
Under consideration for publication in Theory and Practice of Logic Programming 1

A Correct, Precise and Efficient Integration of
Set-Sharing, Freeness and Linearity for the

Analysis of Finite and Rational Tree Languages∗
PATRICIA M. HILL

School of Computing, University of Leeds, Leeds, U.K.

(e-mail: hill@comp.leeds.ac.uk)

ENEA ZAFFANELLA, ROBERTO BAGNARA
Department of Mathematics, University of Parma, Italy

(e-mail: {zaffanella,bagnara}@cs.unipr.it)

Abstract

It is well-known that freeness and linearity information positively interact with aliasing
information, allowing both the precision and the efficiency of the sharing analysis of logic
programs to be improved. In this paper we present a novel combination of set-sharing
with freeness and linearity information, which is characterized by an improved abstract
unification operator. We provide a new abstraction function and prove the correctness of
the analysis for both the finite tree and the rational tree cases. Moreover, we show that the
same notion of redundant information as identified in (Bagnara et al. 2002; Zaffanella et al.
2002) also applies to this abstract domain combination: this allows for the implementation
of an abstract unification operator running in polynomial time and achieving the same
precision on all the considered observable properties.

KEYWORDS: Abstract Interpretation; Logic Programming; Abstract Unification; Ratio-
nal Trees; Set-Sharing; Freeness; Linearity.

1 Introduction

Even though the set-sharing domain is, in a sense, remarkably precise, more preci-
sion is attainable by combining it with other domains. In particular, freeness and
linearity information has received much attention by the literature on sharing anal-
ysis (recall that a variable is said to be free if it is not bound to a non-variable term;
it is linear if it is not bound to a term containing multiple occurrences of another
variable).

∗ The present work has been funded by MURST projects “Automatic Program Certification by
Abstract Interpretation”, “Abstract Interpretation, type systems and control-flow analysis”,
and “Automatic Aggregate- and Number-Reasoning for Computing: from Decision Algorithms
to Constraint Programming with Multisets, Sets, and Maps”; by the Integrated Action Italy-
Spain “Advanced Development Environments for Logic Programs”; by the University of Parma’s
FIL scientific research project (ex 60%) “Pure and applied mathematics”; and by the UK’s
Engineering and Physical Sciences Research Council (EPSRC) under grant M05645.

2 P. M. Hill, E. Zaffanella, and R. Bagnara

As argued informally by Søndergaard (Søndergaard 1986), the mutual interaction
between linearity and aliasing information can improve the accuracy of a sharing
analysis. This observation has been formally applied in (Codish et al. 1991) to
the specification of the abstract mgu operator for the domain ASub. In his PhD
thesis (Langen 1990), Langen proposed a similar integration with linearity, but for
the set-sharing domain. He has also shown how the aliasing information allows to
compute freeness with a good degree of accuracy (however, freeness information
was not exploited to improve aliasing). King (King 1994) has also shown how a
more refined tracking of linearity allows for further precision improvements.

The synergy attainable from a bi-directional interaction between aliasing and
freeness information was initially pointed out by Muthukumar and Hermenegildo
(Muthukumar and Hermenegildo 1991; Muthukumar and Hermenegildo 1992). Since
then, several authors considered the integration of set-sharing with freeness, some-
times also including additional explicit structural information (Codish et al. 1993;
Codish et al. 1996; Filé 1994; King and Soper 1994).

Building on the results obtained in (Søndergaard 1986), (Codish et al. 1991)
and (Muthukumar and Hermenegildo 1991), but independently from (Langen 1990),
Hans and Winkler (Hans and Winkler 1992) proposed a combined integration of
freeness and linearity information with set-sharing. Similar combinations have been
proposed in (Bruynooghe and Codish 1993; Bruynooghe et al. 1994a; Bruynoo-
ghe et al. 1994b). From a more pragmatic point of view, Codish et al. (Codish
et al. 1993; Codish et al. 1995) integrate the information captured by the domains
of (Søndergaard 1986) and (Muthukumar and Hermenegildo 1991) by performing
the analysis with both domains at the same time, exchanging information between
the two components at each step.

Most of the above proposals differ in the carrier of the underlying abstract do-
main. Even when considering the simplest domain combinations where explicit
structural information is ignored, there is no general consensus on the specifica-
tion of the abstract unification procedure. From a theoretical point of view, once
the abstract domain has been related to the concrete one by means of a Galois
connection, it is always possible to specify the best correct approximation of each
operator of the concrete semantics. However, empirical observations suggest that
sub-optimal operators are likely to result in better complexity/precision trade-offs
(Bagnara et al. 2000). As a consequence, it is almost impossible to identify “the
right combination” of variable aliasing with freeness and linearity information, at
least when practical issues, such as the complexity of the abstract unification pro-
cedure, are taken into account.

Given this state of affairs, we will now consider a domain combination whose
carrier is essentially the same as specified by Langen (Langen 1990) and Hans and
Winkler (Hans and Winkler 1992). (The same domain combination was also con-
sidered by Bruynooghe et al. (Bruynooghe et al. 1994a; Bruynooghe et al. 1994b),
but with the addition of compoundness and explicit structural information.) The
novelty of our proposal lies in the specification of an improved abstract unifica-
tion procedure, better exploiting the interaction between sharing and linearity. As
a matter of fact, we provide an example showing that all previous approaches to

Correct and Efficient Integration of Set-Sharing, Freeness and Linearity 3

the combination of set-sharing with freeness and linearity are not uniformly more
precise than the analysis based on the ASub domain (Codish et al. 1991; King 2000;
Søndergaard 1986), whereas such a property is enjoyed by our proposal.

By extending the results of (Hill et al. 2002) to this combination, we provide a
new abstraction function that can be applied to any logic language computing on
domains of syntactic structures, with or without the occurs-check; by using this
abstraction function, we also prove the correctness of the new abstract unification
procedure. Moreover, we show that the same notion of redundant information as
identified in (Bagnara et al. 2002; Zaffanella et al. 2002) also applies to this abstract
domain combination. As a consequence, it is possible to implement an algorithm for
abstract unification running in polynomial time and still obtain the same precision
on all the considered observables: groundness, independence, freeness and linearity.

This paper is based on (Zaffanella 2001, Chapter 6), the PhD thesis of the second
author. In Section 2, we define some notation and recall the basic concepts used later
in the paper. In Section 3, we present the domain SFL that integrates set-sharing,
freeness and linearity. In Section 4, we show that SFL is uniformly more precise
than the domain ASub, whereas all the previous proposals for a domain integrating
set-sharing and linearity fail to satisfy such a property. In Section 5, we show
that the domain SFL can be simplified by removing some redundant information.
In Section 6, we provide an experimental evaluation using the China analyzer
(Bagnara 1997). In Section 7, we discuss some related work. Section 8 concludes
with some final remarks. The proofs of the results stated here are not included but
all of them are available in an extended version of this paper (Hill et al. 2003).

2 Preliminaries

For a set S, ℘(S) is the powerset of S. The cardinality of S is denoted by #S and
the empty set is denoted by ∅. The notation ℘f(S) stands for the set of all the
finite subsets of S, while the notation S ⊆f T stands for S ∈ ℘f(T). The set of all
finite sequences of elements of S is denoted by S∗, the empty sequence by ε, and
the concatenation of s1, s2 ∈ S∗ is denoted by s1 . s2.

2.1 Terms and Trees

Let Sig denote a possibly infinite set of function symbols, ranked over the set of
natural numbers. Let Vars denote a denumerable set of variables, disjoint from Sig .
Then Terms denotes the free algebra of all (possibly infinite) terms in the signature
Sig having variables in Vars. Thus a term can be seen as an ordered labeled tree,
possibly having some infinite paths and possibly containing variables: every inner
node is labeled with a function symbol in Sig with a rank matching the number of
the node’s immediate descendants, whereas every leaf is labeled by either a variable
in Vars or a function symbol in Sig having rank 0 (a constant). It is assumed that
Sig contains at least two distinct function symbols, with one of them having rank 0.

If t ∈ Terms then vars(t) and mvars(t) denote the set and the multiset of variables

4 P. M. Hill, E. Zaffanella, and R. Bagnara

occurring in t, respectively. We will also write vars(o) to denote the set of variables
occurring in an arbitrary syntactic object o.

Suppose s, t ∈ Terms: s and t are independent if vars(s) ∩ vars(t) = ∅; we
say that variable y occurs linearly in t, more briefly written using the predication
occ lin(y, t), if y occurs exactly once in mvars(t); t is said to be ground if vars(t) = ∅;
t is free if t ∈ Vars; t is linear if, for all y ∈ vars(t), we have occ lin(y, t); finally,
t is a finite term (or Herbrand term) if it contains a finite number of occurrences
of function symbols. The sets of all ground, linear and finite terms are denoted by
GTerms, LTerms and HTerms, respectively.

2.2 Substitutions

A substitution is a total function σ : Vars → HTerms that is the identity almost
everywhere; in other words, the domain of σ,

dom(σ) def=
{

x ∈ Vars
∣∣ σ(x) 6= x

}
,

is finite. Given a substitution σ : Vars → HTerms, we overload the symbol ‘σ’ so
as to denote also the function σ : HTerms → HTerms defined as follows, for each
term t ∈ HTerms:

σ(t) def=

t, if t is a constant symbol;

σ(t), if t ∈ Vars;

f
(
σ(t1), . . . , σ(tn)

)
, if t = f(t1, . . . , tn).

