Widening Sharing

Enea Zaffanella, Roberto Bagnara, Patricia M. Hill

Abstract

We study the problem of an efficient and precise sharing analysis of (con-
straint) logic programs. After recognizing that neither plain Sharing nor its
non-redundant (but equivalent) abstraction scale well to real programs, we
consider the domain proposed by C. Fecht [11, 12]. This domain consists of
a combination of Pos with a quite weak abstraction of Sharing. While ver-
ifying that this domain is truly remarkable, in terms of both precision and
efficiency, we have revealed significant precision losses for several real pro-
grams. This loss concerns groundness, pair-sharing and linearity. We define a
simple domain for sharing analysis that supports the implementation of sev-
eral widening techniques. In particular, with this domain it is straightforward
to turn Fecht’s idea into a proper widening. More precise widenings are also
considered. However, in spite of thorough experimentation we found that,
provided Pos is included in the domain, the first widening we propose is hard
to improve on.

Keywords: Abstract Interpretation, Mode Analysis, Sharing Analysis,
Widening.

1 Introduction

For (constraint) logic programs, the main purpose of sharing analysis is to detect
pair-sharing, that is, which pairs of variables are definitely independent. In a pre-
vious work [3] we observed that the Sharing domain of Jacobs and Langen (denoted
here as SH) [14] is redundant for pair-sharing. This achievement has important
theoretical consequences (some of which will be exploited in the present work) and
also has a practical interest. In fact, it allows sharing-sets (the elements of SH) to
be kept as small as possible without any precision loss and replace the star-union
operation, whose complexity is exponential, by self-bin-union, which is quadratic.
Even though significant speed-ups have been observed in practice (up to 3 orders
of magnitude) the problem of scalability of the analysis to real programs, both in
terms of precision (that is, the number of pairs that are detected as being definitely
independent) and of resource usage, was still to be solved.

Enea Zaffanella is with the Servizio IX Automazione, Universita degli Studi di Modena, Italy;
Email: zaffanella.enea@unimo.it. Roberto Bagnara is with the Dipartimento di Matematica,
Universita degli Studi di Parma, Italy; Email: bagnara@cs.unipr.it. Patricia M. Hill is with the
School of Computer Studies, University of Leeds, Leeds, U.K.; Email: hill@scs.leeds.ac.uk.
This research was partly supported by EPSRC, grant GR/M05645.

APPIA-GULP-PRODE’99

C. Fecht [11, 12] proposed a domain | SH for sharing analysis based on SH. This
domain is the same as SH but the concretization of a set of variables in | SH is
equivalent to the concretization of its powerset in SH. The advantage of | SH is
not just that an element can be normalized by removing all but the maximal ones,
thereby reducing its size, but because it enables more efficient (but less precise)
abstract operations than those used for SH and its non-redundant version SH” [3].

One of the problems with the domain | SH is that it does not capture ground
dependencies. These are important for tracking sharing dependencies and, hence,
sharing. Fecht solved this by deriving the ground dependencies through the Pos
component of the combined domain Pos + | SH (where Pos is the usual domain
of positive Boolean formulas for groundness analysis) and also Pos+ | SH + Lin
(where Lin is a domain for representing variables that are definitely bound to linear
terms). Fecht tested both these domains and showed that, with his benchmarks,
they compared favorably with equivalent ones using SH for the sharing and ground
dependencies. He reported a negligible loss of precision and demonstrated that
large programs could be analyzed using both Pos+ | SH and Pos+ | SH + Lin in a
reasonable time scale. The results, although inconclusive, demonstrated real promise
for an analyzer based on the | SH approach. We say the results were inconclusive.
The reason for this is that only a few non-trivial programs were tested and, for most
of these, precision was not compared. (His SH analyzer could not cope with large
programs possibly due to the problem that there was no redundancy elimination.)
We note that Fecht did not present the domain | SH as a widening and did not
discuss how a widening based on his domain might be achieved.

1.1 Precision Results for SH and | SH

We have compared the domain of Fecht enhanced with Free, the domain representing
freeness information, that is Pos+ | SH + Free + Lin, with the same combination
where | SH is substituted by the non-redundant sharing domain SH” [3]. The
precision of the analysis is measured by summing results over the success-patterns,
for goal-independent (GI) analysis, and over both the call- and success-patterns, for
goal-dependent (GD) analysis, for each procedure. For the domains tested, that is,
Pos+ | SH + Free+ Lin, abbreviated as P+DSH+F+L, and Pos+ SH” + Free+ Lin,
abbreviated as P+NSH+F+L, the precision results consist of: the total number of
definitely non-sharing pairs of program variables, NSP, the total number of definitely
ground variables, GV, and the total number of definitely linear variables that are
possibly not ground, LV. The freeness results are not compared because, as we have
shown in [18], freeness is not affected, neither by abstracting SH to | SH, nor by
redundancy elimination.

