
Modular Analysis of Suspension Free cc

Programs∗

Enea Zaffanella
Dipartimento di Informatica

Università di Pisa
Corso Italia 40, 56125 Pisa
zaffanel@di.unipi.it

Abstract

Compositional semantics allow to reason about programs in an incremental way,
thus providing the formal base for the development of modular data-flow analyses. The
major drawback of these semantics is their complexity, which increases as the interac-
tions between different program modules become more sophisticated. As a consequence,
the benefits of a compositional approach can be easily overcome by the incurred com-
putational overhead. This observation applies in particular to concurrent constraint
(cc) program modules, which can interact in very complicated ways by means of their
synchronization primitive (the ask guard). In this work we provide a modular abstract
interpretation framework for cc programs that partially solves this problem. By assum-
ing the whole program suspension free, we show that it is possible to compositionally
compute an approximation of its run-time behavior while keeping complexity under
control. To this end we translate the cc program into a clp program and analyze the
latter. Correctness results are easily stated in an implicative form. The approach is
truly incremental and it does not depend on the chosen program decomposition; in
particular no hypotheses are needed on the suspension freeness of each single module.

1 Introduction

Modular development is essential for the successful construction of large programs. Mod-
ularity imposes several requirements on the tools and techniques used for program devel-
opment. In particular, it requires tools which behaves nicely with respect to the (explicit
or implicit) program composition operators of the language. The notion of compositional
semantics emerges from the need of providing a semantic support to modularity, since these
semantics allow to express the meaning of a program in terms of the meaning of its con-
stituent parts. In this paper we consider the problem of providing a compositional abstract
interpretation framework for the analysis of concurrent constraint (cc) programs, the con-
current extension of constraint logic programs (clp) defined by Saraswat et al. [15, 14]. In
particular, here we are interested in the compositionality with respect to the union of cc
programs. Consider a cc program P which is split into modules M1, . . . , Mn, each mod-
ule Mi having being analyzed separately so to obtain the information Si on its run-time
∗This work has been supported by the “PARFORCE” (Parallel Formal Computing Environment) BRA-

Esprit II Project n. 6707.

behavior. In a truly compositional analysis framework, the information on the run-time
behavior of the program P can be obtained by suitably composing S1, . . . , Sn. This has
the big advantage that, should Mk be changed into M ′k for some reason, the information on
the new overall program P ′ can be obtained by (1) analyzing only the changed module M ′k
obtaining S′k, and (2) combining S′k with the old S1, . . . Sk−1, Sk+1, . . . Sn, thus avoiding
to re-analyze the unchanged modules. This is possible, of course, only if our analyzer is
based on a compositional abstract interpretation, i.e. both the concrete and the abstract
semantics are compositional. However, we have no a priori guarantee on the effectiveness
of the approach. It might well be the case that our potential advantages (e.g., savings on
the analysis time) are destroyed by the overhead imposed by the need of a compositional
semantics. In our opinion, indeed, such an approach is very likely to be uneffective in the cc
case, as a compositional semantics for these languages seems to be too complex for a prac-
tical use. This is because cc agents can interact in a subtle and complicated way by means
of their synchronization mechanism and therefore easily introduce very strong dependencies
between different modules.

Things are much better if we restrict ourselves to cc programs which are suspension free,
meaning that their terminating computations do not contain suspended processes. This
reactive property of cc programs is important for several reasons. First of all suspended
computations usually correspond to undesired behaviors of the program; their presence is
very likely to denote a programming error and, indeed, a lot of research work has been
directed to the development of tools for proving a program suspension free [3, 4, 7]. More-
over, suspension freeness does not behave well with respect to compositionality, as it can
be shown that by combining suspension free program modules we can produce suspended
computations. These considerations suggest a two steps approach to the abstract interpre-
tation of cc programs. In the first step the program is proved suspension free. The second
step assumes suspension freeness and uses this information to perform the static analysis in
a more efficient and precise way. In this paper we show how to perform the second step of
the outlined approach in a modular and effective way, i.e. avoiding the complexity problems
stated before. For the purposes of program analysis, as shown in [17], a suspension free cc
program P can be safely translated into a clp program P ′ by removing all synchronizations
(i.e. ask guards). The abstract interpretation of P ′, computed within any framework for
clp, yields a correct approximation of the semantics of the original program P . Following
[9], we will introduce a semantics for the translated programs which is compositional wrt the
union of programs. This semantics is then approximated by applying the theory of abstract
interpretation. The correctness result do not depend on the program decomposition we
have chosen; in particular, it holds even if all the modules are not suspension free. Another
important point to stress is that the two steps do not need to be chronologically ordered;
the compositional abstract interpretation can be performed even before proving suspension
freeness, thus allowing a truly incremental approach to analysis.

