
“Fixing” the specification of widenings

Enea Zaffanella and Vincenzo Arceri

Abstract The development of parametric analysis tools based on Abstract Interpre-
tation relies on a clean separation between a generic fixpoint approximation engine
and its main parameter, the abstract domain: a safe integration requires that the en-
gine uses each domain operator according to its specification. Widening operators
are special, among other reasons, in that they lack a single, universally adopted spec-
ification. In this paper we review the specification and usage of widenings in several
open-source implementations of abstract domains and analysis tools. While doing
this, we witness a mismatch that potentially affects the correctness of the analysis,
thereby suggesting that the specification of widenings should be “fixed”. We also
provide some evidence that a fixed widening specification matching the classical one
allows for precision and efficiency improvements.

1 Introduction

Abstract Interpretation (AI) [17, 18, 19] is a mature research field, with many years
of research and development that led to solid theoretical results and strong practical
results. Among the many maturity indicators, the most important ones are probably
the following:

• the development of AI tools (analyzers, verifiers, etc.) is firmly based on the the-
oretical results; while some of these tools happen to take shortcuts for practical
reasons, these are usually identifiable and quite often well documented;

Enea Zaffanella
University of Parma, Parco Area delle Scienze 53/A, 43124, Parma, Italy e-mail:
enea.zaffanella@unipr.it

Vincenzo Arceri
University of Parma, Parco Area delle Scienze 53/A, 43124, Parma, Italy e-mail: vin-
cenzo.arceri@unipr.it

1

2 Enea Zaffanella and Vincenzo Arceri

• some AI tools have been industrialized and commercialized; we only mention
here the remarkable case of Astrée [10];

• there is growing support for collaborative work, including open-source libraries
of abstract domains and AI frameworks; hence, it is relatively easy to extend,
combine and compare AI tools;

• in recent years, the synergy between theory and practice has been fostered by the
rather common usage of pairing research papers with corresponding artifacts,
allowing for repeatability evaluations and even competitions between AI tools.

As a rough attempt at summarizing all the positive consequences of working in a
mature research field, one may state the following: the knowledgeable members of
the AI community (which are not necessarily experts) know what it is needed in
order to have things go right; also, they can tell when things are going wrong.

In this paper we will question the truth of the last part of the sentence above: we
will provide some evidence that, in the recent past, things may have gone wrong
without people noticing (even the experts).

We start by informally introducing the problem. The implementation of an AI-
based static analysis tool is greatly simplified by pursuing a clean separation of its
different components [35]: in particular, the development of a generic AI engine (i.e.,
the fixpoint approximation component) is kept distinct from the development of its
main parameter, the abstract domain. Quite often, these two components are designed
and implemented by different people, possibly working for distinct organizations. A
safe integration requires that the AI engine implements its functionalities by using a
subset of the semantic operators provided by the abstract domain and, in particular,
that each of these operators is used according to its formal specification. In order
to enable and foster collaborative work, it is therefore essential that the AI research
community converges towards a well-defined, uniform interface for these operators.
While this goal can be considered achieved for most semantic operators, it has been
surprisingly missed for widening operators: as we will see, widenings happen to be
implemented and used according to slightly different and incompatible specifications,
thereby becoming a potential source of interface mismatches that can affect the
correctness of AI tools. In this paper we will review the specification and usage of
widenings in several open-source implementations of abstract domains and analysis
tools, witnessing the above mentioned mismatch. We will also propose a solution
that, in our humble opinion, represents a further little step towards the maturity of
the research field: namely, we suggest to “fix” the specification of widenings by
choosing, once and for all, the one that more likely allows for preserving, besides
correctness, also efficiency and precision.

The paper is organized as follows. In Section 2 we briefly recall AI-based static
analysis and the classical specification for widening operators. In Section 3, after
introducing an alternative specification for widenings, we classify open-source ab-
stract domain and AI engine implementations according to the adopted widening
specification. Building on this classification, in Section 4 we describe and compare
the possible kinds of abstract domain and AI engine combinations, discussing the
safety problems potentially caused by specification mismatches. In Section 5 we
propose to fix the specification of widenings, so as to solve the identified problems

“Fixing” the specification of widenings 3

and also simplify the development of correct abstract domains and AI engines, while
avoiding inefficiencies and precision losses. We conclude in Section 6.

2 Background

In this section we briefly recall some basic concepts of Abstract Interpretation (AI)
[16, 17, 18, 19, 20]. Interested readers are also referred to [41], which provides an
excellent tutorial focused on numerical properties. For exposition purposes, we will
describe here the classical AI framework based on Galois connections; however, as
discussed at length in [19], it is not difficult to preserve the overall correctness of the
analysis even when adopting weaker algebraic properties.

The semantics of a program is specified as the least fixpoint of a continuous
operator 5� : � → � defined on the concrete domain �, often formalized as a
complete lattice 〈�, v� ,t� ,u� ,⊥� ,>�〉. In most cases, the partial order relation
v� models both the computational ordering (used in the fixpoint computation)
and the approximation ordering (establishing the relative precision of the concrete
properties). The least fixpoint can be obtained as the limit

lfp 5� = t� { 28 | 8 ∈ N }

of the increasing chain 20 v� · · · v� 28+1 v� · · · of Kleene’s iterates, defined by
20

def
= ⊥� and 28+1

def
= 5� (28), for 8 ∈ N.

The goal of AI-based static analysis is to soundly approximate the concrete seman-
tics using a simpler abstract domain �, which is usually (but not always) formalized
as a bounded join semi-lattice 〈�, v�,t�,⊥�,>�〉. Intuitively, the relative precision
of the abstract elements is encoded by the abstract partial order v�, which should
mirror the concrete one. Formally, the concrete and abstract domains are related by a
Galois connection, which is a pair of monotone functions U : � → � and W : �→ �

satisfying
∀2 ∈ �,∀0 ∈ � : U(2) v� 0 ⇔ 2 v� W(0).

When � and � are related by a Galois connection, an abstract function 5� : �→ �

is a correct approximation of the concrete function 5� : � → � if and only if
U(5� (2)) v� 5�(U(2)) for all 2 ∈ � or, equivalently, if 5� (W(0)) v� W(5�(0)) for
all 0 ∈ �. Note that correct approximations are preserved by function composition;
hence the problem of approximating the concrete function 5� is usually simplified by
decomposing it into simpler functions (depending on the semantics of the considered
programming language), which are then approximated individually. As a matter
of fact, software libraries implementing abstract domains usually provide several
abstract operators approximating the most common concrete semantic operators
(addition/removal of program variables, assignments, conditional tests, merging of
different control flow paths, etc.).

