the shortest-path closure operator is just a transparent implementation detail: on the

abstract domain of BDSs it corresponds to the identity function.

The other step towards the solution of the divergence problem is the simple obser-

vation that a BDS is a convex polyhedron and the set of all BDSs is closed under the

application of the standard widening on convex polyhedra. Thus, no divergence prob-

lem can be incurred when applying the standard widening to an increasing sequence

of BDSs. As mentioned in Section 3.1, a crucial requirement in the specification of

the standard widening is that the first argument polyhedron is described by a non-

redundant system of constraints [33]. Thus it is not surprising that using closed BDGs

has problems since it is very likely that they will encode redundant constraints. By

contrast, we propose to select, in the equivalence class of BDGs representing the same

geometric shape, a BDG which is maximal with respect to the graph lattice ordering

‘E’, since such a graph encodes no redundant constraints at all.

Definition 3 (Reduced graph.) A consistent graph G1 is reduced if, for each consis-

tent graph G2 6= G1 such that G1EG2, we have closure(G1) 6= closure(G2). A reduction

for the consistent graph G is any reduced graph Gr such that closure(G) = closure(Gr).

2 This requirement was sometimes neglected in recent papers describing the standard widen-
ing on convex polyhedra; it was recently recalled and exemplified in [33]. Note that a similar
requirement is implicitly present even in the specification of the widening on intervals.
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Hence, a graph is reduced if it is maximal in the subset of graphs having the same

shortest-path closure. In order to provide a correct and reasonably efficient implemen-

tation of the standard widening on the domain of BDSs, all we need is a reduction

procedure mapping a BDG representation into (any) one of the equivalent reduced

graphs. Such an algorithm was defined in [32] and called shortest-path reduction. Ba-

sically, it is an extension of the transitive reduction algorithm of [34] to the case of

weighted directed graphs. Note that, since each equivalence class may have many max-

imal elements, shortest-path reduction is not a properly defined operator on the domain

of BDGs. However, the shortest-path reduction algorithm of [32] provides a canonical

form as soon as we fix a total order for the nodes in the graph.

In summary, the solution to the divergence problem for BDSs is to apply the oper-

ator specified in Definition 2 to a reduced BDG representation of the first argument of

the widening. From the point of view of the user, this will be a transparent implemen-

tation detail: on the domain of BDSs, shortest-path reduction is the identity function,

as was the case for shortest-path closure.

3.3 On the Precision of the Standard Widening

The standard widening on BDSs could result, if used with no precautions, in poorer

precision with respect to its counterpart defined on the syntactic domain of BDGs. For

increased precision, the specification of [6] prescribes two conditions that the abstract

iteration sequence must satisfy:

1. the second argument of the widening should be represented by a closed BDG (note

that, in this case, no divergence problem can arise);

2. the first BDG of the abstract iteration sequence G0 E G1 E . . . E Gi E . . . should

be closed too.

The effects of both improvements can be obtained also with the semantic domain of

BDSs. As for the first one, this can be applied as is, leading to an implementation where

the two arguments of the widening are represented by a reduced BDG and a closed

BDG, respectively. The result of such a widening operator will depend on the specific

reduced form computed for the first argument. The second precision improvement can

be achieved by applying the well-known ‘widening up to’ technique defined in [35,36] or

its variation called ‘staged widening with thresholds’ [37–39]: in practice, it is sufficient

to add to the set of ‘up to’ thresholds all the constraints of the shortest-path closure

of the first BDG G0. Further precision improvements can be obtained by applying any

delay strategy and/or the framework defined in [33].

3.4 Syntactic vs. Semantic Abstract Domains

In this section we have shown that when considering weakly-relational numeric ab-

stractions, besides the syntactic domains of constraint systems, it is possible to define

the semantic domains of the corresponding geometric shapes. To avoid misunderstand-

ings, it is worth stressing that both kinds of abstract domain are well defined and may

be safely adopted for the implementation of a static analysis application. Nonetheless,

it can be argued that using a semantic abstract domain provides several advantages.

Some of the advantages were already pointed out in [6, Section 5] where the domain
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of BDGs is compared to the domain of closed BDGs.3 For instance, it is noted that

the domain of closed BDGs allows for the specification of a nicer, injective meaning

function; also, the least upper bound operator on BDGs is not the most precise ap-

proximation of the union of two geometric shapes. In summary, the discussion in [6,

Section 5] makes clear that the solution to the divergence problem for the abstract

iteration sequence was the main motivation for adopting a syntactic domain.

One disadvantage of syntactic abstract domains concerns the user-level interfaces of

the corresponding software implementations. Namely, the user of a syntactic abstract

domain (e.g., the developer of a specific static analysis application using this domain)

has to be aware of many details that, in principle, should be hidden by the implemen-

tation. As an example, consider the shortest-path closure and reduction procedures for

BDGs, which the user might rightfully see as semantics-preserving operations. As a

matter of fact, for the syntactic domain of BDGs, these are not semantics-preserving:

their application affects both the precision and the convergence of the abstract itera-

tion. In such a situation, the documentation of the abstract domain software needs to

include several warnings about the correct usage of these operators, so as to avoid possi-

ble pitfalls. In contrast, when adopting the semantic domain of BDSs, both the closure

and reduction operators may be excluded from the public interface while the imple-

mentation can apply them where and when needed or appropriate. Such an approach

is systematically pursued in the implementation of the Parma Polyhedra Library [40].

Another potential drawback of the adoption of a syntactic abstract domain can be

found in the application of domain refinement operators. As an example, consider the

application of the finite powerset operator [41] to the domains of BDGs and BDSs, so

as to obtain two abstract domains that are able to represent finite disjunctions of the

corresponding abstract elements. In both cases, by providing the widenings on BDGs

and BDSs with appropriate finite convergence certificates [41], it will be possible to lift

them to corresponding widenings on the powerset domains. However, when upgrading

the syntactic domain, avoidable redundancies will be incurred, since different disjuncts

inside a domain element may represent the same geometric shape; furthermore, these

“duplicates” cannot be systematically removed, since by doing so we could change the

value of the finite convergence certificate of the powerset element, possibly breaking

the convergence guarantee of the lifted widening. As a consequence, both efficiency and

precision are potentially degraded. In summary, the disadvantages of syntactic domains

are amplified when applying domain refinements.

4 Rational Octagonal Graphs and Shapes

From a theoretical point of view, the observations made in the previous section are

immediately applicable to any other weakly-relational numeric domain whose elements

are convex polyhedra and is closed with respect to the application of the standard

widening, therefore including the domains proposed in [8–11]. From a practical per-

spective, the success of such a construction depends on the availability of a reasonably

efficient reduction procedure for the considered subclass of constraints, because algo-

rithms for minimizing arbitrary linear inequality constraints are not efficient enough. In

this section we provide such a reduction procedure for the octagon abstract domain [8].

3 Similar observations, tailored to the case of octagons, are also in [8, Section VII].
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We assume in the following that there is a fixed set V = {v0, . . . , vn−1} of n vari-

ables. The octagon abstract domain allows for the manipulation of octagonal constraints

of the form avi + bvj ≤ d, where a, b ∈ {−1, 0, +1}, a 6= 0, vi, vj ∈ V, vi 6= vj and

d ∈ Q (the same class of constraints was considered in [15], where octagons were called

simple sections). Octagonal constraints can be encoded using potential constraints by

splitting each variable vi into two forms: a positive form v+
i , interpreted as +vi; and

a negative form v−i , interpreted as −vi. Then any octagonal constraint avi + bvj ≤ d

can be written as a potential constraint v−v′ ≤ d0 where v, v′ ∈ {v+
i , v−i , v+

j , v−j } and

d0 ∈ Q. Namely, an octagonal constraint such as vi + vj ≤ d can be translated into

the potential constraint v+
i − v−j ≤ d; alternatively, the same octagonal constraint can

be translated into v+
j − v−i ≤ d. Furthermore, unary (octagonal) constraints such as

vi ≤ d and −vi ≤ d can be encoded as v+
i − v−i ≤ 2d and v−i − v+

i ≤ 2d, respectively,

so that the special variable 0 is no longer needed.

From now on, we assume that the set of nodes is N± := {0, . . . , 2n − 1}. These

will denote the positive and negative forms of the variables in V: for all i ∈ N±, if

i = 2k, then i represents the positive form v+
k

and, if i = 2k + 1, then i represents the

negative form v−
k

of the variable vk. To simplify the presentation, for each i ∈ N±, we

let ı denote i + 1, if i is even, and i − 1, if i is odd, so that, for all i ∈ N±, we also

have ı ∈ N± and ı = i. Then we can rewrite a potential constraint v − v′ ≤ d where

v ∈ {v+
k

, v−
k
} and v′ ∈ {v+

l
, v−

l
} as the potential constraint i − j ≤ d in N± where, if

v = v+
k

, i = 2k and if v = v−
k

, i = 2k + 1; similarly, if v′ = v+
l

, j = 2l and if v′ = v−
l

,

j = 2l + 1.

It follows that any finite system of octagonal constraints on V, translated into a

set of potential constraints in N± as above, can be encoded by a graph G in N±.

In particular, any satisfiable system of octagonal constraints can be encoded by a

consistent graph in N±. However, the converse does not hold since in any valuation

ρ of an encoding of a set of octagonal constraints we must also have ρ(i) = −ρ(ı), so

that the arcs (i, j) and (, ı) should have the same weight. Therefore, to encode rational

octagonal constraints, we restrict attention to consistent graphs over N± where the

arcs in all such pairs are coherent.

Definition 4 (Octagonal graph.) An octagonal graph in N± is any consistent graph

G = (N±, w) satisfying the coherence assumption:

∀i, j ∈ N± : w(i, j) = w(, ı). (4)

The set O of all octagonal graphs (with the usual addition of the bottom element,

representing an unsatisfiable system of constraints) is a sub-lattice of G⊥, sharing

the same least upper bound and greatest lower bound operators. Note that, at the

implementation level, coherence can be automatically and efficiently enforced by letting

arc (i, j) and arc (, ı) share the same representation. This also implies that an octagonal

constraint such as vi + vj ≤ d will always be translated into both v+
i − v−j ≤ d and

v+
j − v−i ≤ d.

The octagon abstract domain developed in [8] is thus a syntactic domain having

octagonal graphs as elements. When dealing with octagonal graphs, observe that the

coherence assumption links the positive and negative forms of variables. A closure by

entailment procedure, besides classical transitivity as encoded by the explicit paths in

10



the graph, should also consider the following strengthening inference rule:

i − ı ≤ d1  − j ≤ d2

2(i − j) ≤ d1 + d2

(5)

Thus shortest-path closure for consistent graphs does not provide a canonical form for

octagonal graphs; to this end, strong closure, first defined in [8], is used instead.

Definition 5 (Strongly closed graph.) An octagonal graph G = (N±, w) is strongly

closed if it is closed and the following property holds:

∀i, j ∈ N± : 2w(i, j) ≤ w(i, ı) + w(, j). (6)

The strong closure of an octagonal graph G in N± is

S-closure(G) :=
G

˘

G′ ∈ O
˛

˛ G′
E G and G′ is strongly closed

¯

.

When trivially extended with a bottom element, strong closure is a kernel operator on

the lattice of octagonal graphs.

4.1 A Strong Reduction Procedure for Octagonal Graphs

By repeating the reasoning motivating the bounded difference shapes, we define the

semantic abstract domain of octagonal shapes, whose elements are equivalence classes

of octagonal graphs representing the same geometric shape. Hence, strong closure maps

an octagonal graph representation of a non-empty octagonal shape into the minimum

element of the corresponding equivalence class. The dual procedure, mapping the oc-

tagonal graph into (any) one of the maximal elements in its equivalence class, is called

strong reduction.

Definition 6 (Strongly reduced graph.) An octagonal graph G1 is strongly reduced

if, for each octagonal graph G2 6= G1 such that G1EG2, S-closure(G1) 6= S-closure(G2).

A strong reduction for the octagonal graph G is any strongly reduced octagonal graph

GR such that S-closure(G) = S-closure(GR).

In the above definition, we only compare G1 with other octagonal graphs G2 ∈ O,

thereby disregarding those trivial redundancies that are due to the coherence assump-

tion. This is not a real problem because, as discussed before, any reasonable implemen-

tation will automatically and efficiently filter away this kind of redundancies.

We now generalize the shortest-path reduction algorithm of [32] so as to obtain a

strong reduction procedure for octagonal graphs. Clearly, the algorithm of [32] cannot

be used without modifications, since it takes no account of the redundancies caused by

the strengthening inference rule (5). Nonetheless, the high-level structure of the strong

reduction procedure is the same as that defined in [32] for shortest-path reduction:

1. compute the closure by entailment of the constraint graph;

2. partition the nodes into equivalence classes based on equality constraints;

3. decompose the graph so as to separate those arcs that link different equivalence

classes (encoding only inequalities) from the partition information (encoding the

equivalence classes themselves, i.e., all the equalities);

4. reduce the subgraph that gives constraints on different equivalence classes;

11



5. reduce the partition information;

6. merge the results of steps 4 and 5 to obtain the reduced constraint graph.

We now describe each of the above steps, formally stating the correctness of the overall

procedure.

Step 1 of the algorithm can be performed by applying any strong closure procedure,

e.g., the one originally defined in [8] or the more efficient one given in Section 5.

Step 2 is also easily implemented by observing that, in a strongly closed octagonal

graph, equality constraints correspond to zero-cycles having length two.

Definition 7 (Zero-equivalence.) Let G = (N±, w) be a strongly closed octagonal

graph. The nodes i, j ∈ N± are zero-equivalent in G, denoted i ≡G j, if and only if

w(i, j) = −w(j, i).

While step 6 carries over from BDGs to octagonal graphs, the formal definition of

steps 3–5 of the reduction algorithm is more difficult for octagonal graphs than it was

for BDGs, as it requires some understanding of the structure of the zero-equivalence

classes. As a first observation, note that i ≡G j if and only if ı ≡G , so that we have

the following lemma.

