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Abstract. We present an alternative Double Description representa-
tion for the domain of NNC (not necessarily closed) polyhedra, together
with the corresponding Chernikova-like conversion procedure. The rep-
resentation uses no slack variable at all and provides a solution to a
few technical issues caused by the encoding of an NNC polyhedron as
a closed polyhedron in a higher dimension space. A preliminary exper-
imental evaluation shows that the new conversion algorithm is able to
achieve significant efficiency improvements.

1 Introduction

The Double Description (DD) method [28] allows for the representation and ma-
nipulation of convex polyhedra by using two different geometric representations:
one based on a finite collection of constraints, the other based on a finite collec-
tion of generators. Starting from any one of these representations, the other can
be derived by application of a conversion procedure [10,11,12], thereby obtaining
a DD pair. The procedure is incremental, capitalizing on the work already done
when new constraints and/or generators need to be added to an input DD pair.

The DD method lies at the foundation of many software libraries and tools1

which are used, either directly or indirectly, in research fields as diverse as bioin-
formatics [31,32], computational geometry [1,2], analysis of analog and hybrid
systems [8,18,22,23], automatic parallelization [6,29], scheduling [16], static anal-
ysis of software [4,13,15,17,21,24].

In the classical setting, the DD method is meant to compute geometric rep-
resentations for topologically closed polyhedra in an n-dimensional vector space.
However, there are applications requiring the ability to also deal with linear strict
inequality constraints, leading to the definition of not necessarily closed (NNC)
polyhedra. For example, this is the case for some of the analysis tools developed
for the verification of hybrid systems [8,18,22,23], static analysis tools such as
Pagai [24], and tools for the automatic discovery of ranking functions [13].

The few DD method implementations providing support for NNC polyhedra
(Apron and PPL) are all based on an indirect representation. The approach,

1 An incomplete list of available implementations includes cdd [19], PolyLib [27],
Apron [25], PPL [4], 4ti2 [1], Skeleton [33], Addibit [20], ELINA [30].



proposed in [22,23] and studied in more detail in [3,5], encodes the strict in-
equality constraints by means of an additional space dimension, playing the role
of a slack variable; the new space dimension, usually denoted as ε, needs to be
non-negative and bounded from above, i.e., the constraints 0 ≤ ε ≤ 1 are added
to the topologically closed representation R (called ε-representation) of the NNC
polyhedron P. The main advantage of this approach is the possibility of reusing,
almost unchanged, all of the well-studied algorithms and optimizations that have
been developed for the classical case of closed polyhedra. However, the addition
of a slack variable carries with itself a few technical issues.

– At the implementation level, more work is needed to make the ε dimension
transparent to the end user.

– The ε-representation causes an intrinsic overhead : in any generator system
for an ε-polyhedron, most of the “proper” points (those having a positive ε
coordinate) need to be paired with the corresponding “closure” point (having
a zero ε coordinate), almost doubling the number of generators.

– The DD pair in minimal form computed for an ε-representation R, when
reinterpreted as encoding the NNC polyhedron P, typically includes many
redundant constraints and/or generators, leading to inefficiencies. To avoid
this problem, strong minimization procedures were defined in [3,5] that are
able to detect and remove those redundancies. Even though effective, these
procedures are not fully integrated into the DD conversion: they can only be
applied after the conversion, since they interfere with incrementality. Hence,
during the iterations of the conversion the ε-redundancies are not removed,
causing the computation of bigger intermediate results.

In this paper, we pursue a different approach for the handling of NNC poly-
hedra in the DD method. Namely, we specify a direct representation, dispensing
with the need of the slack variable. The main insight of this new approach is the
separation of the (constraints or generators) geometric representation into two
components, the skeleton and the non-skeleton of the representation, playing
quite different roles: while keeping a geometric encoding for the skeleton compo-
nent, we will adopt a combinatorial encoding for the non-skeleton one. For this
new representation, we propose the corresponding variant of the Chernikova’s
conversion procedure, where both components are handled by respective pro-
cessing phases, so as to take advantage of their peculiarities. In particular, we
develop ad hoc functions and procedures for the combinatorial non-skeleton part.

The new representation and conversion procedure, in principle, can be inte-
grated into any of the available implementations of the DD method. Our exper-
imental evaluation is conducted in the context of the PPL and shows that the
new algorithm, while computing the correct results for all of the considered tests,
achieves impressive efficiency improvements with respect to the implementation
based on the slack variable.

The paper is structured as follows. Section 2 briefly introduces the required
notation, terminology and background concepts. Section 3 proposes the new
representation for NNC polyhedra; the proofs of the stated results are in [7]. The
extension of the Chernikova’s conversion algorithm to this new representation is
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presented in Section 4. Section 5 reports the results obtained by the experimental
evaluation. We conclude in Section 6.

2 Preliminaries

We assume some familiarity with the basic notions of lattice theory [9]. For a
lattice 〈L,v,⊥,>,u,t〉, an element a ∈ L is an atom if ⊥ @ a and there exists
no element b ∈ L such that ⊥ @ b @ a. For S ⊆ L, the upward closure of S is

defined as ↑S def
= {x ∈ L | ∃s ∈ S . s v x }. The set S ⊆ L is upward closed if

S = ↑S; we denote by ℘↑(L) the set of all the upward closed subsets of L. For
x ∈ L, ↑x is a shorthand for ↑{x}. The notation for downward closure is similar.
Given two posets 〈L,v〉 and 〈L],v]〉 and two monotonic functions α : L → L]

and γ : L] → L, the pair (α, γ) is a Galois connection [14] between L and L] if
∀x ∈ L, x] ∈ L] : α(x) v] x] ⇔ x v γ(x]).