By exploiting the correctness condition above, traditional AI-based static analysis
tools approximate the concrete semantics by computing abstract Kleene iterates. In

4 Enea Zaffanella and Vincenzo Arceri

principle, they will compute the sequence 00, . . . , 08+1, . . . defined by 00
def
=⊥�

and 08+1
def
= 5�(08), for 8 ∈ N: by induction, each abstract iterate is a correct

approximation of the corresponding concrete iterate, i.e., 28 v� W(08); moreover, if
the abstract sequence converges to an abstract element 0 def

= t�{ 08 | 8 ∈ N } ∈ �,
then the correctness relation also holds for the least fixpoint, i.e., lfp 5� v� W(0).

In general, however, the abstract sequence may not converge at all (since the
abstract function 5� is not required to be monotone nor extensive and neither the
abstract domain is required to be a complete lattice) or it may fail to converge in a
finite number of steps. The classical method to obtain a finite convergence guarantee
is by the use of widening operators; we recall here the classical specification for
widening operator as provided in [16, 17, 20] (see also [41]).

Definition 1 (Classical widening)
A widening O : � × �→ � is an operator such that:

1. ∀01, 02 ∈ � : (01 v� 01 O 02) ∧ (02 v� 01 O 02);
2. for all ascending sequences 00 v� · · · v� 08+1 v� · · · , the ascending sequence
G0 v� · · · v� G8+1 v� · · · defined by G0 = 00 and G8+1 = G8 O 08+1 is not strictly
increasing.

The abstract increasing sequence with widening is G0 v� · · · v� G8+1 v� · · · , where
G0

def
=⊥� and, for each 8 ∈ N,

G8+1
def
= G8 O 5�(G8). (1)

Note that condition 1 in Definition 1 states that the widening is an upper bound
operator for the abstract domain; thismakes sure that the computed abstract sequence
is indeed increasing, thereby enabling the application of condition 2 and enforcing
convergence after a finite number : ∈ N of iterations, obtaining lfp 5� v� W(G:).
Roughly speaking, since the classical widening is an upper bound operator, the AI
engine can directly use it in Eqn. (1) as a replacement of the join operator.

It is well known that the approximation computed by widening during the as-
cending sequence may be rather coarse and it can be improved by coupling it with a
corresponding decreasing sequence using narrowing operators [17, 19, 20]; it is also
possible to intertwine the ascending and descending phases [4]. Other techniques
(e.g., widening up-to [32], lookahead widening [27], stratified widening [43]) are
meant to directly improve the precision of the ascending sequence. All of these will
not be discussed further, as they are completely orthogonal to the goal of this paper.

3 On the Specification of Widening Operators

In the previous section we have recalled the classical specification for the widening
operator. However, a quick review of the literature on Abstract Interpretation shows
that such a formalization is not uniformly adopted. Quoting from [20, footnote 6]:

“Fixing” the specification of widenings 5

Numerous variants are possible. For example, [. . .]

An incomplete list of the possible variants includes:

• using a different widening for each iterate [14];
• using an =-ary or set-based widening [13, 19], depending on many (possibly all)
previous iterates;

• using a widening satisfying the minimalistic specification proposed in [42];
• using a widening for the case when the computational and approximation order-
ings are different [19, 49].

Some of these variants may be regarded has having (only) theoretical interest, as
their application in practical contexts has been quite limited. Here below we describe
in more detail the very first variant mentioned in [20, footnote 6], which has been
quite successful from a practical point of view, being adopted by a relatively high
number of open-source abstract domain libraries and AI tools.

Definition 2 (Alternative widening)
A widening O : � × �→ � is an operator such that:

1. ∀01, 02 ∈ � : 01 v� 02 =⇒ 02 v� 01 O 02;
2. for all ascending sequences 00 v� · · · v� 08+1 v� · · · , the ascending sequence
G0 v� · · · v� G8+1 v� · · · defined by G0 = 00 and G8+1 = G8 O 08+1 is not strictly
increasing.

When this alternative specification for the widening is adopted, then the (alternative)
abstract increasing sequence with widening G0 v� · · · v� G8+1 v� · · · is defined by
G0

def
=⊥� and, for each 8 ∈ N,

G8+1
def
= G8 O

(
G8 t� 5�(G8)

)
. (2)

When comparing the alternative and classical specifications, we see that:

• in condition 1 of Definition 2, it is required that 01 v� 02, so that this widening
is an upper bound operator only when this precondition is satisfied;

• in order for this assumption to hold, in Eqn. (2) the AI engine uses the join
G8 t� 5�(G8) as the second argument for the widening.

In other words, when adopting this alternative specification, the widening is meant
to be used in addition to the join operator, rather than as a replacement of the join as
was the case for the classical specification.

The option of choosing between the classical and alternative widening specifica-
tions has also been recalled more recently in [15]: in the main body of that paper it
is assumed that the abstract semantic function 5� is extensive, thereby fulfilling the
precondition of Definition 2; in [15, footnote 5] it is observed that the extensivity
requirement can be satisfied by using Eqn. (2); the classical widening specification
is instead described in [15, footnote 6].

6 Enea Zaffanella and Vincenzo Arceri

When considering parametric AI-based tools, the minor differences highlighted
in the comparison above are nonetheless very important from a practical point of
view, since they are directly affecting the interface boundary between the AI engine
component and the abstract domain component, which are quite often developed
independently. It is therefore essential to classify these components depending on
the widening specification they are adopting. In the following, we classify a subset
of the available abstract domains and AI tools: we will focus on numerical abstract
domains, but the reasoning can be extended to other abstract domains (e.g., the
domain of finite state automata [22] used for the analysis of string values [5]); also,
we only consider open-source implementations, since our classification is merely
based on source code inspection.

3.1 Classifying abstract domain implementations

The classification of an abstract domain implementation is based on checkingwhether
the corresponding widening operator is modeled according to Definition 1 or 2, i.e.,
whether or not it requires the precondition 01 v� 02. We consider most of the
domains provided by the open-source libraries APRON (Analyse de PROgrammes
Numériques) [37], ELINA (ETH LIbrary for Numerical Analysis) [23], PPL (Parma
Polyhedra Library) [7], PPLite [8] and VPL (Verified Polyhedron Library) [11], as
well as a few abstract domains that are embedded in specific AI tools, such as Frama-
C [38], IKOS [12] and Jandom [1]. The results of our classification are summarized
in Table 1.

abstract domain classical widening: Def. 1 alternative widening: Def. 2
(no precondition) (requires 01 v� 02)

intervals/boxes [16, 17] APRON★, IKOS, Jandom PPL
zones [40] ELINA★, IKOS PPL
octagons [40] APRON★, ELINA★, IKOS, Jandom PPL

polyhedra [21, 30] APRON, ELINA,
PPL, PPLite, VPL

parallelotopes [3] Jandom
interval congruences [39] Frama-C

Table 1 Classifying implementations of abstract domains based on widening specification

We discuss in some detail the case of the domain of intervals (which generalizes
to multi-dimensional boxes).