If t ∈ HTerms, we write tσ to denote σ(t). Note that, for each substitution σ and
each finite term t ∈ HTerms, if tσ ∈ Vars, then t ∈ Vars.

If x ∈ Vars and t ∈ HTerms \ {x}, then x 7→ t is called a binding. The set of all
bindings is denoted by Bind . Substitutions are denoted by the set of their bindings,
thus a substitution σ is identified with the (finite) set{

x 7→ xσ
∣∣ x ∈ dom(σ)

}
.

We denote by vars(σ) the set of variables occurring in the bindings of σ. We also
define range(σ) def=

⋃{
vars(xσ)

∣∣ x ∈ dom(σ)
}
.

A substitution is said to be circular if, for n > 1, it has the form

{x1 7→ x2, . . . , xn−1 7→ xn, xn 7→ x1},

where x1, . . . , xn are distinct variables. A substitution is in rational solved form
if it has no circular subset. The set of all substitutions in rational solved form is
denoted by RSubst . A substitution σ is idempotent if, for all t ∈ Terms, we have
tσσ = tσ. Equivalently, σ is idempotent if and only if dom(σ)∩ range(σ) = ∅. The
set of all idempotent substitutions is denoted by ISubst and ISubst ⊂ RSubst .

The composition of substitutions is defined in the usual way. Thus τ ◦ σ is the
substitution such that, for all terms t ∈ HTerms,

t(τ ◦ σ) = tστ

Correct and Efficient Integration of Set-Sharing, Freeness and Linearity 5

and has the formulation

τ ◦ σ =
{

x 7→ xστ
∣∣ x ∈ dom(σ) ∪ dom(τ), x 6= xστ

}
. (1)

As usual, σ0 denotes the identity function (i.e., the empty substitution) and, when
i > 0, σi denotes the substitution (σ ◦ σi−1).

For each σ ∈ RSubst and s ∈ HTerms, the sequence of finite terms

σ0(s), σ1(s), σ2(s), . . .

converges to a (possibly infinite) term, denoted σ∞(s) (Intrigila and Zilli 1996; King
2000). Therefore, the function rt : HTerms × RSubst → Terms such that

rt(s, σ) def= σ∞(s)

is well defined. Note that, in general, this function is not a substitution: while having
a finite domain, its “bindings” x 7→ rt(x, σ) can map a domain variable x into a
term rt(x, σ) ∈ Terms \ HTerms. However, as the name of the function suggests,
the term rt(x, σ) is granted to be rational, meaning that it can only have a finite
number of distinct subterms and hence, be finitely represented.

Example 1
Consider the substitutions

σ1 =
{
x 7→ f(z), y 7→ a

}
∈ ISubst ,

σ2 =
{
x 7→ f(y), y 7→ a

}
∈ RSubst \ ISubst ,

σ3 =
{
x 7→ f(x)

}
∈ RSubst \ ISubst ,

σ4 =
{
x 7→ f(y), y 7→ f(x)

}
∈ RSubst \ ISubst ,

σ5 =
{
x 7→ y, y 7→ x

}
/∈ RSubst .

Note that there are substitutions, such as σ2, that are not idempotent and nonethe-
less define finite trees only; namely, rt(x, σ2) = f(a). Similarly, there are other
substitutions, such as σ4, whose bindings are not explicitly cyclic and nonetheless
define rational trees that are infinite; namely, rt(x, σ4) = f(f(f(· · ·))). Finally note
that the ‘rt’ function is not defined on σ5 /∈ RSubst .

2.3 Equality Theories

An equation is of the form s = t where s, t ∈ HTerms. Eqs denotes the set of all
equations. A substitution σ may be regarded as a finite set of equations, that is, as
the set

{
x = t

∣∣ (x 7→ t) ∈ σ
}
. We say that a set of equations e is in rational solved

form if
{

s 7→ t
∣∣ (s = t) ∈ e

}
∈ RSubst . In the rest of the paper, we will often

write a substitution σ ∈ RSubst to denote a set of equations in rational solved form
(and vice versa). As is common in research work involving equality, we overload the
symbol ‘=’ and use it to denote both equality and to represent syntactic identity.
The context makes it clear what is intended.

Let {r, s, t, s1, . . . , sn, t1, . . . , tn} ⊆ HTerms. We assume that any equality theory
T over Terms includes the congruence axioms denoted by the following schemata:

s = s, (2)

6 P. M. Hill, E. Zaffanella, and R. Bagnara

s = t↔ t = s, (3)

r = s ∧ s = t→ r = t, (4)

s1 = t1 ∧ · · · ∧ sn = tn → f(s1, . . . , sn) = f(t1, . . . , tn). (5)

In logic programming and most implementations of Prolog it is usual to assume an
equality theory based on syntactic identity. This consists of the congruence axioms
together with the identity axioms denoted by the following schemata, where f and
g are distinct function symbols or n 6= m:

f(s1, . . . , sn) = f(t1, . . . , tn)→ s1 = t1 ∧ · · · ∧ sn = tn, (6)

¬
(
f(s1, . . . , sn) = g(t1, . . . , tm)

)
. (7)

The axioms characterized by schemata (6) and (7) ensure the equality theory de-
pends only on the syntax. The equality theory for a non-syntactic domain replaces
these axioms by ones that depend instead on the semantics of the domain and, in
particular, on the interpretation given to functor symbols.

The equality theory of Clark (Clark 1978), denoted FT , on which pure logic
programming is based, usually called the Herbrand equality theory, is given by the
congruence axioms, the identity axioms, and the axiom schema

∀z ∈ Vars : ∀t ∈ (HTerms \Vars) : z ∈ vars(t)→ ¬(z = t). (8)

Axioms characterized by the schema (8) are called the occurs-check axioms and are
an essential part of the standard unification procedure in SLD-resolution.

An alternative approach used in some implementations of logic programming
systems, such as Prolog II, SICStus and Oz, does not require the occurs-check
axioms. This approach is based on the theory of rational trees (Colmerauer 1982;
Colmerauer 1984), denoted RT . It assumes the congruence axioms and the identity
axioms together with a uniqueness axiom for each substitution in rational solved
form. Informally speaking these state that, after assigning a ground rational tree
to each variable which is not in the domain, the substitution uniquely defines a
ground rational tree for each of its domain variables. Note that being in rational
solved form is a very weak property. Indeed, unification algorithms returning a set
of equations in rational solved form are allowed to be much more “lazy” than one
would expect. We refer the interested reader to (Jaffar et al. 1987; Keisu 1994;
Maher 1988) for details on the subject.

In the sequel we use the expression “equality theory” to denote any consistent,
decidable theory T satisfying the congruence axioms. We also use the expression
“syntactic equality theory” to denote any equality theory T also satisfying the
identity axioms.

We say that a substitution σ ∈ RSubst is satisfiable in an equality theory T if,
when interpreting σ as an equation system in rational solved form,

T ` ∀
(
Vars \ dom(σ)

)
: ∃dom(σ) . σ.

Let e ∈ ℘f(Eqs) be a set of equations in an equality theory T . A substitution
σ ∈ RSubst is called a solution for e in T if σ is satisfiable in T and T ` ∀(σ → e);
we say that e is satisfiable if it has a solution. If vars(σ) ⊆ vars(e), then σ is said

Correct and Efficient Integration of Set-Sharing, Freeness and Linearity 7

to be a relevant solution for e. In addition, σ is a most general solution for e in T

if T ` ∀(σ ↔ e). In this paper, a most general solution is always a relevant solution
of e. When the theory T is clear from the context, the set of all the relevant most
general solutions for e in T is denoted by mgs(e).

Example 2
Let e =

{
g(x) = g(f(y)), f(x) = y, z = g(w)

}
and

σ =
{
x 7→ f(y), y 7→ f(x), z 7→ g(w)

}
.

Then, for any syntactic equality theory T , we have T ` ∀(σ ↔ e). Since σ ∈ RSubst ,
then σ and hence e is satisfiable in RT . Intuitively, whatever rational tree tw
is assigned to the parameter variable w, there exist rational trees tx, ty and tz
that, when assigned to the domain variables x, y and z, will turn σ into a set of
trivial identities; namely, let tx and ty be both equal to the infinite rational tree
f(f(f(· · ·))), which is usually denoted by fω, and let tz be the rational tree g(tw).
Thus σ is a relevant most general solution for e in RT . In contrast,

τ =
{
x 7→ f(y), y 7→ f(x), z 7→ g(f(a))

}
is just a relevant solution for e in RT . Also observe that, for any equality theory
T ,

T ` ∀
(
σ →

{
x = f(f(x))

})
so that σ does not satisfy the occurs-check axioms. Therefore, neither σ nor e are
satisfiable in the Herbrand equality theory FT . Intuitively, there is no finite tree
tx such that tx = f(f(tx)).

We have the following useful result regarding ‘rt’ and satisfiable substitutions
that are equivalent with respect to any given syntactic equality theory.