The comparison involved all the 92 Prolog programs in our current test-suite. On
73 of them there was no difference in precision. This is really remarkable considering
that the | SH approximation is rather crude. The combined domain Pos+ | SH+ Lin
is isomorphic to ASub + Pos (where ASub is the pair-sharing domain of Sgndergaard
[17]), and the domain Pos+ | SH is exactly the domain ASub™ defined by Cortesi
and Filé in [8]. However, they considered this domain only en passant and only from
a theoretical point of view. In other words, Fecht has the whole merit for having

Widening Sharing

Goal-Independent Goal-Dependent
P+DSH+F+L || P+NSH+F+L P+DSH+F+L || P+NSH+F+L

Program ” NSP T GV [LV ”NSP [GV [LV ” NSP T GV T LV HNSP [GV [LV]
aqua_c 10749 | %406 | 2753 ? ? 71| 16306 | x1186 | 2028 ? ? ?
bmtp 1451 | 136| 972 || 1461 | 136 | 976

bryant 784 10| 146 || 1088 10| 223 || 1033 141 58 || 1781 | 141 | 58
caslog 6456 | x466 | 1588 || 7027 | %474 | 1615 || 11073 | x1625 | 1079 ? ? ?
cg-_pars 136 31| 159 138 31| 160

dpos_an 92 40 76 95 40 76 183 76 53 || 183 76 | 53
lg_sys 7274 | 645 | 2260 || 7334 | 645 | 2261

nand 473 23| 182 475 23| 182 1341 481 70 || 1341 | 481 | 70
nbody 261 52 | 104 || 262 52 | 104 477 151 41 || 478 | 151 | 41
ochina 2185 | 285 | 1163 || 2193 | 285 | 1166 || 3985 802 | 760 ? ? ?
quot_an 288 37| 160 || 288 37| 160 639 159 | 122 | 646 | 159 | 122
reg 774 42 | 272|| 796 42 | 284 207 67 52 | 207 67 | 52
rubik 70| %55 | 110 73| 76 93 174 | %110 | 124 201 | %200 | 103
scc 63 0 37 63 0 37 503 174 46 || 506 | 174 | 46
sfecht 28 0 14 85 0 31 221 0 47 || 278 0| 64
simple 370 27| 1391 373 27| 139 572 82 76 || 639 82| 76
slice 427 | 126 | 453 428 | 126 | 453

spsys 788 81| 386 | 800 81| 394

trs 32 6 22 53 6 22 73 *12 20 || 104 | =x12| 20

Table 1: Pos+ | SH + Free+ Lin vs Pos+ SH” + Free + Lin: precision.

trusted on this domain from a precision/efficiency perspective. The results for the
remaining 19 programs are summarized in Table 1.

The blank entries in the goal-dependent columns are for those programs whose
goal-dependent analysis is pointless. This usually happens because the program
contains a procedure call to an unknown procedure (e.g., by means of call/1). The
CHINA analyzer (i.e., our system [1]) promptly recognizes these cases and reverts
to a goal-independent analysis. This is one of the reasons why focusing only on
goal-dependent analyses is, in our opinion, a mistake. The other reason being that
the ability of analyzing libraries once and for all is desirable and, more generally,
so is the separate analysis of different program modules, especially in very large
projects. Focusing only on goal-independent analyses is the opposite mistake: GD
analyses, when possible, are more precise than GI ones. For these reasons, we insist
in presenting experimental results for both.

A star symbol (%) in the GV column signifies that one of the widenings we employ
on the GER representation of Pos fired. This is a widening imposing a limit on the
number of ROBDD nodes simultaneously allocated. It makes approximations of the
R (ROBDD) component when this limit is reached!, while retaining full precision
on the G (definitely ground variables) and the E (classes of equivalent variables)
components [2, 4]. The scarcity of stars in this and the following tables, shows how
seldom this widening is actually required.?

Apart from sfecht, which is a synthetic benchmark designed in order to show

!That is, by approximating = A y with = or with y, V y with true and so forth.
2Indeed, the newest version of CHINA avoids also the widening for the caslog program.

APPIA-GULP-PRODE’99

that arbitrary precision losses are possible with | SH, Table 1 illustrates how heavy
precision penalties can be incurred by | SH even on real programs. Most notably, for
bryant we see a precision loss as high as 28% on GI analysis and 42% on GD analysis.
In addition, simple loses 10% (GD), while trs loses 40% (GI) and 30% (GD). Note
that, for these programs, the Pos widening fires only on the GD analysis of trs.
The rubik program shows an interesting phenomenon: here the Pos widening fires
incurring a precision loss of exactly 1 ground variable (a critical one indeed), but SH”
saves the day by recovering the lost groundness information. A similar thing happens
for caslog. Thus, the widely held opinion (now proved in [7]) that Sharing does not
help Pos on groundness does not carry through when widenings are considered.

While space limitations do not allow us to report full timing information, we can
easily confirm Fecht’s claim: the speedup is dramatic. Just a few examples: the
fixpoint computation time in seconds for bmtp, caslog, 1g_sys, and spsys drops
from 15.6, 614.7, 735.9, and 2.2, to 0.8, 2.0, 3.3, and 0.6, respectively. All the
experiments described in this paper were performed on a PC equipped with an
AMD K6@400MHz, 128MB of main memory, and running Linux 2.2.1.