2 Constraint Systems and cc Languages

Constraint systems are semantic domains formalizing the gathering and the management
of partial information.

Definition 2.1 (partial information system) [16]
A partial information system is a quadruple 〈D,∆,Con,` 〉 where D is a denumerable set

of elementary assertions (tokens), ∆ ∈ D is a distinguished assertion (the least informative
token), Con is a family of finite subsets of D (the consistent subsets of tokens) and `⊆
Con × Con is the entailment relation satisfying (for u, v, w ∈ Con) ∅ ` {∆}, u ` v if v ⊆ u
and u ` w if (u ` v ∧ v ` w).

Entailment closed sets of tokens are called constraints and provide representatives for
the equivalence classes induced by the entailment relation; in particular, true denotes the
set of all the trivial tokens. Note that, in a partial information system, all constraints
are consistent. In order to model inconsistent information, we add a special token ∇ to
D and say that, for all P ∈ D, the entailment {∇} ` {P} holds; we also take Con =
{u ⊆ D | card(u) < ω }. Therefore, the entailment closure of {∇} is the whole set D, which
is denoted false. The simple constraint system generated by a partial information system is
the complete lattice 〈C,a, true, false,t,u 〉 of all the constraints together with the partial
order induced by the reverse of the entailment relation (which we will denote a). We write t
to denote the constraint composition operator (the lub of the constraint system). Cylindric
constraint systems [14] (constraint systems for short) are simple constraint systems in which
the notion of variable is explicitly taken into account. The constraint algebra is enriched by
diagonal elements dxy and cylindric operators ∃x [13].

Definition 2.2 (constraint system)
A (cylindric) constraint system C = 〈C,a, true, false,t,u,∃x, dxy 〉x,y∈V is an algebraic
structure where 〈C,a, true, false,t,u 〉 is a simple constraint system; V is a denumerable
set of variables; ∀x, y ∈ V , ∀c, c′ ∈ C we have ∃x false = false, ∃xc a c, c a c′ implies
∃xc a ∃xc′, ∃x(c t ∃xc′) = ∃xc t ∃xc′, ∃x(∃yc) = ∃y(∃xc); ∀x, y, z ∈ V , ∀c ∈ C we have
dxx = true, z 6≡ x, y implies dxy = ∃z(dxz t dzy), x 6≡ y implies c a dxy t ∃x(c t dxy).

We refer to [16] and [14] for a more detailed presentation. In the following, we write x̂
to denote a sequence of distinct variables; we often write x̂ to denote the set of variables
occurring in the sequence x̂. Given x̂ = (x1, . . . , xn) we write ∃x̂c to denote the constraint
∃x1(. . .∃xn(c)); given ŷ = (y1, . . . , yn), we write dx̂ŷ to denote the constraint dx1y1 t . . . t
dxnyn . When it is not specified in the context, we always assume that the arities of such
tuples are matching. The projection operator ∃x̂ is defined as ∃x̂c = ∃V \x̂ c, i.e. it hides the
information of all the variables but x̂. The set of variables that occurs free in a constraint c
is vars(c) = {x ∈ V | ∃xc 6= c}.

As an example, let us formalize the constraint system of dependency relations, which
can be used to propagate interesting properties of program variables (e.g. definiteness).

Example 2.1 [Dependency relations][3]
Let V be a finite set of variables and π be a property. The set of tokens is defined as
D = (℘(V) × ℘(V)) ∪ {∇}; the interpretation of a token (X,Y) ∈ D is that if all the
variables in Y satisfy property π, then all the variables in X satisfy the property too.
The entailment |= is defined (accordingly to the intuitive meaning of a set of tokens) as
the minimal entailment relation on D such that, for all R ⊆ D and X,Y,W,Z ⊆ V , if
X ⊆ Y then ∅ |= {(X,Y)}, if (R |= {(X,Y)} ∧R |= {(Y, Z)}) then R |= {(X,Z)}, if (R |=
{(X,Y)}∧R |= {(W,Z)}) then R |= {(X∪W,Y ∪Z)}. Given a set of tokens R ⊆ D, let %(R)
denote its entailment closure. Moreover we can define ∃xR = % (%(R)\{(X,Y) |x ∈ X ∪ Y })
and dxy = % ({({x}, {y}), ({y}, {x})}). 2

In the following we systematically confuse a set of tokens and the constraint generated by
this set, that is its entailment closure.

2.1 Modeling nondeterminism

Each element in the domains of [14] models the result of a single computation (using
the terminology of [11], each element of such domains is a simple constraint). In order
to characterize the nondeterministic choice of (concurrent) constraint languages, sets of
computations are considered in all the semantic definitions given in the literature.