Lemma 1 Let G = (N±, w) be a strongly closed octagonal graph and E ⊆ N± a zero-

equivalence class for G. Then E := { ı ∈ N± | i ∈ E } is also a zero-equivalence class

for G.

Let G be a strongly closed octagonal graph and, for a zero-equivalence class E of G,

let E be defined as in Lemma 1. Then we say that E is non-singular if E ∩ E = ∅ and

singular if E = E .

Lemma 2 Let G = (N±, w) be a strongly closed octagonal graph. Then there is at

most one singular zero-equivalence class for G.

If it exists, the singular zero-equivalence class encodes all the unary equality con-

straints.4 In contrast, all the other (non-singular) zero-equivalence classes can only

encode binary equality constraints.

We associate to each zero-equivalence class E ⊆ N± a leader ℓE := min E ; the

class having the leader in positive (resp., negative) form will be said to be a positive

(resp., negative) zero-equivalence class. Note that, this means that the singular zero-

equivalence class, if present, is always positive and, for non-singular zero-equivalence

classes E and E , we have ℓ
E

= ℓE .

We are now ready to provide a formal specification for step 3 of the strong reduction

algorithm. As was the case in [32], the first subgraph resulting from the decomposi-

tion, relating nodes in different zero-equivalence classes, is obtained by only connecting

the leaders; however, the leader of the singular zero-equivalence class should not be

connected to the other leaders. The second subgraph only encodes those constraints

relating nodes in the same zero-equivalence class.

Definition 8 (Non-singular leaders and zero-equivalence subgraphs.) Assume

G = (N±, w) is a strongly closed octagonal graph and L ⊆ N± is the set of leaders

of the non-singular zero-equivalence classes for G. The non-singular leaders’ subgraph

4 When computing a reduced BDG, such a singular zero-equivalence class is always present:
it is the zero-equivalence class containing the special variable 0.
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of G is the graph L = (N±, wL), where the weight function wL is defined, for each

i, j ∈ N±, by

wL(i, j) :=

(

w(i, j), if i = j or {i, j} ⊆ L;

+∞, otherwise.

The zero-equivalence subgraph of G is the graph E = (N±, wE), where the weight

function wE is defined, for each i, j ∈ N±, by

wE(i, j) :=

(

w(i, j), if i ≡G j;

+∞, otherwise.

The following result states that the two subgraphs are still strongly closed and the

non-singular leaders’ subgraph encodes no equality constraints, therefore describing a

fully dimensional octagonal shape.

Lemma 3 Let L and E be the non-singular leaders’ subgraph and the zero-equivalence

subgraph of the strongly closed octagonal graph G, respectively. Then, L and E are

strongly closed octagonal graphs and L is zero-cycle free.

Step 4 of the strong reduction algorithm is implemented by checking, for each

proper arc in the non-singular leaders’ subgraph, whether it can be obtained from the

other arcs by a single application of the constraint inference rules. Once again, note

that we disregard redundancies caused by the coherence assumption.

Definition 9 (Strongly atomic arc and subgraph.) Let G = (N±, w) be an

octagonal graph. An arc (i, j) of G is atomic if it is proper and, for all k ∈ N± \ {i, j},
w(i, j) < w(i, k) + w(k, j). The arc (i, j) is strongly atomic if it is atomic and either

i =  or 2w(i, j) < w(i, ı) + w(, j).

The strongly atomic subgraph of G is the graph A = (N±, wA) where the weight

function wA is defined, for all i, j ∈ N±, by

wA(i, j) =

(

w(i, j), if (i, j) is strongly atomic in G;

+∞, otherwise.

The implementation of step 5 of the algorithm, i.e., the strong reduction of the zero-

equivalence subgraph, is performed by reducing each zero-equivalence class in isolation.

Once again, we exploit the total ordering defined on N±.

The strong reduction for a positive non-singular zero-equivalence class E follows

that of [32]: it creates a single zero-cycle connecting all nodes in E following their total

ordering, where the weights of the component arcs are as in the strong closure of the

graph. By the coherence assumption, the nodes in the corresponding negative zero-

equivalence class E are automatically connected in the opposite order. Figure 1 shows

the arcs in the strong reduction of both E and E , where E = {z0, . . . , zm} is the positive

class and where z0 < · · · < zm. The strong reduction for a singular zero-equivalence

class E is similar except that there is now a single zero-cycle connecting all the positive

and negative nodes in E . Figure 2 shows the strong reduction for the singular zero-

equivalence class E = {z0, z0, . . . , zm, zm}, where z0 < z0 < · · · < zm < zm. In both

Figures 1 and 2, the dashed arcs are those that can be obtained from the non-dashed

ones by application of the coherence assumption.

The following definition formalizes the above observations.
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E z0 z1 . . . zm

E z0 z1 . . . zm

Fig. 1 Strong reduction for non-singular zero-equivalence classes

E

z0 z1 . . . zm

z0 z1 . . . zm

Fig. 2 Strong reduction for the singular zero-equivalence class

Definition 10 (Zero-equivalence reduction.) Let G = (N±, w) be a strongly

closed octagonal graph and let w′ be the weight function defined, for all i, j ∈ N±, as

follows: if i, j ∈ E for some positive zero-equivalence class E of G and

– if E = {z0, . . . , zm} is non-singular, assuming z0 < · · · < zm,

w′(i, j) :=

8

>

<

>

:

w(i, j), if i = zh−1, j = zh, for some h = 1 . . . , m;

w(i, j), if i = zm, j = z0 and m > 0;

+∞, otherwise;

– if E = {z0, z0, . . . , zm, zm} is singular, assuming z0 < z0 < · · · < zm < zm,

w′(i, j) :=

8

>

<

>

:

w(i, j), if i = zh−1, j = zh, for some h = 1 . . . , m;

w(i, j), if i = z0, j = z0 or i = zm, j = zm;

+∞, otherwise;

and w′(i, j) := +∞, otherwise. Then, the zero-equivalence reduction for G is the oc-

tagonal graph Z = (N±, wZ), where, for each i, j ∈ N±,

wZ(i, j) := min
˘

w′(i, j), w′(, ı)
¯

.

The final step 6 of the strong reduction algorithm is implemented by computing

the greatest lower bound A ⊓ Z, where A is the strongly atomic subgraph of L and Z

is the zero-equivalent reduction of E, as obtained at steps 4 and 5 of the algorithm.

Theorem 1 Given an octagonal graph G, the strong reduction algorithm computes a

strong reduction for G.
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If n is the cardinality of the original set V of variables, then steps 1 and 4 of the

algorithm have worst-case complexity in O(n3), while all the others steps are in O(n2).

Thus, the overall procedure has cubic complexity. As was the case for the reduction

procedure of [32], once the ordering of variables is fixed, the strong reduction algorithm

returns a canonical form for octagonal graphs.

4.2 A Semantic Widening for Octagonal Shapes

A correct implementation of the standard widening on octagonal shapes is obtained by

computing any strong reduction of the octagonal graph representing the first argument.

As in the case of BDSs, for maximum precision the strongly closed representation for

the second argument should be computed. Even better, by adopting the following

variant, we obtain a “truly semantic” widening for the domain of octagonal shapes.

Definition 11 (Widening octagonal shapes.) Let S1, S2 ∈ ℘(Rn), where ∅ 6=
S1 ⊆ S2, be two octagonal shapes represented by the strongly reduced octagonal graph

G1 and the strongly closed octagonal graph G2, respectively. Let also S ∈ ℘(Rn) be

the octagonal shape represented by the octagonal graph G1 ∇ G2. Let dim(T ) denote

the affine dimension of shape T . Then we define

S1 ∇ S2 :=

(

S2, if dim(S1) < dim(S2);

S, otherwise.

By refraining from applying the graph-based widening when the affine dimension of

the geometric shapes is increasing, the operator becomes independent from the specific

strongly reduced form computed, i.e., from the total ordering defined on the nodes of

the graphs. Also note that the test dim(S1) < dim(S2) can be efficiently decided by

checking whether the nodes of the two octagonal graphs are partitioned into different

collections of zero-equivalence classes.

Theorem 2 The operator ‘∇’ of Definition 11 is a proper widening on the domain of

octagonal shapes. Let ‘∇s’ be the standard widening on the domain of convex polyhedra,

as defined in [19]. Then, for all octagonal shapes S1, S2 ∈ Rn such that ∅ 6= S1 ⊆ S2,

we have S1 ∇ S2 ⊆ S1 ∇s S2.

Observe that, in the typical static analysis computation pattern, the result of a

widening computed for one iteration will be used as the first input argument for the

widening step in the subsequent iteration. By Definition 11, such an input argument

will already be either strongly closed or strongly reduced (because the graph widening

operator of Definition 2 preserves strong reduction); hence, the full computational cost

of strong reduction will be incurred less frequently than expected.

A semantic widening for BDSs enjoying a result similar to Theorem 2 can be ob-

tained by replacing, in Definition 11, the strongly reduced and strongly closed octagonal

graph representations by the reduced and closed BDG representations, respectively.

5 An Improved Strong Closure Procedure for Octagonal Graphs

The strong closure algorithm defined in [8,18], whose pseudo-code is reported in Fig-

ure 3, performs n local propagation steps, where n is the dimension of the vector space.
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function Q consistent(var w [0 . . 2n − 1] [0 . . 2n − 1]) : bool

for i := 0 to 2n − 1 do

if w[i, i] < 0 return false;

else w[i, i] := 0;

return true;

end function

procedure strengthening(var w [0 . . 2n − 1] [0 . . 2n − 1])

for i := 0 to 2n − 1 do

for j := 0 to 2n − 1 do

w[i, j] := min
“

w[i, j],
`

w[i, ı] + w[, j]
´

/2
”

;

end procedure

function strong closure(var w [0 . . 2n − 1] [0 . . 2n − 1]) : bool

for k := 0 to 2n − 2 step 2 do

{ Modified Floyd-Warshall: n steps }

for i := 0 to 2n − 1 do

for j := 0 to 2n − 1 do

w[i, j] := min
`

w[i, j], w[i, k] + w[k, j],

w[i, k] + w[k, j],

w[i, k] + w[k, k] + w[k, j],

w[i, k] + w[k, k] + w[k, j]
´

;

{ Strengthening: n steps }

strengthening(w);

return Q consistent(w);

end function

Fig. 3 The strong closure algorithm proposed in [8,18] for rational octagonal graphs

In each of these steps, a rather involved variant of the constraint propagation for tran-

sitivity as found in the Floyd-Warshall algorithm is followed by another constraint

propagation for strengthening, corresponding to the new inference rule (5).

A naive implementation of the algorithm in Figure 3 would perform 48n3 coefficient

operations (the number of operations is obtained by summing the number of coefficient

additions and the number of coefficient comparisons implementing the computation of

the minima, whose realization typically requires a coefficient subtraction; we disregard

simpler operations, such as zero initialization, division by the constant 2 and compar-

ison with the constant 0, which are also less frequent). Several optimizations can be

applied: for instance, some invariant computations can be moved out of the body of the

inner loop; more importantly, the number of iterations can be lowered by resorting to

an appropriate data structure [18, Section 4.5.1] recording the weight function w, here

denoted to be similar to a two-dimensional array, so that it automatically implements

the coherence assumption for octagonal graphs (i.e., property (4) of Definition 4).

In particular, the finely tuned implementation that can be found in [42], performs

20n3 + 24n2 coefficient operations. Nonetheless, a significant efficiency improvement,
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function shortest path closure(var w [0 . . 2n − 1] [0 . . 2n − 1]) : bool

{ Classical Floyd-Warshall }

for k := 0 to 2n − 1 do

for i := 0 to 2n − 1 do

for j := 0 to 2n − 1 do

w[i, j] := min
`

w[i, j], w[i, k] + w[k, j]
´

;

return Q consistent(w);

end function

function strong closure(var w [0 . . 2n − 1] [0 . . 2n − 1]) : bool

if not shortest path closure(w) return false;

strengthening(w);

return true;

end function

Fig. 4 An improved strong closure algorithm for rational octagonal graphs

which is probably beyond any hand crafted and/or compiler assisted optimization of

the algorithm in Figure 3, can be obtained thanks to the following theorem.

Theorem 3 Let G = (N±, w) be a closed octagonal graph. Consider the graph GS =

(N±, wS), where wS is defined, for each i, j ∈ N±, by

wS(i, j) := min



w(i, j),
w(i, ı)

2
+

w(, j)

2

ff

.

Then GS = S-closure(G).

Intuitively, the theorem states that strong closure can be obtained by application of

any shortest-path closure algorithm followed by a single strengthening step, leading to

a much simpler implementation.

Figure 4 shows an improved strong closure algorithm based on Theorem 3 and on

the classical Floyd-Warshall shortest-path closure algorithm. Here too the pseudo-code

relies on a data structure that automatically implements the coherence assumption. The

naive implementation of this new algorithm leads to the computation of 16n3 + 8n2

coefficient operations: while it is still in the O(n3) complexity class, the saving with

respect to the highly optimized algorithm in [42] is always above 20%.

If the case of sparse graphs is considered, then Theorem 3 allows for a further

improvement to the complexity bound: to this end, it is enough to modify the code

in Figure 4 so as to compute the shortest-path closure using Johnson’s algorithm [26]:

the worst case complexity of such an implementation will be O(n2 log n + mn), which

significantly improves upon the O(n3) worst case complexity of the Floyd-Warshall

algorithm when, e.g., m ∈ Θ(n). However, as observed elsewhere [18,43], some of the

targeted applications (e.g., static analysis) typically require the computation of graphs

that are dense, so that the Floyd-Warshall algorithm is often a better choice from a

practical perspective.

Observe that Theorem 3 also allows for enhancements in the incremental variant of

the strong closure algorithm, proposed in [18]. Once again, the improved algorithm can
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be obtained by any incremental version of shortest-path closure (e.g., the incremental

version of the Floyd-Warshall algorithm) followed by a single strengthening step.

6 Integer Octagonal Graphs, Tight Closure and Tight Reduction

We now consider the case of integer octagonal constraints, i.e., octagonal constraints

where the bounds are all integral and the variables are only allowed to take integral val-

ues. These can be encoded by suitably restricting the codomain of the weight function

of octagonal graphs.