Definition 3 (Interval abstract domain)
The lattice of intervals on I ∈ {Z,Q} has carrier

Itv = {⊥} ∪
{
[ℓ, D]

�� ℓ ∈ I ∪ {−∞}, D ∈ I ∪ {+∞}, ℓ ≤ D }
,

“Fixing” the specification of widenings 7

partially ordered by ⊥ v G, for all G ∈ Itv, and

[ℓ1, D1] v [ℓ2, D2] ⇐⇒ ℓ1 ≥ ℓ2 ∧ D1 ≤ D2.

Almost all implementations of this domain adopt the definition of interval widening
provided in [16, 17], matching the classical specification of Definition 1:

Definition 4 (Classical widening on intervals)

The interval widening O : Itv × Itv→ Itv is defined by G O ⊥ def
= ⊥ O G def

= G, for
all G ∈ Itv, and [ℓ1, D1] O [ℓ2, D2]

def
= [(ℓ2 < ℓ1 ? −∞ : ℓ1), (D2 > D1 ? +∞ : D1)].

In contrast, the implementation provided by the PPL [7] is based on the alternative
widening specification of Definition 2:

Definition 5 (Alternative widening on intervals)

The interval widening O : Itv× Itv→ Itv is defined by ⊥ O G def
= G, for all G ∈ Itv,

and [ℓ1, D1] O [ℓ2, D2]
def
= [(ℓ2 ≠ ℓ1 ? −∞ : ℓ1), (D2 ≠ D1 ? +∞ : D1)].

One may wonder what Definition 5 is going to gain with respect to Definition 4:
technically speaking, the main motivation for adding a precondition to a procedure
is to enable optimizations; for instance, when considering intervals with arbitrary
precision rational bounds, testing A1 ≠ A2 is more efficient than testing A1 < A2.1

Weakly relational domains, such as zones and octagons [40], are characterized by
widening operators that are almost identical to those defined on intervals (these three
domains can be seen as instances of the template polyhedra construction [46]). We
can thus repeat the observations made above to conclude that almost all implemen-
tations adopt the classical widening specification, while the PPL implementation
keeps adopting the alternative one.

The case of library APRON deserves a rather technical, pedantic note. All the ab-
stract domains provided by this library are meant to implement a common interface,
whose C language documentation states the following:2
ap_abstract1_t ap_abstract1_widening(ap_manager_t* man,

ap_abstract1_t* a1,
ap_abstract1_t* a2)

Widening of a1 with a2. a1 is supposed to be included in a2.

That is, all the domains in APRON, including boxes and octagons, are meant to im-
plement the alternative widening specification; hence, even though the actual source
code implementing the widenings for boxes has always been based on Definition 4
(up to version 0.9.13), in principle any future release of the library may decide to
change its inner implementation details and switch to Definition 5. However, since
this is an unlikely scenario, in Table 1 we keep these implementations in the column
of the classical widening (marking them with a star). A similar observation applies

1 Arbitrary precision rationals are usually represented as canonicalized fractions; hence, testing for
equality is relatively cheap, whereas testing =1

31
<
=2
32

may require two arbitrary precision products.
2 Similar sentences are found in the documentation of the C++ and OCaml interfaces.

8 Enea Zaffanella and Vincenzo Arceri

to the domains in the ELINA library since, as far as we can tell, its programming
interface is meant to be identical to that of APRON; in this case, however, there is
no clear statement in the documentation.

Things are rather different when considering the domain of convex polyhedra:
even though the standard widening operator defined in [21, 30] is modeled according
to the classical specification, it turns out that all the available implementations are
adopting the alternative specification of Definition 2 (no matter if considering the
standard widening of [21, 30] or the more precise widenings defined in [6, 8]).

The expert reader might note that Table 1 provides a rather incomplete summary,
lacking entries for many numerical domains. We stress that the only purpose of this
table is to witness a non-uniform situation; this is further confirmed by the last two
lines of the table, where we have considered a couple of less popular abstract domain
implementations (parallelotopes [3] and interval congruences [39]).

It is also instructive to extend our review to consider the case of an abstract domain
satisfying the ACC (Ascending Chain Condition), meaning that all its ascending
chains are finite. We still require a widening operator for the following reasons:

1. to obtain a uniform abstract domain interface, which simplifies the generic
implementation of AI engines;

2. to accelerate (rather than ensure) the convergence of the abstract iteration se-
quence, when the abstract domain contains very long increasing chains.

When the last reason above does not apply, an obvious option is to define a dummy
widening operator, intuitively based on the abstract join operator t�, so as to avoid
precision losses as much as possible. Once again, we are faced with the choice of
adopting the classical specification of Definition 1, leading to

01 O 02
def
= 01 t� 02, (3)

or the alternative specification of Definition 2, exploiting precondition 01 v� 02 to
improve efficiency, and hence obtaining

01 O 02
def
= 02. (4)

As an example, the sign domain [17] found in the Frama-C framework implements
its dummy widening according to Eqn. (3):
sign_domain.ml: let widen = join

whereas the same framework implements the widening for the generic lattice set
domain according to Eqn. (4):3
abstract_interp.ml: let widen _wh _t1 t2 = t2

This is somehow surprising, since one would expect that all the abstract domains
implemented in a given framework are developed according to the same specification.

3 Parameter _wh, which is ignored, is meant to provide widening hints [10].

“Fixing” the specification of widenings 9

3.2 Classifying AI engine implementations

We now turn our attention to the other side of the interface, checking how widening
operators are used in different AI engines, that is whether they use widenings to
replace joins, as in Eqn. (1), or in addition to joins, as in Eqn. (2). The results of
this second classification are summarized in Table 2. As before, we are focusing on
a rather limited subset of the available open-source AI engines, since our only goal
is to show that, again, we have a non-uniform situation.

classical engine: Eqn. (1) alternative engine: Eqn. (2)
(only widening) (join + widening)
CPAchecker [9] (CPAchecker + APRON polyhedra)
DIZY [45] Frama-C [38]
GoLiSA [44] Goblint [50]
IKOS [12] Interproc [36]
Jandom [1] (Jandom + PPL domains)
LiSA [24] PAGAI [34]

SeaHorn/Crab [29] (SeaHorn/Crab + Boxes)