Proposition 3
Let σ, τ ∈ RSubst be satisfiable in the syntactic equality theory T and suppose that
T ` ∀(σ ↔ τ). Then

rt(y, σ) ∈ Vars ⇐⇒ rt(y, τ) ∈ Vars, (9)

rt(y, σ) ∈ GTerms ⇐⇒ rt(y, τ) ∈ GTerms, (10)

rt(y, σ) ∈ LTerms ⇐⇒ rt(y, τ) ∈ LTerms. (11)

2.4 Galois Connections and Upper Closure Operators

Given two complete lattices (C,≤C) and (A,≤A), a Galois connection is a pair of
monotonic functions α : C → A and γ : A→ C such that

∀c ∈ C : c ≤C γ
(
α(c)

)
, ∀a ∈ A : α

(
γ(a)

)
≤A a.

The functions α and γ are said to be the abstraction and concretization functions,
respectively. A Galois insertion is a Galois connection where the concretization
function γ is injective.

An upper closure operator (uco) ρ : C → C on the complete lattice (C,≤C) is a

8 P. M. Hill, E. Zaffanella, and R. Bagnara

monotonic, idempotent and extensive1 self-map. The set of all uco’s on C, denoted
by uco(C), is itself a complete lattice. For any ρ ∈ uco(C), the set ρ(C), i.e., the
image under ρ of the lattice carrier, is a complete lattice under the same partial order
≤C defined on C. Given a Galois connection, the function ρ

def= γ◦α is an element of
uco(C). The presentation of abstract interpretation in terms of Galois connections
can be rephrased by using uco’s. In particular, the partial order v defined on uco(C)
formalizes the intuition of an abstract domain being more precise than another one;
moreover, given two elements ρ1, ρ2 ∈ uco(C), their reduced product (Cousot and
Cousot 1979), denoted ρ1 u ρ2, is their glb on uco(C).

2.5 The Set-Sharing Domain

The set-sharing domain of Jacobs and Langen (Jacobs and Langen 1989), encodes
both aliasing and groundness information. Let VI ⊆f Vars be a fixed and finite set
of variables of interest. An element of the set-sharing domain (a sharing set) is a
set of subsets of VI (the sharing groups). Note that the empty set is not a sharing
group.

Definition 4
(The set-sharing lattice.) Let SG def= ℘(VI) \ {∅} be the set of sharing groups.
The set-sharing lattice is defined as SH def= ℘(SG), ordered by subset inclusion.

The following operators on SH are needed for the specification of the abstract
semantics.

Definition 5
(Auxiliary operators on SH .) For each sh, sh1, sh2 ∈ SH and each V ⊆ VI , we
define the following functions:
the star-union function (·)? : SH → SH , is defined as

sh? def=
{

S ∈ SG
∣∣ ∃n ≥ 1 . ∃S1, . . . , Sn ∈ sh . S = S1 ∪ · · · ∪ Sn

}
;

the extraction of the relevant component of sh with respect to V is encoded by
rel : ℘(VI)× SH → SH defined as

rel(V, sh) def= {S ∈ sh | S ∩ V 6= ∅ };

the irrelevant component of sh with respect to V is thus defined as

rel(V, sh) def= sh \ rel(V, sh);

the binary union function bin: SH × SH → SH is defined as

bin(sh1, sh2)
def= {S1 ∪ S2 | S1 ∈ sh1, S2 ∈ sh2 };

1 Namely, c ≤C ρ(c) for each c ∈ C.

Correct and Efficient Integration of Set-Sharing, Freeness and Linearity 9

the self-bin-union operation on SH is defined as

sh2 def= bin(sh, sh);

the abstract existential quantification function aexists : SH×℘(VI)→ SH is defined
as

aexists(sh, V) def=
{

S \ V
∣∣ S ∈ sh, S \ V 6= ∅

}
∪

{
{x}

∣∣ x ∈ V
}
.

In (Bagnara et al. 1997; Bagnara et al. 2002) it was shown that the domain
SH contains many elements that are redundant for the computation of the actual
observable properties of the analysis, definite groundness and definite independence.
The following formalization of these observables is a rewording of the definitions
provided in (Zaffanella et al. 1999; Zaffanella et al. 2002).

Definition 6
(The observables of SH .) The groundness and independence observables (on
SH) ρCon , ρPS ∈ uco(SH) are defined, for each sh ∈ SH , by

ρCon(sh) def=
{

S ∈ SG
∣∣ S ⊆ vars(sh)

}
,

ρPS(sh) def=
{

S ∈ SG
∣∣ (P ⊆ S ∧#P = 2) =⇒ (∃T ∈ sh . P ⊆ T)

}
.

Note that, as usual in sharing analysis domains, definite groundness and definite in-
dependence are both represented by encoding possible non-groundness and possible
pair-sharing information.

The abstract domain PSD (Bagnara et al. 2002; Zaffanella et al. 2002) is the
simplest abstraction of the domain SH that still preserves the same precision on
groundness and independence.

Definition 7
(The pair-sharing dependency lattice PSD.) The operator ρPSD ∈ uco(SH) is
defined, for each sh ∈ SH , by

ρPSD(sh) def=
{

S ∈ SG
∣∣∣ ∀y ∈ S : S =

⋃
{U ∈ sh | y ∈ U ⊆ S }

}
.

The pair-sharing dependency lattice is PSD def= ρPSD(SH).

In the following example we provide an intuitive interpretation of the approxi-
mation induced by the three upper closure operators of Definitions 6 and 7.

Example 8
Let VI = {v, w, x, y, z} and consider2 sh = {vx, vy, xy, xyz}. Then

ρCon(sh) = {v, vx, vxy, vxyz, vxz, vy, vyz, vz, x, xy, xyz, xz, y, yz, z},
ρPS(sh) = {v, vx, vxy, vy, w, x, xy, xyz, xz, y, yz, z},

2 In this and all the following examples, we will adopt a simplified notation for a set-
sharing element sh, omitting inner braces. For instance, we will write {xy, xz, yz} to denote{
{x, y}, {x, z}, {y, z}

}
.

10 P. M. Hill, E. Zaffanella, and R. Bagnara

ρPSD(sh) = {vx, vxy, vy, xy, xyz}.

When observing ρCon(sh), the only information available is that variable w does not
occur in a sharing group; intuitively, this means that w is definitely ground. All the
other information encoded in sh is lost; for instance, in sh variables v and z never
occur in the same sharing group (i.e., they are definitely independent), while this
happens in ρCon(sh).

When observing ρPS(sh), it should be noted that two distinct variables occur in
the same sharing group if and only if they were also occurring together in a sharing
group of sh, so that the definite independence information is preserved (e.g., v and
z keep their independence). On the other hand, all the variables in VI occur as
singletons in ρPS(sh) whether or not they are known to be ground; for instance,
{w} occurs in ρPS(sh) although w does not occur in any sharing group in sh.

By noting that ρPSD(sh) ⊂ ρCon(sh) ∩ ρPS(sh), it follows that ρPSD(sh) preserves
both the definite groundness and the definite independence information of sh; more-
over, as the inclusion is strict, ρPSD(sh) encodes other information, such as variable
covering (the interested reader is referred to (Bagnara et al. 2002; Zaffanella et al.
2002) for a more formal discussion).

2.6 Variable-Idempotent Substitutions

One of the key concepts used in (Hill et al. 2003) for the proofs of the correct-
ness results stated in this paper is that of variable-idempotence. For the interested
reader, we provide here a brief introduction to variable-idempotent substitutions,
although these are not referred to elsewhere in the paper.

The definition of idempotence requires that repeated applications of a substitu-
tion do not change the syntactic structure of a term and idempotent substitutions
are normally the preferred form of a solution to a set of equations. However, in
the domain of rational trees, a set of solvable equations does not necessarily have
an idempotent solution (for instance, in Example 2, the set of equations e has no
idempotent solution). On the other hand, several abstractions of terms, such as the
ones commonly used for sharing analysis, are only interested in the set of variables
occurring in a term and not in the concrete structure that contains them. Thus,
for applications such as sharing analysis, a useful way to relax the definition of
idempotence is to ignore the structure of terms and just require that the repeated
application of a substitution leaves the set of variables in a term invariant.

Definition 9
(Variable-idempotence.) A substitution σ ∈ RSubst is variable-idempotent3 if
and only if for all t ∈ HTerms we have

vars(tσσ) = vars(tσ).

3 This definition, which is the same as that originally provided in (Hill et al. 1998), is slightly
stronger than the one adopted in (Hill et al. 2002), which disregarded the domain variables of
the substitution. The adoption of this stronger definition allows for some simplifications in the
correctness proofs for freeness and linearity.

Correct and Efficient Integration of Set-Sharing, Freeness and Linearity 11

The set of variable-idempotent substitutions is denoted VSubst .

As any idempotent substitution is also variable-idempotent, we have ISubst ⊂
VSubst ⊂ RSubst .

Example 10
Consider the following substitutions which are all in RSubst .

σ1 =
{
x 7→ f(y)

}
∈ ISubst ⊂ VSubst ,

σ2 =
{
x 7→ f(x)

}
∈ VSubst \ ISubst ,

σ3 =
{
x 7→ f(y, z), y 7→ f(z, y)

}
∈ VSubst \ ISubst ,

σ4 =
{
x 7→ y, y 7→ f(x, y)

}
/∈ VSubst .

