Bigre n ° 81-82 — September 1992 — Workshop on Static Analysis 92 — WSA92

Static Analysis of CLP Programs over
Numeric Domains

Roberto Bagnara, Roberto Giacobazzi, Giorgio Levi

Dipartimento di Informatica
Universita di Pisa
Corso Italia 40, 56125 Pisa

{bagnara,giaco,levi}@di.unipi.it

Extended Abstract

Constraint logic programming (CLP) is a generalization of the pure logic
programming paradigm, having similar model-theoretic, fixpoint and operational
semantics [9]. Since the basic operational step in program execution is a test for
solvability of constraints in a given algebraic structure, CLP has in addition an
algebraic semantics. CLP is then a general paradigm which may be instantiated on
various semantic domains, thus achieving a good expressive power. One relevant
feature is the distinction between testing for solvability and computing a solution
of a given constraint formula. In the logic programming case, this corresponds to
the unification process, which tests for solvability by computing a solution (a set
of equations in solved form or most general unifier). In CLP, the computation of
a solution of a constraint is left to a constraint solver, which does not affect the
semantic definition of the language. This allows different computational domains,
e.g. real arithmetic, to be considered without requiring complicated encodings
of data objects as first order terms. Since the fundamental linguistic aspects of
CLP can be separated from the details specific to particular constraint systems,
it seems natural to parameterize the semantics of CLP languages with respect
to the underlying constraint system [16]. For example, considering a domain
of “abstract constraints” instead of the “concrete constraints” that are actually
manipulated during program execution, we obtain for free a formal treatment of
abstract interpretation of CLP programs: this provides a foundation for dataflow
analysis and program manipulation of CLP programs.

The original contribution of the present work is the integration of approximate
inference techniques, well known in the field of artificial intelligence (AI), with
an appropriate framework for the definition of non-standard semantics of CLP.
This integration turns out to be particularly appropriate for the considered case of
the abstract interpretation of CLP programs over numeric domains. One notable
advantage of this approach is that it allows to close the often existing gap between
the formalization of data-flow analysis in terms of abstract interpretation and the
possibility of efficient implementations. Towards this aim we identified a class

Static Analysis of CLP Programs over Numeric Domains 2

of approximate deduction techniques from AI and a semantic framework general
enough to accomodate the corresponding approximate constraint systems.

In [7] a simple and powerful “generalized algebraic semantics” for constraint
logic programs is presented that is parameterized with respect to the underlying
constraint system. Generalized semantics abstract away from standard semantics
objects, by focusing on the general properties of any (possibly non-standard)
semantics definition. In constraint logic programming, this corresponds to a suitable
definition of the constraint system supporting the semantics definition. An algebraic
structure is introduced to formalize the constraint system notion, thus making
applicable classical mathematical results and both a top-down and bottom-up
semantics are considered. Abstract semantics of CLP can then be formally specified
by means of the same techniques used to define the concrete one.

The inference technique we borrow from Al is known, in its generality, under
the name of propagation on constraint networks [6]. A constraint network is a
declarative structure expressing relationships among parameters. It consists of a
number of nodes connected by a number of constraints. Nodes represent individual
parameters, and are characterized by a value (attribute, property), known or
unknown. A constraint represents a relationship between the values of the nodes
it connects. The constraint propagation technique consists of deducing information
from a small group of nodes and constraints, and caching this new information as
changes in the network. This changes will be used in the next inference steps to
deduce further information. In such way the deducible consequences of each datum
in the the network are gradually propagated through the structure. The main
advantages of this technique are: generality, incrementality and good performance
degradation when time limitations are imposed.

Based on the above general ideas, here we present a couple of abstract
interpretations for CLP languages over numeric domains. The reference language
for this work was originally CLP(FD) [2], where FD stands for Finite numeric
Domains, but the static analyses we describe (especially the second one) are
applicable and turn out to be very useful also for the compile-time optimization
of CLP(R) programs.