We write Rn to denote the Euclidean topological space of dimension n > 0
and R+ for the set of non-negative reals; for S ⊆ Rn, cl(S) and relint(S) denote
the topological closure and the relative interior of S, respectively. A topologically
closed convex polyhedron (for short, closed polyhedron) is defined as the set of
solutions of a finite system C of linear non-strict inequality and linear equality
constraints; namely, P = con(C) where

con(C) def
=
{
p ∈ Rn

∣∣ ∀β = (aTx ./ b) ∈ C, ./ ∈ {≥,=} . aTp ./ b
}
.

A vector r ∈ Rn such that r 6= 0 is a ray of a non-empty polyhedron P ⊆ Rn
if, ∀p ∈ P and ∀ρ ∈ R+, it holds p + ρr ∈ P. The empty polyhedron has no
rays. If both r and −r are rays of P, then r is a line of P. The set P ⊆ Rn is a
closed polyhedron if there exist finite sets L,R, P ⊆ Rn such that 0 /∈ (L ∪ R)
and P = gen

(
〈L,R, P 〉

)
, where

gen
(
〈L,R, P 〉

) def
=
{
Lλ+Rρ+Pπ ∈ Rn

∣∣ λ ∈ R`,ρ ∈ Rr+,π ∈ Rp+,
∑p
i=1 πi = 1

}
.

When P 6= ∅, we say that P is described by the generator system G = 〈L,R, P 〉.
In the following, we will abuse notation by adopting the usual set operator
and relation symbols to denote the corresponding component-wise extensions
on systems. For instance, for G = 〈L,R, P 〉 and G′ = 〈L′, R′, P ′〉, we will write
G ⊆ G′ to mean L ⊆ L′, R ⊆ R′ and P ⊆ P ′.

The DD method due to Motzkin et al. [28] allows combining the constraints
and the generators of a polyhedron P into a DD pair (C,G): a conversion pro-
cedure [10,11,12] is used to obtain each description starting from the other one,
also removing the redundant elements. For presentation purposes, we focus on
the conversion from constraints to generators; the opposite conversion works in
the same way, using duality to switch the roles of constraints and generators. We
do not describe lower level details such as the homogenization process, mapping
the polyhedron into a polyhedral cone, or the simplification step, needed for
computing DD pairs in minimal form.
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The conversion procedure starts from a DD pair (C0,G0) representing the
whole vector space and adds, one at a time, the elements of the input constraint
system C = {β0, . . . , βm}, producing a sequence of DD pairs

{
(Ck,Gk)

}
0≤k≤m+1

representing the polyhedra

Rn = P0
β0−→ . . .

βk−1−−−→ Pk
βk−→ Pk+1

βk+1−−−→ . . .
βm−−→ Pm+1 = P.

At each iteration, when adding the constraint βk to polyhedron Pk = gen(Gk),
the generator system Gk is partitioned into the three components G+k , G0k, G−k ,
according to the sign of the scalar products of the generators with βk (those in
G0k are the saturators of βk); the new generator system for polyhedron Pk+1 is

computed as Gk+1
def
= G+k ∪ G0k ∪ G?k , where G?k = comb adjβk

(G+k ,G
−
k ) and

comb adjβk
(G+k ,G

−
k )

def
=
{

combβk
(g+, g−)

∣∣ g+ ∈ G+k , g− ∈ G−k , adjPk
(g+, g−)

}
.

Function ‘combβk
’ computes a linear combination of its arguments, yielding a

generator that saturates the constraint βk; predicate ‘adjPk
’ is used to select

only those pairs of generators that are adjacent in Pk.

The set CPn of all closed polyhedra on the vector space Rn, partially ordered
by set inclusion, is a lattice 〈CPn,⊆, ∅,Rn,∩,] 〉, where the empty set and Rn
are the bottom and top elements, the binary meet operator is set intersection
and the binary join operator ‘]’ is the convex polyhedral hull. A constraint
β = (aTx ./ b) is said to be valid for P ∈ CPn if all the points in P satisfy β; for
each such β, the subset F = {p ∈ P | aTp = b } is a face of P. We write cFacesP
(possibly omitting the subscript) to denote the finite set of faces of P ∈ CPn.
This is a meet sublattice of CPn and P =

⋃{
relint(F )

∣∣ F ∈ cFacesP
}

.