1.2 The Present Work

The objective of this work, after having recognized that Fecht’s approach incurs
significant precision loss on several real programs, is to improve the state of the art
in mode analysis, in general, and sharing analysis in particular.

The present work is not intended for achieving the fastest ever analysis, since
high speeds are often achieved at the expense of precision. The real problem, we
believe, is how to increase precision yet avoid the concrete effects of exponential
complexity. Consider groundness analysis, for instance. The cruder domains do not
pose any efficiency problem. In contrast, the more refined domains for groundness,
such as Pos, work perfectly until you bump into a “nasty” program clause (i.e., with
more than, say, fifty variables for which the analyzer knows too little at that point
of the analysis). When this happens, Pos will exhaust your computer’s memory.
One would like to have a more linear, or stable behavior. The right solution, as
indicated in [10], is not to revert to the simpler domains. We should use complex
domains instead, together with widening (and maybe narrowing) operators. With
this technique we can try to limit precision losses to those cases where we cannot
afford the refined domains.

We moved from the observation that, when the sharing-sets become large, then
they are at the same time heavy to manipulate and, at least for a subset of the vari-
ables involved, light as far as information content is concerned. We thus introduce
a new representation SH" for set-sharing made of two components. They are both
sharing-sets. However, while the second one is interpreted in the usual way, the first
component records worst-case sharing assumptions of sets of variables. We define
the operations required for the analysis with SH", and we prove them correct. We
also introduce a safe optimization that is very effective in practice.

We then show how SH" supports a variety of widenings. One of those is a simple
adaptation of Fecht’s idea. Others are much more sophisticated and involve only a
limited precision loss. However, in spite of thorough experimentation (of which only

Widening Sharing

a tiny fraction can be reported here) we found that the first widening we propose
is hard to improve on, provided Pos is included in the domain. This suggests that
what is lost by this widening is mostly constituted by ground dependencies, and
these can be recovered (and improved) by the Pos component. We show that when
Pos is not included, a widening based on cliques of sharing pairs is preferred. Since
some authors advocate the use of SH without coupling it with Pos (we do not share
this view), this is an important message for them.

In this work as in Fecht’s work, the combination of a sharing domain with Pos
is the simplest possible. For any operation of the analysis, abstract mgu in partic-
ular, the Pos component is evaluated first. All sharing groups containing at least
one variable that is definitely ground according to the resulting Pos formula are
removed from the sharing component. This combination is made particularly ef-
ficient by the ready availability of definite groundness information allowed by the
GER representation introduced in [4], where obtaining the set of definitely ground
variables (and also the classes of groundness-equivalent variables) is a constant-time
operation. Note that more sophisticated combinations are possible [7].

Following several other authors, we observed in [3], that, from a practical point
of view, sharing analysis without freeness or linearity does not make sense. Both
these properties allow, in a significant proportion of cases, to dispense with costly
operations (such as star-union or, better, self-bin-union) increasing the precision of
sharing information at the same time, and this with very little overhead. Moreover,
freeness is a useful property in itself. For details on how the combination with
freeness is realized, we refer the reader to [16, 18]. See [6] for the combination of
both freeness and linearity information.

Among the contributions of this paper we would like to stress the following: we
present a data-flow analysis for groundness, freeness, pair-sharing, and linearity, with
unprecedented levels of precision and efficiency. With the implementation described
in this paper, the CHINA analyzer is able to honor one of its most important design
goals: never crash (e.g., by exhausting all the available memory), always terminate
with a correct result and in reasonable time.

The paper is structured as follows: In Section 2 we briefly recall the required
notions and notations, even though we assume general acquaintance with the topics
of abstract interpretation, sharing analysis and groundness analysis. Section 3 intro-
duces SH" and the abstract operations for this domain. With SH", it is straightfor-
ward to turn Fecht’s idea into a proper widening. This is done in Section 4, after the
introduction of an infinite family of widenings and a statement of their safety. More
precise widenings are also considered. The experimental evaluation of the proposed
approach is presented in Section 5. Section 6 concludes with some final remarks.
The reader is referred to [18] for full proofs of all the results presented in this paper,
and for more material on this subject.

2 Preliminaries

For any set S, p(S) denotes the powerset of S and # S is the cardinality of S. A
monotone and idempotent self-map p: P — P over a poset (P, <) is called a closure

APPIA-GULP-PRODE’99

operator (or upper closure operator) if it is also extensive, namely Vo € P : x < p(z).
In this paper, we assume there is a fixed and finite set of variables of interest denoted
by VI. If t is a first-order term over VI, then vars(t) denotes the set of variables in ¢.
Bind denotes the set of equations of the form x = t where x € VI and t is a first-order
term over VI. Note that we do not impose the occur-check condition x ¢ vars(t),
since we have proved in [13] that this is not required to ensure correctness of the
operations of SH and its derivatives. The following definitions are a simplification
of the standard definitions for the Sharing domain [9, 13, 14| and assume that the
set of variables of interest is fixed and finite.

Definition 1 (The set-sharing domain SH.) The set SH is defined as a pow-
erset: SH < ©o(S@G), where SG o {SepVI)|S+£2}.

We now introduce the required abstract operations over SH.