Table 2 Classifying AI engines based on widening specification

It is worth stressing that, in this case, the classification process is more difficult,
because there are AI tools that try to avoid the widening specification mismatch
by adapting their own AI engine depending on the abstract domain chosen for the
analysis. For instance, CPAchecker, Jandom and SeaHorn/Crab are all classified to
follow the classical specification, as they usually only apply the widening opera-
tor. However, they switch to the alternative specification (computing joins before
widenings) when using, respectively, the polyhedra domain provided by APRON,
the abstract domains provided by PPL and the abstract domain of Boxes [28]; these
special cases are reported in Table 2 in parentheses.4

4 Combinations of Abstract Domains and AI Engines

In the previous section we have seen that widening implementation in abstract
domains and widening usage in AI engines can be classified according to the speci-
fication they are meant to follow. Here we consider all possible ways to combine the
two components inside an AI tool. Even though we will often refer to combinations
that are actually found in some of the available tools, the discussion is meant to be
more general: that is, we also target potential combinations of engines and domains

4 Our classification is based on human code review, hence it is error prone: we may have missed
other specific combinations treated as special cases.

10 Enea Zaffanella and Vincenzo Arceri

that have never been implemented in the considered AI tools; the idea is that these
combinations are anyway possible when assuming a collaborative context.5

The possible combinations are classified in Table 3, where we highlight in italic
blue the safe portions of the specification (i.e., the parts making sure that we will
obtain a correct analysis result), while highlighting inboldface red the risky portions
of the specification (whose correctness depends on assumptions that should be
satisfied by the other interfaced component). Also note that in the table, for exposition
purposes, we use IKOS (resp., PAGAI) to actually represent any AI engine adopting
the classical (resp., alternative) engine specification; similarly, we use APRON’s
octagons (resp., polyhedra) to represent any abstract domain whose widening is
implemented according to the classical (resp., alternative) widening specification.

AI engine
widening classical: Def. 1 alternative: Def. 2

(no precondition) (requires 01 v� 02)

classical: Eqn. (1)
(only widening) IKOS + octagons IKOS + polyhedra

alternative: Eqn. (2)
(join + widening) PAGAI + octagons PAGAI + polyhedra

Table 3 Classifying possible combinations of AI engines and widenings

We now briefly describe the four kinds of combination.

IKOS + octagons. This combination matches the classical specification in [16, 17,
20], whose safety is ensured by Definition 1.

PAGAI + polyhedra. This combination matches the alternative widening specifica-
tion of [20, footnote 6], whose safety is ensured by Eqn. (2). The combination
Frama-C + generic lattice set mentioned previously can be seen to be another
instance of this kind, where the abstract domain satisfies the ACC.

PAGAI + octagons. This combination, which mixes the classical and alternative
specifications, is probably not explicitly described in the literature; it can thus
be interpreted as the result of a harmless specification mismatch. The safety
of the resulting analysis is clearly ensured (by adopting a belt and suspenders
approach). The combination Frama-C + signs mentioned previously can be
seen to be another instance of this hybrid approach, where the abstract domain
satisfies the ACC.

IKOS + polyhedra. This combination is once again mixing the classical and al-
ternative specifications, but in this case both the AI engine and the widening
implementation take a risky approach, assuming that the other component will
do what is required to obtain safety. Since neither assumption is satisfied, safety
is (potentially) compromised.

5 Clearly, such an ideal scenario is sometimes limited by licencing issues and/or architectural and
programming language implementation barriers.

“Fixing” the specification of widenings 11

In summary, of the four possible combination kinds, the first three are safe and
the last one is (potentially) unsafe.

4.1 Some thoughts on the unsafe combinations

Technically speaking, we are witnessing the violation of a programming contract:
depending on the implementation details, the outcome could be either the raising
of a well-defined error or an undefined behavior. In the first (unlikely) case, the
implementers are left with two options: either they simply report the problem to
the user, interrupting the static analysis process, or they workaround the issue by
arbitrarily returning a safe approximation of the actual result (e.g., the uninformative
top element >� ∈ �). In the more likely case of undefined behavior, the outcome is
obviously unpredictable. For instance, a few experiments on the unsafe combination
PAGAI + PPLite polyhedra6 resulted in observing any of the following:

• identical results;
• different safe results (which usually were precision losses);
• unsafe results;
• non termination of the analysis;
• segmentation faults.

It is worth stressing that this issue is well known by AI experts. For instance, in
the case of convex polyhedra, a full blown example showing the risk of missing the
inclusion requirement was provided in [6, Example 5]; the problem has also been
recalled more recently in [31]:

[. . .] widening operators are generally designed under the assumption that their first operand
is smaller than the second one.

As we already observed, the precondition 01 v� 02 is often mentioned in the
documentation of software libraries (e.g., APRON, PPL and VPL) and in some of
them the implementers have added assertions to check it; however, these assertions
are executed only in debugging mode, which is often avoided for efficiency reasons.

The case of VPL [11] deserves a longer note. As its name suggests, the Verified
Polyhedron Library is meant to support verified computations on the domain of
convex polyhedra: that is, each library operation, besides providing the result, also
yields a correctness certificate; the result and the certificate can then be supplied
to a verification procedure, which is formally proved correct in Coq. Therefore, the
widening specification mismatch under investigation would have been a perfect fit
for the VPL setting. Unfortunately, the library developers decided that widening is
the one and only operator on polyhedra not requiring a certificate. Quoting from
VPL’s documentation:
Note that [widen p1 p2] relies on [p1] being included in [p2].
The result includes the two operands, although no certificate
is created.

6 As shown in Table 2, PAGAI is a safe AI engine; PAGAI is a variant obtained by removing the
computation of joins before widenings, i.e., replacing on purpose Eqn. (2) with Eqn. (1).

12 Enea Zaffanella and Vincenzo Arceri

Hence, VPL cannot promptly detect this kind of errors. In [25] it is argued that
widening operators need not be certified because the framework is anyway going
to formally check the computed post-fixpoint for inductiveness, so that any unsafe
result will be anyway identified (later on). However, as discussed above, unsafety is
just one of the possible undesired behaviors.

To summarize, under this non-uniform state of things, it is rather difficult to
guarantee that AI engines and abstract domains possibly developed by different
research groups are always combined safely. Indeed, a partial review of the literature
shows that a few unsafe combinations have been used, in recent years, in at least four
artifacts accepted in top level conferences:

1. a SAS 2013 artifact [45], combining DIZY with APRON polyhedra;
2. a POPL 2017 artifact [47], combining SeaHorn/Crab with (APRON, ELINA

and PPL) polyhedra;
3. a CAV 2018 artifact [48], combining SeaHorn/Crab with ELINA polyhedra;
4. a PLDI 2020 artifact [33], combining SeaHorn/Crab with ELINA polyhedra.