When C is extended to allow for strict inequalities, P = con(C) is an NNC
(not necessarily closed) polyhedron. The set Pn of all NNC polyhedra on Rn
is a lattice 〈Pn,⊆, ∅,Rn,∩,] 〉 and CPn is a sublattice of Pn. As shown in [3,
Theorem 4.4], a description of an NNC polyhedron P ∈ Pn can be obtained by
extending the generator system with a finite set C of closure points. Namely, for
G = 〈L,R,C, P 〉, we define P = gen(G), where

gen
(
〈L,R,C, P 〉

) def
=

Lλ+Rρ+ Cγ + Pπ ∈ Rn

∣∣∣∣∣∣∣
λ ∈ R`,ρ ∈ Rr+,
γ ∈ Rc+,π ∈ Rp+,π 6= 0,∑c
i=1 γi +

∑p
i=1 πi = 1

.
For an NNC polyhedron P ∈ Pn, the finite set nncFacesP of its faces is a meet
sublattice of Pn and P =

⋃{
relint(F )

∣∣ F ∈ nncFacesP
}

. Letting Q = cl(P),
the closure operator cl : nncFacesP → cFacesQ maps each NNC face of P into
a face of Q. The image cl(nncFacesP) is a join sublattice of cFacesQ and its
nonempty elements form an upward closed subset, which can be described by
recording the minimal elements only (i.e., the atoms of the nncFacesP lattice).

4



3 Direct Representations for NNC Polyhedra

An NNC polyhedron can be described by using an extended constraint system
C = 〈C=, C≥, C>〉 and/or an extended generator system G = 〈L,R,C, P 〉. These
representations are said to be geometric, meaning that they provide a precise
description of the position of their elements. For a closed polyhedron P ∈ CPn,
the use of completely geometric representations is an adequate choice. In the
case of an NNC polyhedron P ∈ Pn such a choice is questionable, since the
precise geometric position of some of the elements is not really needed.

Example 1. Consider the NNC polyhedron P ∈ P2 in the next figure, where the
(strict) inequality constraints are denoted by (dashed) lines and the (closure)
points are denoted by (unfilled) circles.

x

y

β

p0

c0 c1

c2

p1

P is described by G = 〈L,R,C, P 〉, where L = R = ∅, C = {c0, c1, c2} and
P = {p0, p1}. However, there is no need to know the position of point p1, since
it can be replaced by any other point on the open segment (c0, c1). Similarly,
when considering the constraint representation, there is no need to know the
exact slope of the strict inequality constraint β.

We now show that P ∈ Pn can be more appropriately represented by in-
tegrating a geometric description of Q = cl(P) ∈ CPn (the skeleton) with a
combinatorial description of nncFacesP (the non-skeleton). We consider here
the generator system representation; the extension to constraints will be briefly
outlined in a later section.

Definition 1 (Skeleton of a generator system). Let G = 〈L,R,C, P 〉 be a
generator system in minimal form, P = gen(G) and Q = cl(P). The skeleton of

G is SKQ = skel(G)
def
= 〈L,R,C ∪ SP , ∅〉, where SP ⊆ P holds the points that

can not be obtained by combining the other generators in G.

Note that the skeleton has no points at all, so that gen(SKQ) = ∅. However,

we can define a variant function gen
(
〈L,R,C, P 〉

) def
= gen

(
〈L,R, ∅, C ∪ P 〉

)
,

showing that the skeleton of an NNC polyhedron provides a non-redundant
representation of its topological closure.

Proposition 1. If P = gen(G) and Q = cl(P), then gen(G) = gen(SKQ) = Q.
Also, there does not exist G′ ⊂ SKQ such that gen(G′) = Q.

The elements of SP ⊆ P are called skeleton points; the non-skeleton points
in P \ SP are redundant when representing the topological closure; these non-
skeleton points are the elements in G that need not be represented geometrically.
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Consider a point p ∈ Q = cl(P) (not necessarily in P ). There exists a single
face F ∈ cFacesQ such that p ∈ relint(F ). By definition of function ‘gen’, point p
behaves as a filler for relint(F ) meaning that, when combined with the skeleton,
it generates relint(F ). Note that p also behaves as a filler for the relative interiors
of all the faces in the set ↑F . The choice of p ∈ relint(F ) is actually arbitrary:
any other point of relint(F ) would be equivalent as a filler. A less arbitrary
representation for relint(F ) is thus provided by its own skeleton SKF ⊆ SKQ;
we say that SKF is the support for the points in relint(F ) and that any point
p′ ∈ relint

(
gen(SKF )

)
= relint(F ) is a materialization of SKF .

In the following we will sometimes omit subscripts when clear from context.

Definition 2 (Support sets for a skeleton). Let SK be the skeleton of an
NNC polyhedron and let Q = gen(SK) ∈ CPn. The set of all supports for SK is

defined as NSSK
def
= { SKF ⊆ SK | F ∈ cFacesQ }.

We now define functions mapping a subset of the (geometric) points of an
NNC polyhedron into the set of supports filled by these points, and vice versa.

Definition 3 (Filled supports). Let SK be the skeleton of the polyhedron
P ∈ Pn, Q = cl(P) and NS be the corresponding set of supports. The abstraction
function αSK : ℘(Q)→ ℘↑(NS) is defined, for each S ⊆ Q, as

αSK(S)
def
=
⋃{
↑ SKF

∣∣ ∃p ∈ S, F ∈ cFaces . p ∈ relint(F )
}
.

The concretization function γSK : ℘↑(NS) → ℘(Q), for each NS ∈ ℘↑(NS), is
defined as

γSK(NS )
def
=
⋃{

relint
(
gen(ns)

) ∣∣∣ ns ∈ NS
}
.