In this paper, following [11], we adopt a more general solution by considering an algebraic
“solution merging” operator ⊕. Let ρ : ℘(C)→ ℘(C) be an upper closure operator on ℘(C);
define Pρ(C) = {ρ(S) |S ∈ ℘(C)}.

Definition 2.3 (disjunctive lifting)
The disjunctive lifting of the constraint system C = 〈C,a, true, false,t,u,∃x, dxy 〉x,y∈V wrt
ρ is defined as Pρ(C) = 〈 Pρ(C)),⊆,0,1,⊕,∩,⊗,∃∃x, δxy 〉x,y∈V , where 〈 Pρ(C),⊆,0,1,⊕,∩ 〉
is a complete lattice; 0 = ρ(∅), 1 = ρ(C) = C and δxy = ρ({dxy}); for all S, S′ ∈ Pρ(C) we
have S⊗S′ = ρ({c t c′ | c ∈ S, c′ ∈ S′ }), S⊕S′ = ρ(S∪S′) and ∃∃x(S) = ρ({∃xc | c ∈ S }).
The lifting function {| · |} : C → Pρ(C) is defined as {|c|} = ρ({c}).

Note that the (lifted) composition operator ⊗ is associative and commutative, but in general
it is not idempotent. By taking ρ = id , we obtain the powerset of the constraint system C,
where ⊕ = ∪, and the other operators on Pid(C) (namely ⊗, ∃∃x and δxy) are simply the
linear extensions of the corresponding operators on C. This domain can be used to model
computed answer constraints and indeed it is at the base of the extension to the clp case of
the s-semantics construction defined in [8] for pure logic programs. It is worth to stress that,
in the general case, the disjunctive lifting of a constraint system is not itself a constraint
system, as the lifted operators do not necessarily satisfy the axioms of Definition 2.2. In the
following, when no confusion can arise, we freely omit the subscript ρ; moreover, depending
on the context, the symbol c will be used to denote an element ranging both on the set of
constraints C and on the set of disjunctive elements P(C).

2.2 The Language

In order to simplify the program translation defined in subsection 3.1, we introduce
concurrent constraint languages [15, 14] by giving a syntax based on clauses; each concurrent
process is thus defined by a set of clauses. Each clause consists of three parts: a head, a (ask
and tell) pair of constraints and a body part, which is a sequence of process calls representing
their parallel composition (see Table 1). Given a body B = p1(x̂1), . . . , pn(x̂n) we define the
variables tuple of B as vt(B) = x̂1 · . . . · x̂n; then, given a clause cl ≡ p0(x̂0) :– a : c2B, we
define vt(cl) = x̂0 · vt(B). We consider only clauses in normal form.

Definition 2.4 (normal form)
A cc clause cl ≡ h :– a : c2B is in normal form iff the variables in vt(cl) are all distinct,
vars(a) ⊆ vt(cl) and vars(c) ⊆ vt(cl).

All the variables that do not occur in the head (namely, all the variables in the body B)
are considered local variables (this is needed in order to preserve the referential transparency
property). Note that we are not restricting the expressive power of the language as any cc
clause can be easily mapped to an equivalent clause in normal form.

Program ::= ε | Clause Program
Clause ::= Head :– Ask : Tell 2 Body.
Body ::= ε | Call Body
Head, Call ::= p(x̂)
Ask, Tell ::= c

Table 1: The syntax

The operational model is described by a transition system T = (Conf , W−→P), where
Conf = {〈 c2B 〉 | c ∈ C, B ∈ Body} and the transition relation W−→P is defined by the
following transition rule:

cl �X P a a (dx̂ŷ t σ)

〈σ2B1, p(x̂), B2 〉
W−→P 〈 c t dx̂ŷ t σ2B1 ·B′ ·B2 〉

where cl ≡ p(ŷ) :– a : c2B′ and X = W ∪ vars(σ) ∪ vt(B1, p(x̂), B2).
Note that W−→P is indexed on the program P and on the set of variables of interest

W ⊆ V , which are the variables occurring in the initial configuration. When no confu-
sion can arise we simply write W−→, thus omitting the program index P . In a configuration
〈σ2B 〉 ∈ Conf, the (finite) constraint σ ∈ C is the global store while the body B represents
the residual computation. The reduction of a process call p(x̂) implements nondeterministic
choice, parameter passing, synchronization and constraint publication all at once. We non-
deterministically select a program clause cl ≡ p(ŷ) :– a : c2B′ which is renamed apart wrt
both the current configuration and the set of variables of interest W (notation obj �X S
means that the object obj is obtained by choosing an element of S and renaming it so that it
contains none of the variables in X). Then we check whether the ask constraint a is entailed
by the current store σ augmented with the parameter passing constraint dx̂ŷ. If this is the
case then the computation commits, i.e. the call p(x̂) is replaced by the clause body B′ and
the global store is augmented by the parameter passing information and the tell constraint
c. Note that we do not perform any consistency check on the tell constraint. Otherwise, if
no such clause exists, the process call cannot be reduced and we say that p(x̂) is stuck in
the current configuration. A computation s for a program P and an initial configuration
〈σ2B 〉 is a possibly infinite sequence of configurations { 〈 ci 2Bi 〉 }i such that B0 = B and

