
“Fixing” the specification of widenings

Enea Zaffanella

University of Parma, Italy

Venice, May 2022

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 1

Acknowledgements

People deserving a ‘thank you’
workshop organizers
developers and maintainers of

open source abstract domain libraries
open source static analysis tools

Vincenzo Arceri (helpful comments)

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 2

Abstract Interpretation (AI)

AI: a mature research field
more than 45 years of research and development
solid theoretical results
strong practical results (e.g., many AI-based static analysis tools)

Maturity indicators
AI tools are firmly based on theoretical results (shortcuts taken are identifiable)
AI tools are industrialized and commercialized
collaborative work (libraries, frameworks): can extend/combine/compare AI tools
artifacts, competitions, repeatability . . . : we can tell when things are going wrong

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 3

Why this talk?

Questioning one of the previous maturity indicators
can we easily tell when things are going wrong?
question triggered by a specific AI tool crash (personal experience)
talk is about the lesson learned during investigation of this crash
lesson learned is not tool specific, i.e., it may be generally useful

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 4

Focus on AI tools that are . . .

Extensible: separation of concerns
fixed (maybe configurable) AI engine
several different abstract domains used as plug-ins

experiment with new abstract domains
compare alternative implementations of an abstract domain

Open source: white box
(trying to) understand what the analyzer is doing

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 5

Brief story behind the crash

Goal: test the abstract domains developed in PPLite library
PPLite implements several polyhedra domains: Poly, U_Poly, F_Poly, . . .
PPLite also provides an Apron interface wrapper

Testing with static analyzer PAGAI (Verimag)
round one (2018): testing Poly, U_Poly =⇒ OK!
round two (2019-2020): testing F_Poly, UF_Poly =⇒ OK!

Testing with static analyzer IKOS (NASA JPL)
round one (2020): testing Poly =⇒ OK! (or so it seemed . . .)

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 6

Round two (2021): testing IKOS with PPLite’s F_Poly

segmentation fault

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 7

Reacting to the unexpected crash

Software developer mindset
bug identified after repeating test in debug mode:
precondition failure when AI engine calls the widening operator
blame culture: it wasn’t me (PPLite developer), it is an IKOS fault

AI designer mindset
no blame culture: asking a few questions

why such a precondition?
why its violation got unnoticed before?
which is the best approach to avoid this problem?

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 8

Widening specification in [Cousot2 POPL76, PLILP92]

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 9

Classical (safe) widening specification [Cousot2 POPL76, PLILP92]

Separating two different points of view
point of view of abstract domain designer:

requires: nothing
ensures (safe): x v x ∇ y and y v x ∇ y
also ensures stabilization (not relevant for this talk)

point of view of AI engine designer:
usage (risky): xi+1← xi ∇ F (xi)

In fewer words
widening is meant to replace join

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 10

Do not miss footnote 6 in [Cousot2 PLILP92]

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 11

Alternative (risky) widening specification [Cousot2 PILP92, footnote 6]

Separating two different points of view
point of view of abstract domain designer:

requires (risky): x v y
ensures (safe): y v x ∇ y
also ensures stabilization

point of view of AI engine designer:
usage (safe): xi+1← xi ∇

(
xi t F (xi)

)
In fewer words

widening is meant to be used in addition to join

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 12

What about implementations of abstract domains?

Focusing on (open source) numerical domains
Apron library: boxes, octagons, polyhedra, . . .
ELINA: octagons and polyhedra
PPL (Parma Polyhedra Library): boxes, octagons, polyhedra, . . .
PPLite: polyhedra
VPL (Verified Polyhedra Library): polyhedra
domains embedded into AI tools (Frama-C, Goblint, Jandom, IKOS, SeaHorn, . . .)

Reasoning applicable to non-numeric domains
GoLiSA uses a domain of finite automata for string analysis

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 13

Example: interval widening

Classical implementation

[`0, u0] ∇ [`1, u1]
def= [(`1 < `0 ?−∞ : `0), (u0 < u1 ? +∞ : u0)]

adopted in, among others, Apron boxes

Alternative implementation
requires [`0, u0] ⊆ [`1, u1]

[`0, u0] ∇ [`1, u1]
def= [(`1 6= `0 ?−∞ : `0), (u0 6= u1 ? +∞ : u0)]

adopted in PPL boxes

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 14

Example: polyhedra (standard) widening

Classical implementations
none (of those I have checked)
note that the specifications in [CH78,H79th] are safe

Alternative implementations
all of them: Apron, ELINA, PPL, PPLite, VPL
same holds for the more precise widenings in PPL [BHRZ SAS03] and PPLite [BZ IC20]

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 15

Example: dummy widening for Noetherian (ACC) domains

Classical implementation

x ∇ y def= x t y
adopted in, among others, Frama-C’s sign domain:
sign_domain.ml: let widen = join

Alternative implementation
requires x v y
x ∇ y def= y
adopted in Frama-C’s generic lattice set:
abstract_inter.ml: let widen _wh _t1 t2 = t2