Definition 2 (Some operations over SH.) Projecting an element of SH onto a

subset of VI is performed through the binary function proj: SH x p(VI) — SH: if

sh € SH and V € p(VI), then proj(sh, V) & {SNV | S € sh, SNV #£ @ }.

For each sh € SH and each V € o(VI), the extraction of the relevant component

of sh with respect to V' is encoded by the function rel: p(VI) x SH — SH defined

asrel(V,sh)déf{SESh]SﬂV%@}.

For sh € SH and V € o(VI), the exclusion of the irrelevant component of sh
with respect to V' is encoded by the function vel: o(VI) x SH — SH defined as
rel(V sh) L sh \ rel(V, sh).

The function (-)*: SH — SH, also called star-union, is given, for each sh € SH,
bysh* = {SeSG|3In>1.3N,...,T,esh.S=T,U---UT, }.

For each shy, sho € SH, the binary union function bin: SH x SH — SH is given
def

by bin(shy, she) = {S1 U Sy | St € shy, Sy € shy }.

We also use the self-bin-union function sbin: SH — SH, which is given, for each
sh € SH, by sbin(sh) o bin(sh, sh).

The function amgu captures the effects of a binding on an SH element. Let
(x=1t) € Bind, sh € SH, V, = {x}, V; = vars(t), and Vo =V, UV,. Then

amgu(sh,x =t) aef rel(Vyy, sh) U bin(rel(V, sh)*, rel(V;, sh)*).

The domain SH captures set-sharing. However, the property we wish to detect
is pair-sharing and, for this, it has been shown that SH includes unwanted redun-
dancy [3].

Definition 3 (Redundancy.) Let sh € SH and S € SG. S is redundant for
sh if and only if #S > 2 and pairs(S) = U{pairs(T) } T € sh, T C S} where

pairs(.5) o {PepS)|#P=2}

Definition 4 (The domain SH”.) The function p: SH — SH is given, for each
def p def

sh € SH, by p(sh) = shU{S € SG | S is redundant for sh}. Then SH? =

p(SH) o p(sh) | sh € SH }.

Widening Sharing

We use the notation shy =, shy and shy C, she to denote p(shi) = p(shy) and
p(sh1) C p(shs), respectively. The advantage of SH” is that we can replace the
star-union operation in the definition of the amgu by self-bin-union without loss of
precision [3]. In particular, it is shown:

amgu(sh, x = t) =, rel(Vyy, sh) U bin (Sbin(rel(l/;, sh)),sbin(rel(Vt, sh))). (1)

3 A New Representation for Set-Sharing

We introduce here a new representation for set-sharing. It is made up of two compo-
nents: one is the original set-sharing domain while the other represents all possible
subsets of each of its elements and, for this reason, is called a clique-set.

Definition 5 (Clique-set.) A clique-set is an element of CL and CL ' SH.

An element of a clique-set is called a cligue.

Definition 6 (Sharing-sets representation for clique-sets.) The (overloaded)

functions |: SG — SH and |: CL — SH are given, for each C € SG and each

cle CL, by | C def o(CY\ {2} and | cl aof Ucea 1 €. Observe that | is an upper

closure operator over SH. If ¢l € CL and C € SG then we say that C' is down-
redundant in cl if there exists C' € cl such that C' C C".

The addition or removal of down-redundant elements to or from a clique-set makes
no difference to the sharing-sets that it represents. So, a clique represents a worst
case® pair-sharing condition on the set of variables it contains. In an implementation,
as we need to keep the clique sets as small as possible, down-redundant elements
are removed via a normalization function.

Definition 7 (Normalization of Clique-Sets.) For each ¢l € CL, the normal-
ization function |-|: CL — CL is given by

|cl| © \{C € cl| C is down-redundant for cl}.

We now define abstract unification over clique-sets and state its soundness.

Definition 8 (Abstract Unification over CL.) For each V € o(VI) and each
cl € CL, the function rel®: p(VI) x CL — CL is given by

rel(V,) € {C\V | C € c}\ {2}

The function amgu®: CL x Bind — CL is given, for each cl € CL and each binding
(x =1t) € Bind, by

amgu®(cl,z = t) o

rel™(Vyy, ¢l) U bin(sbin(cl,), sbin(cly)),

where cl, =rel(Vy, cl), cly =rel(Vy, cl), V, = {x}, V, = vars(t), and Vy =V, UV,.

3While this terminology is due to Langen [15], our definition differs from the one he used.

APPIA-GULP-PRODE’99

Theorem 9 For each clique-set cl € CL and each binding (x = t) € Bind, we have
that amgu(i cl,x = t) C, lamgu™(cl,z =1).

We next define our new sharing domain for widening.

Definition 10 (The SH" Representation.) The set SH" is given by

SH" = { (cl,sh) | el € CL,sh € SH'}

and is ordered by T defined as follows, for each shw,(cly, shy), (cly, shy) € SH"Y:
(cly, shy) C (cly, shy) <= (cly C clo) A (shy C sho). It can be seen that SH"Y is
a complete lattice. The sharing-set represented by an element of SH" is given, for
each (cl, sh) € SH"Y, by the function Z(-): SH" — SH where

Z((cl, sh)) € | el U sh.