c0 = σ and for all i < |s|, 〈 ci 2Bi 〉
W−→ 〈 ci+1 2Bi+1 〉. Let /−→ denote the absence of admis-

sible transitions. Sequences reaching configurations 〈 cn 2Bn 〉 such that 〈 cn 2Bn 〉 /−→ are
called terminating computations and cn ∈ C is the (finite) computed answer constraint. A
terminating computation such that Bn = ε is a successful computation, otherwise (Bn 6= ε)
it is a suspended computation.

Definition 2.5 (finite semantics) Let G = 〈σ2B 〉 and let W = vars(σ) ∪ vt(B). The
finite semantics for program P and configuration G is

O[[P]](G) =
⊕{

{| ∃W c |}
∣∣∣ G (W−→P)∗ 〈 c2B′ 〉 /−→P

}
Note that the computed answer constraints are projected onto the set of variables of interest,
namely the variables occurring in the initial configuration G. Moreover, the finite semantics

considers the results of all the terminating computations, regardless of whether they are
successful or suspended. We say that program P and configuration G are suspension free if
there is no suspended computation for P starting from G.

3 Compositional Analysis: a Compromise

In many contexts, e.g. for the designing and analysis of complex concurrent programs,
adopting a compositional approach is a must. Unfortunately, it is known that the suspension
freeness of a program is not compositional, namely we can obtain suspended computations
by combining suspension free program chunks.

Example 3.1 Consider the following programs.

P1 :

p(x) :– true : x = a2 .

r(x) :– true : x = y2 q1(y, z).
q1(y, z) :– y = a : true 2 .

q1(y, z) :– z = a : true 2 .

P2 :

p(x) :– true : x = b2 .

r(x) :– true : x = y2 q2(y, z).
q2(y, z) :– y = b : true 2 .

q2(y, z) :– z = b : true 2 .

Given the initial configuration G = 〈x = y2 p(x), r(y) 〉, it can be easily observed that
P1 (resp. P2) and G are suspension free, while for P = P1 ∪ P2 and G we have the
following suspended computation (where we have renamed variables and projected the store
for readability):

〈x1 = x2 2 p(x1), r(x2) 〉 W−→P 〈x1 = x2 = a2 r(x2) 〉
W−→P 〈x1 = x2 = a2 q2(x2, z) 〉 /−→P

2

The viceversa also holds, i.e. it is possible to obtain a suspension free program by
combining two or more program chunks which are not suspension free.

Example 3.2 Consider the following programs.

P1 :

{
p(x, y) :– true : x = a2 .

q(x, y) :– y = b : true 2 .
P2 :

{
p(x, y) :– true : y = b2 .

q(x, y) :–x = a : true 2 .

Given the initial configuration G = 〈x1 = x2, y1 = y2 2 p(x1, y1), q(x2, y2) 〉, it can be easily
observed that both P1 and P2 with configuration G are not suspension free (they have no
successful computation at all), while for P = P1∪P2 and G we can easily prove suspension
freeness. 2

Hence, even if we are able to prove the suspension freeness of all the program modules,
the whole program is not proved to be suspension free. Obviously, a semantics which is
compositional wrt the union of cc programs can be defined, but it is very likely that, in
order to be correct, this semantics would have to encode the whole computation structure.

NoSynch[ε] = ε

NoSynch[cl progr] = NoSynch[cl] NoSynch[progr]
NoSynch[p(x̂) :– a : c2G.] = p(x̂) :– (a t c) 2G.

Table 2: The transformation NoSynch

3.1 The two-steps approach

These considerations suggest a two step approach to the modular abstract interpretation
of cc programs. In the first step we prove that the complete program is suspension free. The
second step assumes the suspension freeness and uses this information to perform the static
analysis in a more efficient way. Following [17], we now define a semantics for cc programs
that observes successful computations only.

Definition 3.1 (success semantics) Let G = 〈σ2B 〉 and let W = vars(σ)∪vt(B). The
success semantics for program P and configuration G is

SS[[P]](G) =
⊕{

{| ∃W c |}
∣∣∣ G (W−→P)∗ 〈 c2 . 〉

}
Remark 3.1 If P and G are suspension free then O[[P]](G) = SS[[P]](G).