Definition 12 (Integer octagonal graph.) An integer octagonal graph is an octag-

onal graph G = (N±, w) having an integral weight function:

∀i, j ∈ N± : w(i, j) ∈ Z ∪ {+∞}.

As an integer octagonal graph is also a rational octagonal graph, the constraint

system that it encodes will be satisfiable when interpreted to take values in Q. However,

when interpreted to take values in Z, this system may be unsatisfiable since the arcs

encoding unary constraints can have an odd weight; we say that an octagonal graph is

Z-consistent if its encoded integer constraint system is satisfiable. For the same reason,

the strong closure of an integer octagonal graph does not provide a canonical form for

the integer constraint system that it encodes and we need to consider the following

tightening inference rule:
i − ı ≤ d

i − ı ≤ 2⌊d/2⌋
. (7)

Definition 13 (Tightly closed graph.) An octagonal graph G = (N±, w) is tightly

closed if it is a strongly closed integer octagonal graph and the following property

holds:

∀i ∈ N± : w(i, ı) is even. (8)

The tight closure of an octagonal graph G in N± is

T-closure(G) :=
G

˘

G′ ∈ O
˛

˛ G′
E G and G′ is tightly closed

¯

.

It follows from Definition 13 that any tightly closed integer octagonal graph will sat-

isfy property (8), thereby encoding a satisfiable integer constraint system, and therefore

will be Z-consistent. Moreover, since the encoding of any satisfiable integer constraint

system will result in a Z-consistent integer octagonal graph G that satisfies property

(8), its tight closure T-closure(G) will also be Z-consistent. This means that, if G is not

Z-consistent, then T-closure(G) =
F

∅ = ⊥; that is, the tight closure operator com-

putes either a tightly closed graph or the bottom element. Therefore, tight closure is a

kernel operator on the lattice of octagonal graphs, as was the case for strong closure.

An incremental closure procedure for obtaining the tight closure of an octagonal

graph was defined in [13] and improved in [44]. The algorithm, which is also presented

and discussed in [18, Section 4.3.5], maintains the tight closure of a system of octagonal

constraints by performing at most O(n2) operations each time a new constraint is

added: thus, for m constraints, the worst case complexity is O(mn2). In particular, for

the case of a dense system of octagonal constraints where m ∈ O(n2), the worst case

complexity is O(n4).
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procedure tightening(var w [0 . . 2n − 1] [0 . . 2n − 1])

for i := 0 to 2n − 1 do

w[i, ı] := 2 · floor
`

w[i, ı]/2
´

;

end procedure

procedure tight closure if consistent(var w [0 . . 2n − 1] [0 . . 2n − 1])

shortest path closure(w);

tightening(w);

strengthening(w);

end procedure

Fig. 5 A O(n3) tight closure algorithm for Z-consistent integer octagonal graphs

The following theorem shows that a more efficient tight closure algorithm can be

obtained by a simple modification to the improved strong closure algorithm based on

Theorem 3. Basically, the tightening inference rule (7) must be applied to ensure that

property (8) holds before applying the strengthening inference rule (5).

Theorem 4 Let G = (N±, w) be a closed integer octagonal graph. Consider the graph

GT = (N±, wT), where wT is defined, for each i, j ∈ N±, by

wT(i, j) := min



w(i, j),
jw(i, ı)

2

k

+
jw(, j)

2

k

ff

. (9)

Then, if GT is an octagonal graph, GT = T-closure(G).

Figure 5 shows the pseudo-code for a O(n3) tight closure algorithm based on The-

orem 4 and on the classical Floyd-Warshall shortest-path closure algorithm. As in the

rational case, if the graph is sparse, a better complexity bound can be obtained by using

Johnson’s algorithm [26] for shortest-path closure: the worst case complexity will again

be O(n2 log n + mn), which improves upon the O(mn2) worst case complexity of [13,

44] when m ∈ Ω(log n). In contrast, the same worst case complexity bound of [13,44]

is obtained when considering the incremental variant of the tight closure algorithm.

It follows from the statement of Theorem 4 that an implementation based on it also

needs to check the consistency of GT. In principle, one could apply again a shortest-

path closure procedure so as to check whether GT contains some negative weight cycles.

However, a more efficient solution can be obtained by exploiting the following result.

Theorem 5 Let G and GT be as defined in Theorem 4. Consider Gt = (N±, wt)

where, for each i, j ∈ N±,

wt(i, j) :=

(

2⌊w(i, j)/2⌋, if j = ı;

w(i, j), otherwise;
(10)

and suppose that, for all i ∈ N±, wt(i, ı)+wt(ı, i) ≥ 0. Then GT is an octagonal graph.

The combination of the results stated in Theorems 4 and 5, together with the well

known result for rational consistency, leads to an O(n3) tight closure algorithm, such

as that given by the pseudo-code in Figure 6, that computes the tight closure of any

(possibly inconsistent) coherent integer-weighted graph returning the Boolean value

‘true’ if and only if the input graph is Z-consistent.
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function Z consistent(var w [0 . . 2n − 1] [0 . . 2n − 1]) : bool

for i := 0 to 2n − 2 step 2 do

if w[i, ı] + w[ı, i] < 0 return false;

return true;

end function

function tight closure(var w [0 . . 2n − 1] [0 . . 2n − 1]) : bool

if not shortest path closure(w) return false;

tightening(w);

if not Z consistent(w) return false;

strengthening(w);

return true;

end function

Fig. 6 A O(n3) tight closure algorithm for integer coherent graphs

6.1 A Tight Reduction Procedure for Integer Octagonal Graphs

A definition of tight reduction of a Z-consistent integer octagonal graph could be easily

introduced by a blind adaptation of (strong) reduction. Such an approach, however,

would result in a rather unnatural tight reduction procedure.

Example 1 Let C = {v0 ≤ 0,−v0 ≤ 0} be a system of integer octagonal constraints

on V = {v0}. Then, N± = {v+
0

, v−
0
} and we encode C by the integer octagonal graph

G = (N±, w), where w(i, j) = 0 for all i, j ∈ N±. Clearly, G = T-closure(G). Let

G1 = (N±, w1) be the subgraph of G having only arcs (v+
0

, v−
0

) and (v−
0

, v+
0

): it is

easy to observe that T-closure(G1) = T-closure(G) and no proper subgraph of G1

satisfies this property. However, the maximum integer octagonal graph equivalent to G

is G2 = (N±, w2), where the two arcs mentioned above have weights w2(v
+
0

, v−
0

) = 1

and w2(v
−

0
, v+

0
) = −1. Note that G2 represents the (non-redundant, but unnecessarily

involved) integer octagonal constraints C2 = {2v0 ≤ 1,−2v0 ≤ −1}; in particular, G2

is not a subgraph of the tight closure of G. ⊓⊔

To avoid cases such as Example 1, we require that a tight reduction for G is found

among the subgraphs of T-closure(G).

Definition 14 (Tightly reduced graph.) A Z-consistent integer octagonal graph

G1 is tightly reduced if G1 is a subgraph of T-closure(G1) and, for each integer octagonal

graph G2 such that G2 is a proper subgraph of G1, T-closure(G1) 6= T-closure(G2). A

tight reduction for the Z-consistent integer octagonal graph G is any tightly reduced

graph GR such that T-closure(G) = T-closure(GR).

Unsurprisingly, the strong reduction algorithm of Section 4.1, in isolation, will not

compute a tight reduction for a Z-consistent integer octagonal graph, since it disregards

redundancies caused by the tightening inference rule (8).

Example 2 Let C = {v0−v1 ≤ 0, v0+v1 ≤ 3, v0 ≤ 1} be an integer octagonal constraint

system on V = {v0, v1}. By applying the strong reduction algorithm of Section 4.1,

we would conclude that no constraint in C is redundant. However, v0 ≤ 1 is indeed

redundant, as it can be obtained by transitivity (3) followed by tightening (7). ⊓⊔
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In the example above, the constraint v0 ≤ 1 is encoded by arc (v+
0

, v−
0

) having

weight 2: this arc is strongly atomic, hence it is not identified as redundant by the

strong reduction procedure. However, if the arc is untightened, we would obtain an arc

having weight 3, hence not (strongly) atomic, i.e., redundant.

Definition 15 (Graph untightening.) Let G = (N±, w) be a Z-consistent integer

octagonal graph. Arc (i, ı) is tightly redundant in G if w(i, ı) is even and there exists

k ∈ N± \ {i, ı} such that w(i, k) + w(k, ı) ≤ w(i, ı) + 1. The untightening of G is the

graph U = (N±, wU), where the weight function wU is defined, for all i, j ∈ N±, by

wU(i, j) =

(

+∞, if j = ı and (i, ı) is tightly redundant in G;

w(i, j), otherwise.

A correct and efficient tight reduction procedure is obtained by a simple adaptation

of the strong reduction procedure of Section 4.1: in step 1 of the algorithm, we compute

tight closure (rather than strong closure); steps 2–5 are unchanged and yield graphs A

and Z (resulting from steps 4 and 5, respectively); in step 6, the final result is computed

as U ⊓ Z, where U is the untightening of A.

Theorem 6 Given a Z-consistent integer octagonal graph G, the tight reduction algo-

rithm computes a tight reduction for G.

The tight reduction algorithm has cubic complexity and, when the variable ordering is

fixed, computes a canonical form for integer octagonal graphs.

To the best of our knowledge, this is the first time that a reduction procedure

for the class of integer octagonal constraints is proposed and proved correct. Previous

approaches were based either on more general classes of constraints (thereby incurring

into avoidable inefficiencies), or on the rational relaxation of the constraints (thereby

failing to identify all redundancies).

7 A Note on Floating-Point Computations

The formal definitions and theoretical results concerning weighted directed graphs

assume that the data type adopted for the weights allows for their exact representation

and propagation, therefore avoiding any possible problems with overflow, underflow

and rounding errors. In actual implementations, by trading some efficiency, such an

assumption can be easily fulfilled by adopting unbounded precision data types (integer

or rational, depending on the underlying problem), as provided by several software

libraries such as GMP, the GNU Multiple Precision arithmetic library.

Catering for inexact data types needs some care since, in particular, this requires

that the notion of a correct approximation is made explicit. As an example, consider

the case of shortest-path closure for a weighted graph whose variables are meant to take

rational values. The computation of the weight of a path corresponds to several applica-

tions of the constraint inference rule for transitivity: approximating such a weight from

above leads to a correct (but possibly imprecise) inference, whereas approximating it

from below is unsafe. Therefore, an implementation willing to correctly approximate

the rational shortest-path closure using unbounded precision integers will just need to

correctly approximate the input graph (rounding upwards all the rational weights) and

then apply any standard closure algorithm.
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Example 3 Consider the graph G = (N , w) having k + 1 nodes N = {0, . . . , k} con-

nected to form a simple path by k ≥ 1 arcs having the same rational weight:

∀i ∈ {1, . . . , k} : w(i − 1, i) = 1/k.

Clearly, the one and only (hence shortest) path π = 0 · · · k from node 0 to node k

has rational weight w(π) = 1, which happens to be an integer. By approximating the

rational weight function w using an integer weight function wZ and then applying

closure, we will compute wZ(π) =
Pk

i=1 wZ(i − 1, i) =
Pk

i=1

˚

1/k
ˇ

= k. ⊓⊔

Even though a correct approximation has occurred with respect to the ideal rational

computation, the implementation based on unbounded integers can be said to be precise

in that no further approximations are introduced besides those incurred during the

initial integer encoding of the rational weights. In few words, the representation of

input weights is approximate, but their propagation is accurate. In particular, the

approximated algorithm still implements a lower closure operator on the domain of

weighted graphs.

Things are more difficult if we consider a data type that causes an inexact (though

correct) propagation of the weights. This is the case, for instance, when adopting

bounded precision floating point coefficients. Correctness can be achieved, almost as

easily as before, by applying the appropriate rounding mode not only when approxi-

mating the rational weights of the input graph, but also when computing operations

such as floating point addition, which is an inexact operation. When reasoning on pre-

cision, however, an important issue surfaces: the basic definition of weight of a path as

given in Section 2, assumes that addition is an associative operation, but such a prop-

erty fails to hold for floating point data types. In order to compute the minimum sum

of the arc weights in a path, we would need to identify an optimal order of application

for additions, probably resulting in algorithms that are too slow.

As an alternative approach, we could incrementally modify the weighted graph

by repeated applications of the transitive inference rule (3), until either a fixpoint is

reached or an inconsistency is detected. This will result in the definition of a lower

closure operator on the lattice G, below denoted as ‘fpw’, that correctly approximates

the ideal one. However, the computed weights might be larger than the minimal ones,

as shown in the following example.

Example 4 Let ‘↑’ denote the upward approximation of a rational number using a

floating point number and ‘⊞’ denote floating point addition with upward rounding.

Consider the graph G = (N , w) where the nodes in N = {a, b, c, d} are connected

by three arcs having (rational and floating point) weights w(a, b) = ↑(1/3), w(b, c) =

↑(1/2) = 1/2 and w(c, d) = −↑(1/3). Clearly, the exact rational weight of path π =

abcd is w(abcd) = 1/2. In principle, the same rational weight could also be computed

using floating points, as follows:

w(b, c) ⊞
ˆ

w(a, b) ⊞ w(c, d)
˜

= 1/2.

However, the result is obtained by a reassociation of the sequence of additions that

corresponds to none of the subpaths of π; hence, it can not be computed by incre-

mental applications of the transitivity inference rule, which would instead result in the
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following approximation:

fpw(abcd) = fpw(ab) ⊞ fpw(bcd)

= fpw(ab) ⊞
ˆ

fpw(bc) ⊞ fpw(cd)
˜

= w(a, b) ⊞
ˆ

w(b, c) ⊞ w(c, d)
˜

= ↑(1/3) ⊞

h

1/2 ⊞
`

−↑(1/3)
´

i

> 1/2.