3 The Domain SFL

The abstract domain SFL is made up of three components, providing different
kinds of sharing information regarding the set of variables of interest VI : the first
component is the set-sharing domain SH of Jacobs and Langen (Jacobs and Langen
1989); the other two components provide freeness and linearity information, each
represented by simply recording those variables of interest that are known to enjoy
the corresponding property.

Definition 11
(The domain SFL.) Let F

def= ℘(VI) and L
def= ℘(VI) be partially ordered by

reverse subset inclusion. The abstract domain SFL is defined as

SFL def=
{
〈sh, f, l〉

∣∣ sh ∈ SH , f ∈ F, l ∈ L
}

and is ordered by ≤S, the component-wise extension of the orderings defined on the
sub-domains. With this ordering, SFL is a complete lattice whose least upper bound
operation is denoted by alubS. The bottom element 〈∅,VI ,VI 〉 will be denoted by
⊥S.

3.1 The Abstraction Function

When the concrete domain is based on the theory of finite trees, idempotent sub-
stitutions provide a finitely computable strong normal form for domain elements,
meaning that different substitutions describe different sets of finite trees.4 In con-
trast, when working on a concrete domain based on the theory of rational trees,
substitutions in rational solved form, while being finitely computable, no longer
satisfy this property: there can be an infinite set of substitutions in rational solved
form all describing the same set of rational trees (i.e., the same element in the
“intended” semantics). For instance, the substitutions

σn =
{
x 7→

n︷ ︸︸ ︷
f(· · · f(x) · · ·)

}
,

4 As usual, this is modulo the possible renaming of variables.

12 P. M. Hill, E. Zaffanella, and R. Bagnara

for n = 1, 2, . . . , all map the variable x into the same infinite rational tree fω.
Ideally, a strong normal form for the set of rational trees described by a substitu-

tion σ ∈ RSubst can be obtained by computing the limit σ∞. The problem is that
σ∞ can map domain variables to infinite rational terms and may not be in RSubst .

This poses a non-trivial problem when trying to define “good” abstraction func-
tions, since it would be really desirable for this function to map any two equivalent
concrete elements to the same abstract element. As shown in (Hill et al. 2002), the
classical abstraction function for set-sharing analysis (Cortesi and Filé 1999; Jacobs
and Langen 1989), which was defined only for substitutions that are idempotent,
does not enjoy this property when applied, as it is, to arbitrary substitutions in
rational solved form. In (Hill et al. 1998; Hill et al. 2002), this problem is solved
by replacing the sharing group operator ‘sg’ of (Jacobs and Langen 1989) by an
occurrence operator, ‘occ’, defined by means of a fixpoint computation. However,
to simplify the presentation, here we define ‘occ’ directly by exploiting the fact that
the number of iterations needed to reach the fixpoint is bounded by the number of
bindings in the substitution.

Definition 12
(Occurrence operator.) For each σ ∈ RSubst and v ∈ Vars, the occurrence
operator occ : RSubst ×Vars → ℘f(Vars) is defined as

occ(σ, v) def=
{

y ∈ Vars
∣∣ n = #σ, v ∈ vars(yσn) \ dom(σ)

}
.

For each σ ∈ RSubst , the operator ssets : RSubst → SH is defined as

ssets(σ) def=
{

occ(σ, v) ∩VI
∣∣ v ∈ Vars

}
\ {∅}.

The operator ‘ssets’ is introduced for notational convenience only.

Example 13
Let

σ =
{
x1 7→ f(x2), x2 7→ g(x3, x4), x3 7→ x1

}
,

τ =
{
x1 7→ f(g(x3, x4)), x2 7→ g(x3, x4), x3 7→ f(g(x3, x4))

}
.

Then dom(σ) = dom(τ) = {x1, x2, x3} so that occ(σ, xi) = occ(τ, xi) = ∅, for i = 1,
2, 3 and occ(σ, x4) = occ(τ, x4) = {x1, x2, x3, x4}. As a consequence, supposing that
VI = {x1, x2, x3, x4}, we obtain ssets(σ) = ssets(τ) = {VI }.

In a similar way, it is possible to define suitable operators for groundness, freeness
and linearity. As all ground trees are linear, a knowledge of the definite groundness
information can be useful for proving properties concerning the linearity abstrac-
tion. Groundness is already encoded in the abstraction for set-sharing provided in
Definition 12; nonetheless, for both a simplified notation and a clearer intuitive
reading, we now explicitly define the set of variables that are associated to ground
trees by a substitution in RSubst .

Correct and Efficient Integration of Set-Sharing, Freeness and Linearity 13

Definition 14
(Groundness operator.) The groundness operator gvars : RSubst → ℘f(Vars) is
defined, for each σ ∈ RSubst , by

gvars(σ) def=
{

y ∈ dom(σ)
∣∣ ∀v ∈ Vars : y /∈ occ(σ, v)

}
.

Example 15
Consider σ ∈ RSubst where

σ =
{
x1 7→ x2, x2 7→ f(a), x3 7→ x4, x4 7→ f(x2, x4)

}
.

Then gvars(σ) = {x1, x2, x3, x4}. Observe that x1 ∈ gvars(σ) although x1σ ∈ Vars.
Also, x3 ∈ gvars(σ) although vars(x3σ

i) = {x2, x4} 6= ∅ for all i ≥ 2.

As for possible sharing, the definite freeness information can be extracted from
a substitution in rational solved form by observing the result of a bounded number
of applications of the substitution.

Definition 16
(Freeness operator.) The freeness operator fvars : RSubst → ℘(Vars) is defined,
for each σ ∈ RSubst , by

fvars(σ) def= { y ∈ Vars | n = #σ, yσn ∈ Vars }.

As σ ∈ RSubst has no circular subset, y ∈ fvars(σ) implies yσn ∈ Vars \ dom(σ).

Example 17
Let VI = {x1, x2, x3, x4, x5} and consider σ ∈ RSubst where

σ =
{
x1 7→ x2, x2 7→ f(x3), x3 7→ x4, x4 7→ x5

}
.

Then fvars(σ) ∩ VI = {x3, x4, x5}. Thus x1 /∈ fvars(σ) although x1σ ∈ Vars. Also,
x3 ∈ fvars(σ) although x3σ ∈ dom(σ).

As in previous cases, the definite linearity information can be extracted by observ-
ing the result of a bounded number of applications of the considered substitution.

Definition 18
(Linearity operator.) The linearity operator lvars : RSubst → ℘(Vars) is defined,
for each σ ∈ RSubst , by

lvars(σ) def=
{

y ∈ Vars
∣∣ n = #σ,∀z ∈ vars(yσn) \ dom(σ) : occ lin(z, yσ2n)

}
.

In the next example we consider the extraction of linearity from two substitutions.
The substitution σ shows that, in contrast with the case of set-sharing and freeness,
for linearity we may need to compute up to 2n applications, where n = #σ; the
substitution τ shows that, when observing the term yτ2n, multiple occurrences of
domain variables have to be disregarded.

14 P. M. Hill, E. Zaffanella, and R. Bagnara

Example 19
Let VI = {x1, x2, x3, x4} and consider σ ∈ RSubst where

σ =
{
x1 7→ x2, x2 7→ x3, x3 7→ f(x1, x4)

}
.

Then lvars(σ) ∩ VI = {x4}. Observe that x1 /∈ lvars(σ). This is because x4 /∈
dom(σ), x1σ

3 = f(x1, x4) so that x4 ∈ vars(x1σ
3) and x1σ

6 = f
(
f(x1, x4), x4

)
so that occ lin(x4, x1σ

6) does not hold. Note also that occ lin(x4, x1σ
i) holds for

i = 3, 4, 5.
Consider now τ ∈ RSubst where

τ =
{
x1 7→ f(x2, x2), x2 7→ f(x2)

}
.

Then lvars(τ) ∩ VI = VI . Note that we have x1 ∈ lvars(τ) although, for all i > 0,
x2 ∈ dom(τ) occurs more than once in the term x1τ

i.

The occurrence, groundness, freeness and linearity operators are invariant with
respect to substitutions that are equivalent in the given syntactic equality theory.

Proposition 20
Let σ, τ ∈ RSubst be satisfiable in the syntactic equality theory T and suppose that
T ` ∀(σ ↔ τ). Then

ssets(σ) = ssets(τ), (12)

gvars(σ) = gvars(τ), (13)

fvars(σ) = fvars(τ), (14)

lvars(σ) = lvars(τ). (15)

Moreover, these operators precisely capture the intended properties over the do-
main of rational trees.

Proposition 21
If σ ∈ RSubst and y, v ∈ Vars then

y ∈ occ(σ, v) ⇐⇒ v ∈ vars
(
rt(y, σ)

)
, (16)

y ∈ gvars(σ) ⇐⇒ rt(y, σ) ∈ GTerms, (17)

y ∈ fvars(σ) ⇐⇒ rt(y, σ) ∈ Vars, (18)

y ∈ lvars(σ) ⇐⇒ rt(y, σ) ∈ LTerms. (19)

It follows from (16) and (18) that any free variable necessarily shares (at least, with
itself). Also, as Vars ∪GTerms ⊂ LTerms, it follows from (17), (18) and (19) that
any variable that is either ground or free is also necessarily linear. Thus we have
the following corollary.