The objective of the first abstract interpretation is to derive spatial
approzimations of the success set of program predicates. The concrete
interpretation of a constraint, that is, a shape in k-dimensional space, is abstracted
by an enclosing, though not necessarily minimal, bounding boxr. Bounding boxes
are rectangular regions with sides parallel to the axes. Thus, a bounding box is
univocally identified by its projections (i.e. intervals) over the axes associated to
the variables. Of course bounding boxes are very coarse approximations of general
shapes. Finer spatial approximations exist and are well known, such as enclosing
convex polyhedra, grid and Z-order approximations [8]. However, the coarseness
of bounding boxes is well repaid by the relative facility with which they can be
derived, manipulated and used to deduce information relevant to static analysis.

In what follows we stick to linear constraints, even though some extensions are

Static Analysis of CLP Programs over Numeric Domains 3

possible. There are several techniques for deriving bounding boxes from a given
set of constraints: variants of Fourier-Motzkin variable elimination [5, 15], the sup-
inf method [3, 17] etc. For our study in CLP(FD) we considered a variant of
the constraint propagation technique called label inference. More precisely we use
the Waltz algorithm [13, 14] applying label refinement, in which the bounding box
corresponding to a set of constraints is gradually restricted [6]. For example, if we
have the constraint X +Y = Z and the current bounding box is X € [3,+o0],
Y €[1,1], Z € [0,10], then we can refine the label for Z obtaining Z € [4,10]. The
Waltz algorithm entails using refinement on each constraint and each variable over
and over until refinement produces no more changes. When this stage is reached,
the algorithm is said to have reached quiescence. In case the range of variables is
a finite set, as is our case for CLP(FD), the Waltz algorithm will reach quiescence
after performing O(mc) label refinements, where m is the maximum cardinality of
variable domains and ¢ is the number of constraints.

The technique of representing integer variables by intervals and deducing
theorems about these intervals is common in abstract interpretation [4]. Its
application to CLP(FD) can possibly bring to the reduction of variable domains at
compile time (thus reducing the cost of backtracking search inside the constraint
solver at run time), and to the generation of code where some choice point creations
have been removed. This is quite important since in CLP(FD) it is not enough to
save variables addresses when a choice point is encountered, as in Prolog, but it is
necessary to record the current variables domains.

This analysis is applicable also to CLP(®). Even though when infinite domains
are concerned the Waltz algorithm is not guaranteed to terminate, it does degrade
very well when time limitations are imposed. Since refinement is sound deductively
so is the Waltz algorithm which simply iterates refinement. The labels derived after
each refinement step are thus sound, no matter if quiescence has been reached or
not. This amounts to say that the Waltz algorithm can still be used, provided that
its termination is externally forced. Finally, as the abstract domain of intervals
(and thus of bounding boxes) over # does not satisfy the ascending chain condition,
a widening/narrowing technique can be used to ensure finiteness of the bottom-up
program evaluation [4].

A similar technique has been independently developed in [12], where a correct
implementation of CLP(R) is based on constraint interval arithmetic. They present
an adaptation of CLP(R)!, called ICLP(R), where the results of floating-point
computations are approximated by means of intervals. The key difference is in
the non-standard semantics construction and in the application purposes. In our
approach the non-standard semantics is validated in the more formal framework of
abstract interpretation. This makes clear the relationships between the concrete
(standard) semantics definition (i.e. CLP(R)) and the abstract (non-standard)
one (e.g. ICLP(R)). Moreover, a possible use of the ICLP(R) interpreter as
an abstract interpreter for CLP(R) programs requires additional approximation

LCLP(R) denotes the CLP(R) implementation described in [10].

Static Analysis of CLP Programs over Numeric Domains 4

techniques to ensure finiteness and improve the analysis performances: loop
checking, widening/narrowing etc.

Our second analysis is based on constraint inference (another variant of
constraint propagation). Its aim is to allow for approximate deduction of
consistency/inconsistency and entailment of constraints. These approximations
turn out to be useful in triggering some important compiler optimizations such as
mutual exclusion exploitation, code motion and simplified treatment of the future
redundant constraints [11]. This last optimization is reported to give a dramatic
efficiency improvement for CLP(R) programs.