⊓⊔

It is tempting to adopt ‘fpw’ as the natural definition of floating point weight of a

path, since by construction it enjoys an optimal substructure property, so that its

implementation can be based on dynamic programming techniques. However, the fol-

lowing example shows that the classical Floyd-Warshall algorithm for rational/integer

shortest-path closure is not enough to compute ‘fpw’.

Example 5 Consider the graph G = (N , w) where the nodes in N = {a, b, c, d} are

connected by three arcs having floating point weights w(a, b) = 1/2, w(b, c) = ↑(1/3)

and w(c, d) = −↑(1/3). Let wfw be the weight function computed by the classical

Floyd-Warshall algorithm, instantiated to use the given floating point data type with

upward rounding operations. Clearly, the shortest path from node a to node d has (ra-

tional and floating point) weight w(abcd) = fpw(abcd) = 1/2. However, the algorithm

will instead compute

wfw(a, d) = wfw(abc) ⊞ wfw(cd)

=
ˆ

wfw(ab) ⊞ wfw(bc)
˜

⊞ wfw(cd)

=
ˆ

w(a, b) ⊞ w(b, c)
˜

⊞ w(c, d)

=
ˆ

1/2 ⊞ ↑(1/3)
˜

⊞
`

−↑(1/3)
´

> 1/2,

even though wfw(bcd) = fpw(bcd) = 0. This happens because the algorithm, by as-

suming associativity, does not attempt to improve the computed path weight using the

other association fpw(ab) ⊞ fpw(bcd). ⊓⊔

In principle, the computation of ‘fpw’ can be carried out by repeatedly applying the

Floyd-Warshall algorithm until reaching a fixpoint: we conjecture that such an ap-

proach would achieve an O(n4) worst case complexity bound.

It is worth stressing that the observations and examples made above, illustrating

the issues caused by inexact floating point addition, can be easily adapted so as to

show corresponding issues due to overflows. Such a case is even more general, in that

it applies not only to floating point data types, but also to bounded precision integer

data types.

In summary, the implementation of a truly semantic abstract domain is not possi-

ble using only bounded precision and inexact computations. Nonetheless, by quotient-

ing the syntactic domain of graph representations according to the approximate clo-

sure/reduction operators, we obtain a more abstract (but still syntactic) domain where

most, although not all, of the redundancies have been removed. As a consequence, the

negative side to the adoption of a syntactic abstract domain will be greatly mitigated.
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8 Related Work

The shortest-path reduction algorithm of [32] was also considered in [18]. Here the

reduction procedure is used, as originally proposed in [32], as a tool for the compu-

tation of hollow representations for BDGs, i.e., representations that are appropriate

to the case of sparse graphs, so as to obtain memory space savings. This thesis does

not appear to identify the positive interaction between reduction and widening and,

as a consequence, the thesis conjectures that the computation of hollow representa-

tions could compromise the convergence of the abstract iteration sequence (see [18,

Section 3.8.2]). When adopting our semantic widenings, the sparse representation can

be used even when storing abstract elements at widening points. An adaptation of the

reduction algorithm for the case of octagonal graphs is defined in [18, Section 4.5.2]

although this differs from the one proposed in Section 4.1. It turns out that the algo-

rithm of [18, Section 4.5.2] may not obtain a strongly reduced graph in the sense of

Definition 6: the adapted hollow representation for octagonal graphs can still encode

some redundant constraints, as it does not take into proper account the peculiarities

of the singular zero-equivalence class. No reduction algorithm is proposed in [18] for

the integer octagonal case.

In 2001, Seater and Wonnacott observed that the Omega test [45] could be used

to decide the satisfiability of a (non trivially redundant) system of UTVPI integer

constraints achieving an O(n3) worst-case complexity bound [46]. In 2005, Lahiri and

Musuvathi proposed an O(mn) algorithm for the same satisfiability problem [47], where

m is the number of constraints. They also sketched, without formal definitions and

proofs, an O(n3) tight closure algorithm. Still in 2005, Miné proposed a modification

of the strong (i.e., non-tight) closure algorithm for rational octagonal constraints and

argued that this would provide a good and efficient approximation of tight closure [18,

48]. In the same year we showed that the algorithm for computing the strong closure

of rational octagonal constraints as described in [8,18,48] could be simplified with a

consequential improvement in its efficiency [20,21].

Some of the issues related to the adoption of an inexact data type for the repre-

sentation of graph weights have also been discussed in [18, Sections 7.3.2 and 7.5.3].

9 Conclusions

We have address the problem of the construction of full-fledged, efficient and provably

correct weakly-relational numeric abstract domains.

By considering the semantic abstract domains of geometric shapes, instead of the

more concrete abstract domains of their syntactic representations in terms of constraint

networks, we have shown how proper widening operators can be derived for several

weakly-relational numeric abstractions, including the domain of bounded difference

shapes and (rational and integer) octagonal shapes.

For what concerns the efficient representation of octagonal shapes by means of

octagonal graphs, we have specified and proved correct strong and tight reduction

procedures, as well as more efficient strong and tight closure procedures.

The theoretical results concerning weighted directed graphs hold when the data

type adopted for the representation of weights allows for exact computations. If a

floating-point data type is considered, then most of these results will be broken due

to rounding errors, so that the implementation of a truly semantic abstract domain
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will not be possible. Nonetheless, the (approximate) reduction operators allow for the

removal of most of the syntactic redundancies.

The algorithms presented in this paper have been experimentally validated and are

available as part of the Parma Polyhedra Library [40], which is free software distributed

under the GNU General Public License. (http://www.cs.unipr.it/ppl/).

Acknowledgements We would like to thank Katy Dobson and Elena Mazzi for useful dis-
cussions on topics related to this work.

References

1. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In:
B. Robinet (ed.) Proceedings of the Second International Symposium on Programming,
pp. 106–130. Dunod, Paris, France, Paris, France (1976).

2. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: Conference Record of the Fifth Annual ACM Symposium on Principles of
Programming Languages, pp. 84–96. ACM Press, Tucson, Arizona (1978).

3. Bagnara, R.: Data-flow analysis for constraint logic-based languages. Ph.D. thesis, Dipar-
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6. Miné, A.: A new numerical abstract domain based on difference-bound matrices. In:
O. Danvy, A. Filinski (eds.) Proceedings of the 2nd Symposium on Programs as Data Ob-
jects (PADO 2001), Lecture Notes in Computer Science, vol. 2053, pp. 155–172. Springer-
Verlag, Berlin, Aarhus, Denmark (2001)

7. Shaham, R., Kolodner, E.K., Sagiv, S.: Automatic removal of array memory leaks in Java.
In: D.A. Watt (ed.) Proceedings of the 9th International Conference on Compiler Construc-
tion (CC 2000), Lecture Notes in Computer Science, vol. 1781, pp. 50–66. Springer-Verlag,
Berlin, Berlin, Germany (2000)
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A Proofs

In the following we provide some further notation and terminology, as well as the formal proofs
for all the results stated in the previous sections. Most of the proofs are based on auxiliary
lemmas, some of which are well-known results of graph theory.

A.1 Further Notation and Simple Results on Weighted Graphs

For weighted directed graphs G1, G2 ∈ G, we will write G1 ⊳G2 when G1 EG2 and G1 6= G2.
Let G = (N±, w) be an octagonal graph. If π = j0 · · · jp is a path in G, then π denotes

the path p · · · 0. Note that, by the coherence assumption (4) of Definition 4, w(π) = w(π). A
path π in G is said to be (strongly) atomic if all the arcs in π are (strongly) atomic in G.

Definition 16 (Weakly closed graph.) An octagonal graph G = (N±, w) is weakly closed

if it satisfies rule (1) in Definition 1 and

∀i, j, k ∈ N± : w(i, k) + w(k, j) ≥ min
n

w(i, j),
`

w(i, ı) + w(, j)
´

/2
o

. (11)

The following three lemmas (namely, Lemmas 4, 5 and 6) recall results for weighted graphs
that are well-known and/or rather simple. The reader that, for the sake of completeness, is
interested in their proofs is referred to the corresponding lemmas in [21] (Lemmas 4, 5 and 7,
respectively).

Lemma 4 Let G = (N , w) be a consistent graph. Let also π = i · · · j be a path in G. Then

there exists a simple path π′ = i · · · j such that w(π′) ≤ w(π). Moreover each arc in π′ is also

an arc in π.

Lemma 5 Let G = (N , w) be a closed graph. Then, for any path π = i · · · j in G, it holds

that w(i, j) ≤ w(π).

Lemma 6 Let G = (N , w) be a closed and zero-cycle free graph. Let also π = i · · · j be a

proper path in G such that w(i, j) = w(π). Then π is a simple path.

Lemma 7 Let G = (N , w) be a consistent graph and Gc = (N , wc) be the closure of G. Let

also (z1, z2) be an arc in Gc. Then there exists a simple path π = z1 · · · z2 in G such that

wc(z1, z2) = w(π).

Proof For each i, j ∈ N , let sp(i, j) := min
˘

w(π)
˛

˛ π = i · · · j is a path in G
¯

, so that the
graph Gsp = (N , sp) directly encodes the shortest-path weights of G. (sp is well defined,
because G is consistent and min ∅ = +∞.) For each arc (i, j) of Gsp, let also πij = i · · · j be
a corresponding simple shortest-path in G such that w(πij) = sp(i, j).

Note that Gsp satisfies property (1) of Definition 1, since the 0-length path i is a shortest-
path from node i to itself, so that w(πii) = sp(i, i) = 0. To see that Gsp also satisfies prop-
erty (2) of Definition 1, by contraposition, we assume that there exist i, j, k ∈ N such that
sp(i, j) > sp(i, k) + sp(k, j). Hence, w(πij) > w(πik) + w(πkj), i.e., w(πij) > w(πik :: πkj),
contradicting the assumption that πij is a shortest-path in G. Hence, Gsp is closed and, since
by construction Gsp E G, by Definition 1 we obtain Gsp E Gc.

Now let (i, j) be any arc in Gsp, so that πij is a shortest-path in G. Since Gc E G, πij is
also a path in Gc and wc(πij) ≤ w(πij) = sp(i, j). By Lemma 5, wc(i, j) ≤ wc(πij). Hence,
wc(i, j) ≤ sp(i, j), so that Gc E Gsp.

As Gc = Gsp, the thesis follows by definition of Gsp, taking π = πz1z2
. ⊓⊔

A.2 Proofs of the Results Stated in Sections 5 and 6

We anticipate here the proofs of the results stated in Sections 5 and 6 because the proofs of
theorems stated in Section 4.1 use these results.
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Lemma 8 Let G = (N±, w) be a weakly closed octagonal graph. Then, for all i, j ∈ N±,

w(i, ı) ≤ 2w(i, j) + w(j, ).

Proof Let i, j ∈ N±. Rule (11) of Definition 16, applied to the triple of nodes i, ı, j gives

w(i, ı) ≤ w(i, j) + w(j, ı).

Moreover, with the triple of nodes j, ı, , the same rule (11) implies that one of the following
two inequalities holds:5

w(j, ı) ≤ w(j, ) + w(, ı), 2w(j, ı) ≤ w(j, ) + w(i, ı).

If the first holds, then

w(i, ı) ≤ w(i, j) + w(j, ı)

≤ w(i, j) + w(j, ) + w(, ı)

= 2w(i, j) + w(j, ),

where the last step follows from the coherence assumption (4) of Definition 4. On the other
hand, if the second inequality holds, then

2w(i, ı) ≤ 2w(i, j) + 2w(j, ı)

≤ 2w(i, j) + w(j, ) + w(i, ı).

and hence again we have

w(i, ı) ≤ 2w(i, j) + w(j, ).

⊓⊔

Lemma 9 Let G = (N±, w) be a weakly closed octagonal graph and i, j ∈ N± be such that

2w(i, j) > w(i, ı) + w(, j). (12)

Let Gs = (N±, ws) where, for each h1, h2 ∈ N±,

ws(h1, h2) :=

(

`

w(i, ı) + w(, j)
´

/2, if (h1, h2) ∈
˘

(i, j), (, ı)
¯

;

w(h1, h2), otherwise.
(13)

Then Gs is a weakly closed octagonal graph.

Proof By Definition 4, the graph Gs is octagonal. By construction, Gs E G. As G is weakly
closed, rule (1) of Definition 1 holds so that w(i, i) = 0. As G is consistent, it has no negative
weight cycles and hence, 2w(i, i) ≤ w(i, ı) + w(ı, i). Thus, by hypothesis (12), we have i 6= j
and Gs satisfies rule (1) of Definition 1.

Observe that, as G is weakly closed, rule (11) of Definition 16 holds. Also, since Gs E G,

∀h1, h2 ∈ N± : ws(h1, h2) ≤ w(h1, h2). (14)

Suppose z1, z2, z ∈ N±. Then, by Definition 16, to prove that Gs is weakly closed, we need
to show that

ws(z1, z) + ws(z, z2) ≥ min
n

ws(z1, z2),
`

ws(z1, z1) + ws(z2, z2)
´

/2
o

. (15)

If (z1, z), (z, z2) /∈
˘

(i, j), (, ı)
¯

, then, by (13), we have ws(z1, z) = w(z1, z) and ws(z, z2) =
w(z, z2) and it follows from rule (11) and property (14) that (15) holds.

5 Note that rule (11) has the form A ≥ min{B, C}; from this we can conclude that A ≥ B
(when B is the minimum) or B ≥ C (when C is the minimum).
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The remaining cases where (z1, z) ∈
˘

(i, j), (, ı)
¯

or (z, z2) ∈
˘

(i, j), (, ı)
¯

are all similar
so, to complete the proof, we just consider the case when (z1, z) = (i, j). By hypothesis (13),
we have

2ws(i, j) + 2ws(j, z2) = w(i, ı) + w(, j) + 2w(j, z2);

hence, by the coherence assumption (4) of Definition 4,

2ws(i, j) + 2ws(j, z2) = w(i, ı) + w(, j) + 2w(z2, );

hence, by Lemma 8 (instantiated using nodes z2 and ),

2ws(i, j) + 2ws(j, z2) ≤ w(i, ı) + w(z2, z2);

hence, by hypothesis (13),

2ws(i, j) + 2ws(j, z2) ≤ ws(i, ı) + ws(z2, z2).