Proposition 2. The pair of functions (αSK, γSK) is a Galois connection. If
P = gen

(
〈L,R,C, P 〉

)
∈ Pn and SK is its skeleton, then P = (γSK ◦ αSK)(P ).

The non-skeleton component of a geometric generator system can be ab-
stracted by ‘αSK’ and described as a combination of skeleton generators.

Definition 4 (Non-skeleton of a generator system). Let P ∈ Pn be defined
by generator system G = 〈L,R,C, P 〉 and let SK be the corresponding skeleton

component. The non-skeleton component of G is defined as NSG
def
= αSK(P ).

Example 2. Consider the generator system G of polyhedron P from Example 1.
Its skeleton is SK =

〈
∅, ∅, {c0, c1, c2, p0}, ∅

〉
, so that p1 is not a skeleton point. By

Definition 3, NSG = αSK
(
{p0, p1}

)
= ↑{p0} ∪ ↑{c0, c1}.2 The minimal elements

in NSG can be seen to describe the atoms of nncFacesP , i.e., the 0-dimension
face {p0} and the 1-dimension open segment (c0, c1).

The new representation is semantically equivalent to the fully geometric one.

Corollary 1. For a polyhedron P = gen(G) ∈ Pn, let 〈SK,NS 〉 be the skeleton
and non-skeleton components for G. Then P = γSK(NS ).
2 Since there are no rays and no lines, we adopt a simplified notation, identifying each

support with the set of its closure points. Also note that relint({p0}) = {p0}.
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4 The New Conversion Algorithm

The conversion function in Pseudocode 1 incrementally processes each of the
input constraints β ∈ Cin keeping the generator system 〈SK,NS 〉 up-to-date.
The distinction between the skeleton and non-skeleton allows for a corresponding
separation in the conversion procedure. Moreover, a few minor adaptations to
their representation, discussed below, allow for efficiency improvements.

First, observe that every support ns ∈ NS always includes all of the lines in
the L skeleton component; hence, these lines can be left implicit in the repre-
sentation of the supports in NS . Note that, even after removing the lines, each
ns ∈ NS is still a non-empty set, since it includes at least one closure point.

When lines are implicit, those supports ns ∈ NS that happen to be single-
tons3 can be seen to play a special role: they correspond to the combinatorial
encoding of the skeleton points in SP (see Definition 1). These points are not go-
ing to benefit from the combinatorial representation, hence we move them from
the non-skeleton to the skeleton component; namely, SK = 〈L,R,C ∪ SP , ∅〉 is
represented as SK = 〈L,R,C,SP〉. The formalization presented in Section 3 is

still valid, replacing ‘γSK’ with γ′SK(NS )
def
= gen(SK) ∪ γSK(NS ).

At the implementation level, each support ns ∈ NS can be encoded by using
a set of indices on the data structure representing the skeleton component SK.
Since NS is a finite upward closed set, the representation only needs to record its
minimal elements. A support ns ∈ NS is redundant in 〈SK,NS 〉 if there exists
ns ′ ∈ NS such that ns ′ ⊂ ns or if ns ∩ SP 6= ∅, where SK = 〈L,R,C,SP〉. We
write NS 1 ⊕NS 2 to denote the non-redundant union of NS 1,NS 2 ⊆ NSSK.

Pseudocode 1 Incremental conversion from constraints to generators.

function conversion(Cin , 〈SK,NS〉)
2: for all β ∈ Cin do

skel partition(β, SK);
4: nonskel partition(〈SK,NS〉);

if line l ∈ SK+ ∪ SK− then violating-line(β, l, 〈SK,NS〉);
6: else

SK? ← comb adjβ(SK+,SK−); SK0 ← SK0 ∪ SK?;
8: NS? ← move-ns(β, 〈SK,NS〉);

NS? ← NS? ∪ create-ns(β, 〈SK,NS〉);
10: if is equality(β) then 〈SK,NS〉 ← 〈SK0,NS0 ⊕NS?〉;

else if is strict ineq(β) then
12: SK0 ← points become closure points(SK0);

〈SK,NS〉 ← 〈SK+ ∪ SK0,NS+ ⊕NS?〉;
14: else 〈SK,NS〉 ← 〈SK+ ∪ SK0, (NS+ ∪ NS0)⊕NS?〉;

promote-singletons(〈SK,NS〉);
16: return 〈SK,NS〉;

3 By ‘singleton’ here we mean a system ns =
〈
∅, ∅, {p}, ∅

〉
.
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4.1 Processing the skeleton

Line 3 of conversion partitions the skeleton SK into SK+, SK0 and SK−,
according to the signs of the scalar products with constraint β. Note that the
partition information is logically computed (no copies are performed) and it is
stored in the SK component itself; therefore, any update to SK+, SK0 and
SK− directly propagates to SK. In line 7 the generators in SK+ and SK− are
combined to produce SK?, which is merged into SK0. These steps are similar to
the ones for closed polyhedra, except that we now have to consider more kinds of
combinations: the systematic case analysis is presented in Table 1. For instance,
when processing a non-strict inequality β≥, if we combine a closure point in SK+

with a ray in SK− we obtain a closure point in SK? (row 3, column 6). Since
it is restricted to work on the skeleton component, this combination phase can
safely apply the adjacency tests to quickly get rid of redundant elements.