Hence, if our program is suspension free, we can use the success semantics for the correct-
ness proofs of our abstract interpretation framework. The success semantics for cc programs
can be easily approximated by defining a syntactic transformation called NoSynch [17], map-
ping all the ask constraints of the program into equivalent tell constraints, i.e. removing all
the synchronization tests. As pointed out in [17], the transformed program is a sequential
constraint logic program (plus syntactic sugar), thus allowing the application of the gener-
alized approach as developed in [11]. To make this observation more evident, in this work
we redefine NoSynch as a translation, directly mapping cc programs into clp programs (see
Table 2); note that, while translating the clauses, we also map each constraint a t c ∈ C to
its disjunctive lifting {|at c|} ∈ P(C). By lifting the function vars on P(C) (i.e. by defining
vars(c) = {x ∈ V | ∃∃xc 6= c}), it can be easily proved that NoSynch preserves the normal
form of clauses.

3.2 The semantics of Ω-programs

Definition 3.2 (Ω-program) [1, 9] An Ω-program is a (concurrent) constraint logic pro-
gram P together with a set Ω of predicate symbols.

Let pred(P) denote the set of predicates that are defined in P (this set can be a proper
subset of the predicates occurring in P). A predicate symbol occurring in Ω is considered
to be only partially defined in P , i.e. it is open in P . On the other hand, predicate symbols
occurring in P but not in Ω have to be considered closed, i.e. fully specified1. This means
that an Ω-program P can be composed with other programs provided that these ones do
not further specify the predicates which are closed in P .

1In order to avoid technical problems when defining the compositional semantics, we assume that all the
closed predicates are defined in P ; namely, if p ∈ Π \ Ω occurs in P then p ∈ pred(P). This condition can
always be met by eventually adding a dummy definition p(x̂) :– 0 2 .

Definition 3.3 (Ω-union) [1, 9] Let P1 be an Ω1-program and P2 be an Ω2-program. If
Ω ⊆ Ω1∩Ω2 and (pred(P1)∩pred(P2)) ⊆ (Ω1∩Ω2) then P1∪ΩP2 is the Ω-program P1∪P2.
Otherwise P1 ∪Ω P2 is not defined.

From now on, we consider a clp program P obtained by applying the translation NoSynch.
The key observation of [1] is that compositionality wrt program union can be achieved by
considering interpretations based on (possibly non-unit) clauses. Hence, the compositional
fixpoint semantics FΩ(P) is obtained by extending the semantic construction of the previous
section.

Definition 3.4 (clause skeleton)
Let cl : p0(x̂0) :– c2 p1(x̂1), . . . , pn(x̂n) be a clp clause in normal form. The skeleton of cl
is defined as skel(cl) = 〈 p0, p1, . . . , pn 〉 ∈ Π+. Given a set Ω ⊆ Π of predicate symbols, the
set of Ω-skeletons is defined as ΠΩ∗ = {〈 p0, . . . , pn 〉 | p0 ∈ Π, 〈 p1, . . . , pn 〉 ∈ Ω∗ }.

Definition 3.5 (Ω-interpretation) Let cl ≡ p0(x̂0) :– c2B and cl ′ ≡ p′0(ŷ0) :– c′2B′ be
two clauses in normal form. We write cl � cl ′ iff skel(cl) = skel(cl ′) and ∃∃x̂(δx̂ẑ ⊗ c) ⊆
∃∃ŷ(δŷẑ ⊗ c′), where x̂ = vt(cl), ŷ = vt(cl ′) and ẑ is a tuple of distinct variables such that
x̂ ∩ ẑ = ŷ ∩ ẑ = ∅. Then cl ∼ cl ′ iff both cl � cl ′ and cl ′ � cl hold. The interpretation base
is BΠ

Ω = { [cl]∼ | skel(cl) ∈ ΠΩ∗ }. An Ω-interpretation I ∈ =Π
Ω is any subset of BΠ

Ω such
that for each sk ∈ ΠΩ∗ there exists one and only one clause cl ∈ I such that skel(cl) = sk.

As in the previous section, we omit the superscript Π when no confusion can arise and
we order Ω-interpretations by extending the partial order � defined on clauses. The domain
〈 =Ω,�〉 is again a complete lattice.

Let us introduce the merge operator (·)[: ℘(BΩ)→ =Ω.

(S)[=

 [cl]∼

∣∣∣∣∣∣∣∣∣
∃ sk ∈ ΠΩ∗ such that
cl ≡ h :– c2B, skel(cl) = sk, x̂ = vt(cl)

c =
⊕{

∃∃ŷ(δŷx̂ ⊗ c′)
∣∣∣∣ cl ′ ≡ h′ :– c′2B′ �x̂ S

skel(cl ′) = sk, ŷ = vt(cl ′)

}

The lub] on =Ω is defined as before:
⊎
i∈J Ii =

(⋃
i∈J Ii

)[.
Given the set of predicates Ω, let IdΩ = { [p(x̂) :– δŷx̂ 2 p(ŷ).]∼ | p ∈ Ω}. The TΩ

P opera-
tor is obtained by unfolding the program P wrt the Ω-interpretation I augmented with IdΩ.
A careful use of clauses renaming and cylindric operators allows to preserve normal forms.