Let us focus our attention to arithmetic domains, where the constraints are
binary relations over expressions. We abstract them by means of labelled digraphs.
Nodes are called quantities and are labeled with the corrisponding arithmetic
formula (and possibly a variation interval). Arcs are labelled with relation symbols.
More precisely, let

C= {(611 > 612), ooy (En1 Dy €n2)},

where the e;; are terms of the constraint language (assume linear expressions for
simplicity) and ;€ {=,#,<,>,>,<}, denote a conjuction of constraints. Let
T ={ej|i=1,...n, 5 =1,2} be the set (modulo syntactical identity) of terms
appearing in C, and let k = |T'|, where | .| denotes set cardinality. The abstraction
of C'is G = (N,l,, E,l.), where:

N = {ny,...,nx}

l, is any bijection between N and T

E = {(nl,n2)|3Ime{l,...n}.(,(n1) >, ln(n2)) € C}
le((nlan2)) = {pam| (ln(n1) > 1n(n2)) € C}

Disjunctions of constraints are represented by unions of digraphs, while conjuction
is handled by connecting digraphs in the obvious way, merging the nodes having
equal labels.

Let us consider a digraph representing a conjunction of constraints. We can
enrich it by either adding new arcs to it or by adding (stronger) relations to the
labels of existing arcs (these two operations collapse into just one if you consider
that a missing arc is equivalent with one labelled with the always-true relation).
Of course, since we are interested in approximate but sound deduction, we are
interested only in correct enrichments. The addition of an arc (ny,ns) with label

> to the digraph abstracting C' is correct iff C =g 1, (n1) >4 1, (n2)?.

Now we must answer the question: how do we infer new constraints at a
reasonable computational cost? An answer comes (as before) from Al where
approximate deduction holds the spotlight since the origins. In [18, 19] an arithmetic

2This means R = (C’ = lp(n1) > ln(ng))7 where R is the structure that interprets the
constraints.

Static Analysis of CLP Programs over Numeric Domains 5

reasoning system, called the Quantity Lattice, is described. The Quantity Lattices
supports, in a computationally efficient way, various qualitative and quantitative
reasoning techniques. All these techniques are integrated, that is, inference made
with one technique can trigger further inferences by the other ones. As a result the
range of arithmetic inferences the system is able to perform is quite wide and suitable
for our application. Given one of the above mentioned digraphs the Quantity Lattice
can apply five different inference techniques:

1. Determining new relationships using graph search.

2. Determining new relationships using numeric constraint propagation.

3. Constraining the value of arithmetic expressions using interval arithmetic.
4. Constraining the value of arithmetic expressions using relational arithmetic.
5

. Constraining the value of arithmetic expressions using constant elimination
arithmetic.

Previous inference results are cached by adding arcs or refining their labels (and
possibly by restricting the intervals associated with quantities). In our work we
currently use only the inference techniques 1 (but computing the full transitive
closure, as in [1]) and 4. The resulting system is still powerful enough to perform
useful deductions for our purposes. All the inferences made are recorded along with
their justifications (i.e. sets of arcs). This is important, as we will see shortly.

Consider the following example:

mg(T) :— T=1
mg(T) :— T>1,T1=T-10mg(T1).

The behaviour of the above program with respect to T is the same as the mortgage
well known example.