The unsafety of the last three artifacts, which are based on the SeaHorn/Crab
engine, has been confirmed by one of their authors.7

At this point, it might seem natural to question whether or not these AI tools are
actually computing unsafe results. Note that the answer is far from being obvious,
because these analyses might be often returning a correct result anyway: namely, they
might be losing safety in one iteration of the abstract sequence just to regain it at a
later iteration, possibly due to the usual over-approximations incurred by the abstract
semantic operators; this effect might even be amplified by the non-monotonicity of
widening operators. We actually conjecture that all these experimental evaluations
are almost never affected by the potential safety issue, so that they keep playing their
role in the context of the considered papers.

More importantly, it is our opinion that answering the question above is not
really interesting: as soon as a potential problem is identified, one should focus on
finding an adequate solution for the future, rather than looking for a specific example
witnessing an actual error in the past. This will be the goal of Section 5.

4.2 Comparing the safe combinations

We now compare the safe combinations, trying to understand whether there indeed
are good reasons to have three slightly different options.

We start by observing that any combination such as PAGAI + octagons is going to
lose some efficiency because the alternativeAI engine, by followingEqn. (2), is going
to compute joins that are completely useless. Hence, we are left with a comparison
of the two combinations corresponding to the classical (IKOS + octagons) and
alternative (PAGAI + polyhedra) specifications.

7 G. Singh, personal communication.

“Fixing” the specification of widenings 13

Firstly, we should get rid of a false impression related to the efficiency of widen-
ings. When adopting the point of view of the abstract domain implementer, one may
think that the alternative specification is going to be less costly because it makes
possible to exploit the inclusion precondition without having to compute the expen-
sive join (recall the observation we made just after Definition 5). However, when
considering the AI tool as a whole, we can easily note that the computation of the
join is not really avoided: rather, it is just delegated to the AI engine component, so
that any corresponding overhead is still there.

Secondly, we will argue that the classical widening specification, by merging
join and widening into a single operator, can sometimes trigger improvements in
precision and/or efficiency. A potential precision improvement can be obtained when
considering abstract domains that are not semi-lattices [26], such as the domain of
parallelotopes [2, 3]. These domains are not provided with a least upper bound
operator; rather, when computing a join, they necessarily have to choose among
alternative, uncomparable upper bound operators: a poor choice typically leads to
precision losses. Hence, as observed in [2, 3], forcing a separation between the join
and the widening (as required in the alternative widening specification) is going to
complicate the choice of an appropriate upper bound; in contrast, an implementation
based on the classical widening will be able to exploit more context information
and preserve precision. By following the same reasoning, one could argue that an
implementation based on the classical widening specification may be able to apply
specific efficiency optimizations that would be prevented when separating the join
from the widening; we will show a concrete example in this respect in Section 5.1.

To summarize, among the safe combinations, those based on the classical widen-
ing specification seem to have a few advantages and no disadvantage at all.

5 Lesson learned and recommendation

The discussion in the previous section has shown that having different, not fully com-
patible specifications for the widening operators implemented in abstract domains
and used by AI engines can cause issues that potentially affect the overall correctness
of the analysis. Knowledgeable software engineers implementing AI tools may be
easily confused and evenAI expertsmay fail to detect these specificationmismatches,
since their consequences are quite often hidden.

In our humble opinion, this state of things should be corrected: when implement-
ing parametric static analysis tools following the traditional AI approach, we should
“fix” (i.e., stick to) a single and universally adopted specification for the widening
operators. For all we said in the previous section, our recommendation is to choose
the classical widening of [16, 17]. Namely,

• the abstract domain designers should followDefinition 1 andmake sure that their
widening is an upper bound operator (with no precondition), thereby solving all
the correctness issues; and

14 Enea Zaffanella and Vincenzo Arceri

• the AI engine designers should always adopt Eqn. (1), which slightly improves
efficiency by avoiding useless joins and can also preserve precision when the
analysis is using a non-lattice abstract domain.

It is worth stressing that, from a technical point of view, following the two
recommendations above is quite simple: there is no new functionality that needs to be
implemented; rather, the AI engine developers and the abstract domain implementers
only need to agree on a clearer separation of concerns. For instance, an abstract
domain implementing the alternative widening specification will have to wrap its
implementation using an upper bound operator, as follows.

Proposition 1 Let Orisky : �× �→ � be a widening operator satisfying Definition 2
and let t̃� : � × �→ � be an upper bound operator on � (not necessarily the least
one); then, the operator Osafe : � × �→ � defined by

∀01, 02 ∈ � : 01 Osafe 02
def
= 01 Orisky (01 t̃� 02)

is a widening satisfying Definition 1.

Note that the widening wrapping operation is often (already) implemented inside
classical AI engines that correctly interface an abstract domain implementing the
alternative widening specification. Hence, we are just suggesting to move this wrap-
ping operation (once and for all) into the abstract domain’s widening implementation,
thereby simplifying the parametric AI engine. In specific cases, the wrapped widen-
ing of Proposition 1 can be replaced by an ad hoc implementation meant to improve
its precision and/or its efficiency.

5.1 Safe widenings for convex polyhedra

As an interesting example, we discuss in more detail the case of the abstract domain
of topologically closed convex polyhedra, describing the several implementation
options that allow to transform a risky widening implementation (as found in any
one of the software libraries we considered) into a safe widening. For space reasons,
we will provide abridged definitions of the domain and its operators, referring the
interested reader to the well known literature [6, 21, 30, 46].

Let 〈CP=, ⊆,], ∅,R=〉 be the semi-lattice of =-dimensional topologically closed
convex polyhedra, where the least upper bound operator] denotes the convex poly-
hedral hull; let also Ostd be an implementation of the standard widening operator
assuming the precondition %1 ⊆ %2. Clearly, the simplest option is to instantiate
Proposition 1 using], thereby obtaining

%1 Oa %2
def
= %1 Ostd (%1] %2). (5)

However, as observed in [46], this could result in some waste of computational
resources. Roughly speaking, the standardwidening %1 Ostd %2 selects the constraints

“Fixing” the specification of widenings 15

of %1 that are satisfied by %2. Hence, there is no real need to compute the least upper
bound of the two polyhedra, which is also going to compute new constraint slopes.
Rather, we can instantiate Proposition 1 by using the weak join operator tw,8 which
does not compute new constraint slopes:

%1 Ob %2
def
= %1 Ostd (%1 tw %2). (6)

A third option is to provide an ad hoc definition for the widening on polyhedra,
which simply avoids the explicit computation of least/weak upper bounds.