Definition 3.6 (TΩ
P) [9]

Let cl0 ≡ p0(x̂0) :– c0 2B be a clp clause, where B = p1(x̂1), . . . , pn(x̂n); let I be an Ω-
interpretation and X0 = ∅. We define the operator TΩ

cl0
: =Ω → ℘(BΩ) as follows:

TΩ
cl0

(I) =

 [p0(x̂0) :– c2B1, . . . , Bn]∼

∣∣∣∣∣∣∣∣∣
∀ i ∈ {1, . . . , n} . Xi = Xi−1 ∪ vt(cl i−1)
∃ cl i ≡ pi(ŷi) :– ci 2Bi �Xi (I ∪ IdΩ)

c = ∃∃vt(B)

(
c0 ⊗

(
n⊗
i=1

∃∃ŷi(δŷix̂i ⊗ ci)
))

Thus TΩ

P : =Ω → =Ω is defined as TΩ
P (I) =

(⋃{
TΩ

cl (I) | cl ∈ P
})[and FΩ(P) = TΩ

P ↑ ω.

If Ω 6= ∅ then any Ω-interpretation is an infinite set, as the set of Ω-skeletons ΠΩ∗ is
infinite. For simplicity, when denoting an Ω-interpretation we usually drop all the clauses
h :– c2B such that c = 0. Even by adopting this representation convention, in general
Ω-interpretations are infinite sets (we will discuss this point later in subsection 4.1). As a
special case, by taking Ω = ∅, we obtain the set of ∅-interpretations =∅ = = which is exactly
the set of interpretations defined in the previous section; moreover, T ∅P = TP and F∅ = F .

Theorem 3.1 (compositionality) [9] Let P1 be an Ω1-program, P2 be an Ω2-program and
let P1 ∪Ω P2 be defined. Then FΩ(FΩ1(P1) ∪Ω FΩ2(P2)) = FΩ(P1 ∪Ω P2).

We have seen that the compositional semantics of an Ω-program P encodes the depen-
dences of P from the open predicates Ω. By giving the semantics of the predicates in Ω we
fully specify the semantics of P ; for this reason we call Ω-closure any interpretation I ∈ =Ω

∅ .
Given the Ω-programs P1 and P2, we define the equivalence relation ≈Ω that holds whenever
P1 and P2 are equivalent under all the possible Ω-closures (here we regard an Ω-closure as
an Ω-program).

Definition 3.7 P1 ≈Ω P2 iff for all Ω-closures I we have F(P1 ∪∅ I) = F(P2 ∪∅ I).

Proposition 3.2 [1] P1 ≈Ω FΩ(P1) and (FΩ(P1) = FΩ(P2) ⇒ P1 ≈Ω P2).

4 Correctness Results

In this section we formalize the notion of correctness of an abstract domain wrt (the
disjunctive lifting of) a constraint system. This condition implies the correctness of the
(compositional) abstract semantic construction, which is obtained my mimicking the con-
crete one on the abstract domain. The definitions are inspired by [11, 12], which in turn are
based on the classical works on abstract interpretation theory [5, 6].

Definition 4.1 An abstract domain A = 〈L,v],0],1],⊕],u],⊗],∃∃]x, δ]xy 〉x,y∈V is a com-
plete lattice 〈L,v],0],1],⊕],u] 〉 together with a binary operator ⊗], a family of unary
operators ∃∃]x for x ∈ V and a family of distinguished elements δ]xy ∈ L for x, y ∈ V .

The safeness of the overall construction can be achieved by suitably relating the concrete and
abstract elements and by imposing correctness conditions regarding the domain’s operators.

Definition 4.2 An abstract domain A = 〈L,v],0],1],⊕],u],⊗],∃∃]x, δ]xy 〉x,y∈V is correct
wrt the concrete domain P(C) = 〈 P(C),⊆,0,1,⊕,∩, ,⊗,∃∃x, δxy 〉x,y∈V using α iff there
exists an upper Galois insertion (α, γ) relating P(C) and L and ∀c, c′ ∈ P(C), ∀x, y ∈ V
α(c ⊗ c′)v]α(c)⊗] α(c′), α(∃∃xc)v]∃∃]xα(c) and α(δxy)v]δ]xy.