In the model obtained by our abstract interpretation for the mg/2 predicate
there are two four—nodes digraphs associated with the second clause (see Figure 1).
The nodes (quantities) are labelled with the formulas 7', T — 1, T1 and 1. Both
the digraphs contain the teztual arcs (that is arcs coming from the program’s text)
T >1and T1 =T — 1. The first digraph contains also the textual arc T'1 = 1, and
the induced arcs T' > T — 1 (inferred by technique 4. above), T' > T'1 (inferred by
1. and justified by {T' > T —1,T1=T-1}), T—1 =1 (inferred by 1. and justified
by {T1=T-1,T1=1}). Now by technique 1. we are able to parallel the textual
arc T > 1 with an induced arc T' > 1 with justification {T' > T — 1,7 — 1 = 1}.
Similarly, considering the second digraph, we end up with an induced arc T > 1
with justification {T'> T —1,T—1 > 1}. Since in both cases the induced arc T' > 1
does not have the textual arc T' > 1 into its justification, the textual arc T' > 1 is
future redundant [11]. In general a textual arc (constraint) is future redundant if it
can be doubled by an induced arc labelled with an equal or stronger relation and if
this induced arc does not have the textual arc into its justification.

Static Analysis of CLP Programs over Numeric Domains 6

Figure 1: Portions of the two digraphs for the second clause of mg/2. Textual arcs have thick

lines and are labelled with = and >. Induced arcs have thin lines and are labelled with = and >.

References

[1] J. F. Allen. Maintaining Knowledge About Temporal Intervals. Commun. of the
ACM, 26(11):832-843, 1983.

[2] R. Bagnara. Interpretazione Astratta di Linguaggi Logici con Vincoli su Domini
Finiti. M.Sc. thesis, Universita di Pisa, July 1992.

[3] W. W. Bledsoe. The Sup-Inf Method in Presburger Arithmetic. Memo ATP-18,
Math. Dept., University of Texas at Austin, Austin, 1974.

[4] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. Fourth ACM Symp. Principles of Programming Languages, pages 238-252,
1977.

[5] G. B. Dantzig and B. C. Eaves. Fourier-Motzkin Elimination and its Dual. Journal
of Combinatorial Theory (A), 14:288-297, 1973.

[6] E. Davis. Constraint Propagation with Interval Labels. Artificial Intelligence,
32:281-331, 1987.

[7] R. Giacobazzi, S. Debray, and G. Levi. A Generalized Semantics for Constraint
Logic Programs. In Proceedings of the International Conference on Fifth Generation
Computer Systems 1992, pages 581591, 1992.

[8] R. Helm, K. Marriot, and M. Odersky. Spatial Query Optimization: from Boolean
Constraints to Range Queries. Technical Report RC 17231, IBM Research Division,
T. J. Watson Research Center, Yorktown Heights, 1991.

[9] J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In Proc. Fourteenth

Annual ACM Symp. on Principles of Programming Languages, pages 111-119. ACM,
1987.

Static Analysis of CLP Programs over Numeric Domains 7

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(R) Language and System.
ACM Transactions on Programming Languages and Systems, 1991. To appear.

N. Jgrgensen, K. Marriot, and S. Michaylov. Some Global Compile-Time
Optimizations for CLP(R). In Proc. 1991 Int’l Symposium on Logic Programming,
pages 420-434, 1991.

J. H. M. Lee and M. H. van Emden. Adapting CLP(R) to Floating-Point
Arithmetic. In Proceedings of the International Conference on Fifth Generation
Computer Systems 1992, pages 996-1003, 1992.

A. K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence,
8:99-118, 1977.

A. K. Mackworth and E. C. Freuder. The Complexity of Some Polynomial Network
Consistency Algorithms for Constraint Satisfaction Problems. Artificial Intelligence,
25:65-74, 1985.

W. Pugh. The Omega Test: a Fast and Practical Integer Programming Algorithm
for Dependence Analysis. In Supercomputing ’91, 1991. To appear in Commun. of
the ACM.

V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic foundation of concurrent
constraint programming. In Proc. Eighteenth Annual ACM Symp. on Principles of
Programming Languages. ACM, 1991.

R. Shostak. On The Sup-Inf Method in for Proving Presburger Formulas. Journal
of the ACM, 24(4):529-543, 1977.

R. Simmons. Representing and Reasoning About Change in Geologic Interpretation.
Technical Report 749, MIT AI Laboratory, 1983.

R. Simmons. Commonsense Arithmetic Reasoning. In Proceedings AAAI-86, pages
118-124, 1986.