The normalization of an element of SH" is given, for each (cl, sh) € SH", by the
function |-|: SH" — SH" where

(cl, sh)| < ([el], sh \ | el).

The normalization removes unnecessary elements from a description in SH". We
now define an upper closure operator p inducing an equivalence relation on the
elements of SH".

Definition 11 (The o(SH") domain.) The function o: SH" — SH" is given,
for each shw € SH" with shw % (cl, sh), by

o(shw) € (p(1 cl), p(T(shw))).

Then o is an upper closure operator for SH" [18]. We will use the notation shw, =,
shws to denote o(shwi) = o(shwsy) and shwy &, shwy to denote o(shwq) C o(shws).

The ordering C, is used for modeling the relative precision between widenings
in Section 4. When shw, =, shws, shw; and shws behave the same way as far as
representing pair-sharing and groundness is concerned.

Proposition 12 If shw € SH", then Z(shw) =, I (o(shw)) and shw =, |shw|.

Definition 13 (Operations over SH".) For each (cl, sh), (cl;, sh;) € SH", with
i =1, 2, and each V € o(VI), the functions rel” relV: p(VI) x SHY — SH"
and UV, bin": SH" x SH" — SH", the functions sbin": SH" — SH" and, finally,

Widening Sharing

amgu": SHY x Bind — SH", are defined as follows:
rel" (V, (cl, sh)) o (rel(V cl),rel(V, sh)),
rel" (V, (cl, sh)) = (rel™(V, cl), rel(V, sh)),
(cly, shy) UY (cla, sha) (c U cly, shy U Shg)
bin" ((cly, shy), (cla, sha)) = (

o
h

(oW
[}
h

o
=

()

bin(cly, cl) U bin(cly, sha) U bin(shy, cly),
bin(shy, shs)),

sbin® ((cl, sh)) of bin" ((cl, sh), (cl, sh))

(sbin(cl) U bin(cl, sh), sbin(sh)),

amgu" (shw,x = t) & el (Vaot, shw)
U™ bin" (sbinw (rel" (V, shw)),

sbin" (rel™ (V;, shw))) ,
where V, = {x}, Vi, = vars(t), and Vyy = V, U V.

The next theorem, proven in [18], states the correctness of amgu" and that nor-
malization does not affect the correctness or precision of amgu®.

Theorem 14 For each shw € SH" and each (x =t) € Bind,
amgu (Z(shw), z = t) C, Z(amgu"(shw,z = 1));
amgu"(shw, z = t) =, amgu" (|shw|,z = t).

In general, p is not a congruence for amgu" and precision may be lost when the
first component of shw is non-empty and the second component of shw contains
redundant elements. Further work on this aspect is ongoing.

The computation of amgu"” can be optimized. To explain this, we need some
extra notation. Let us define: shw = (cl, sh) € SH" and x =t € Bind; V, = {x},
Vi = wars(t), and Vyy = V, UV;; shw, = (clg, shy) = rel™(V,, shw) and shw, =
(cly, shy) = rel™(V;, shw). Suppose C, = cly, Cr = cly, Se = U she, S¢ = U shy,
A, = bin (sbin(sh$), sbin(sht)), By = bin(shy, shy), B, = bin(cl,, sh,), and, finally,
B, = bin(cly, shy). Then let

({C,uCUS, US},), if cl, # @, cly # @;

h opt dﬁf ({Ca: U St} U Bx U th, A$t>a lf Clw 7é @, Clt =d
rel ({Ct U Sx} U Bt U th, Axt), lf Clx = @, Clt ;é @,
(2, Awt), ifcl,=0,c, =9

In [18], we prove the following optimization for the computation of amgu".

Theorem 15 Assuming the above notation,
amgu" (shw,x = t)
B {(r_el(th, cl), rel(Vy, sh)) UY shw?™', if shw, # (2, 9), shw, # (2, 9);
e

rel"(V, shw), otherwise.

APPIA-GULP-PRODE’99

In Eq. (1), the basic amgu operation is defined using the SH” domain. How-
ever, when we have freeness and linearity information it has been proven that we
can improve the analysis with respect to precision and efficiency by avoiding one or
both of the self-bin-unions occurring as components of the binary union operation.
The question arises as to whether this improvement can be adapted for the amgu"
operation. That is, can we avoid the corresponding sbin" operations under the same
linearity and freeness conditions? The answer is yes, we can generalize Theorem 14
and show that this is sound. However, we may lose precision. Moreover, the op-
timization given by Theorem 15 only applies to the basic amgu" operation given
in Definition 13. When one or both of the self-bin-unions here is omitted due to
available freeness and linearity information, then =, in the theorem becomes &, and
we may lose further precision. Further work on this subject is ongoing.

4 Widening Set-Sharing

We can now define a family of unary widenings over SH".

Definition 16 (Widening for SH".) A function V: SH" — SH" is a widening
for SH" if, for each shw € SH", we have shw C, V shw.

The following result establishes the safety of such widening operators.

Theorem 17 For each shw € SH" and each (x = t) € Bind we have
amgu"” (shw,z = t) C, amgu"” (V shw, r = t).