Definition 6 (Ad hoc classical widening on CP=)
Let %1, %2 ∈ CP= be represented by the constraint system �1 and the generator

system �2, respectively, where �1 = Eqs1 ∪ Ineqs1 is in minimal form. Consider
polyhedron % represented by � def

= �1 \ { 21 ∈ Ineqs1 | 62 ∈ �2 violates 21 }. Then,

%1 Oc %2
def
=

{
%1] %2, if (%1 = ∅) or (%2 = ∅) or (62 ∈ �2 violates 21 ∈ Eqs1);
%, otherwise.

Note that this is a well defined (i.e., semantic) widening operator, meaning that it
does not depend on the constraint representation. This property holds because:

1. it considers a constraint system �1 in minimal form;
2. it returns %1] %2 whenever a generator in �2 violates an equation in �1.

Hence, the polyhedron % is computed only when %1 and %1]%2 have the same affine
dimension (see [6, Proposition 6]). Also note that, in case 2 above, the computed
result can be more precise than the one obtained using Eqn. (5) or Eqn. (6).

time/operations %1 Oa %2 %1 Ob %2 %1 Oc %2 Oa/Ob Oa/Oc
cumulative time 163 ms 287 ms 19 ms 0.57 8.58
scalar products 808078 1153298 131482 0.70 6.15
linear combinations 42527 70162 4456 0.61 9.54
bitset operations 5881982 8556088 106031 0.69 5.55

Table 4 Efficiency comparison for variations of standard widening on CP=

In Table 4 we summarize the results of an experimental evaluation (using a
modified version of the PPLite library) where we compare the efficiency of the
operators Oa, Ob and Oc; note that the use of operator Oa faithfully describes an
implementation satisfying the alternative specification of Definition 2. The reader
is warned that we are describing a synthetic efficiency comparison, having little
statistical value: usually, a rather small fraction of the overall execution time of static
analysis tools is spent computing widenings. In our synthetic test, we consider 70
pairs of randomly generated, fully dimensional closed polyhedra in a vector space

8 This is the join used in the domain of template polyhedra [46], also called constraint hull.

16 Enea Zaffanella and Vincenzo Arceri

of dimension 5 (each polyhedron is obtained by adding 5 random rays to a randomly
generated bounded box). For each pair, we compute the widenings according to the
three implementations, keeping track of the overall elapsed time; note that the three
widenings always compute identical results. We also repeat the test with a modified
implementation that tracks the number of low level operations (scalar products,
linear combinations and bitwise operations on saturation vectors) executed during
the computations of the widenings. Table 4 shows that, on these benchmarks, the
ad hoc classical widening Oc is able to significantly improve the efficiency of Oa. In
contrast, forOb (which is based on the weak join operator) we obtain a slowdown; this
is due to the fact that, after efficiently computing the constraint system for %1 tw %2,
the conversion procedure is implicitly invoked to obtain the corresponding generator
system (which is required by the current implementation of Ostd).

5.2 A note on the unusual widening specifications

Our recommendation is meant for tools following the mainstream approach to Ab-
stract Interpretation. In particular, we are assuming that the computational ordering
is identical to the approximation ordering. The rather unusual case of distinct or-
derings v� and �� has been first considered in [19, Proposition 6.20]: in this case,
non-standard hypotheses on the widening operator make sure that the approximation
relation U(28) �� 08 holds for each corresponding pair of concrete and abstract
iterates (these properties can then be transferred to the fixpoint).

The decision tree abstract domain proposed in [49], which can be used to prove
conditional termination of programs, is an interesting specific example of a domain
distinguishing the computational and approximation ordering. The corresponding
widening operator, however, matches none of the specifications above: neither Def-
inition 1, nor Definition 2, nor [19, Proposition 6.20]. As discussed in [49], when
using this widening operator, the approximation relation U(28) �� 08 on the inter-
mediate concrete and abstract iterates does not generally hold: the analysis can only
ensure the correct over-approximation of the concrete fixpoint.

6 Conclusion

We have shown that widely adopted open-source abstract domain libraries and AI
engines assume slightly different specifications for widening operators, possibly
leading to AI tool crashes or more subtle, hidden safety issues. This problem can be
solved by systematically adopting a fixed and hence uniform widening specification.
Based on our investigation, the best option is to stick to the classical widening
specification of [16, 17], as it enjoys the following properties:

• it is the default one taught in Abstract Interpretation courses and tutorials;
• it avoids all safety issues;

“Fixing” the specification of widenings 17

• it can be more precise than the alternative one (for non-lattice domains);
• its implementations can be as efficient as (or even more efficient than) those
based on the alternative one.

Acknowledgements The authors would like to express their gratitude to the developers and main-
tainers of open-source abstract domain libraries and static analysis tools. Special thanks are also
due to Gianluca Amato, David Monniaux, Jorge A. Navas, Francesca Scozzari, Gagandeep Singh,
and Caterina Urban for their helpful feedback on the subject of this paper.

References

1. Amato, G., Di Nardo DiMaio, S., Scozzari, F.: Numerical static analysis with Soot. In: P. Lam,
E. Sherman (eds.) Proceedings of the 2nd ACM SIGPLAN International Workshop on State
Of the Art in Java Program analysis, SOAP 2013, Seattle, WA, USA, June 20, 2013, pp. 25–30.
ACM (2013). DOI 10.1145/2487568.2487571

2. Amato, G., Rubino, M., Scozzari, F.: Inferring linear invariants with parallelotopes. Sci.
Comput. Program. 148, 161–188 (2017). DOI 10.1016/j.scico.2017.05.011

3. Amato, G., Scozzari, F.: The abstract domain of parallelotopes. Electron. Notes Theor. Comput.
Sci. 287, 17–28 (2012). DOI 10.1016/j.entcs.2012.09.003

4. Amato, G., Scozzari, F., Seidl, H., Apinis, K., Vojdani, V.: Efficiently intertwining widening
and narrowing. Sci. Comput. Program. 120, 1–24 (2016). DOI 10.1016/j.scico.2015.12.005

5. Arceri, V., Mastroeni, I.: Analyzing dynamic code: A sound abstract interpreter for Evil eval.
ACM Trans. Priv. Secur. 24(2), 10:1–10:38 (2021). DOI 10.1145/3426470

6. Bagnara, R., Hill, P., Ricci, E., Zaffanella, E.: Precise widening operators for convex polyhedra.
Sci. Comput. Program. 58(1-2), 28–56 (2005). DOI 10.1016/j.scico.2005.02.003

7. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a complete set
of numerical abstractions for the analysis and verification of hardware and software systems.
Sci. Comput. Program. 72(1-2), 3–21 (2008). DOI 10.1016/j.scico.2007.08.001

8. Becchi, A., Zaffanella, E.: PPLite: zero-overhead encoding of NNC polyhedra. Inf. Comput.
275, 104620 (2020). DOI 10.1016/j.ic.2020.104620

9. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software verification. In:
G. Gopalakrishnan, S. Qadeer (eds.) Computer Aided Verification - 23rd International Con-
ference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, Lecture Notes in
Computer Science, vol. 6806, pp. 184–190. Springer (2011). DOI 10.1007/978-3-642-22110-
1_16

10. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D.,
Rival, X.: A static analyzer for large safety-critical software. In: R. Cytron, R. Gupta (eds.)
Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design
and Implementation 2003, San Diego, California, USA, June 9-11, 2003, pp. 196–207. ACM
(2003). DOI 10.1145/781131.781153

11. Boulmé, S., Maréchal, A., Monniaux, D., Périn, M., Yu, H.: The Verified Polyhedron Library:
an overview. In: 20th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, SYNASC 2018, Timisoara, Romania, September 20-23, 2018, pp. 9–
17. IEEE (2018). DOI 10.1109/SYNASC.2018.00014

12. Brat, G., Navas, J., Shi, N., Venet, A.: IKOS: A framework for static analysis based on abstract
interpretation. In: D. Giannakopoulou, G. Salaün (eds.) Software Engineering and Formal
Methods - 12th International Conference, SEFM 2014, Grenoble, France, September 1-5,
2014. Proceedings, Lecture Notes in Computer Science, vol. 8702, pp. 271–277. Springer
(2014). DOI 10.1007/978-3-319-10431-7_20

13. Cortesi, A., Zanioli,M.:Widening and narrowing operators for abstract interpretation. Comput.
Lang. Syst. Struct. 37(1), 24–42 (2011). DOI 10.1016/j.cl.2010.09.001

18 Enea Zaffanella and Vincenzo Arceri

14. Cousot, P.: Semantic foundations of program analysis. In: S.S. Muchnick, N.D. Jones (eds.)
Program Flow Analysis: Theory and Applications, chap. 10, pp. 303–342. Prentice Hall,
Englewood Cliffs, NJ, USA (1981)

15. Cousot, P.: Abstracting induction by extrapolation and interpolation. In: D. D’Souza, A. Lal,
K.G. Larsen (eds.) Verification, Model Checking, and Abstract Interpretation - 16th Interna-
tional Conference, VMCAI 2015, Mumbai, India, January 12-14, 2015. Proceedings, Lecture
Notes in Computer Science, vol. 8931, pp. 19–42. Springer (2015). DOI 10.1007/978-3-662-
46081-8_2

16. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In: Proceedings
of the Second International Symposium on Programming, pp. 106–130. Dunod, Paris, France
(1976)

17. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Conference Record of the Fourth
ACM Symposium on Principles of Programming Languages, Los Angeles, California, USA,
January 1977, pp. 238–252 (1977)

18. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Conference
Record of the Sixth Annual ACM Symposium on Principles of Programming Languages, San
Antonio, Texas, USA, January 1979, pp. 269–282 (1979)

19. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Log. Comput. 2(4), 511–547
(1992). DOI 10.1093/logcom/2.4.511

20. Cousot, P., Cousot, R.: Comparing the galois connection and widening/narrowing approaches
to abstract interpretation. In: M. Bruynooghe, M. Wirsing (eds.) Programming Language
Implementation and Logic Programming, 4th International Symposium, PLILP’92, Leuven,
Belgium, August 26-28, 1992, Proceedings, Lecture Notes in Computer Science, vol. 631, pp.
269–295. Springer (1992). DOI 10.1007/3-540-55844-6_142

21. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: A. Aho, S. Zilles, T. Szymanski (eds.) Conference Record of the Fifth Annual
ACM Symposium on Principles of Programming Languages, Tucson, Arizona, USA, January
1978, pp. 84–96. ACM Press (1978). DOI 10.1145/512760.512770

22. D’silva, V.: Widening for automata. Diploma thesis, Institut Fur Informatick, Universitat
Zurich, Switzerland (2006)

23. ETH Zurich SRI Lab: ELINA: ETH Library for Numerical Analysis. URL http://elina.ethz.ch
24. Ferrara, P., Negrini, L., Arceri, V., Cortesi, A.: Static analysis for dummies: experiencing LiSA.

In: L. Nguyen Quang Do, C. Urban (eds.) SOAP@PLDI 2021: Proceedings of the 10th ACM
SIGPLAN International Workshop on the State Of the Art in Program Analysis, Virtual Event,
Canada, 22 June, 2021, pp. 1–6. ACM (2021). DOI 10.1145/3460946.3464316

25. Fouilhé, A.: Revisiting the abstract domain of polyhedra : constraints-only representation and
formal proof. (le domaine abstrait des polyèdres revisité : représentation par contraintes et
preuve formelle). Ph.D. thesis, Grenoble Alpes University, France (2015)

26. Gange, G., Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: Abstract interpretation
over non-lattice abstract domains. In: F. Logozzo, M. Fähndrich (eds.) Static Analysis -
20th International Symposium, SAS 2013, Seattle, WA, USA, June 20-22, 2013. Proceedings,
Lecture Notes in Computer Science, vol. 7935, pp. 6–24. Springer (2013). DOI 10.1007/978-
3-642-38856-9_3

27. Gopan, D., Reps, T.: Lookahead widening. In: T. Ball, R. Jones (eds.) Computer Aided
Verification, 18th International Conference, CAV 2006, Seattle, WA, USA, August 17-20,
2006, Proceedings, Lecture Notes in Computer Science, vol. 4144, pp. 452–466. Springer
(2006). DOI 10.1007/11817963_41

28. Gurfinkel, A., Chaki, S.: Boxes: A symbolic abstract domain of boxes. In: R. Cousot, M.Martel
(eds.) Static Analysis - 17th International Symposium, SAS 2010, Perpignan, France, Septem-
ber 14-16, 2010. Proceedings, Lecture Notes in Computer Science, vol. 6337, pp. 287–303.
Springer (2010). DOI 10.1007/978-3-642-15769-1_18

29. Gurfinkel, A., Navas, J.A.: Abstract interpretation of LLVM with a region-based memory
model. In: R. Bloem, R. Dimitrova, C. Fan, N. Sharygina (eds.) Software Verification - 13th