Corollary 22
If σ ∈ RSubst , then

fvars(σ) ⊆ vars
(
ssets(σ)

)
,

fvars(σ) ∪ gvars(σ) ⊆ lvars(σ).

We are now in position to define the abstraction function mapping rational trees
to elements of the domain SFL.

Correct and Efficient Integration of Set-Sharing, Freeness and Linearity 15

Definition 23
(The abstraction function for SFL.) For each substitution σ ∈ RSubst , the
function αS : RSubst → SFL is defined by

αS(σ) def=
〈
ssets(σ), fvars(σ) ∩VI , lvars(σ) ∩VI

〉
,

The concrete domain ℘(RSubst) is related to SFL by means of the abstraction
function αS : ℘(RSubst)→ SFL such that, for each Σ ∈ ℘(RSubst),

αS(Σ) def= alubS

{
αS(σ)

∣∣ σ ∈ Σ
}
.

Since the abstraction function αS is additive, the concretization function is given
by the adjoint (Cousot and Cousot 1977)

γS

(
〈sh, f, l〉

) def=
{

σ ∈ RSubst
∣∣ ssets(σ) ⊆ sh, fvars(σ) ⊇ f, lvars(σ) ⊇ l

}
.

With Definition 23 and Proposition 20, one of our objectives is fulfilled: substi-
tutions in RSubst that are equivalent have the same abstraction.

Corollary 24
Let σ, τ ∈ RSubst be satisfiable in the syntactic equality theory T and suppose
T ` ∀(σ ↔ τ). Then αS(σ) = αS(τ).

Observe that the Galois connection defined by the functions αS and γS is not a
Galois insertion since different abstract elements are mapped by γS to the same
set of concrete computation states. To see this it is sufficient to observe that, by
Corollary 22, any abstract element d = 〈sh, f, l〉 ∈ SFL such that f * vars(sh), as
is the case for the bottom element ⊥S, satisfies γS(d) = γS(⊥S) = ∅; thus, all such
d’s will represent the semantics of those program fragments that have no successful
computations. Similarly, by letting V =

(
VI \vars(sh)

)
∪ f , it can be seen that, for

any l′ such that V ∪l = V ∪l′, we have, again by Corollary 22, γS(d) = γS

(
〈sh, f, l′〉

)
.

Of course, by taking the abstract domain as the subset of SFL that is the co-
domain of αS, we would have a Galois insertion. However, apart from the simple
cases shown above, it is somehow difficult to explicitly characterize such a set. For
instance, as observed in (Filé 1994), if

d =
〈
{xy, xz, yz}, {x, y, z}, {x, y, z}

〉
∈ SFL

we have γS(d) = γS(⊥S) = ∅. It is worth stressing that these “spurious” elements
do not compromise the correctness of the analysis and, although they can affect
the precision of the analysis, they rarely occur in practice (Bagnara et al. 2000;
Zaffanella 2001).

3.2 The Abstract Operators

The specification of the abstract unification operator on the domain SFL is rather
complex, since it is based on a very detailed case analysis. To achieve some mod-
ularity, that will be also useful when proving its correctness, in the next definition
we introduce several auxiliary abstract operators.

16 P. M. Hill, E. Zaffanella, and R. Bagnara

Definition 25
(Auxiliary operators in SFL.) Let s, t ∈ HTerms be finite terms such that
vars(s) ∪ vars(t) ⊆ VI . For each d = 〈sh, f, l〉 ∈ SFL we define the following
predicates:
s and t are independent in d if and only if indd : HTerms2 → Bool holds for (s, t),
where

indd(s, t) def=
(
rel

(
vars(s), sh

)
∩ rel

(
vars(t), sh

)
= ∅

)
;

t is ground in d if and only if groundd : HTerms → Bool holds for t, where

groundd(t) def=
(
vars(t) ⊆ VI \ vars(sh)

)
;

y ∈ vars(t) occurs linearly (in t) in d if and only if occ lind : VI ×HTerms → Bool
holds for (y, t), where

occ lind(y, t) def= groundd(y) ∨
(
occ lin(y, t) ∧ (y ∈ l)

∧ ∀z ∈ vars(t) :
(
y 6= z =⇒ indd(y, z)

))
;

t is free in d if and only if freed : HTerms → Bool holds for t, where

freed(t) def= (t ∈ f);

t is linear in d if and only if lind : HTerms → Bool holds for t, where

lind(t) def= ∀y ∈ vars(t) : occ lind(y, t).

The function share withd : HTerms → ℘(VI) yields the set of variables of interest
that may share with the given term. For each t ∈ HTerms,

share withd(t) def= vars
(
rel

(
vars(t), sh

))
.

The function cyclict
x : SH → SH strengthens the sharing set sh by forcing the

coupling of x with t. For each sh ∈ SH and each (x 7→ t) ∈ Bind ,

cyclict
x(sh) def= rel

(
{x} ∪ vars(t), sh

)
∪ rel

(
vars(t) \ {x}, sh

)
.

As a first correctness result, we have that the auxiliary operators correctly ap-
proximate the corresponding concrete properties.

Theorem 26
Let d ∈ SFL, σ ∈ γS(d) and y ∈ VI . Let also s, t ∈ HTerms be two finite terms
such that vars(s) ∪ vars(t) ⊆ VI . Then

indd(s, t) =⇒ vars
(
rt(s, σ)

)
∩ vars

(
rt(t, σ)

)
= ∅; (20)

indd(y, t) ⇐⇒ y /∈ share withd(t); (21)

freed(t) =⇒ rt(t, σ) ∈ Vars; (22)

groundd(t) =⇒ rt(t, σ) ∈ GTerms; (23)

lind(t) =⇒ rt(t, σ) ∈ LTerms. (24)

Correct and Efficient Integration of Set-Sharing, Freeness and Linearity 17

Example 27
Let VI = {v, w, x, y, z} and consider the abstract element d = 〈sh, f, l〉 ∈ SFL,
where

sh = {v, wz, xz, z}, f = {v}, l = {v, x, y, z}.

Then, by applying Definition 25, we obtain the following.

• groundd(x) does not hold whereas groundd

(
h(y)

)
holds.

• freed(v) holds but freed
(
h(v)

)
does not hold.

• Both indd(w, x) and indd

(
f(w, y), f(x, y)

)
hold whereas indd(x, z) does not

hold; note that, in the second case, the two arguments of the predicate do
share y, but this does not affect the independence of the corresponding terms,
because y is definitely ground in the abstract element d .
• Let t = f(w, x, x, y, y, z); then occ lind(w, t) does not hold because w /∈ l;

occ lind(x, t) does not hold because x occurs more than once in t; occ lind(y, t)
holds, even though y occurs twice in t, because y is definitely ground in d ;
occ lind(z, t) does not hold because both x and z occur in term t and, as
observed in the point above, indd(x, z) does not hold.
• For the reasons given in the point above, lind(t) does not hold; in contrast,

lind

(
f(y, y, z)

)
holds.

• share withd(w) = {w, z} and share withd(x) = {x, z}; thus, both w and x

may share one or more variables with z; since we observed that w and x are
definitely independent in d , this means that the set of variables that w shares
with z is disjoint from the set of variables that x shares with z.
• Let t = f(w, z); then

cyclict
z(sh) = rel

(
{w, z}, sh

)
∪ rel

(
{w}, sh

)
= {v} ∪ {wz}
= sh \ {xz, z}.

An intuitive explanation of the usefulness of this operator is deferred until
after the introduction of the abstract mgu operator (see also Example 31).

We now introduce the abstract mgu operator, specifying how a single binding
affects each component of the domain SFL in the context of a syntactic equality
theory T .

Definition 28
(amguS.) The function amguS : SFL×Bind → SFL captures the effects of a binding
on an element of SFL. Let d = 〈sh, f, l〉 ∈ SFL and (x 7→ t) ∈ Bind , where
{x} ∪ vars(t) ⊆ VI . Let also

sh ′ def= cyclict
x(sh− ∪ sh ′′),

where

shx
def= rel

(
{x}, sh

)
, sht

def= rel
(
vars(t), sh

)
,

shxt
def= shx ∩ sht, sh−

def= rel
(
{x} ∪ vars(t), sh

)
,

18 P. M. Hill, E. Zaffanella, and R. Bagnara

sh ′′ def=

bin(shx, sht), if freed(x) ∨ freed(t);

bin
(
shx ∪ bin(shx, sh?

xt),

sht ∪ bin(sht, sh?
xt)

)
, if lind(x) ∧ lind(t);

bin(sh?
x, sht), if lind(x);

bin(shx, sh?
t), if lind(t);

bin(sh?
x, sh?

t), otherwise.

Letting Sx
def= share withd(x) and St

def= share withd(t), we also define

f ′
def=

f, if freed(x) ∧ freed(t);

f \ Sx, if freed(x);

f \ St, if freed(t);

f \ (Sx ∪ St), otherwise;

l′
def=

(
VI \ vars(sh ′)

)
∪ f ′ ∪ l′′,

where

l′′
def=

l \ (Sx ∩ St), if lind(x) ∧ lind(t);

l \ Sx, if lind(x);

l \ St, if lind(t);

l \ (Sx ∪ St), otherwise.