The obvious corollary is that any analysis using these widenings, possibly a dif-
ferent widening at each step of the analysis, is correct. After widening we usually
normalize the new domain to provide a smaller representation. Moreover, it is also
shown in [18] that similar results hold for each of the component operators such as
bin" for amgu®”. Thus we can (and do) safely widen and normalize within the actual
computation of amgu”. The analyzer has the freedom of using whichever widening
suits its current needs. Those needs can be dictated by a number of heuristics. Of
course, really useful widenings are guarded by some applicability condition. The
simplest conditions are those based on the cardinality of the sets in the SH" de-
scription. For example, for each widening ¥ and for suitable choices of f: N> — N
and n € N, one can define

e l, h s if Z, h) > ;
Vel sh) 2 § VU o)y 3Gl 3ol =

’ (cl,sh), otherwise.
We order the widenings in the obvious way. If V; and V5 are two widenings and,

for all shw € SH", V1(shw) T, Va(shw), then let V; T, V2. At the top end of the
scale of widenings we have two panic widenings. They are defined by

VP (cl, sh) o <cl U {U sh}, @), v’ (el, sh) o ({U clU U sh}, @).

The panic widenings are present in the CHINA implementation, with very strict
guards, only to enforce the “never crash” motto: no real program we have access to
makes them fire. At the other extreme we have very soft widenings.

Widening Sharing

Definition 18 (Cautious widening.) A widening V: SH" — SH" is called cau-
tious if, for each shw € SH",

I(V shw) =, Z(shw).

Thus, a widening never introduces new pair-sharings nor new singletons in the de-
scription. However, information is lost as soon as the operations for the analy-
sis given by Definition 13 are considered. For example, consider two elements of
SH": shw, aof (@,{x,y,z,xy,xz,yz}) and shws aof ({xyz},@) so that we have
I(shwy) =, I(shwy) but o(shwy) # o(shws). While sharing between y and z is
not contemplated in relW({a:}, sh’wl) = (@, {z,xy, ajz}), the same does not hold for
rel" ({z}, shwy) = shws.

A useful cautious widenings is the gentle widening, defined as follows. Consider

shw € SH", and G be the graph (N, E) where N o {z | {«} € Z(shw)} and

EY {(z,y) | {z,y} € Z(shw),z,y € N,z #y }. Then

vE shw & ({Ch,...,Ci}, sh),

where (', ... , C} are all the maximal cliques of GG. Note that, although the problem
of enumerating all the maximal cliques of an undirected graph is NP-complete, this
does not seem to be a problem for the graphs arising during the analysis of even
the biggest real programs. For the experimentation we used the algorithm by Bron
and Kerbosch [5], which is Algorithm 457 in the ACM collection, even though more
efficient algorithms are present in the literature.

Of intermediate precision is the widening based on Fecht’s idea, which we call
Fecht’s widening and defined as

v (el, sh) o (cl U sh,).

This widening is not cautious. However, it does not introduce new pairs. As it can
introduce new singletons, it may destroy ground dependencies, and this is why this
kind of widening is better coupled with Pos.

5 Experimental Evaluation

For the experimental evaluation of the Fecht’s widening V¥, precision is compared
with respect to the non-redundant sharing domain SH”. In fact, this approach is
almost always as precise as the optimal one using SH”.

For this and the following experiments, the widening was guarded by a size thresh-
old of 100 on the second component (i.e., the normal sharing part). In other words,
immediately before each abstract mgu operation the analyzer operated p-redundancy
elimination, as usual. If after this the operand (cl, sh) was such that # sh > 100,
then (cl, sh) was substituted by V¥ (cl, sh). Let us call this guarded widening V.
The results are reported in Table 2. Note that only the programs where the analysis
with SH" gives different results from the analysis with SH” are reported in the
table. Thus, for all the programs in the test-suite, the analysis with SH" using the

APPIA-GULP-PRODE’99

Goal-Independent Goal-Dependent
P+WSH+F+L || P+NSH+F+L P+WSH+F+L || P+NSH+F+L
Program ” NSP [GV T InY ”NSPTGV (InY ” NSP { GV [LV ”NSPTGV { LV |
aqua_c 11147 | %406 | 2757 ? ? 71| 16364 | x1188 | 2028 ? ? ?
caslog 6553 | 474 | 1615 || 7027 | 474 | 1615 || 11338 | 1739 | 1062 ? ? ?
ochina 2193 | 285 | 1166 || 2193 | 285 | 1166 || 3958 802 | 760 ? ? ?
quot_an 288 37| 160 || 288 | 37| 160 639 159 | 122 || 646 | 159 | 122

Table 2: Pos+ SH" + Free + Lin vs Pos+ SH” + Free + Lin using Vi,,: precision.

(rather drastic) widening V,, gives the same results obtainable (at a much higher
cost) with SH”, apart from those in Table 2. For aqua_c we obtain termination
in reasonable time, as with Fecht’s technique but with higher precision. The same
holds for the GD analysis of caslog and ochina. However, while the GI analysis of
ochina is “optimal” (meaning “as precise as SH””), this is not the case for caslog.
Non-optimality happens also for the GD analysis of quot_an.