SK+ R R R C C C SP SP SP
SK− R C SP R C SP R C SP

β= or β≥ SK? R C SP C C SP SP SP SP
β> R C C C C C C C C

Table 1. Case analysis for function ‘combβ ’ when adding an equality (β=), a non-strict
(β≥) or a strict (β>) inequality constraint to a pair of generators from SK+ and SK−
(R = ray, C = closure point, SP = skeleton point).

4.2 Processing the non-skeleton

Line 4 partitions the supports in NS by exploiting the partition information for
the skeleton SK, so that no additional scalar product is computed. Namely, each
support ns ∈ NS is classified as follows:

ns ∈ NS+ ⇐⇒ ns ⊆ (SK+ ∪ SK0) ∧ ns ∩ SK+ 6= ∅;
ns ∈ NS 0 ⇐⇒ ns ⊆ SK0;

ns ∈ NS− ⇐⇒ ns ⊆ (SK− ∪ SK0) ∧ ns ∩ SK− 6= ∅;
ns ∈ NS± ⇐⇒ ns ∩ SK+ 6= ∅ ∧ ns ∩ SK− 6= ∅.

This partitioning is consistent with the previous one. For instance, if ns ∈ NS+,
then for every possible materialization p ∈ relint(gen(ns)) the scalar product of p
and β is strictly positive. The supports in NS± are those whose materializations
can satisfy, saturate and violate the constraint β (i.e., the corresponding face
crosses the constraint hyperplane).

In lines 8 and 9, we find the calls to the two main functions processing the
non-skeleton component. A set NS? of new supports is built as the union of the
contributes provided by functions move-ns and create-ns.
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Moving supports. The move-ns function, shown in Pseudocode 2, processes
the supports in NS±: this function “moves” the fillers of the faces that are
crossed by the new constraint, making sure they lie on the correct side.

Let ns ∈ NS± and F = relint(gen(ns)). Note that ns = SKF before the addi-
tion of the new constraint β; at this point, the elements in SK? have been added
to SK0, but this change still has to be propagated to the non-skeleton compo-
nent NS . Therefore, we compute the support closure ‘supp.clSK(ns)’ according
to the updated skeleton SK. Intuitively, supp.clSK(ns) ⊆ SK is the subset of all
the skeleton elements that are included in face F .

At the implementation level, support closures can be efficiently computed by
exploiting the same saturation information used for the adjacency tests. Namely,
for constraints C and generators G, we can define

sat.interC(G)
def
= {β′ ∈ C | ∀g ∈ G : g saturates β′ },

sat.interG(C) def
= { g ∈ G | ∀β′ ∈ C : g saturates β′ }.

Then, if C and SK = 〈L,R,C,SP〉 are the constraint system and the skeleton
generator system for the polyhedron, for each ns ∈ NS we can compute [26]:

supp.clSK(ns)
def
= sat.interSK

(
sat.interC(ns)

)
\ L.

Face F is split by constraint β into F+, F 0 and F−. When β is a strict
inequality, only F+ shall be kept in the polyhedron; when the new constraint is
a non-strict inequality, both F+ and F 0 shall be kept. A minimal non-skeleton
representation for these subsets can be obtained by projecting the support:

projβSK(ns)
def
=

{
ns \ SK−, if β is a strict inequality;

ns ∩ SK0, otherwise.

To summarize, by composing support closure and projection in line 3 of
move-ns, each support in NS± is moved to the correct side of β.

Example 3. Consider P ∈ P2 in the left hand side of the next figure.

x

y

y < 1

c0 c1

c2c3

ns

x

y

y < 1

c0 c1

×

c2
×

c3

c4 c5

ns⋆

×
ns

The skeleton SK = 〈∅, ∅, C, ∅〉 contains the closure points in C = {c0, c1, c2, c3};
the non-skeleton NS = {ns} contains a single support ns = {c0, c3}, which
makes sure that the open segment (c0, c3) is included in P; the figure shows a
single materialization for ns.

When processing β = (y < 1), we obtain the polyhedron in the right hand
side of the figure. In the skeleton phase of the conversion function the adjacent
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skeleton generators are combined: c4 (from c0 ∈ SK+ and c3 ∈ SK−) and c5
(from c1 ∈ SK+ and c2 ∈ SK−) are added to SK0. Since the non-skeleton
support ns belongs to NS±, it is processed in the move-ns function:

ns∗ = projβSK
(
supp.clSK(ns)

)
= projβSK

(
{c0, c3, c4}

)
= {c0, c4}.

In contrast, if we were processing the non-strict inequality β′ = (y ≤ 1), we would

have obtained ns ′ = projβ
′

SK
(
supp.clSK(ns)

)
= {c4}. Since ns ′ is a singleton, it

is upgraded to become a skeleton point by procedure promote-singletons.
Hence, in this case the new skeleton is SK = 〈∅, ∅, C,SP〉, where C = {c0, c1, c5}
and SP = {c4}, while the non-skeleton component is empty.

Creating new supports. Consider the case of a support ns ∈ NS− violating
a non-strict inequality constraint β: this support has to be removed from NS .
However, the upward closed set NS is represented by its minimal elements only
so that, by removing ns, we are also implicitly removing other supports from
the set ↑ns, including some that do not belong to NS− and hence should be
kept. Therefore, we have to explore the set of faces and detect those that are
going to lose their filler: their minimal supports will be added to NS?. Similarly,
when processing a non-strict inequality constraint, we need to consider the new
faces introduced by the constraint: the corresponding supports can be found by
projecting on the constraint hyperplane those faces that are possibly filled by
an element in SP+ or NS+.