Then

amguS

(
d , x 7→ t

) def=

{
⊥S, if d = ⊥S ∨

(
T = FT ∧ x ∈ vars(t)

)
;

〈sh ′, f ′, l′〉 otherwise.

The next result states that the abstract mgu operator is a correct approximation
of the concrete one.

Theorem 29
Let d ∈ SFL and (x 7→ t) ∈ Bind , where {x} ∪ vars(t) ⊆ VI . Then, for all
σ ∈ γS(d) and τ ∈ mgs

(
σ ∪ {x = t}

)
in the syntactic equality theory T , we

have τ ∈ γS

(
amguS(d , x 7→ t)

)
.

We now highlight the similarities and differences of the operator amguS with
respect to the corresponding ones defined in the “classical” proposals for the inte-
gration of set-sharing with freeness and linearity, such as (Bruynooghe et al. 1994a;
Bruynooghe et al. 1995; Hans and Winkler 1992; Langen 1990). Note that, when
comparing our domain with the proposal in (Bruynooghe et al. 1994a), we delib-
erately ignore all those enhancements that depend on properties that cannot be
represented in SFL (i.e., compoundness and explicit structural information).

• In the computation of the set-sharing component, the main difference can be
observed in the second, third and fourth cases of the definition of sh ′′: here
we omit one of the star-unions even when the terms x and t possibly share. In

Correct and Efficient Integration of Set-Sharing, Freeness and Linearity 19

contrast, in (Bruynooghe et al. 1994a; Hans and Winkler 1992; Langen 1990)
the corresponding star-union is avoided only when indd(x, t) holds. Note that
when indd(x, t) holds in the second case of sh ′′, then we have shxt = ∅; thus,
the whole computation for this case reduces to sh ′′ = bin(shx, sht), as was
the case in the previous proposals.
• Another improvement on the set-sharing component can be observed in the

definition of sh ′: the cyclict
x operator allows the set-sharing description to be

further enhanced when dealing with explicitly cyclic bindings, i.e., when x ∈
vars(t). This is the rewording of a similar enhancement proposed in (Bagnara
1997) for the domain Pos in the context of groundness analysis. Its net effect
is to recover some groundness and sharing dependencies that would have been
unnecessarily lost when using the standard operators. When x /∈ vars(t), we
have cyclict

x(sh− ∪ sh ′′) = sh− ∪ sh ′′.
• The computation of the freeness component f ′ is the same as specified in (Bru-

ynooghe et al. 1994a; Hans and Winkler 1992), and is more precise than the
one defined in (Langen 1990).
• The computation of the linearity component l′ is the same as specified in (Bru-

ynooghe et al. 1994a), and is more precise than those defined in (Hans and
Winkler 1992; Langen 1990).

In the following examples we show that the improvements in the abstract com-
putation of the sharing component allow, in particular cases, to derive better infor-
mation than that obtainable by using the classical abstract unification operators.

Example 30
Let VI = {x, x1, x2, y, y1, y2, z} and σ ∈ RSubst such that

σ
def=

{
x 7→ f(x1, x2, z), y 7→ f(y1, z, y2)

}
.

By Definition 23, we have d def= αS

(
{σ}

)
= 〈sh, f, l〉, where

sh = {xx1, xx2, xyz, yy1, yy2}, f = VI \ {x, y}, l = VI .

Consider the binding (x 7→ y) ∈ Bind . In the concrete domain, we compute (a
substitution equivalent to) τ ∈ mgs

(
σ ∪ {x = y}

)
, where

τ =
{
x 7→ f(y1, y2, y2), y 7→ f(y1, y2, y2), x1 7→ y1, x2 7→ y2, z 7→ y2

}
.

Note that αS

(
{τ}

)
= 〈shτ , fτ , lτ 〉, where shτ = {xx1yy1, xx2yy2z}, so that the

pairs of variables Px = {x1, x2} and Py = {y1, y2} keep their independence.
When evaluating the sharing component of amguS(d, x 7→ y), using the notation

of Definition 28, we have

shx = {xx1, xx2, xyz}, sht = {xyz, yy1, yy2},
shxt = {xyz}, sh− = ∅.

Since both lind(x) and lind(y) hold, we apply the second case of the definition of
sh ′′ so that

shx ∪ bin(shx, sh?
xt) = {xx1, xx1yz, xx2, xx2yz, xyz},

20 P. M. Hill, E. Zaffanella, and R. Bagnara

sht ∪ bin(sht, sh?
xt) = {xyy1z, xyy2z, xyz, yy1, yy2},
sh ′′ = bin

(
shx ∪ bin(shx, sh?

xt), sht ∪ bin(sht, sh?
xt)

)
= {xx1yy1, xx1yy1z, xx1yy2, xx1yy2z, xx1yz,

xx2yy1, xx2yy1z, xx2yy2, xx2yy2z, xx2yz,

xyy1z, xyy2z, xyz}.

Finally, as the binding is not cyclic, we obtain sh ′ = sh ′′. Thus amguS captures the
fact that pairs Px and Py keep their independence.

In contrast, since indd(x, y) does not hold, all of the classical definitions of ab-
stract unification would have required the star-closure of both shx and sht, re-
sulting in an abstract element including, among the others, the sharing group
S = {x, x1, x2, y, y1, y2}. Since Px ∪ Py ⊂ S, this independence information would
have been unnecessarily lost.

Similar examples can be devised for the third and fourth cases of the definition
of sh ′′, where only one side of the binding is known to be linear. The next example
shows the precision improvements arising from the use of the cyclict

x operator.

Example 31
Let VI = {x, x1, x2, y} and σ

def=
{
x 7→ f(x1, x2)

}
. By Definition 23, we have

d def= αS

(
{σ}

)
= 〈sh, f, l〉, where

sh = {xx1, xx2, y}, f = VI \ {x}, l = VI .

Let t = f(x, y) and consider the cyclic binding (x 7→ t) ∈ Bind . In the concrete
domain, we compute (a substitution equivalent to) τ ∈ mgs

(
σ ∪ {x = t}

)
, where

τ =
{
x 7→ f(x1, x2), x1 7→ f(x1, x2), y 7→ x2,

}
.

Note that if we further instantiate τ by grounding y, then variables x, x1 and
x2 would become ground too. Formally we have αS

(
{τ}

)
= 〈shτ , fτ , lτ 〉, where

shτ = {xx1x2y}. Thus, as observed above, y covers x, x1 and x2. When abstractly
evaluating the binding, we compute

shx = {xx1, xx2}, sht = {xx1, xx2, y},
shxt = shx, sh− = ∅.

Since both lind(x) and lind(t) hold, we apply the second case of the definition of
sh ′′, so that

shx ∪ bin(shx, sh?
xt) = sh?

x = {xx1, xx1x2, xx2},
sht ∪ bin(sht, sh?

xt) = {xx1, xx1x2, xx1x2y, xx1y, xx2, xx2y, y},
sh ′′ = bin

(
shx ∪ bin(shx, sh?

xt), sht ∪ bin(sht, sh?
xt)

)
= {xx1, xx1x2, xx1x2y, xx1y, xx2, xx2y}.

Thus, as x ∈ vars(t), we obtain

sh ′ = cyclict
x(sh− ∪ sh ′′)

= rel
(
{x} ∪ vars(t), sh ′′

)
∪ rel

(
vars(t) \ {x}, sh ′′

)

Correct and Efficient Integration of Set-Sharing, Freeness and Linearity 21

= ∅ ∪ rel
(
{y}, sh ′′

)
= {xx1x2y, xx1y, xx2y}.

Note that, in the element sh− ∪ sh ′′ = sh ′′ (which is the abstract element that
would have been computed when not exploiting the cyclict

x operator) variable y

covers none of variables x, x1 and x2. Thus, by applying the cyclict
x operator, this

covering information is restored.

The full abstract unification operator aunifyS, capturing the effect of a sequence
of bindings on an abstract element, can now be specified by a straightforward
inductive definition using the operator amguS.

Definition 32
(aunifyS.) The operator aunifyS : SFL×Bind∗ → SFL is defined, for each d ∈ SFL
and each sequence of bindings bs ∈ Bind∗, by

aunifyS(d , bs) def=

{
d , if bs = ε;

aunifyS

(
amguS(d , x 7→ t), bs ′

)
, if bs = (x 7→ t) . bs ′.

Note that the second argument of aunifyS is a sequence of bindings (i.e., it is not a
substitution, which is a set of bindings), because amguS is neither commutative nor
idempotent, so that the multiplicity and the actual order of application of the bind-
ings can influence the overall result of the abstract computation. The correctness
of the aunifyS operator is simply inherited from the correctness of the underlying
amguS operator. In particular, any reordering of the bindings in the sequence bs
still results in a correct implementation of aunifyS.

The ‘merge-over-all-path’ operator on the domain SFL is provided by alubS and
is correct by definition. Finally, we define the abstract existential quantification
operator for the domain SFL, whose correctness does not pose any problem.

Definition 33
(aexistsS.) The function aexistsS : SFL × ℘f(VI) → SFL provides the abstract ex-
istential quantification of an element with respect to a subset of the variables of
interest. For each d def= 〈sh, f, l〉 ∈ SFL and V ⊆ VI ,

aexistsS

(
〈sh, f, l〉, V

) def=
〈
aexists(sh, V), f ∪ V, l ∪ V

〉
.