Obviously, V1, is never less precise than Fecht’s domain. What is surprising,
however, is that it is almost that efficient. The timings and the number of appli-
cations of the widening are reported in Table 3 for all the programs such that at
least one timing was above 0.4 seconds. The first observation to be made is that
the widening comes into play only a few times on the test-suite. On average, it is
safe to say that on 99.9% of cases the sharing-sets remain of reasonable size (100
groups or less in this experiment). Table 3 says that this definition of “reasonable”
makes sense: for those programs where widening does not take place the difference
in performance between Fecht’s domain and our SH" with the Vv, widening is very
limited. Analysis of aqua_c shows that limiting precision may on occasions increase
the cost (since less precision means more self-bin-unions to perform, thus even less
precision, ...).

The results on the precision of Vi, are so good that we are left with a ridiculous
test-suite for checking how much we can improve by using a more cautious widening.
Our experimentation showed that the gentle widening Vi, improves over V4, only
on quot_an. The same does, but at a lower price, a bigger widening V9 that is
defined as V& apart from the fact that singletons are disregarded. In other words,

the undirected graph considered for V9, given shw € SH", is G oo (N, E) such that
def

E= {(z,y)| {z,y} € I(shw),x #y } and N¥ Ly | (z,y) € Eor (y,x) € E }.

Now, suppose we perform sharing analysis without combining the sharing domain
with Pos. Then it is important that the widening, as is the case with cautious ones,
keeps track of singletons. Table 4 reports the results (fixpoint time and number of
definitely not-sharing pairs) for SH" with Viy,, SH" with V{y,, and plain SH”.
The GD analysis of bryant is particularly eloquent example of the superiority of
cautious widenings when Pos is not used.

Widening Sharing

Goal-Independent Goal-Dependent
P+DSH+F+L || P+WSH+F+L || P+DSH+F+L || P+WSH+F+L

Program (T ” T T #W H T ” T T #W ‘
action 0.1 0.1 1 1.1 1.4 1
aircraft 0.2 0.2 0 0.7 0.7 0
aqua_c 10.4 10.9 56 48.6 40.7 3
bmtp 0.8 0.9 6

bryant 0.1 0.1 0 0.6 1.4 1
caslog 2.0 2.5 17 17.7 19.2 22
chat80 0.9 1.0 2 4.3 4.9 6
chat_parser 0.4 0.4 1 1.7 1.8 1
dpos_an 0.2 0.2 0 0.5 0.8 1
eliza 0.1 0.1 0 0.2 0.4 1
lg_sys 3.3 3.9 23

log_interp 0.2 0.4 2 0.7 0.9 1
mixtus 0.9 0.9 4

ochina 1.2 14 11 7.7 8.3 4
parser_dcg 0.2 0.1 0 0.7 0.6 0
peepholel 0.1 0.1 0 0.4 0.7 1
pets_an 0.8 0.9 4 4.5 4.5 1
peval 0.2 0.3 3 0.4 0.5 1
plaiclp 0.7 0.7 3

press 0.1 0.1 0 0.4 0.7 0
quot_an 0.3 0.4 0 1.3 1.7 1
read 0.1 0.1 0 0.3 0.6 1
reg 0.4 0.4 4 0.4 0.4 1
sdda 0.1 0.1 1 0.2 0.4 2
sim 0.2 0.3 2 0.7 0.8 2
simple 0.1 0.2 0 0.6 0.9 2
slice 0.6 0.7 2

spsys 0.6 0.7 5

trs 0.2 0.3 2 0.5 0.6 1
unify 0.1 0.1 0 0.5 0.7 0

Table 3: Pos+ | SH + Free + Lin vs Pos+ SH" + Free + Lin using Viy,: timings

(T) and number of (sharing) widenings (#W).

6 Conclusion

We believe we have made a significant step forward towards the solution of the prob-
lem of practical, precise, and efficient sharing analysis of (constraint) logic programs.
We have studied a new representation for set-sharing that allows for the incorpo-
ration of a variety of widenings. Extensive experimentation has shown that one of
these widenings, which is based on an idea of C. Fecht, provides seemingly hard to
beat precision and performance, when combined with Pos. When this combination
is not performed, we have also shown that “more cautious” widenings offer more

precision at an acceptable extra-cost.

APPIA-GULP-PRODE’99

Goal-Independent Goal-Dependent
SH™ Vi || SHY, Vi || SH” SHY Vi || SHY,V{w || SH”
Program || T [NSP || T [NSP || T [NSP|[T [NSP | T [NSP | T [NSP|
aquac |[4.1[10703 || 15.0 | 10899 7] ?7)/27.6] 15754 37.8 [15754 I
bryant |/ 0.2 1066| 0.2] 1066 0.2[1066| 1.0| 1033] 1.0[1781 0.9 1781
caslog || 2.1] 6506 | 4.5] 6539 || 744.4 | 7027 || 17.9 [11054 || 21.8 | 11054 I

chat80 0.6 | 25361 1.1| 2536 9.12536 || 4.4 3923 | 7.7| 3926 | 285.7|5111

eliza 0.1 49| 0.1 49 0.1 491 0.3 109 || 0.5 113 05| 113

lg.sys || 27| 7328 7.9| 7334 725.1| 7334

ochina || 0.9| 2187 2.6| 2189 5.0 12193 || 59| 3936 | 9.6 | 3936 ? ?