This is the task of the create-ns function, shown in Pseudocode 2. It uses
enumerate-faces as a helper:4 the latter provides an enumeration of all the
(higher dimensional) faces that contain the initial support ns. The new faces are
obtained by adding to ns a new generator g and then composing the support
closure and projection functions, as done in move-ns. For efficiency purposes,
a case analysis is performed so as to restrict the search area of the enumeration
phase, by considering only the faces crossing the constraint.

Example 4. Consider P ∈ P2 in the left hand side of the next figure, described
by skeleton SK = 〈∅, ∅, {c0, c1, c2}, {p}〉 and non-skeleton NS = ∅.

x

y

c0 c1

c2p

x

y

c0 × c1

c2p

ns⋆

The partition for SK induced by the non-strict inequality is as follows:

SK+ = 〈∅, ∅, ∅, {p}〉, SK0 = 〈∅, ∅, {c0, c2}, ∅〉, SK− = 〈∅, ∅, {c1}, ∅〉.
4 This enumeration phase is inspired by the algorithm in [26].
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Pseudocode 2 Helper functions for moving and creating supports.

function move-ns(β, 〈SK,NS〉)
2: NS? ← ∅;

for all ns ∈ NS± do NS? ← NS? ∪ {projβSK(supp.clSK(ns))};
4: return NS?;

function create-ns(β, 〈SK,NS〉)
6: NS? ← ∅;

let SK = 〈L,R,C,SP〉;
8: for all ns ∈ NS− ∪ {{p} | p ∈ SP−} do

NS? ← NS? ∪ enumerate-faces(β, ns, SK+, SK);

10: if is strict ineq(β) then
for all ns ∈ NS0 ∪ {{p} | p ∈ SP0} do

12: NS? ← NS? ∪ enumerate-faces(β, ns, SK+, SK);

else
14: for all ns ∈ NS+ ∪ {{p} | p ∈ SP+} do

NS? ← NS? ∪ enumerate-faces(β, ns, SK−, SK);

16: return NS?;

function enumerate-faces(β, ns, SK′, SK)
18: NS? ← ∅; let SK′ = 〈L′, R′, C′,SP ′〉;

for all g ∈ (R′ ∪ C′) do NS? ← NS? ∪ {projβSK(supp.clSK(ns ∪ {g}))};
20: return NS?;

procedure promote-singletons(〈SK,NS〉)
22: let SK = 〈L,R,C,SP〉;

for all ns ∈ NS such that ns = 〈∅, ∅, {c}, ∅〉 do
24: NS ← NS \ {ns}; C ← C \ {c}; SP ← SP ∪ {c};

Pseudocode 3 Processing a line violating constraint β.

procedure violating-line(β, l, 〈SK,NS〉)
2: split l into rays r+ satisfying β and r− violating β;

l← r+;
4: for all g ∈ SK do g ← combβ(g, l);

if is equality(β) then SK ← SK0;

6: if is strict ineq(β) then strict-on-eq-points(β, 〈SK,NS〉);
procedure strict-on-eq-points(β, 〈SK,NS〉)

8: NS? ← ∅; let SK0 = 〈L0, R0, C0,SP0〉;
for all ns ∈ NS0 ∪ {{p} | p ∈ SP0} do

10: NS? ← NS? ∪ enumerate-faces(β, ns, SK+, SK);

SK0 ← points-become-closure-points(SK0);
12: 〈SK,NS〉 ← 〈SK+ ∪ SK0,NS+ ⊕NS?〉;

11



There are no adjacent generators in SK+ and SK−, so that SK? is empty.
When processing the non-skeleton component, the skeleton point in SK+ will be
considered in line 15 of function create-ns. The corresponding call to function
enumerate-faces computes

ns? = projβSK
(
supp.clSK({p} ∪ {c1})

)
= projβSK

(
{c0, c1, c2, p}

)
= {c0, c2},

thereby producing the filler for the open segment (c0, c2). The resulting polyhe-
dron, shown in the right hand side of the figure, is thus described by the skeleton
SK = 〈∅, ∅, {c0, c2}, {p}〉 and the non-skeleton NS = {ns?}.

It is worth noting that, when handling Example 4 adopting an entirely geo-
metric representation, closure point c1 needs to be combined with point p even if
the two generators are not adjacent: this leads to a significant efficiency penalty.
Similarly, an implementation based on the ε-representation will have to com-
bine closure point c1 with point p (and/or with some other ε-redundant points),
because the addition of the slack variable makes them adjacent. Therefore, an
implementation based on the new approach obtains a twofold benefit: first, the
distinction between skeleton and non-skeleton allows for restricting the handling
of non-adjacent combinations to the non-skeleton phase; second, thanks to the
combinatorial representation, the non-skeleton component can be processed by
using set index operations only, i.e., computing no linear combination at all.