Therefore (15) holds. ⊓⊔

Lemma 10 Let G = (N±, w) be weakly closed. Consider the graph GS = (N±, wS) where

∀z1, z2 ∈ N± : wS(z1, z2) := min
n

w(z1, z2),
`

w(z1, z1) + w(z2, z2)
´

/2
o

. (16)

Then GS is strongly closed.

Proof We first prove that GS is weakly closed, by induction on the number of pairs z1, z2 ∈ N±

such that 2w(z1, z2) > w(z1, z1)+w(z2, z2). In the base case, when no such pair exists, by (16)
we obtain GS = G, so that GS is also weakly closed.

In the inductive case, there exist i, j ∈ N± such that 2w(i, j) > w(i, ı) + w(, j); so that
i 6= . Since G and nodes i, j satisfy the hypotheses in Lemma 9, we can define G′ = (N±, w′)
equal to the octagonal graph Gs = (N±, ws) defined in Lemma 9; it follows that G′ is a weakly
closed octagonal graph and

w′(i, j) = min
n

w(i, j),
`

w(i, ı) + w(, j)
´

/2
o

. (17)

Let G′
S = (N±, w′

S) where

∀z1, z2 ∈ N± : w′

S(z1, z2) := min
n

w′(z1, z2),
`

w′(z1, z1) + w′(z2, z2)
´

/2
o

.

Let z1, z2 ∈ N± where (z1, z2) /∈
˘

(i, j), (, ı)
¯

; then w′(z1, z2) = w(z1, z2); also, as i 6= ,

w′(z1, z1) = w(z1, z1) and w′(z2, z2) = w(z2, z2); thus we have w′(z1, z2) ≤
`

w′(z1, z1) +

w′(z2, z2)
´

/2 if and only if w(z1, z2) ≤
`

w(z1, z1) + w(z2, z2)
´

/2. Therefore, the induction
hypothesis can be applied to G′

S, so that G′
S must be weakly closed.

By property (17), GS = G′
S so that GS is weakly closed. By hypothesis (16), wS(z1, z1) =

w(z1, z1) and wS(z2, z2) = w(z2, z2), so that, again by hypothesis (16), we have

∀z1, z2 ∈ N± : wS(z1, z2) = min
n

wS(z1, z2),
`

wS(z1, z1) + wS(z2, z2)
´

/2
o

;

hence, by Definition 16, property (2) of Definition 1 holds, so that GS is closed; and, also,
property (6) of Definition 5 holds, so that GS is strongly closed. ⊓⊔

Proof (of Theorem 3 on page 17) Let Gs = (N±, ws) be such that Gs = S-closure(G). By
property (6) of Definition 5, for each i, j ∈ N±, ws(i, j) ≤ wS(i, j) so that Gs EGS. Moreover,
by construction, GS E G so that we obtain Gs E GS E G. Since G is closed, by Definition 16,
it is also weakly closed. Hence, by Lemma 10, GS is strongly closed. Hence, Gs = GS. ⊓⊔

The proof of Theorem 4 relies on an auxiliary lemma.
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Lemma 11 Let G = (N±, w) be a weakly closed octagonal graph. Let Gt = (N±, wt) where,

for each h1, h2 ∈ N±,

wt(h1, h2) :=

(

w(h1, h2) − 1, if h1 = h2 and w(h1, h2) is odd;

w(h1, h2), otherwise.
(18)

Then, if Gt is consistent, Gt is a weakly closed octagonal graph.

Proof Suppose that the graph Gt is consistent. By construction, Gt is octagonal and Gt EG.
As G is weakly closed, rule (1) of Definition 1 holds so that, for all h ∈ N±, w(h, h) = 0 and,
by hypothesis (18), wt(h, h) = w(h, h); hence, Gt satisfies rule (1) of Definition 1 too. Observe
that, as G is weakly closed, rule (11) of Definition 16 holds.

Suppose z1, z2, z ∈ N±. Then, by Definition 16, to prove that Gt is weakly closed, we need
to show that

wt(z1, z) + wt(z, z2) ≥ min
n

wt(z1, z2),
`

wt(z1, z1) + wt(z2, z2)
´

/2
o

. (19)

If z1 = z2, then (19) is equivalent to wt(z1, z)+wt(z, z1) ≥ 0, which holds due to the hypothesis
that Gt is consistent. If wt(z1, z) = w(z1, z) and wt(z, z2) = w(z, z2) then, as GtEG, it follows
from rule (11) that (19) holds.

Suppose now that z1 6= z2 and wt(z1, z) 6= w(z1, z); then wt(z1, z2) = w(z1, z2) and, by
hypothesis (18), z = z1. By application of Lemma 8 to graph G and nodes z2 and z1, we obtain
w(z2, z2) ≤ 2w(z2, z1) + w(z1, z1) so that, by coherence,. w(z2, z2) ≤ 2w(z1, z2) + w(z1, z1).
Note however that, if w(z2, z2) = 2w(z1, z2)+w(z1, z1), then w(z2, z2) will be odd if and only
if w(z1, z1) is odd so that, by hypothesis (18), wt(z2, z2) = 2wt(z1, z2) + wt(z1, z1); on the
other hand, if w(z2, z2) < 2w(z1, z2) + w(z1, z1), then w(z2, z2) ≤ 2w(z1, z2) + w(z1, z1) − 1
so that, by hypothesis (18), wt(z2, z2) ≤ 2wt(z1, z2) + wt(z1, z1). Therefore, in both cases,
2wt(z1, z1) + 2wt(z1, z2) ≥ wt(z1, z1) + wt(z2, z2) so that (19) holds. ⊓⊔

Proof (of Theorem 4 on page 19) Let GT := T-closure(G). By definition of GT, GTEG so
that T-closure(GT) EGT. As GT is an octagonal graph, GT is consistent, and hence GT 6= ⊥;
let GT = (N±, wT). Let Gt = (N±, wt) be as defined in Lemma 11 so that Gt is weakly
closed. Then, for all i, j ∈ N±,

wT(i, j) = min
n

wt(i, j),
wt(i, ı)

2
+

wt(, j)

2

o

.

Therefore, by Lemma 10, GT is strongly closed so that, by Definition 13, GT E GT.
By Definitions 1, 5 and 13, for all i, j ∈ N±, both wT(i, j) ≤ w(i, j) and

wT(i, j) ≤
j w(i, ı)

2

k

+
j w(, j)

2

k

so that, by definition of GT, we have GT E GT. ⊓⊔

Theorem 5 is a corollary of the following result proved in [47, Lemma 4].

Lemma 12 Let G = (N±, w) be an integer octagonal graph with no negative weight cycles

and Gt = (N±, wt), where wt satisfies (10), have a negative weight cycle. Then there exists

i, ı ∈ N± and a cycle π = (i · π1 · ı) :: (ı · π2 · i) in G such that w(π) = 0 and the weight of the

shortest path in G from i to ı is odd.

Proof (of Theorem 5 on page 19) The proof is by contradiction; suppose GT is not an
octagonal graph; then by Definitions 1, 5 and 13, GT is inconsistent. We show that Gt is also
inconsistent. Again, we assume to the contrary that Gt is consistent and derive a contradiction.
Let i, j ∈ N±. By (10), we have wt(i, j) ≤ w(i, j) and wt(i, ı)/2 + wt(, j)/2 = kij , where
kij :=

¨

w(i, ı)/2
˝

+
¨

w(, j)/2
˝

. Letting S-closure(Gt) = (N±, wS), we have, by Definition 5,

wS(i, j) ≤ wt(i, j) and wS(i, j) ≤ wt(i, ı)/2 + wt(, j)/2. Thus wS(i, j) ≤ min
˘

w(i, j), kij

¯

. As

this holds for all i, j ∈ N±, by (9), S-closure(Gt) EGT, contradicting the assumption that Gt

was consistent. Hence Gt is inconsistent and therefore contains a negative weight cycle.
By Lemma 12, there exists i, ı ∈ N± and a cycle π = (i · π1 · ı) :: (ı · π2 · i) in G such

that w(π) = 0 and the weight of the shortest path in G from i to ı is odd. As G is closed,
w(i, ı) ≤ w(i · π1 · ı) and w(ı, i) ≤ w(ı · π2 · i). Thus w(i, ı) + w(ı, i) ≤ w(π) = 0. Moreover,
(iı) is a path and hence the shortest path from i to ı so that w(iı) is odd; hence, by (10),
w(i, ı) = wt(i, ı) + 1 and w(ı, i) ≥ wt(ı, i). Therefore wt(i, ı) + wt(ı, i) < 0. ⊓⊔
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A.3 Proofs of the Results Stated in Section 4.1

Proof (of Lemma 1 on page 12) As E is a zero-equivalence class, it is not empty and thus,

by construction, E is not empty.
Suppose i ∈ E and j ∈ N±; then by construction, ı ∈ E. As E is a zero-equivalence class, by

Definition 7,  ∈ E if and only if w(ı, ) = −w(, ı); by the coherence rule (4), w(, ı) = −w(ı, )

if and only if w(i, j) = −w(j, i); hence w(i, j) = −w(j, i) if and only if j ∈ E. Hence, by

Definition 7, E is a zero-equivalence class. ⊓⊔

Lemma 13 Let G = (N±, w) be a strongly closed octagonal graph and E ⊆ N± be a zero-

equivalence class for G. Then, for each i, j ∈ E and k ∈ N±, we have w(i, k) = w(i, j)+w(j, k)
and w(k, i) = w(k, j) + w(j, i).

Proof As G is closed, by property (2) of Definition 1, we have w(i, k) ≤ w(i, j) + w(j, k) and
w(k, i) ≤ w(k, j) + w(j, i). Hence, we only have to prove that w(i, k) ≥ w(i, j) + w(j, k) and
w(k, i) ≥ w(k, j) + w(j, i). This is equivalent to proving that:

w(j, k) ≤ −w(i, j) + w(i, k),

w(k, j) ≤ −w(j, i) + w(k, i).

Since i, j ∈ E, we have i ≡G j so that, by Definition 7, w(i, j) = −w(j, i). Hence,

w(j, k) ≤ w(j, i) + w(i, k),

w(k, j) ≤ w(i, j) + w(k, i),

which are true, again by property (2) of Definition 1. ⊓⊔

Lemma 14 Let G = (N±, w) be a strongly closed octagonal graph with a singular zero-

equivalence class E. Then, for each i ∈ E and j ∈ N±,

2w(i, j) = w(i, ı) + w(, j).

Proof Let i ∈ E and j ∈ N±. As G is a strongly closed octagonal graph, by property (6)
of Definition 5, we have 2w(i, j) ≤ w(i, ı) + w(, j). Therefore, it remains to be proved that
2w(i, j) ≥ w(i, ı) + w(, j).

By hypothesis, i ∈ E so that, as E = E, we also have ı ∈ E. Therefore, by Lemma 13,
w(ı, j) = w(ı, i) + w(i, j). Since the graph G is octagonal, by the coherence assumption (4) of
Definition 4, this can be rewritten as w(, i) = w(ı, i)+w(i, j). Thus, by applying property (2)
of Definition 1, we obtain:

w(, j) ≤ w(, i) + w(i, j)

= w(ı, i) + w(i, j) + w(i, j)

= w(ı, i) + 2w(i, j).

Therefore, 2w(i, j) ≥ −w(ı, i) + w(, j). As we observed that i ≡G ı then, by Definition 7,
w(i, ı) = −w(ı, i), so that we obtain 2w(i, j) ≥ w(i, ı) + w(, j). ⊓⊔

Proof (of Lemma 2 on page 12) Let E1 and E2 be singular zero-equivalence classes for

the strongly closed octagonal graph G = (N±, w). Let i ∈ E1 and j ∈ E2. Then, as E1 = E1

and E2 = E2, we have i, ı ∈ E1 and j,  ∈ E2. Hence, by Definition 7, w(i, ı) = −w(ı, i) and
w(, j) = −w(j, ). Moreover, by Lemma 14,

2w(j, i) = w(j, ) + w(ı, i),

2w(i, j) = w(i, ı) + w(, j).

Thus we obtain

2w(i, j) = w(i, ı) + w(, j)

= −w(ı, i) − w(j, )

= −2w(j, i).

Hence, w(i, j) = −w(j, i) so that, by Definition 7, i ≡G j. Thus, as i, j were arbitrary nodes
in E1 and E2, respectively, we have the result E1 = E2. ⊓⊔
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Proof (of Lemma 3 on page 13) Let G = (N±, w), L = (N±, wL) and E = (N±, wE); let
also L be the set of leaders of the non-singular zero-equivalence classes for G. By Definition 8,
L and E are subgraphs of G.

We first prove that the graphs L and E are octagonal; by Definition 4, this means that
we have to show that they are consistent and satisfy (4). Observe that since, by hypothesis,
the graph G is octagonal, we can assume that G is consistent and satisfies the coherence
assumption (4).

To show that L (resp., E) is consistent, consider any cyclic path π in L (resp., in E).
Then, as L and E are subgraphs of G, π is also a cyclic path in G and wL(π) = w(π) (resp.,
wE(π) = w(π)). As G is consistent, we have w(π) ≥ 0 so that wL(π) ≥ 0 (resp., wE(π) ≥ 0).
Therefore L and E are both consistent.

To show that (4) for L holds, let i, j ∈ N±. If i = j, then ı =  and, as G is a closed
graph, w(i, i) = w(ı, ı) = 0. By Definition 8, wL(i, i) = w(i, i) and wL(ı, ı) = w(ı, ı) so that
wL(i, i) = wL(ı, ı) = 0. Suppose next that i 6= j. If i /∈ L or j /∈ L then, by Lemma 1 and
the definition of the total ordering on N±, ı /∈ L or  /∈ L; thus, by Definition 8, wL(i, j) =
wL(, ı) = +∞. Suppose now that i, j ∈ L. Then, we also have ı,  ∈ L so that, again, by
Definition 8, wL(i, j) = w(i, j) and wL(, ı) = w(, ı). Since G satisfies (4), w(i, j) = w(, ı) so
that wL(i, j) = wL(, ı). Hence, the graph L satisfies (4).