pets_an || 0.6 | 2525| 1.3 | 2563 || 19.8|2569 | 3.7| 4664 | 5.3 | 4664 || 1006.5 | 4710

quot_an || 0.3 2881 04 288 03| 288 14 639 || 3.2 646 3.1| 646

simple || 0.1 373 || 0.1 373 01| 373 | 0.8 o721 1.3 639 176 | 639

slice 0.6 426 || 0.9 428 0.8 | 428

Table 4: SH" with Vi, vs SH" with V{,, vs plain SH”: timings and precision.

References

[1]

R. Bagnara. Data-Flow Analysis for Constraint Logic-Based Languages. PhD
thesis, Dipartimento di Informatica, Universita di Pisa, Corso Italia 40, I-56125
Pisa, Italy, March 1997. Printed as Report TD-1/97.

R. Bagnara. Widening Pos: Simple, effective, and rarely needed. Unpublished
short note, 1998.

R. Bagnara, P. M. Hill, and E. Zaffanella. Set-sharing is redundant for pair-
sharing. Theoretical Computer Science, 1999. To appear.

R. Bagnara and P. Schachte. Factorizing equivalent variable pairs in ROBDD-
based implementations of Pos. In A. M. Haeberer, editor, Proceedings of
the “Seventh International Conference on Algebraic Methodology and Software
Technology (AMAST’98)”, volume 1548 of Lecture Notes in Computer Science,
pages 471-485, Amazonia, Brazil, 1999. Springer-Verlag, Berlin.

C. Bron and J. Kerbosch. Finding all cliques of an undirected graph. Commu-
nications of the ACM, 16(9):575-577, 1973.

M. Bruynooghe, M. Codish, and A. Mulkers. Abstract unification for a com-
posite domain deriving sharing and freeness properties of program variables.
In F. S. de Boer and M. Gabbrielli, editors, Verification and Analysis of Logic
Languages, Proceedings of the W2 Post-Conference Workshop, International
Conference on Logic Programming, pages 213-230, Santa Margherita Ligure,
Italy, 1994.

M. Codish, H. Sgndergaard, and P. J. Stuckey. Sharing and groundness depen-
dencies in logic programs. Submitted for publication.

Widening Sharing

8]

[10]

[11]

[12]

[13]

[16]

[17]

A. Cortesi and G. Filé. Comparison and design of abstract domains for sharing
analysis. In D. Sacca, editor, Proceedings of the “Eighth Italian Conference on
Logic Programming (GULP’93)”, pages 251-265, Gizzeria, Italy, 1993. Mediter-
ranean Press.

A. Cortesi and G. Filé. Sharing is optimal. Journal of Logic Programming,
38(3):371-386, 1999.

P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing /narrowing approaches to abstract interpretation. In M. Bruynooghe and
M. Wirsing, editors, Proceedings of the jth International Symposium on Pro-
gramming Language Implementation and Logic Programming, volume 631 of
Lecture Notes in Computer Science, pages 269-295, Leuven, Belgium, 1992.
Springer-Verlag, Berlin.

C. Fecht. An efficient and precise sharing domain for logic programs. In
H. Kuchen and S. D. Swierstra, editors, Programming Languages: Implementa-
tions, Logics and Programs, Proceedings of the Eighth International Symposium,
volume 1140 of Lecture Notes in Computer Science, pages 469-470, Aachen,
Germany, 1996. Springer-Verlag, Berlin. Poster.

C. Fecht. Efficient and precise sharing domains for logic programs. Techni-
cal Report A/04/96, Universitdt des Saarlandes, Fachbereich 14 Informatik,
Saarbriicken, Germany, 1996.

P. M. Hill, R. Bagnara, and E. Zaffanella. The correctness of set-sharing. In
G. Levi, editor, Static Analysis: Proceedings of the 5th International Sympo-
situm, volume 1503 of Lecture Notes in Computer Science, pages 99-114, Pisa,
Italy, 1998. Springer-Verlag, Berlin.

D. Jacobs and A. Langen. Static analysis of logic programs for independent
AND parallelism. Journal of Logic Programming, 13(2&3):291-314, 1992.

A. Langen. Static Analysis for Independent And-Parallelism in Logic Programs.
PhD thesis, Computer Science Department, University of Southern California,
1990. Printed as Report TR 91-05.

K. Muthukumar and M. Hermenegildo. Compile-time derivation of variable
dependency using abstract interpretation. Journal of Logic Programming,
13(2&3):315-347, 1992.

H. Sgndergaard. An application of abstract interpretation of logic programs:
Occur check reduction. In Proceedings of the 1986 European Symposium on
Programming, volume 213 of Lecture Notes in Computer Science, pages 327—
338. Springer-Verlag, Berlin, 1986.

E. Zaffanella, R. Bagnara, and P. M. Hill. Widening Sharing. Submitted for
publication. Available at http://www.cs.unipr.it/“bagnara/, 1999.