Preparing for next iteration. In lines 10 to 15 of conversion the generator
system is updated for the next iteration. The new supports in NS? are merged
(using ‘⊕’ to remove redundancies) into the appropriate portions of the non-
skeleton component. In particular, when processing a strict inequality, in line 12
the helper function

points become closure points
(
〈L,R,C,SP〉

) def
= 〈L,R,C ∪ SP , ∅〉

is applied to SK0, making sure that all of the skeleton points saturating β are
transformed into closure points having the same position. The final processing
step (line 15) calls helper procedure promote-singletons (see Pseudocode 2),
making sure that all singleton supports get promoted to skeleton points.

Note that line 5 of conversion, by calling procedure violating-line (see
Pseudocode 3) handles the special case of a line violating β. This is just an opti-
mization: the helper procedure strict-on-eq-points can be seen as a tailored
version of create-ns, also including the final updating of SK and NS .

4.3 Duality

The definitions given in Section 3 for a geometric generator system have their
dual versions working on a geometric constraint system. We provide a brief
overview of these correspondences, which are summarized in Table 2.

For a non-empty P = con(C) ∈ Pn, the skeleton of C = 〈C=, C≥, C>〉 includes
the non-redundant constraints definingQ = cl(P). Denoting by SC> the skeleton

12



Generators Constraints

Geometric skeleton
singular line equality

non-singular ray or closure point non-strict inequality
semantics gen(SK) = ∅ con(SK) = cl(P)

Combinatorial non-skeleton
abstracts point strict inequality

element role face filler face cutter
represents upward closed set downward closed set
encoding minimal support minimal support
singleton skeleton point skeleton strict inequality

Table 2. Correspondences between generator and constraint concepts.

strict inequalities (i.e., those whose corresponding non-strict inequality is not

redundant for Q), we have SKQ
def
= 〈C=, C≥ ∪ SC>, ∅〉, so that Q = con(SKQ).

The ghost faces of P are the faces of the closure Q that do not intersect P:

gFacesP
def
= {F ∈ cFacesQ | F ∩ P = ∅ }; thus, P = con(SKQ) \

⋃
gFacesP .

The set gFaces ′
def
= gFaces ∪ {Q} is a meet sublattice of cFaces; also, gFaces is

downward closed and can be represented by its maximal elements.

The skeleton support SKF of a face F ∈ cFacesQ is defined as the set of
all the skeleton constraints that are saturated by all the points in F . Each face
F ∈ gFaces saturates a strict inequality β> ∈ C>: we can represent such a
face using its skeleton support SKF of which β> is a possible materialization.
A constraint system non-skeleton component NS ⊆ NS is thus a combinatorial
representation of the strict inequalities of the polyhedron.

Hence, the non-skeleton components for generators and constraints have a
complementary role: in the case of generators they are face fillers, marking the
minimal faces that are included in nncFaces; in the case of constraints they are
face cutters, marking the maximal faces that are excluded from nncFaces. Note
that the non-redundant cutters in gFaces are those having a minimal skeleton
support, as is the case for the fillers.

As it happens with lines, all the equalities in C= are included in all the
supports ns ∈ NS so that, for efficiency, they are not represented explicitly.
After removing the equalities, a singleton ns ∈ NS stands for a skeleton strict
inequality constraint, which is better represented in the skeleton component,
thereby obtaining SK = 〈C=, C≥,SC>〉. Hence, a support ns ∈ NS is redundant
if there exists ns ′ ∈ NS such that ns ′ ⊂ ns or if ns ∩ SC> 6= ∅.

When the concepts underlying the skeleton and non-skeleton representation
are reinterpreted as discussed above, it is possible to define a conversion proce-
dure mapping a generator representation into a constraint representation which
is very similar to the one from constraints to generators.
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5 Experimental Evaluation

The new representation and conversion algorithms for NNC polyhedra have been
implemented and tested in the context of the PPL (Parma Polyhedra Library).
A full integration in the PPL domain of NNC polyhedra is not possible, since the
latter assumes the presence of the slack variable ε. The approach, summarized
by the diagram in Figure 1, is to intercept each call to the PPL’s conversion
(working on ε-representations in CPn+1) and pair it with a corresponding call
to the new algorithm (working on the new representations in Pn).

ε-repr Cin (resp., Gin) ε-less encoding ε-less C′in (resp., G′in)

old conversion new conversion

ε-repr DD skel/non-skel DD

correctness check

Fig. 1. High level diagram for the experimental evaluation (non-incremental case).

On the left hand side of the diagram we see the application of the stan-
dard PPL conversion procedure: the input ε-representation is processed by ‘old
conversion’ so as to produce the output ε-representation DD pair. The ‘ε-less
encoding’ phase produces a copy of the input without the slack variable; this is
processed by ‘new conversion’ to produce the output DD pair, based on the new
skeleton/non-skeleton representation. After the two conversions are completed,
the outputs are checked for both semantic equivalence and non-redundancy. This
final checking phase was successful on all the experiments performed, which in-
clude all of the tests in the PPL. In order to assess efficiency, additional code was
added to measure the time spent inside the old and new conversion procedures,
disregarding the input encoding and output checking phases. It is worth stressing
that several experimental evaluations, including recent ones [2], confirm that the
PPL is a state-of-the-art implementation of the DD method for a wide spectrum
of application contexts.