The intuition behind the definition of the abstract operator aexistsS is the fol-
lowing. As explained in Section 2, any substitution σ ∈ RSubst can be interpreted,
under the given equality theory T , as a first-order logical formula; thus, for each
set of variables V , it is possible to consider the (concrete) existential quantification
∃V . σ. The goal of the abstract operator aexistsS is to provide a correct approxi-
mation of such a quantification starting from any correct approximation for σ.

Example 34
Let VI = {x, y, z} and σ = {x 7→ f(v1, v2), y 7→ g(v2, v3), z 7→ f(v1, v1)}, so that,
by Definition 23,

d = αS

(
{σ}

)
=

〈
{xy, xz, y}, ∅, {x, y}

〉
.

22 P. M. Hill, E. Zaffanella, and R. Bagnara

Let V = {y, z} and consider the concrete element corresponding to the logical
formula ∃V . σ. Note that T ` ∀(τ ↔ ∃V . σ), where τ = {x 7→ f(v1, v2)}. By
applying Definition 33, we obtain

aexistsS(d , V) =
〈
{x, y, z}, {y, z}, {x, y, z}

〉
= αS

(
{τ}

)
.

It is worth stressing that such an operator does not affect the set VI of the variables
of interest. In particular, the abstract element aexistsS(d , V) still has to provide
correct information about variables y and z. Intuitively, since all the occurrences
of y and z in ∃V . σ are bound by the existential quantifier, the two variables of
interest are un-aliased, free and linear.

Note that an abstract projection operator, i.e., an operator that actually modifies
the set of variables of interest, is easily specified by composing the operator aexistsS

with an operator that simply removes, from all the components of SFL and from
the set of variables of interest VI , those variables that have to be projected out.

4 A Formal Comparison Between SFL and ASub

As we have already observed, Example 30 shows that the abstract domain SFL,
when equipped with the abstract mgu operator introduced in Section 3.2, can yield
results that are strictly more precise than all the classical combinations of set-
sharing with freeness and linearity information. In this section we show that the
same example has another interesting, unexpected consequence, since it can be used
to formally prove that all the classical combinations of set-sharing with freeness and
linearity, including those presented in (Bagnara et al. 2000; Bruynooghe et al. 1994a;
Hans and Winkler 1992; Langen 1990), are not uniformly more precise than the
abstract domain ASub (Søndergaard 1986), which is based on pair-sharing.

To formalize the above observation, we now introduce the ASub domain and the
corresponding abstract semantics operators as specified in (Codish et al. 1991).
The elements of the abstract domain ASub have two components: the first one is
a set of variables that are known to be definitely ground; the second one encodes
both possible pair-sharing and possible non-linearity into a single relation defined
on the set of variables. Intuitively, when x 6= y and (x, y) ∈ VI 2 occurs in the
second component, then x and y may share a variable; when (x, x) ∈ VI 2 occurs
in the second component, then x may be non-linear. The second component always
encodes a symmetric relation; thus, for notational convenience and without any loss
of generality (King 2000), we will represent each pair (x, y) in such a relation as the
sharing group S = {x, y}, which will have cardinality 1 or 2 depending on whether
x = y or not, respectively.

Definition 35
(The domain ASub⊥.) The abstract domain ASub⊥ is defined as ASub⊥

def=
{⊥ASub} ∪ ASub, where

ASub
def=

{
〈G, R〉 ∈ ℘(VI)× SH

∣∣∣∣∣ G ∩ vars(R) = ∅,

∀S ∈ R : 1 ≤ #S ≤ 2

}
.

Correct and Efficient Integration of Set-Sharing, Freeness and Linearity 23

For i ∈ {1, 2}, let κi = 〈Gi, Ri〉 ∈ ASub. Then

κ1 �ASub κ2
def⇐⇒ G1 ⊇ G2 ∧R1 ⊆ R2.

The partial order �ASub is extended on ASub⊥ by letting ⊥ASub be the bottom element.
Let u, v ∈ VI and κ = 〈G, R〉 ∈ ASub. Then u

κ←→ v is a shorthand for the
condition {u, v} ∈ R, whereas u

κ⇐⇒ v is a shorthand for u = v ∨ {u, v} ∈ R.

It is well-known that the domain ASub⊥ can be obtained by a further abstraction
of any domain such as SFL that is based on set-sharing and enhanced with linearity
information. The following definition formalizes this abstraction.

Definition 36
(αASub : SFL→ ASub⊥.) Let d = 〈sh, f, l〉 ∈ SFL. Then

αASub(d) def=

{
⊥ASub, if d = ⊥S;

〈G, R〉, otherwise;

where

G
def=

{
x ∈ VI

∣∣ x /∈ vars(sh)
}
,

R
def=

{
{x} ⊆ VI

∣∣ x ∈ vars(sh) ∧ x /∈ l
}

∪
{
{x, y} ⊆ VI

∣∣ x 6= y ∧ ∃S ∈ sh . {x, y} ⊆ S
}
.

The definition of abstract unification in (Codish et al. 1991) is based on a few
auxiliary operators. The first of these introduces the concept of abstract multiplicity
for a term under a given abstract substitution, therefore modeling the notion of
definite groundness and definite linearity.

Definition 37
(Abstract multiplicity.) Let κ = 〈G, R〉 ∈ ASub and let t ∈ HTerms be a term
such that vars(t) ⊆ VI . We say that y ∈ vars(t) occurs linearly (in t) in κ if and
only if occ linκ : VI ×HTerms → Bool holds for (y, t), where

occ linκ(y, t) def= y ∈ G ∨
(
occ lin(y, t) ∧ ∀z ∈ vars(t) : {y, z} /∈ R

)
.

We say that t has abstract multiplicity m in κ if and only if χκ(t) = m, where
χκ : HTerms → {0, 1, 2} is defined as follows

χκ(t) def=

0, if vars(t) ⊆ G;

1, if ∀y ∈ vars(t) : occ linκ(y, t);

2, otherwise.

For any binding x 7→ t, the function χκ : Bind → {0} ∪ {1, 2}2 is defined as follows

χκ(x 7→ t) def=

{
0, if χκ(x) = 0 or χκ(t) = 0;(
χκ(x), χκ(t)

)
, otherwise;

24 P. M. Hill, E. Zaffanella, and R. Bagnara

It is worth noting that, modulo a few insignificant differences in notation, the
multiplicity operator χκ defined above corresponds to the abstract multiplicity
operator χA, which was introduced in (Codish et al. 1991, Definition 3.4) and
provided with an executable specification in (King 2000, Definition 4.3). Similarly,
the next definition corresponds to (Codish et al. 1991, Definition 4.3).

Definition 38
(Sharing caused by an abstract equation.) For each κ ∈ ASub and (x 7→ t) ∈
Bind , where Vx = {x} and Vt = vars(t) are such that Vx ∪ Vt ⊆ VI , the function
soln: ASub× Bind → ASub is defined as follows

soln(κ, x 7→ t) def=

〈Vx ∪ Vt, ∅〉, if χκ(x 7→ t) = 0;〈
∅,bin(Vx, Vt)

〉
, if χκ(x 7→ t) = (1, 1);〈

∅,bin(Vx, Vx ∪ Vt)
〉
, if χκ(x 7→ t) = (1, 2);〈

∅,bin(Vx ∪ Vt, Vt)
〉
, if χκ(x 7→ t) = (2, 1);〈

∅,bin(Vx ∪ Vt, Vx ∪ Vt)
〉
, if χκ(x 7→ t) = (2, 2);

where the function bin: ℘(VI)2 → SH , for each V,W ⊆ VI , is defined as follows

bin(V,W) def=
{
{v, w} ⊆ VI

∣∣ v ∈ V,w ∈W
}
.

The next definition corresponds to (Codish et al. 1991, Definition 4.5).

Definition 39
(Abstract composition.) Let κ, κ′ ∈ ASub, where κ = 〈G, R〉 and κ′ = 〈G′, R′〉.
Then κ ◦ κ′

def= 〈G′′, R′′〉, where

G′′ def= G ∪G′,

R′′ def=

{
{u, v} ∈ SH

∣∣∣∣∣ {u, v} ∩G′′ = ∅,(
u

κ←→ v
)
∨

(
∃x, y . u

κ⇐⇒ x
κ′

←→ y
κ⇐⇒ v

) }
.

We are now ready to define the abstract mgu operator for the domain ASub⊥.
This operator can be viewed as a specialization of (Codish et al. 1991, Definition 4.6)
for the case when we have to abstract a single binding.

Definition 40
(Abstract mgu for ASub⊥.) Let κ ∈ ASub⊥ and (x 7→ t) ∈ Bind , where {x} ∪
vars(t) ⊆ VI . Then

amguASub(κ, x 7→ t) def=

{
⊥ASub, if κ = ⊥ASub;

κ ◦ soln(κ, x 7→ t), otherwise;

By repeating the abstract computation of Example 30 on the domain ASub, we
provide a formal proof that all the classical approaches based on set-sharing are
not uniformly more precise than the pair-sharing domain ASub.

Correct and Efficient Integration of Set-Sharing, Freeness and Linearity 25

Example 41
Consider the substitutions σ, τ ∈ RSubst and the abstract element d ∈ SFL as
introduced in Example 30.