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 16

Classifying implementations of widenings

Abstract Domain safe impl risky impl
(no precondition) (requires x v y)

boxes IKOS, Apron?, . . . PPL
bounded differences IKOS PPL
octagons IKOS, Apron?, . . . PPL
parallelotopes Jandom

polyhedra Apron, ELINA,
PPL, PPLite, VPL

finite automata GoLiSA

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 17

Classifying (open source) AI engines

safe AI engine risky AI engine
join+widen only widen

(alt. widen spec) (classical widen spec)
LMU (Germany) CPAchecker
CEA-List (France) Frama-C
TUM (Germany) Goblint
Verimag (France) Interproc & PAGAI
Univ. Chieti-Pescara (Italy) Jandom + PPL Jandom (w/o PPL)
Technion (Israel) DIZY
NASA JPL (USA) IKOS
Univ. Venezia (Italy) LiSA & GoLisa
Univ. Waterloo (Canada) SeaHorn

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 18

Combining AI engine and widening classifications

AI engine
widening safe risky

(no precondition) (requires x v y)

safe
(join+widen)

risky
(only widen)

Note: arbitrary choices for exposition purposes
PAGAI ≡ any safe AI engine octagons ≡ any safe widening
IKOS ≡ any risky AI engine polyhedra ≡ any risky widening

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 19

safe+risky: alternative approach [Cousot2 PLILP92, footnote 6]

AI engine
widening safe risky

(no precondition) (requires x v y)

safe
(join+widen) PAGAI + polyhedra

risky
(only widen)

Pros and Cons
Pros: safe
Cons: may lose some precision (explained later)

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 20

safe+safe: wearing belt and suspenders

AI engine
widening safe risky

(no precondition) (requires x v y)

safe
(join+widen) PAGAI + octagons PAGAI + polyhedra

risky
(only widen)

Pros and Cons
Pros: safe
Cons: may lose some efficiency (useless joins before widening)

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 21

risky+safe: classical approach [Cousot2 POPL76]

AI engine
widening safe risky

(no precondition) (requires x v y)

safe
(join+widen) PAGAI + octagons PAGAI + polyhedra

risky
(only widen) IKOS + octagons

Pros and Cons
Pros: safe; efficient (avoids useless joins); more precise (on some domains)
Cons: none, as far as I can tell

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 22

Can safe widenings be more precise than risky widenings?

Short answer: YES
non-lattice abstract domains (e.g., parallelotopes) may have no least upper bound
join chooses among alternative, incomparable upper bounds

poor choice can lead to precision losses
computing joins independently from widenings means that the choice is made without
appropriate context information
see Amato et al. [AS NSAD12, ARS SCP17] for widening parallelotopes
see Gange et al. [GNSSS SAS13] for other non-lattice domains

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 23

Can safe widening be as efficient as risky widening?

Short answer: YES
risky widening moves join computation overhead into to the AI engine

it is like hiding the dust under the carpet
safe widening, by merging join and widening, can trigger optimizations

polyhedra standard widening: cheaper constraint hull can replace convex polyhedral hull
(which uselessly computes new constraint slopes)
an ad hoc implementation can optimize further

side note: just a small fraction of the static analysis time is spent in widenings

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 24

risky+risky: ouch!

AI engine
widening safe risky

(upper bound) (requires x v y)

safe
(join+widen) PAGAI + octagons PAGAI + polyhedra

risky
(only widen) IKOS + octagons IKOS + polyhedra

Pros and Cons
Pros: irrelevant (it’s unsafe!)
Cons: unsafe! Things can go wrong!

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 25

Things are going wrong, despite . . . (1 of 4)

Widening precondition x v y often recalled in the literature
footnote 6 in [Cousot2 PLILP92] (ditto)
example in [BHRZ SAS03, SCP05] shows safety issue on polyhedra
quoting Halbwachs from [HH SAS12] (also recalled in [BH FMSD18]):

widening operators are generally designed under the assumption that their first operand
is smaller than the second one

[Cousot VMCAI15] assumes F extensive in the AI engine
footnote 5 suggests using φ def= x t F (x) (i.e., join+widen) to force extensivity
footnote 6 describes safe widening alternative

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 26

Things are going wrong, despite . . . (2 of 4)

Software libraries are often well documented (emphasis added)
PPL documentation: Note that in the computation of the H79-widening P ∇ Q of two polyhedra P,
Q, it is required as a precondition that P ⊆ Q

VPL documentation: Note that [widen p1 p2] relies on [p1] being included in [p2].
Apron documentation (e.g., C language bindings):
ap_abstract1_t ap_abstract1_widening(ap_manager_t* man,

ap_abstract1_t* a1,
ap_abstract1_t* a2)

Widening of a1 with a2. a1 is supposed to be included in a2.
This applies to all Apron domains (even boxes and octagons!)