Example 4.1 [groundness][11]
Consider the Herbrand constraint system (together with the disjunctive lifting induced by
ρ = id) and consider the abstract domain induced by the constraint system of dependency
relations defined in Example 2.1. It is known that the latter is equivalent to the domain
Def of definite and positive boolean functions defined on variables V , together with the
element False. We now relate the two domains by exploiting the groundness dependency
information. Let c ≡ ∃Y {xi = ti | i = 1, . . . , n} ∈ H be a Herbrand constraint in solved

form2 and, for all i ∈ {1, . . . , n}, let Wi = vars(ti). Define the function αH : H → Def such
that α(c) = ∃Y (∧ni=1(xi ↔ ∧Wi)) and let αH(false) = False. The abstraction function
α : ℘(H)→ Def is defined as the additive extension of αH , i.e. α(S) = ⊕] {αH(c) | c ∈ S }.
Then the constraint system Def is correct wrt P(H) using α [11]. 2

By substituting each occurrence of elements and operators of the concrete domain by
the corresponding elements and operators of the abstract domain, we systematically derive
the notions of abstract program, goal and clauses; abstract clauses are ordered by �] and
we easily define the set =]Ω of abstract Ω-interpretations, which is ordered, as before, by
extending the relation �]; then we define the abstract immediate consequences operator
and the abstract bottom-up semantic function F]Ω.

Theorem 4.1 (correctness) (α ◦ FΩ)(P) �] (F]Ω ◦ α)(P)

We are now ready to formalize the relation between the semantics of a cc program and the
semantics of its NoSynch translation, the latter semantics being computed compositionally.

Let P1 and P2 be two cc programs; let Ω1 (resp. Ω2) be the set of predicates that are
open in P1 (resp. P2), such that P = P1 ∪∅ P2 is defined. Given the cc configuration G, let
G] be its corresponding abstract clp goal and define P]i = α(NoSynch(Pi)), where i = 1, 2.

Corollary 4.2 α(SS[[P]](G)) v] F]∅(F
]
Ω1

(P]1) ∪∅ F]Ω2
(P]2))(G])

Corollary 4.3 If program P = P1 ∪∅ P2 and configuration G are suspension free then

α(O[[P]](G)) v] F]∅(F
]
Ω1

(P]1) ∪∅ F]Ω2
(P]2))(G])

Obviously, these results can be generalized to the case of n > 2 program modules. Also note
that they do not depend on the program decomposition we have chosen.

4.1 Termination

Up to now, we have described an abstract interpretation framework. To turn the abstract
interpretation into a static analysis, we have to be sure that the approximation of the
semantics is finitely computable. Note that, as the set ΠΩ∗ is infinite (unless Ω = ∅), we
can obtain a diverging computation even if our abstract domain is finite. A general way
to overcome the problem is the definition of a widening operator on the lattice of abstract
Ω-interpretations. Some proposals are in the literature; e.g., in [3] sequences of process
calls in a cc configuration are handled by applying another approximation layer, called ∗-
abstraction; the same technique has been applied in [2] for the compositional analysis of
pure logic programs; this solution enforces termination but must pay in terms of accuracy.
An interesting result has been achieved in [10] for the case of finite abstract domains. In this
case a finite characterization of the compositional semantics of a (constraint) logic program
can be obtained (without any loss of precision) as the result of a finite number of iterations
of the immediate consequences operator TΩ

P . In practice, instead of checking if we have
reached the fixpoint of TΩ

P , we check for the T -stability of the n-th iterate.

Theorem 4.4 [10]
Let P be an Ω-program computing on a finite constraint system. There exists an n < ω such
that for all m ≥ n we have (TΩ

P ↑ n) ≈Ω (TΩ
P ↑ m).

2Namely, i 6= j entails xi 6≡ xj , Y =
⋃n

i=1
vars(ti) and xi 6∈ Y for all i ∈ {1, . . . , n}.

Note that having assumed the finiteness of the domain, we obtain the finiteness of the T -
stability check also, as we have a finite number of possible Ω-closures each one being a finite
object.

5 Example

To clarify the picture, we now show a compositional analysis computing the groundness
dependencies between the variables of a cc program defined on the Herbrand constraint
system. In the program chunk P , process q is left unspecified (as usual, we denote anonymous
Herbrand variables by underscores).

P :

g(x, y) :– true : x = x1 = z, y = y1 2 p(x1, y1), q(z).
p(x, y) :–x = [a|] : x = [a|x1], y = [b|y1] 2 p(x1, y1).
p(x, y) :–x = [] : y = [] 2 .

The corresponding abstract program is P] = (α ◦NoSynch)(P), where we use the α defined
in Example 4.1:

P] :

g(x, y) :– (x↔ x1 ↔ z) ∧ (y ↔ y1) 2 p(x1, y1), q(z).
p(x, y) :– (x↔ x1) ∧ (y ↔ y1) 2 p(x1, y1).
p(x, y) :–x ∧ y2 .