To show that (4) for E holds, let i, j ∈ N±. If i = j, then ı =  and, as G is a closed
graph, w(i, i) = w(ı, ı) = 0. Since i ≡G i and ı ≡G ı, by Definition 8, wE(i, i) = w(i, i) and
wE(ı, ı) = w(ı, ı) so that wE(i, i) = wE(ı, ı) = 0. Suppose next that i 6= j. By Lemma 1, i ≡G j
if and only if ı ≡G . Thus, by Definition 8, if i 6≡G j we have wE(i, j) = wE(, ı) = +∞ and, if
i ≡G j, we have wE(i, j) = w(i, j) and wE(, ı) = w(, ı). In the latter case, as G satisfies (4),
w(i, j) = w(, ı) so that wE(i, j) = wE(, ı). Hence, E is a graph that satisfies (4).

Secondly, using the hypothesis that G is strongly closed, we prove that L and E are strongly
closed. Namely, we show that given that the weight function w satisfies properties (1) and (2)
of Definition 1 and property (6) of Definition 5, we show that the weight functions wL and wE

also satisfy properties (1), (2) and (6).
Consider property (1). Let i ∈ N±; as w satisfies (1), w(i, i) = 0, so that, by Definition 8,

we also have wL(i, i) = 0 and wE(i, i) = 0.
Consider property (2). Let i, j, k ∈ N±; then we have to show that:

wL(i, j) ≤ wL(i, k) + wL(k, j), (20)

wE(i, j) ≤ wE(i, k) + wE(k, j). (21)

When k ∈ {i, j}, (20) and (21) trivially hold. Suppose now that k /∈ {i, j}. Consider first the
graph L. If {i, j, k} * L, then, by Definition 8, wL(i, k) = +∞ or wL(k, j) = +∞, so that
(20) holds. If, instead, i, j, k ∈ L, then, by Definition 8, wL(i, j) = w(i, j), wL(i, k) = w(i, k)
and wL(k, j) = w(k, j). Hence, as w satisfies (2), (20) holds. Consider now the graph E. If
i 6≡G k or j 6≡G k then, by Definition 8, wE(i, k) = +∞ or wE(k, j) = +∞, so that (21)
holds. If, instead, i ≡G k and j ≡G k so that i ≡G j; then, by Definition 8, wE(i, j) = w(i, j),
wE(i, k) = w(i, k) and wE(k, j) = w(k, j). Hence, as w satisfies (2), (21) holds.

Consider property (6). Let i, j ∈ N±; then we have to show that:

2wL(i, j) ≤ wL(i, ı) + wL(, j), (22)

2wE(i, j) ≤ wE(i, ı) + wE(, j). (23)

When i = j, it follows from the consistency and property (1), proved in previous paragraphs
for L and E that (22) and (23) hold. Suppose now that i 6= j. Consider first the graph L.
If {i, j} * L, then, by Definition 8, wL(i, ı) = +∞ or wL(, j) = +∞ so that (22) holds. If,

instead, i, j ∈ L; then by Lemma 1 and the definition of the total ordering on N±, ı,  ∈ L so
that wL(i, j) = w(i, j), wL(i, ı) = w(i, ı) and wL(, j) = w(, j). Hence, as w satisfies (4), (22)
holds. Consider now the graph E. If i 6≡G ı or j 6≡G , then, by Definition 8, wE(i, ı) = +∞
or wE(, j) = +∞, so that (23) holds. Suppose, instead that both i ≡G ı and j ≡G ; then,
by Definition 8, wE(i, j) = w(i, j), wE(i, ı) = w(i, ı) and wE(, j) = w(, j). Hence, as w
satisfies (4), (23) holds.

Finally, we prove that L is a zero-cycle free graph. Let π = j0j1 · · · jp be a proper cycle
in L; thus j0 = jp and j0 6= j1. As wL(j0, j1) < +∞, by Definition 8, we have j0, j1 ∈ L, so
that j0 6≡G j1. Hence, by Definition 7, wL(j0, j1) + wL(j1, j0) > 0. We have already shown
that L is closed; hence, by Lemma 5, wL(j1 · · · jp) ≥ wL(j1, jp) = wL(j1, j0) so that wL(π) ≥
wL(j0, j1) + wL(j1, j0) > 0. ⊓⊔
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Lemma 15 Let G = (N±, w) be a closed and zero-cycle free octagonal graph. Suppose that

(i, j) is an arc in G. Then there exists a simple and atomic path π = i · · · j in G such that

w(i, j) = w(π).

Proof If i = j, let π = i so that π is a simple and atomic path such that w(π) = 0. As G is
closed, w(i, j) = 0 so that w(i, j) = w(π) as required.

Suppose now that i 6= j. Let π = j0 · · · jp be a path of length p in G where i = j0,
j = jp and w(i, j) = w(π) (for instance we can take p = 1). Suppose that ja−1 = ja, for
some a ∈ {1, . . . , p}. Then, as G is closed, w(ja−1, ja) = 0 and, since i 6= j, we can drop
the non-proper arc (ja−1, ja) from path π and obtain another path π′ from i to j such that
w(i, j) = w(π′). Therefore, we can assume that π is a proper path. By Lemma 6, the path is
also simple. Thus, as N is finite, we can assume that p is maximal such that w(i, j) = w(π)
and π is a simple path in G.

Suppose, for some q = 1, . . . , p, that the arc (jq−1, jq) in π is not atomic in G. Then, by
property (2) of Definition 1 and Definition 9, there must exist k ∈ N \ {jq−1, jq} such that
w(jq−1, jq) = w(jq−1, k)+w(k, jq). Thus, letting π1 = j0 · · · jq−1 and π2 = jq · · · jp, we obtain

w(j0, jp) = w
`

π1 :: (jq−1jq) :: π2

´

= w(π1) + w(jq−1, jq) + w(π2)

= w(π1) + w(jq−1, k) + w(k, jq) + w(π2)

= w
`

π1 :: (jq−1kjq) :: π2

´

.

By Lemma 6, the path π′ = π1 :: (jq−1kjq) :: π2, which has length p + 1, is simple too,
contradicting the maximality assumption for path π. Thus (jq−1, jq) is atomic in G. As this
holds for any arc in π, the path π is atomic. ⊓⊔

Lemma 16 Let G = (N±, w) be a closed and zero-cycle free octagonal graph. Suppose that,

for some i ∈ N±, there is a proper path π = j0 · · · jp, where i = j0, ı = jp and w(i, ı) = w(π).
Then there is at most one arc in the path π that is atomic but not strongly atomic in G.

Proof The proof is by contraposition. Suppose that, for some q, r ∈ {1, . . . , p} such that
q < r, the arcs (jq−1, jq) and (jr−1, jr) are atomic but not strongly atomic in G. Then, by
Definition 9,

2w(jq−1, jq) ≥ w(jq−1, q−1) + w(q , jq),

2w(jr−1, jr) ≥ w(jr−1, r−1) + w(r, jr).

Let π1 = j0 · · · jq−1, π2 = jq · · · jr−1 and π3 = jr · · · jp, so that π = π1 :: (jq−1jq) :: π2 ::
(jr−1jr) :: π3. Since w(i, ı) = w(π), we obtain

2w(i, ı) = 2w
`

π1 :: (jq−1jq) :: π2 :: (jr−1jr) :: π3

´

= 2w(π1) + 2w(jq−1, jq) + 2w(π2) + 2w(jr−1, jr) + 2w(π3).

As G is an octagonal graph, this can be rewritten

2w(i, ı) ≥ w(π1) + w(jq−1, q−1) + w(π1)

+ w(q , jq) + w(π2) + w(jr−1, r−1) + w(π2)

+ w(π3) + w(r , jr) + w(π3)

= w
`

π1 :: (jq−1q−1) :: π1

´

+ w
`

(qjq) :: π2 :: (jr−1r−1) :: π2

´

+ w
`

π3 :: (rjr) :: π3

´

.

Note that the path π′
2 = (qjq) :: π2 :: (jr−1r−1) :: π2 is a proper cycle from node q to itself.

Moreover, both paths π′
1 = π1 :: (jq−1q−1) :: π1 and π′

3 = π3 :: (rjr) :: π3 go from node i to

node ı so that, by Lemma 5, we have w(i, ı) ≤ w(π′
1) and w(i, ı) ≤ w(π′

3). As a consequence,

2w(i, ı) ≥ w(i, ı) + w(π′
2) + w(i, ı).

Therefore we obtain w(π′
2) ≤ 0, contradicting the hypothesis that the graph G is consistent

and zero-cycle free. It follows that q = r. ⊓⊔
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Lemma 17 Let G = (N±, w) be a closed and zero-cycle free octagonal graph. Suppose that

(i, ı) is an arc in G. Then there exists a strongly atomic path π = j0 · · · jp in G, where i = j0,
ı = jp and w(i, ı) = w(π).

Proof By Lemma 15, there exists a simple and atomic path π in G from i to ı and w(i, ı) =
w(π). Since the path is simple, we can take p = ‖π‖ to be maximal in the set of paths having
these properties. Suppose that π is not strongly atomic in G. Then, by Lemma 16, there must
be exactly one arc (jq−1, jq) in π that is atomic but not not strongly atomic in G. Let h = jq−1

and k = jq. Thus, π = πh :: (hk) :: πk, where the subpaths πh = j0 · · · jq−1 and πk = jq · · · jp

are strongly atomic in G. As the graph G is octagonal, the paths πh and πk are also strongly
atomic and satisfy w(πh) = w(πh) and w(πk) = w(πk).

Since the arc (h, k) is atomic but not strongly atomic, by Definition 9,

2w(h, k) ≥ w(h, h) + w(k, k).

Therefore, as G is octagonal,

2w(i, ı) = 2w(πh) + 2w(h, k) + 2w(πk)

≥ 2w(πh) + w(h, h) + w(k, k) + 2w(πk)

= w(πh) + w(h, h) + w(πh)

+ w(πk) + w(k, k) + w(πk)

= w
`

πh :: (hh) :: πh

´

+ w
`

πk :: (kk) :: πk

´

.

Note that both paths π′ = πh :: (hh) :: πh and π′′ = πk :: (kk) :: πk go from node i to node ı.
Thus, by Lemma 5, we have w(i, ı) ≤ w(π′) and w(i, ı) ≤ w(π′′). As a consequence, we obtain

w(i, ı) = w(π′) = w(π′′).

As h 6= h and k 6= k and as πh, πh and πk, πk are proper paths, both π′ and π′′ are proper
paths too; and hence, by Lemma 6, they are both simple paths. Moreover, by the maximality
assumption for p, we have ‖π′‖ = ‖π′′‖ = p. Consider now just one of these paths: π′.

To conclude the proof, we will show that (h, h) is a strongly atomic arc in G, so that π′

is a strongly atomic path in G. Suppose instead that (h, h) is not strongly atomic in G. Then,

by Definition 9, it is not atomic, so that there exists ℓ ∈ N± \ {h, h} such that w(h, h) =

w(h, ℓ) + w(ℓ, h). Consider the path π′′′ = πh :: (hℓh) :: πh. Then π′′′ is a proper path in G
such that w(i, ı) = w(π′′′) and ‖π′′′‖ > p; contradicting the assumption that p was maximal.

It follows that the arc (h, h) is strongly atomic in G. ⊓⊔

Lemma 18 Let G = (N±, w) be a closed and zero-cycle free octagonal graph. Suppose that

(i, j) is an arc in G. Then one of the following properties holds:

1. there exists a strongly atomic path π = i · · · j in G where w(i, j) = w(π);
2. i 6= , 2w(i, j) ≥ w(i, ı) + w(, j) and there exist strongly atomic paths πi = i · · · ı, πj =

 · · · j in G where w(i, ı) = w(πi) and w(, j) = w(πj).

Proof By Lemma 15, there exists a simple and atomic path π = i · · · j in G where w(i, j) =
w(π). If i = j, then ‖π‖ = 0, so that the path π is strongly atomic and condition 1 holds.
Suppose now that i 6= j.

If the path is strongly atomic in G, then condition 1 holds. Therefore to complete the proof
we assume that π is not strongly atomic in G and show that condition 2 holds.

By Definition 9, there exists at least one arc (h, k) in π that is atomic but not strongly
atomic in G. As π is a simple path, h 6= k so that, again by Definition 9,

2w(h, k) = w(h, h) + w(k, k).

As the graph is octagonal, we have w(i, h) = w(h, ı) and w(k, j) = w(, k). Moreover, by
Lemma 5,

w(i, ı) ≤ w(i, h) + w(h, h) + w(h, ı),

w(, j) ≤ w(, k) + w(k, k) + w(k, j).
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Thus, as w(i, j) = w(π), we have

2w(i, j) = 2w(i, h) + 2w(h, k) + 2w(k, j)

= 2w(i, h) + w(h, h) + w(k, k) + 2w(k, j)

= w(i, h) + w(h, h) + w(h, ı)

+ w(, k) + w(k, k) + w(k, j)

≥ w(i, ı) + w(, j).

By Lemma 17, there exist strongly atomic paths πi = i · · · ı and πj =  · · · j in G where
w(i, ı) = w(πi) and w(, j) = w(πj); therefore, condition 2 holds. ⊓⊔

Lemma 19 Let G be a strongly closed and zero-cycle free octagonal graph and let A be its

strongly atomic subgraph. Then A is an octagonal subgraph of G and S-closure(A) = G.

Proof It follows from Definition 9 that A is a subgraph of G and, for all i, j ∈ N±, (i, j) is an
arc in A if and only if (, ı) is an arc in A. Therefore, as G is octagonal, A is also octagonal.

Since G E A and the strong closure operator is both monotonic and idempotent, we ob-
tain that G E S-closure(A). Therefore to prove S-closure(A) = G, we just need to show that
S-closure(A) E G. Letting G = (N±, w), S-closure(A) = (N±, wS) and (i, j) be any arc of G,
we will show that wS(i, j) ≤ w(i, j). Since G is closed and zero-cycle free, either one of two
cases of Lemma 18 holds.