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 27

Things are going wrong, despite . . . (3 of 4)

Software libraries sometimes assert preconditions
in debug mode, both Apron and PPL report assertion failure
(ELINA and PPLite do not check this precondition)
AI tools do not usually run in debug mode (inefficient)

A side note on verified computations
this safety issue would have been a perfect fit for VPL (Verified Polyhedra Library)
alas, VPL certificate checks cannot detect it

Note that [widen p1 p2] relies on [p1] being included in [p2].
The result includes the two operands, although no certificate is created.

see [FMP SAS13] and Fouilhé PhD thesis

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 28

Things are going wrong, despite . . . (4 of 4)

Was I the first (and only one?) testing an unsafe combination? NO!
Unsafe combinations already used in artifacts/repeatability evaluations
(unless authors added undocumented code fixes)

Abstract Semantic Differencing for Numerical Programs by Partush and Yahav [PY SAS13]
DIZY + Apron polyhedra
Fast Polyhedra Abstract Domain by Singh et al. [SPV POPL17]:
SeaHorn + { ELINA | PPL | Apron } polyhedra
Fast Numerical Program Analysis with Reinforcement Learning by Singh et al. [SPV CAV18]:
SeaHorn + ELINA polyhedra
Learning Fast and Precise Numerical Analysis by He et al. [HSPV PLDI20]:
SeaHorn + ELINA polyhedra

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 29

Do things really go wrong?

Are those artifacts computing unsafe results?
short answer: don’t know (it is undefined behavior!)
conjectures on SeaHorn + ELINA polyhedra:

no assertion checking =⇒ fewer crashes
delayed widening =⇒ problem mitigation
widening not monotonic =⇒ more (unsafe) precision in an iterate might result in less (safe)
precision in the next iterations

personal wild guess: these analyses could be safe by chance
recall our question: can we easily tell when things are going wrong? NO!

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 30

Summary: all combinations are possible

AI engine
widening safe risky

(no precondition) (requires x v y)

safe
(join+widen) PAGAI + octagons PAGAI + polyhedra

risky
(only widen) IKOS + octagons IKOS + polyhedra

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 31

Lesson learned =⇒ humble recommendation

Stick to (i.e., “fix”) the classical widening specification [Cousot2 POPL76].
1 make your widening safe (for correctness)
2 make your AI engine risky (for efficiency and precision)

AI engine
widening safe risky

(no precondition) (requires x v y)
safe

(join+widen)
risky PAGAI + octagons

(only widen) IKOS + polyhedra

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 32

Conclusions

having different widening specifications can cause confusion
confusion can lead to crashes or more subtle, hidden issues
let’s “fix” the specification of widenings:

risky AI engine + safe widening [Cousot2 POPL76]
it has several good properties:

it is the default one taught in AI courses and tutorials
it avoids all safety issues
it can be more precise for non-lattice domains
it can be as efficient as (or even more efficient than) alternative specifications

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 33

Additional slides

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 34

Safety bug example (note: using PAGAI + PPLite Poly)

Note: PAGAI is a safe AI engine (join + widen);
PAGAI obtained by avoiding the join computation before widening.

for (i = 0; i < 3; ++i)
a[i] = i;

iter x y x ∇ y safe?
0 ⊥ {i = 0} {i = 0} 3

1 {i = 0} {i = 1} {i = 1} 7

2 {i = 1} {i = 2} {i = 2} 7

3 {i = 2} ⊥ ⊥ 7

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 35

Termination bug example (note: using PAGAI + PPLite Poly)

Note: PAGAI is a safe AI engine (join + widen);
PAGAI obtained by avoiding the join computation before widening.

for (i = 0; i < n; ++i)
a[i] = i;

iter x y x ∇ y safe?
0 ⊥ {i = 0, n ≥ 1} {i = 0, n ≥ 1} 3

1 {i = 0, n ≥ 1} {i = 1, n ≥ 2} {i = 1} 7

2 {i = 1} {i = 2, n ≥ 3} {i = 2} 7

3 {i = 2} {i = 3, n ≥ 4} {i = 3} 7

. 7

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 36

From risky to safe widenings

Trivial lifting of the risky implementation

x ∇safe y def= x ∇risky (x t y)

Ad hoc safe widening implementation on CPn

Let P1 ≡ con(C1), P2 ≡ gen(G2), where C1 = Ceq
1 ∪ C

ineq
1 is in minimal form.

P1 ∇safe P2
def=
{
P1] P2, if (P1 = ∅) or (P2 = ∅) or (g ∈ G2 violates c ∈ Ceq

1)
con(C∇), otherwise

where C∇
def= C1 \ { c ∈ C ineq

1 | g ∈ G2 violates c }.

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 37

Efficiency comparison for ad hoc safe widening on CPn

Synthetic efficiency comparison (warning: no statistical value)
140 randomly generated (5 space dim) closed polyhedra;
each polyhedron obtained adding 5 random rays to a random bounded box
70 calls of widening, in two different modes:

PLILP92/6: safe AI engine + risky widening
POPL76: risky AI engine + ad hoc safe widening

operations PLILP92/6 POPL76 ratio
scalar products 808078 131482 0.16
linear combinations 42527 4456 0.10
bitset operations 5822865 106031 0.01
cumulative time 176 ms 38 ms 0.22

Challenges of Software Verification, Venice, May 2022 Enea Zaffanella 38