Let Ω1 = {q}; then F]Ω1
(P]) = { p(x, y) :–x ∧ y2 . , g(x, y) :–x ∧ y ∧ z2 q(z). }. Let us

consider the initial configuration G = 〈 true 2 g(x, y) 〉 and let Q be any Ω2-program such
that P ∪∅ Q is defined. The informal reading of the previous abstract denotation is that
all the successful computations of P ∪∅ Q starting from G bind both variables to ground
terms. Indeed, let Ω2 = ∅ and consider the following two alternative Ω2-programs defining
the process q.

Q1 :

{
q(x) :– true : x = [a|x1] 2 q(x1).
q(x) :– true : x = [] 2 .

Q2 :

{
q(x) :– true : x = [|x1] 2 q(x1).
q(x) :– true : x = [] 2 .

Program P1 = P ∪ Q1 and goal G are suspension free and it can be easily observed that
in all the answers of the finite semantics O[[P1]](G) the variables x and y are ground, thus
showing the correctness of the analysis. Things are different when considering program P2 =
P ∪Q2, which is not suspension free; in this case the finite semantics contains terminating
computations reaching final stores in which both x and y are not ground. Nonetheless, for all
the successful computations, correctness still holds (there is only one successful computation
for P2 and G, yielding the store (x = [], y = [])).

6 Conclusions

Due to the sophisticated synchronization mechanism provided by ask guards, the com-
plexity overhead of a compositional semantics for concurrent constraint programs can easily
overcome the benefits of a modular approach to the static analysis of these languages. In this
work we have provided a modular abstract interpretation framework that partially solves
this problem by assuming that the complete cc program is suspension free. For the purposes

of program analysis, a suspension free cc program can be safely translated into a clp program
by removing all its ask guards. The abstract interpretation of the new program, computed
within any framework for clp, yields a correct approximation of the semantics of the original
program. The complexity of this construction is limited, as the translation greatly simpli-
fies the interactions between the program modules. This methodology provides results in
implicative form: all the computations of the complete program that do not suspend are
correctly described by the compositionally computed approximation. The approach is truly
incremental and it does not depend on the chosen program decomposition: no hypotheses
are made on the suspension freeness of each program module.

References

[1] A. Bossi, M. Gabbrielli, G. Levi, and M. C. Meo. A Compositional Semantics for Logic
Programs. TCS, 122(1-2):3–47, 1994.

[2] M. Codish, S. K. Debray, and R. Giacobazzi. Compositional Analysis of Modular Logic Pro-
grams. In Proc. POPL’93, pages 451–464. ACM Press, 1993.

[3] M. Codish, M. Falaschi, and K. Marriott. Suspension Analysis for Concurrent Logic Programs.
In Proc. ICLP’91, pages 331– 345. The MIT Press, 1991.

[4] M. Codish, M. Falaschi, K. Marriott, and W. Winsborough. Efficient Analysis of Concurrent
Constraint Logic Programs. In Proc. ICALP’93, LNCS, pages 633–644, 1993.

[5] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. In Proc. POPL’77, pages 238–
252, 1977.

[6] P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks. In Proc.
POPL’79, pages 269–282, 1979.

[7] M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Confluence and Concurrent
Constraint Programming. In Proc. AMAST’95, 1995.

[8] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. A new Declarative Semantics for Logic
Languages. In Proc. ICLP’88, pages 993–1005. The MIT Press, 1988.

[9] M. Gabbrielli, M.G. Dore, and G. Levi. Observable semantics for Constraint Logic Programs.
JLC, 5(2):133–171, 1995.

[10] M. Gabbrielli, R. Giacobazzi, and D. Montesi. Modular logic programs over finite domains. In
Proc. GULP’93, pages 663–678, 1993.

[11] R. Giacobazzi, S. K. Debray, and G. Levi. A Generalized Semantics for Constraint Logic
Programs. In Proc. FGCS’92, pages 581–591, 1992.

[12] R. Giacobazzi, S.K. Debray, and G. Levi. Generalized Semantics and Abstract Interpretation
for Constraint Logic Programs. JLP, 1995.

[13] L. Henkin, J.D. Monk, and A. Tarski. Cylindric Algebras. Part I and II. North-Holland,
Amsterdam, 1971.

[14] V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic Foundation of Concurrent Con-
straint Programming. In Proc. POPL’91, pages 333–353. ACM, 1991.

[15] V.A. Saraswat and M. Rinard. Concurrent constraint programming. In Proc. POPL’90, pages
232–245. ACM, 1990.

[16] D. Scott. Domains for Denotational Semantics. In Proc. ICALP’82, LNCS, pages 577–613.
Springer-Verlag, 1982.

[17] E. Zaffanella, G. Levi, and R. Giacobazzi. Abstracting Synchronization in Concurrent Con-
straint Programming. In Proc. PLILP’94, LNCS, pages 57–72. Springer-Verlag, 1994.