If case 1 of Lemma 18 holds, then there exists a strongly atomic path π = i · · · j in G where
w(i, j) = w(π). By Definition 9, π is also a path in A having the same weight w(π). Since strong
closure is a reductive operator, wS(π) ≤ w(π). Moreover, by Lemma 5, wS(i, j) ≤ wS(π) and
hence wS(i, j) ≤ w(i, j).

If case 2 of Lemma 18 holds, then 2w(i, j) ≥ w(i, ı)+w(, j) and there exist strongly atomic
paths πi = i · · · ı, πj =  · · · j in G where w(i, ı) = w(πi) and w(, j) = w(πj). By property (6)
of Definition 5, we also have 2w(i, j) ≤ w(i, ı) + w(, j), so that we obtain

2w(i, j) = w(i, ı) + w(, j).

By Definition 9, πi and πj are also paths in A having the same weights w(πi) and w(πj).
Since strong closure is a reductive operator, wS(πi) ≤ w(πi) and wS(πj) ≤ w(πj). By Lemma 5,
wS(i, ı) ≤ wS(πi) and wS(, j) ≤ wS(πj); hence we have wS(i, ı) ≤ w(i, ı) and wS(, j) ≤
w(, j). Thus, wS(i, ı) + wS(, j) ≤ 2w(i, j) and, by property (6) of Definition 5, wS(i, j) ≤
w(i, j).

We can therefore conclude that S-closure(A) E G. ⊓⊔

Lemma 20 Let G be a strongly closed octagonal graph and Z the zero-equivalence reduction

for G. Then Z is an octagonal subgraph of G.

Proof Let G = (N±, w) and Z = (N±, wZ). Let the weight function w′ be as defined in
Definition 10; then (N±, w′) is a subgraph of G. To show that Z is a subgraph of G, consider
any i, j ∈ N± such that wZ(i, j) < +∞. By Definition 10, wZ(i, j) = min

˘

w′(i, j), w′(, ı)
¯

and
hence, wZ(i, j) = w(i, j) or wZ(i, j) = w(, ı); since G is an octagonal graph, wZ(i, j) = w(i, j).
Therefore, Z is a subgraph of G, which implies GEZ and, as G is consistent, Z is a consistent
graph too. Moreover, for all i, j ∈ N±, we have

wZ(i, j) = wZ(, ı) = min
˘

w′(i, j), w′(, ı)
¯

.

Thus, wZ also satisfies the coherence assumption (4) of Definition 4. Therefore, Z is octagonal
and hence, an octagonal subgraph of G. ⊓⊔

Lemma 21 Let E = (N±, wE) be the zero-equivalence subgraph of a strongly closed octagonal

graph G. Let also i, j ∈ N± and π = i · · · j be a path in E. Then wE(π) = wE(i, j).

Proof The proof is by induction on p = ‖π‖. If p = 0, then i = j, π = i and wE(π) = 0;
thus, as (i, i) is an arc in E and G is closed, the result wE(i, i) = 0 holds by property (1) of
Definition 1. For the inductive case, when p > 0, let π = i·π′ be a path in E, where the subpath
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π′ = k · · · j is such that ‖π′‖ = p − 1. Thus, by the inductive hypothesis, wE(π′) = wE(k, j)
and we obtain

wE(π) = wE(i, k) + wE(π′)

= wE(i, k) + wE(k, j)

= wE(i, j),

where the last step holds by Lemma 13, as i, k are nodes in E. ⊓⊔

Lemma 22 Let E = (N±, wE) be the zero-equivalence subgraph of a strongly closed octagonal

graph and Z = (N±, wZ) the zero-equivalence reduction for E. Let also i, j ∈ N± be such that

i ≡E j. Then there exists a path π = i · · · j in Z such that wZ(π) = wE(i, j).

Proof Let w′ and wZ be as specified in Definition 10; thus, (N±, w′) is a subgraph of the
octagonal graph Z. We first show that, for any zero-equivalence class E for E, if E contains
more than one node, then there is a cycle πE in Z that contains all the nodes in E.

Suppose first that the zero-equivalence class E = {z0, . . . , zm}, where m > 0, is non-
singular. If E is positive and z0 < · · · < zm, then, by Definition 10, there is a cycle πE =
z0 · · · zmz0 in (N±, w′). Hence, πE is also a cycle in Z. If E is a negative zero-equivalence

class, then E = {z0, . . . , zm} is positive and z0 < · · · < zm so that, by the previous argument,

there is a cycle π
E

= z0 · · · zmz0 in Z connecting the nodes of E. By Lemma 20, Z is octagonal,
so that there is also a cycle πE = π

E
= z0zm · · · z0 in Z that connects the nodes of E.

Suppose next that the zero-equivalence class E = {z0, z0, . . . , zm, zm} is singular and
that z0 < z0 < · · · zm < zm. Then, by Definition 10, there is a path π+ = z0 · · · zm in
(N±, w′) and, hence, in Z; Since E = E and Z is octagonal, there is a path π− = zm · · · z0

in Z. Also, by Definition 10, (N±, w′) contains the arcs (z0, z0) and (zm, zm). Therefore,
πE = π+ :: (zmzm) :: π− :: (z0z0) is a cycle in Z that contains all the nodes in E.

As i ≡E j, by Definition 7, for some zero-equivalence class E in E, i, j ∈ E. Note that,
since i 6= j, if E = {z0, . . . , zm} is non-singular, then it must be m > 0. Thus i and j are nodes
in the cycle πE as defined above; thus, there exists a path π = i · · · j in Z. As Z is a subgraph
of E, wZ(π) = wE(π). By Lemma 21, wE(π) = wE(i, j) and thus, wZ(π) = wE(i, j). ⊓⊔

Lemma 23 Let E = (N±, wE) be the zero-equivalence subgraph of a strongly closed octagonal

graph. Let also Z = (N±, wZ) be the zero-equivalence reduction for E. Then S-closure(Z) = E.

Proof Let S-closure(Z) = ZS = (N±, wS
Z). By Lemma 3, E is strongly closed octagonal graph.

By Lemma 20, Z is an octagonal subgraph of E. Hence, E E Z and E E ZS. Consider any
i, j ∈ N±. Then wS

Z(i, j) ≥ wE(i, j); it remains to show that wE(i, j) ≥ wS
Z(i, j).

If wE(i, j) = +∞. then, as wS
Z(i, j) ≥ wE(i, j), wS

Z(i, j) = +∞. Suppose now that
wE(i, j) < +∞ so that, by Definition 8, i ≡E j. By Lemma 22, there exists a path π = i · · · j
in Z such that wE(i, j) = wZ(π); as ZS E Z, we also have wZ(π) ≥ wS

Z(π); and, by Lemma 5,

wS
Z(π) ≥ wS

Z(i, j); therefore wE(i, j) ≥ wS
Z(i, j). ⊓⊔

Proof (of Theorem 1 on page 14) Let G = (N±, w) be the strong closure of the input
octagonal graph, computed at step 1 of the strong reduction procedure; let L = (N±, wL)
be the non-singular leaders’ subgraph of G; E = (N±, wE) the zero-equivalence subgraph of
G; A = (N±, wA) the strongly atomic subgraph of L; Z = (N±, wZ) the zero-equivalence
reduction of E; GR = (N±, wR) = A ⊓ Z; and GS

R = (N±, wS
R) = S-closure(GR). Then we

need to show that GR is a strongly reduced octagonal graph and GS
R = G.

By Definition 8 and Lemma 3, both L and E are octagonal subgraphs of G. By Lemma 19,
A is an octagonal subgraph of L and, by Lemma 20, Z is an octagonal subgraph of E; hence
A and Z are octagonal subgraphs of G. Therefore, GR = A⊓Z is an octagonal subgraph of G.

Next we show that GS
R = G. By Lemma 3, L is strongly closed and zero-cycle free; by

Lemma 19, S-closure(A) = L. By Lemma 23, S-closure(Z) = E. Thus, we have

GS
R = S-closure

`

S-closure(A ⊓ Z)
´

= S-closure
`

S-closure(A) ⊓ S-closure(Z)
´

= S-closure(L ⊓ E).
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As observed before, L and E are subgraphs of G and hence G E GS
R. It remains to show that

GS
R E G. Let (i, j) be an arc in G and suppose that i ∈ Ei and j ∈ Ej , where Ei and Ej are

zero-equivalence classes for G. Then, to prove that GS
R E G, we just need to show that

wS
R(i, j) ≤ w(i, j). (24)

To do this, without loss of generality, we need to consider three cases:

1. Ei and Ej are singular zero-equivalence classes in G;
2. Ei is singular and Ej is a non-singular zero-equivalence class in G;
3. Ei and Ej are non-singular zero-equivalence classes in G.

Case 1. By Lemma 2, Ei = Ej so that w(i, j) = wE(i, j). Therefore, as wS
R(i, j) ≤ wE(i, j),

Equation (24) holds.

Case 2. Let ℓj ∈ N± be the leader of Ej so that ℓj is the leader of the non-singular

zero-equivalence class Ej . By Definition 8,

w(i, ı) = wE(i, ı), w(, ℓj) = wE(, ℓj),

w(ℓj , j) = wE(ℓj , j), w(ℓj , ℓj) = wL(ℓj , ℓj).
(25)

By Lemma 13,

w(, j) = w(, ℓj) + w(ℓj , j)

= w(, ℓj) + w(ℓj , ℓj) + w(ℓj , j)

so that, by Lemma 14 and Equation (25),

2w(i, j) = w(i, ı) + w(, j)

= w(i, ı) + w(, ℓj) + w(ℓj , ℓj) + w(ℓj , j)

= wE(i, ı) + wE(, ℓj) + wL(ℓj , ℓj) + wE(ℓj , j).

Moreover, by Lemma 5,

2wS
R(i, j) ≤ wS

R(i, ı) + wS
R(, ℓj) + wS

R(ℓj , ℓj) + wS
R(ℓj , j)

≤ wE(i, ı) + wE(, ℓj) + wL(ℓj , ℓj) + wE(ℓj , j)

since GS
R E L and GS

R E E. Therefore Equation (24) holds.
Case 3. By Definition 8,

w(i, ℓi) = wE(i, ℓi), w(ℓj , j) = wE(ℓj , j), w(ℓi, ℓj) = wL(ℓi, ℓj).

Therefore, by Lemma 13,

w(i, j) = w(i, ℓi) + w(ℓi, j)

= w(i, ℓi) + w(ℓi, ℓj) + w(ℓj , j)

= wE(i, ℓi) + wL(ℓi, ℓj) + wE(ℓj , j).

Moreover, by Lemma 5,

wS
R(i, j) ≤ wS

R(i, ℓi) + wS
R(ℓi, ℓj) + wS

R(ℓj , j)

≤ wE(i, ℓi) + wL(ℓi, ℓj) + wE(ℓj , j),

since GS
R E L and GS

R E E. Therefore Equation (24) holds and hence GS
R = G.

Finally, to show that GR is strongly reduced, as specified in Definition 6, we assume
there exists a strongly reduced octagonal graph G2 = (N±, w2) such that GR ⊳ G2 and
G = S-closure(G2) and derive a contradiction. Let Gc

2 = (N±, wc
2) = closure(G2), Gc

R =

(N±, wc
R) = closure(GR) and GS

2 = (N±, wS
2 ) = S-closure(G2) (so that w = wS

R = wS
2 ).
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As GR ⊳ G2, there exists i, j ∈ N± such that wR(i, j) < w2(i, j); as Gc
2 and G are closed,

wc
2(i, i) = w(i, i) = 0 so that we can assume that i 6= j. Moreover wR(i, j) < +∞ so that,

as GR is a subgraph of G, wR(i, j) = w(i, j); as closure is both idempotent and reductive,
G = closure(G) E Gc

R E GR; hence we have

w(i, j) = wc
R(i, j) = wR(i, j).

Since GR ⊳ G2 we have Gc
R E Gc

2 so that w(i, j) ≤ wc
2(i, j).

Suppose first that w(i, j) < wc
2(i, j). By Theorem 3, since S-closure(Gc

2) = G, we have
2w(i, j) = wc

2(i, ı) + wc
2(, j). Hence, 2w(i, j) = w(i, ı) + w(, j), so that i 6= , (i, ı) and (, j)

are arcs in G and, by Definition 9, arc (i, j) is not strongly atomic in G. Hence, since (i, j) is
an arc in GR, it must be i ≡G j, so that i, j are in the same equivalence class E and (i, j) is
an arc in Z; thus, as i 6= j, either i or j is not the leader of E; without loss of generality, we
assume that i is not the leader. Since w = wS

2 = wS
R, we have w(i, ı) = wS

2 (i, ı) = wS
R(i, ı). By

Theorem 3, wS
2 (i, ı) = wc

2(i, ı) and wS
R(i, ı) = wc

R(i, ı); hence w(i, ı) = wc
2(i, ı) = wc

R(i, ı). By
Lemma 7, there exists πi = i · · · ı in G2 such that

w2(πi) = wc
2(i, ı) = w(i, ı) ≤ wR(πi),

where the last inequality follows from Lemma 5 and by closure being a reductive operator. Note
that as GR ⊳G2, πi must also be a path in GR. By Definition 10 and the assumption that i is
not a leader of E, if, for some h ∈ N±, (i, h) is an arc in GR, then h = j; hence πi = (ij) · · · ı;
also, as GR ⊳G2, for all h1, h2 ∈ N±, w2(h1, h2) ≥ wR(h1, h2); hence w2(πi) > wR(πi) which
is a contradiction.

Suppose now that w(i, j) = wc
2(i, j) so that wc

2(i, j) < w2(i, j). By Lemma 7, there exists
π = i · · · j in G2 such that

w2(π) = wc
2(i, j) = w(i, j) < w2(i, j).