The first experiment5 on efficiency is meant to evaluate the overhead incurred
by the new representation and algorithm for NNC polyhedra when processing
topologically closed polyhedra, so as to compare it with the corresponding over-
head incurred by the ε-representation. To this end, we considered the ppl lcdd

demo application of the PPL, which solves the vertex/facet enumeration problem.
In Table 3 we report the results obtained on a selection of the test benchmarks6

5 All experiments have been performed on a laptop with an Intel Core i7-3632QM
CPU, 16 GB of RAM and running GNU/Linux 4.13.0-25.

6 We only show the tests where PPL time on closed polyhedra is above 20 ms.
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when using: the conversion algorithm for closed polyhedra (columns 2–3); the
conversion algorithm for the ε-representation of NNC polyhedra (columns 4–5);
and the new conversion algorithm for the new representation of NNC polyhedra
(columns 6–7). Columns ‘time’ report the number of milliseconds spent; columns
‘sat’ report the number of saturation (i.e., bit vector) operations, in millions.

The results in Table 3 show that the use of the ε-representation for closed
polyhedra incurs a significant overhead. In contrast, the new representation and
algorithm go beyond all expectations: in almost all of the tests there is no over-
head at all (that is, any overhead incurred is so small to be masked by the
improvements obtained in other parts of the algorithm).

test
closed poly ε-repr 〈SK,NS〉
time sat time sat time sat

cp6.ext 21 1.1 47 5.3 13 1.1
cross12.ine 157 17.1 215 18.1 180 17.2
in7.ine 47 1.7 149 6.1 27 0.9
kkd38 6.ine 498 28.3 1870 113.2 218 14.2
kq20 11 m.ine 42 1.7 153 6.1 27 0.9
metric80 16.ine 39 2.3 76 5.4 25 2.0
mit31-20.ine 1109 88.7 35629 702.2 816 60.1
mp6.ine 86 6.4 215 17.9 72 8.0
reg600-5 m.ext 906 24.7 3062 119.1 723 14.0
sampleh8.ine 5916 307.4 42339 1420.7 3309 154.1
trunc10.ine 1274 91.7 5212 396.6 803 89.9

Table 3. Overhead of conversion for C polyhedra. Units: time (ms), sat (M).

The second experiment is meant to evaluate the efficiency gains obtained
in a more appropriate context, i.e., when processing polyhedra that are not
topologically closed. To this end, we consider the same benchmark discussed
in [3, Table 2],7 which highlights the efficiency improvement resulting from the
adoption of an enhanced evaluation strategy (where a knowledgeable user of the
library explicitly invokes, when appropriate, the strong minimization procedures
for ε-representations) with respect to the standard evaluation strategy (where
the user simply performs the required computation, leaving the burden of op-
timization to the library developers). In Table 4 we report the results obtained
for the most expensive test among those described in [3, Table 2], comparing
the standard and enhanced evaluation strategies for the ε-representation (rows
1 and 2) with the new algorithm (row 3). For each algorithm we show in column
2 the total number of iterations of the conversion procedures and, in the next
two columns, the median and maximum sizes of the representations computed
at each iteration (i.e., the size of the intermediate results); in columns from 5 to
8 we show the numbers of incremental and non-incremental calls to the conver-

7 The test dualhypercubes.cc is distributed with the source code of the PPL.
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sion procedures, together with the corresponding time spent (in milliseconds);
in column 9 we show the time spent in strong minimization of ε-representations;
in the final column, we show the overall time ratio, computed with respect to
the time spent by the new algorithm.

algorithm
# iter iter sizes full conv incr conv ε-min time

median max num time num time time ratio

ε-repr standard 1142 3706 7259 4 11 3 30336 27 1460.9
ε-repr enhanced 525 109 1661 7 204 0 — 29 11.2
〈SK,NS〉 standard 314 62 180 4 6 3 15 — 1.0

Table 4. Comparing ε-representation based (standard and enhanced) computations
for NNC polyhedra with the new conversion procedures.

Even though adopting the standard computation strategy (requiring no clever
guess by the end user), the new algorithm obtains impressive time improvements,
outperforming not only the standard, but also the enhanced computation strat-
egy for the ε-representation. The reason for the latter efficiency improvement is
that the enhanced computation strategy, when invoking the strong minimization
procedures, interferes with incrementality: the figures in Table 4 confirm that the
new algorithm performs three of the seven required conversions in an incremental
way, while in the enhanced case they are all non-incremental. Moreover, a com-
parison of the iteration counts and the sizes of the intermediate results provides
further evidence that the new algorithm is able to maintain a non-redundant
description even during the iterations of a conversion.

6 Conclusion

We have presented a new approach for the representation of NNC polyhedra in
the Double Description framework, avoiding the use of slack variables and distin-
guishing between the skeleton component, encoded geometrically, and the non-
skeleton component, provided with a combinatorial encoding. We have proposed
and implemented a variant of the Chernikova conversion procedure achieving
significant efficiency improvements with respect to a state-of-the-art implemen-
tation of the domain of NNC polyhedra, thereby providing a solution to all the
issues affecting the ε-representation approach. As future work, we plan to de-
velop a full implementation of the domain of NNC polyhedra based on this new
representation. To this end, we will have to reconsider each semantic operator
already implemented by the existing libraries (which are based on the addition
of a slack variable), so as to propose, implement and experimentally evaluate a
corresponding correct specification based on the new approach.
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