“Fixing” the specification of widenings 19

International Conference, VSTTE 2021, New Haven, CT, USA, October 18-19, 2021, and
14th International Workshop, NSV 2021, Los Angeles, CA, USA, July 18-19, 2021, Revised
Selected Papers, Lecture Notes in Computer Science, vol. 13124, pp. 122–144. Springer (2021).
DOI 10.1007/978-3-030-95561-8_8

30. Halbwachs, N.: Détermination automatique de relations linéaires vérifiées par les variables
d’un programme. Ph.D. thesis, Grenoble Institute of Technology, France (1979)

31. Halbwachs, N., Henry, J.: When the decreasing sequence fails. In: A. Miné, D. Schmidt (eds.)
Static Analysis - 19th International Symposium, SAS 2012, Deauville, France, September 11-
13, 2012. Proceedings, Lecture Notes in Computer Science, vol. 7460, pp. 198–213. Springer
(2012). DOI 10.1007/978-3-642-33125-1_15

32. Halbwachs, N., Proy, Y., Raymond, P.: Verification of linear hybrid systems bymeans of convex
approximations. In: B.L. Charlier (ed.) Static Analysis, First International Static Analysis
Symposium, SAS’94, Namur, Belgium, September 28-30, 1994, Proceedings, Lecture Notes
in Computer Science, vol. 864, pp. 223–237. Springer (1994). DOI 10.1007/3-540-58485-4_43

33. He, J., Singh, G., Püschel, M., Vechev, M.T.: Learning fast and precise numerical analysis.
In: A.F. Donaldson, E. Torlak (eds.) Proceedings of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation, PLDI 2020, London, UK,
June 15-20, 2020, pp. 1112–1127. ACM (2020). DOI 10.1145/3385412.3386016

34. Henry, J., Monniaux, D., Moy, M.: PAGAI: A path sensitive static analyser. Electron. Notes
Theor. Comput. Sci. 289, 15–25 (2012). DOI 10.1016/j.entcs.2012.11.003

35. Jeannet, B.: Some experience on the software engineering of abstract interpretation tools.
Electron. Notes Theor. Comput. Sci. 267(2), 29–42 (2010). DOI 10.1016/j.entcs.2010.09.016

36. Jeannet, B., Argoud, M., Lalire, G.: The INTERPROC interprocedural analyzer. URL
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

37. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static analysis. In:
A. Bouajjani, O. Maler (eds.) Computer Aided Verification, 21st International Conference,
CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceedings, Lecture Notes in Computer
Science, vol. 5643, pp. 661–667. Springer (2009). DOI 10.1007/978-3-642-02658-4_52

38. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C: A software
analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015). DOI 10.1007/s00165-
014-0326-7

39. Masdupuy, F.: Semantic analysis of interval congruences. In: D. Bjørner, M. Broy, I.V. Pottosin
(eds.) Formal Methods in Programming and Their Applications, International Conference,
Akademgorodok, Novosibirsk, Russia, June 28 - July 2, 1993, Proceedings, Lecture Notes in
Computer Science, vol. 735, pp. 142–155. Springer (1993). DOI 10.1007/BFb0039705

40. Miné, A.: Weakly relational numerical abstract domains. Ph.D. thesis, École Polytechnique,
Palaiseau, France (2004)

41. Miné, A.: Tutorial on static inference of numeric invariants by abstract interpretation. Found.
Trends Program. Lang. 4(3-4), 120–372 (2017). DOI 10.1561/2500000034

42. Monniaux, D.: A minimalistic look at widening operators. High. Order Symb. Comput. 22(2),
145–154 (2009). DOI 10.1007/s10990-009-9046-8

43. Monniaux, D., Guen, J.L.: Stratified static analysis based on variable dependencies. Electron.
Notes Theor. Comput. Sci. 288, 61–74 (2012). DOI 10.1016/j.entcs.2012.10.008

44. Olivieri, L., Tagliaferro, F., Arceri, V., Ruaro, M., Negrini, L., Cortesi, A., Ferrara, P., Spoto,
F., Talin, E.: Ensuring determinism in blockchain software with GoLiSA: an industrial expe-
rience report. In: L. Gonnord, L. Titolo (eds.) SOAP ’22: 11th ACM SIGPLAN International
Workshop on the State Of the Art in Program Analysis, San Diego, CA, USA, 14 June 2022,
pp. 23–29. ACM (2022). DOI 10.1145/3520313.3534658

45. Partush, N., Yahav, E.: Abstract semantic differencing for numerical programs. In: F. Logozzo,
M. Fähndrich (eds.) Static Analysis - 20th International Symposium, SAS 2013, Seattle, WA,
USA, June 20-22, 2013. Proceedings, Lecture Notes in Computer Science, vol. 7935, pp.
238–258. Springer (2013). DOI 10.1007/978-3-642-38856-9_14

46. Sankaranarayanan, S., Colón, M., Sipma, H.B., Manna, Z.: Efficient strongly relational poly-
hedral analysis. In: E.A. Emerson, K.S. Namjoshi (eds.) Verification, Model Checking, and

20 Enea Zaffanella and Vincenzo Arceri

Abstract Interpretation, 7th International Conference, VMCAI 2006, Charleston, SC, USA,
January 8-10, 2006, Proceedings, Lecture Notes in Computer Science, vol. 3855, pp. 111–125.
Springer (2006). DOI 10.1007/11609773_8

47. Singh,G., Püschel,M., Vechev,M.: Fast polyhedra abstract domain. In: G. Castagna, A.Gordon
(eds.) Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, January 18-20, 2017, pp. 46–59. ACM (2017). DOI
10.1145/3009837.3009885

48. Singh, G., Püschel, M., Vechev, M.T.: Fast numerical program analysis with reinforcement
learning. In: H. Chockler, G. Weissenbacher (eds.) Computer Aided Verification - 30th
International Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I, Lecture Notes in Computer Science,
vol. 10981, pp. 211–229. Springer (2018). DOI 10.1007/978-3-319-96145-3_12

49. Urban, C., Miné, A.: A decision tree abstract domain for proving conditional termination. In:
M. Müller-Olm, H. Seidl (eds.) Static Analysis - 21st International Symposium, SAS 2014,
Munich, Germany, September 11-13, 2014. Proceedings, Lecture Notes in Computer Science,
vol. 8723, pp. 302–318. Springer (2014). DOI 10.1007/978-3-319-10936-7_19

50. Vojdani, V., Apinis, K., Rõtov, V., Seidl, H., Vene, V., Vogler, R.: Static race detection for
device drivers: the Goblint approach. In: D. Lo, S. Apel, S. Khurshid (eds.) Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engineering, ASE 2016,
Singapore, September 3-7, 2016, pp. 391–402. ACM (2016). DOI 10.1145/2970276.2970337