As w2(π) < w2(i, j), there exists k ∈ N± such that π = (ik) :: π′ for some path π′ = k · · · j
in G2. Since (i, j) is an arc in GR, by Definitions 9 and 10, w(i, j) < w(i, k) + w(k, j). As G is
closed, by Lemma 5, w(k, j) ≤ w(π′) and hence w(i, j) < w(i, k)+w(π′) = w(π); and therefore
w2(π) < w(π), contradicting G ⊳ G2. ⊓⊔

A.4 Proofs of the Results Stated in Section 4.2

The standard widening operator ‘∇s’ for topologically closed convex polyhedra defined in the
PhD thesis of N. Halbwachs [19, Définition 5.3.3, p. 57] is slightly different from the specification
originally proposed in [2], in that the former does not depend on the particular constraint
systems chosen for representing the arguments of the widening. Nonetheless, the following
result, which is taken from [33], states that the two definitions happen to be equivalent when
applied to polyhedra S1 and S2 such that S1 ⊆ S2 and dim(S1) = dim(S2).

Proposition 1 Let S1, S2 ⊆ Rn be two topologically closed convex polyhedra such that ∅ 6=
S1 ⊆ S2 and dim(S1) = dim(S2). Let also C1 be a finite system of non-strict linear inequalities

describing S1 and suppose that C1 contains no redundant constraint. Then the result of the

standard widening S1 ∇s S2 is described by the constraint system

Cs := {β ∈ C1 | all the points in S2 satisfy β }.

Proof See the proof in [33, Proposition 6]. ⊓⊔

Proof (of Theorem 2 on page 15) Let S1, S2 ∈ ℘(Rn), where ∅ 6= S1 ⊆ S2, be two
octagonal shapes represented by the strongly reduced octagonal graph G1 and the strongly
closed octagonal graph G2, respectively. Let also G = G1∇G2 = (N±, w) and S the octagonal
shape represented by G. Let C1, C2 and C be the systems of octagonal constraints encoded
by G1, G2 and G, respectively. Note that, in such a construction, each pair of coherent arcs
generates a single octagonal constraint. Since the octagonal graph G1 is strongly reduced, the
corresponding constraint system C1 contains no redundant constraints.
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We first assume dim(S1) = dim(S2) so that, by Definition 11, S1 ∇ S2 = S. We will show
that S = S1 ∇s S2. Let Cs be as defined in Proposition 1. Then it follows from Proposition 1
that to prove S = S1 ∇s S2, we just need to show that C = Cs. To prove C ⊆ Cs, suppose
that β = (vi − vj ≤ d1) ∈ C, so that w(i, j) = d1 < +∞. Then, by Definition 2, w1(i, j) = d1

and w2(i, j) = d2 ≤ d1. Thus, there exists γ = (vi − vj ≤ d2) ∈ C2. Since all the points
of S2 satisfy γ, they also satisfy β and hence, β ∈ Cs. To prove the other inclusion Cs ⊆ C,
suppose that β = (vi − vj ≤ d1) ∈ Cs so that, since Cs ⊆ C1 and C1 contains no redundancies,
we have w1(i, j) = d1. By definition of Cs, all the points of S2 satisfy β. Since the octagonal
graph G2 is strongly closed, there exists γ = (vi − vj ≤ d2) ∈ C2 such that d1 ≥ d2. Hence,
w1(i, j) ≥ w2(i, j) and, by Definition 2, we obtain β ∈ C.

Suppose now that dim(S1) 6= dim(S2). By hypothesis, S1 ⊆ S2 so that dim(S1) < dim(S2).
Then, by Definition 11, S1 ∇ S2 = S2. Since the standard widening ‘∇s’ is an upper bound
operator, we obtain S1 ∇ S2 ⊆ S1 ∇s S2.

Thus, in both cases the operator ‘∇’ computes an upper bound of its arguments which is
at least as precise as the upper bound computed by the standard widening ‘∇s’. To complete
the proof, we only have to show that ‘∇’ is a proper widening operator, i.e., it enforces the
convergence of any abstract iteration sequence. This property is easily shown to hold by the
observation, made above, that the operator of Definition 11 can behave differently from the
standard widening only when there is a strict increase in the affine dimension of the arguments.
Since such an increase can only happen a finite number of times, the operator ‘∇’ inherits the
convergence guarantee of ‘∇s’. ⊓⊔

A.5 Proof of Theorem 6 on page 21

The following two lemmas are simple adaptations of Lemma 3 and Lemma 19 to the case of
tightly closed graphs.

Lemma 24 Let L and E be the non-singular leaders’ subgraph and the zero-equivalence sub-

graph of the tightly closed graph G, respectively. Then, L and E are tightly closed graphs and

L is zero-cycle free.

Proof Since G is tightly closed, it is also strongly closed. Hence, by Lemma 3, the graphs L and
E are strongly closed octagonal graphs and E is zero-cycle free. Since they are subgraphs of G,
which is tightly closed, L and E are integer graphs and satisfy property (8) of Definition 13,
so that they are tightly closed too. ⊓⊔

Lemma 25 Let G be a tightly closed and zero-cycle free graph and A = (N±, wA) be its

tightly atomic subgraph; let also U = (N±, wU) be the untightening of A. Then U is an

integer octagonal subgraph of G and T-closure(U) = G.

Proof Since G is tightly closed, it is also strongly closed so that, by Lemma 19, A is an octagonal
subgraph of G and S-closure(A) = G; as G is tightly closed, we obtain T-closure(A) = G.

By Definition 15, U is an octagonal subgraph of A; hence, U is an integer octagonal
subgraph of G. Since G EU , by monotonicity and idempotency, G ET-closure(U). Therefore,
to prove T-closure(U) = G, we just need to show that T-closure(U) E G.

Let A = (N±, wA), U = (N±, wU) and UT = (N±, wT) = T-closure(U); we prove
that UT E A. Let i, j ∈ N± be any pair of nodes. If wU(i, j) ≤ wA(i, j) then, since tight
closure is a reductive operator, wT(i, j) ≤ wA(i, j). On the other hand, by Definition 15, if
wU(i, j) > wA(i, j), then we have that j = ı, wA(i, ı) is even and there exists k ∈ N± \ {i, ı}
such that wA(i, k)+wA(k, ı) ≤ wA(i, ı)+1. Note that, by Definition 15 and reductivity of tight
closure, we have wT(i, k) ≤ wU(i, k) = wA(i, k) and wT(k, ı) ≤ wU(k, ı) = wA(k, ı). Since UT

is tightly closed, by property (2) of Definition 1, we obtain

wT(i, ı) ≤ wT(i, k) + wT(k, ı)

≤ wA(i, k) + wA(k, ı)

≤ wA(i, ı) + 1.

Note that wA(i, ı) + 1 is an odd integer and, by property (8) of Definition 13, wT(i, ı) is even,
so that we obtain wT(i, ı) ≤ wA(i, ı).

Hence, UT E A and, since the tight closure operator is monotonic and idempotent, we
obtain UT = T-closure(UT) ET-closure(A) = G, completing the proof. ⊓⊔
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The following proof of Theorem 6 is a simple adaptation of the proof of Theorem 1,
exploiting the two lemmas above.

Proof (of Theorem 6 on page 21) Let G = (N±, w) be the tight closure of the input integer
octagonal graph, computed at step 1 of the tight reduction procedure; let L = (N±, wL)
be the non-singular leaders’ subgraph of G; E = (N±, wE) the zero-equivalence subgraph
of G; A = (N±, wA) the strongly atomic subgraph of L; U = (N±, wU) the untightening
of A; Z = (N±, wZ) the zero-equivalence reduction of E; GR = (N±, wR) = U ⊓ Z; and
GT

R = (N±, wT
R) = T-closure(GR). Then we need to show that GR is a tightly reduced

octagonal graph and GT
R = G.

By Definition 8 and Lemma 24, both L and E are octagonal subgraphs of G. By Lemma 25,
U is an octagonal subgraph of L and, by Lemma 20, Z is an octagonal subgraph of E; hence
U and Z are octagonal subgraphs of G. Hence, GR = U ⊓ Z is an octagonal subgraph of G.

Next we show GT
R = G. By Lemma 24, L and E are tightly closed and L is zero-cycle free;

by Lemma 25, T-closure(U) = L; by Lemma 23, S-closure(Z) = E, hence T-closure(Z) = E.
Thus, we have

GT
R = T-closure

`

T-closure(U ⊓ Z)
´

= T-closure
`

T-closure(U) ⊓ T-closure(Z)
´

= T-closure(L ⊓ E).

As observed before, L and E are subgraphs of G and hence G E GT
R. It remains to show that

GT
R E G. Let (i, j) be an arc in G and suppose that i ∈ Ei and j ∈ Ej , where Ei and Ej are

zero-equivalence classes for G. Then, to prove that GT
R E G, we just need to show that

wT
R(i, j) ≤ w(i, j). (26)

To do this, without loss of generality, we need to consider three cases:

1. Ei and Ej are singular zero-equivalence classes in G;
2. Ei is singular and Ej is a non-singular zero-equivalence class in G;
3. Ei and Ej are non-singular zero-equivalence classes in G.

Case 1. By Lemma 2, Ei = Ej so that w(i, j) = wE(i, j). Therefore, as wT
R(i, j) ≤ wE(i, j),

Equation (26) holds.

Case 2. Let ℓj ∈ N± be the leader of Ej so that ℓj is the leader of the non-singular

zero-equivalence class Ej . By Definition 8,

w(i, ı) = wE(i, ı), w(, ℓj) = wE(, ℓj),

w(ℓj , j) = wE(ℓj , j), w(ℓj , ℓj) = wL(ℓj , ℓj).
(27)

By Lemma 13,

w(, j) = w(, ℓj) + w(ℓj , j)

= w(, ℓj) + w(ℓj , ℓj) + w(ℓj , j)

so that, by Lemma 14 and Equation (27),

2w(i, j) = w(i, ı) + w(, j)

= w(i, ı) + w(, ℓj) + w(ℓj , ℓj) + w(ℓj , j)

= wE(i, ı) + wE(, ℓj) + wL(ℓj , ℓj) + wE(ℓj , j).

Moreover, by Lemma 5,

2wT
R(i, j) ≤ wT

R(i, ı) + wT
R(, ℓj) + wT

R(ℓj , ℓj) + wT
R(ℓj , j)

≤ wE(i, ı) + wE(, ℓj) + wL(ℓj , ℓj) + wE(ℓj , j)
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since GT
R E L and GT

R E E. Therefore Equation (26) holds.
Case 3. By Definition 8,

w(i, ℓi) = wE(i, ℓi), w(ℓj , j) = wE(ℓj , j), w(ℓi, ℓj) = wL(ℓi, ℓj).

Therefore, by Lemma 13,

w(i, j) = w(i, ℓi) + w(ℓi, j)

= w(i, ℓi) + w(ℓi, ℓj) + w(ℓj , j)

= wE(i, ℓi) + wL(ℓi, ℓj) + wE(ℓj , j).

Moreover, by Lemma 5,

wT
R(i, j) ≤ wT

R(i, ℓi) + wT
R(ℓi, ℓj) + wT

R(ℓj , j)

≤ wE(i, ℓi) + wL(ℓi, ℓj) + wE(ℓj , j),

since GT
R E L and GT

R E E. Therefore Equation (26) holds and hence GT
R = G.

Finally, to show that GR is tightly reduced as specified in Definition 14, having already
shown that GR is a subgraph of T-closure(GR) = G, we assume there exists a proper octagonal
subgraph G2 = (N±, w2) of GR such that G = T-closure(G2) and derive a contradiction.

Let Gc
2 = (N±, wc

2) = closure(G2), Gc
R = (N±, wc

R) = closure(GR) and GT
2 = (N±, wT

2 ) =

T-closure(G2) (so that w = wT
R = wT

2 ). As G2 is a proper octagonal subgraph of GR, there ex-

ists i, j ∈ N± such that wR(i, j) < w2(i, j) = +∞; as Gc
2 and G are closed, wc

2(i, i) = w(i, i) =
0 so that we can assume that i 6= j. Moreover wR(i, j) < +∞ so that, as GR is a subgraph of
G, wR(i, j) = w(i, j); as closure is both idempotent and reductive, G = closure(G)EGc

R EGR;
hence we have

w(i, j) = wc
R(i, j) = wR(i, j).

Since GR ⊳ G2 we have Gc
R E Gc

2 so that w(i, j) ≤ wc
2(i, j).

Suppose first that w(i, j) < wc
2(i, j). By Theorem 4, since T-closure(Gc

2) = G, we have

w(i, j) =
j wc

2(i, ı)

2

k

+
j wc

2(, j)

2

k

.

Hence, w(i, j) =
j

w(i,ı)
2

k

+
j

w(,j)
2

k

. By property (8) of Definition 13, both w(i, ı) and w(, j)

are even integers, so that 2w(i, j) = w(i, ı) + w(, j). Therefore, i 6=  and the two arcs (i, ı)
and (, j) are in G; thus, by Definition 9, arc (i, j) is not strongly atomic in G, so that (i, j) is
not an arc in L; hence, it is neither an arc in U . Since (i, j) is a proper arc in GR = U ⊓ Z,
it must be an arc in Z, so that i and j are in the same equivalence class E (i.e., i ≡G j). As
i 6= j, either i or j is not the leader of E; without loss of generality, we assume that i is not the
leader. By Definition 10, in GR the only arc exiting from node i is (i, j); since w2(i, j) = +∞
and G2 is a subgraph of GR, there is no arc in G2 exiting from i, so that i and j cannot belong
to the same 0-weight loop; hence i 6≡G2

j and G 6= GT
2 , which is a contradiction.

Suppose now that w(i, j) = wc
2(i, j) so that wc

2(i, j) < w2(i, j). By Lemma 7, there exists
π = i · · · j in G2 such that

w2(π) = wc
2(i, j) = w(i, j) < w2(i, j).

As w2(π) < w2(i, j), there exists k ∈ N± such that π = (ik) :: π′ for some path π′ = k · · · j
in G2. Since (i, j) is an arc in GR, by Definitions 9 and 10, w(i, j) < w(i, k) + w(k, j). As G is
closed, by Lemma 5, w(k, j) ≤ w(π′) and hence w(i, j) < w(i, k)+w(π′) = w(π); and therefore
w2(π) < w(π), contradicting G ⊳ G2. ⊓⊔
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