By Definition 36, we obtain κ = αASub(d) = 〈∅, R〉, where

R = {xx1, xx2, xy, xz, yy1, yy2, yz},

When abstractly evaluating the binding x 7→ y according to Definition 40, we
compute the following:

χκ(x 7→ y) = (1, 1),

soln(κ, x 7→ y) =
〈
∅, {xy}

〉
,

amguASub(κ, x 7→ y) = κ ◦ soln(κ, x 7→ y) = 〈∅, R′′〉,

where

R′′ = R ∪ {x, xy1, xy2, x1y, x1y1, x1y2, x1z, x2y, x2y1, x2y2, x2z, y, y1z, y2z, z}.

Note that {x1, x2} /∈ R′′ and {y1, y2} /∈ R′′, so that these pairs of variables keep their
independence. In contrast, as observed in Example 30, the operators in (Bagnara
et al. 2000; Bruynooghe et al. 1994a; Hans and Winkler 1992; Langen 1990) will
fail to preserve the independence of these pairs.

We now show that the abstract domain SFL, when equipped with the opera-
tors introduced in Section 3.2, is uniformly more precise than the domain ASub.
In particular, the following theorem states that the abstract operator amguS of
Definition 28 is uniformly more precise than the abstract operator amguASub.

Theorem 42
Let d ∈ SFL and κ ∈ ASub⊥ be such that αASub(d) �ASub κ. Let also (x 7→ t) ∈ Bind ,
where {x} ∪ vars(t) ⊆ VI . Then

αASub

(
amguS(d , x 7→ t)

)
�ASub amguASub(κ, x 7→ t).

Similar results can be stated for the other abstract operators, such as the abstract
existential quantification aexistsS and the merge-over-all-path operator alubS. It
is worth stressing that, when sequences of bindings come into play, the specifica-
tion provided in (Codish et al. 1991, Definition 4.7) requires that the grounding
bindings (i.e., those bindings such that χκ(x 7→ t) = 0) are evaluated before the
non-grounding ones. Clearly, if we want to lift the result of Theorem 42 so that it
also applies to the operator aunifyS, the same evaluation strategy has to be adopted
when computing on the domain SFL; this improvement is well-known (Langen 1990,
pp. 66-67) and already exploited in most implementations of sharing analysis (Bag-
nara et al. 2000).

5 SFL2: Eliminating Redundancies

As done in (Bagnara et al. 2002; Zaffanella et al. 2002) for the plain set-sharing
domain SH , even when considering the richer domain SFL it is natural to question

26 P. M. Hill, E. Zaffanella, and R. Bagnara

whether it contains redundancies with respect to the computation of the observable
properties.

It is worth stressing that the results presented in (Bagnara et al. 2002) and (Zaf-
fanella et al. 2002) cannot be simply inherited by the new domain. The concept
of “redundancy” depends on both the starting domain and the given observables:
in the SFL domain both of these have changed. First of all, as can be seen by
looking at the definition of amguS, freeness and linearity positively interact in the
computation of sharing information: a priori it is an open issue whether or not the
“redundant” sharing groups can play a role in such an interaction. Secondly, since
freeness and linearity information can be themselves usefully exploited in a number
of applications of static analysis (e.g., in the optimized implementation of concrete
unification or in occurs-check reduction), these properties have to be included in
the observables.

We will now show that the domain SFL can be simplified by applying the same
notion of redundancy as identified in (Bagnara et al. 2002). Namely, in the definition
of SFL it is possible to replace the set-sharing component SH by PSD without
affecting the precision on groundness, independence, freeness and linearity. In order
to prove such a claim, we now formalize the new observable properties.

Definition 43
(The observables of SFL.) The (overloaded) groundness and independence ob-
servables ρCon , ρPS ∈ uco(SFL) are defined, for each 〈sh, f, l〉 ∈ SFL, by

ρCon

(
〈sh, f, l〉

) def=
〈
ρCon(sh), ∅, ∅

〉
,

ρPS

(
〈sh, f, l〉

) def=
〈
ρPS(sh), ∅, ∅

〉
;

the freeness and linearity observables ρF , ρL ∈ uco(SFL) are defined, for each
〈sh, f, l〉 ∈ SFL, by

ρF

(
〈sh, f, l〉

) def= 〈SG , f, ∅〉,

ρL

(
〈sh, f, l〉

) def= 〈SG , ∅, l〉.

The overloading of ρPSD working on the domain SFL is the straightforward exten-
sion of the corresponding operator on SH : in particular, the freeness and linearity
components are left untouched.

Definition 44
(Non-redundant SFL.) For each 〈sh, f, l〉 ∈ SFL, the operator ρPSD ∈ uco(SFL)
is defined by

ρPSD

(
〈sh, f, l〉

) def=
〈
ρPSD(sh), f, l

〉
.

This operator induces the lattice SFL2
def= ρPSD(SFL).

As proved in (Zaffanella et al. 2002), we have that ρPSD v (ρCon u ρPS); by the above
definitions, it is also clear that ρPSD v (ρF u ρL); thus, ρPSD is more precise than
the reduced product (ρCon u ρPS u ρF u ρL). Informally, this means that the domain
SFL2 is able to represent all of our observable properties without precision losses.

Correct and Efficient Integration of Set-Sharing, Freeness and Linearity 27

The next theorem shows that ρPSD is a congruence with respect to the aunifyS,
alubS and aexistsS operators. This means that the domain SFL2 is able to propa-
gate the information on the observables as precisely as SFL, therefore providing a
completeness result.

Theorem 45
Let d1, d2 ∈ SFL be such that ρPSD(d1) = ρPSD(d2). Then, for each sequence of
bindings bs ∈ Bind∗, for each d ′ ∈ SFL and V ∈ ℘(VI),

ρPSD

(
aunifyS(d1, bs)

)
= ρPSD

(
aunifyS(d2, bs)

)
,

ρPSD

(
alubS(d1, d ′)

)
= ρPSD

(
alubS(d2, d ′)

)
,

ρPSD

(
aexistsS(d1, V)

)
= ρPSD

(
aexistsS(d2, V)

)
.

Finally, by providing the minimality result, we show that the domain SFL2 is
indeed the generalized quotient (Cortesi et al. 1998; Giacobazzi et al. 1998) of SFL
with respect to the reduced product (ρCon u ρPS u ρF u ρL).

Theorem 46
For each i ∈ {1, 2}, let di = 〈shi, fi, li〉 ∈ SFL be such that ρPSD(d1) 6= ρPSD(d2).
Then there exist a sequence of bindings bs ∈ Bind∗ and an observable property
ρ ∈ {ρCon , ρPS , ρF , ρL} such that

ρ
(
aunifyS(d1, bs)

)
6= ρ

(
aunifyS(d2, bs)

)
.

As far as the implementation is concerned, the results proved in (Bagnara et al.
2002) for the domain PSD can also be applied to SFL2. In particular, in the defi-
nition of amguS every occurrence of the star-union operator can be safely replaced
by the self-bin-union operator. As a consequence, it is possible to provide an im-
plementation where the time complexity of the amguS operator is bounded by a
polynomial in the number of sharing groups of the set-sharing component.

The following result provides another optimization that can be applied when
both terms x and t are definitely linear, but none of them is definitely free (i.e.,
when we compute sh ′′ by the second case stated in Definition 28).

Theorem 47
Let sh ∈ SH and (x 7→ t) ∈ Bind, where {x} ∪ vars(t) ⊆ VI . Let sh−

def= rel
(
{x} ∪

vars(t), sh
)
, shx

def= rel
(
{x}, sh

)
, sht

def= rel
(
vars(t), sh

)
, shxt

def= shx ∩ sht, shW
def=

rel(W, sh), where W = vars(t) \ {x}, and

sh� def= bin
(
shx ∪ bin(shx, sh?

xt), sht ∪ bin(sht, sh?
xt)

)
.

Then it holds

ρPSD

(
cyclict

x(sh− ∪ sh�)
)

=

{
ρPSD

(
sh− ∪ bin(shx, sht)

)
, if x /∈ vars(t);

ρPSD

(
sh− ∪ bin(sh2

x, shW)
)
, otherwise.

Therefore, even when terms x and t possibly share (i.e., when shxt 6= ∅), by using
SFL2 we can avoid the expensive computation of at least one of the two inner binary
unions in the expression for sh�.

28 P. M. Hill, E. Zaffanella, and R. Bagnara

6 Experimental Evaluation

Example 30 shows that an analysis based on the new abstract unification operator
can be strictly more precise than one based on the classical proposal. However,
that example is artificial and leaves open the question as to whether or not such
a phenomenon actually happens during the analysis of real programs and, if so,
how often. This was the motivation for the experimental evaluation we describe in
this section. We consider the abstract domain Pos × SFL2 (Bagnara et al. 2001),
where the non-redundant version SFL2 of the domain SFL is further combined,
as described in (Bagnara et al. 2001, Section 4), with the definite groundness in-
formation computed by Pos and compare the results using the (classical) abstract
unification operator of (Bagnara et al. 2001, Definition 4) with the (new) operator
amguS given in Definition 28. Taking this as a starting point, we experimentally
evaluate eight variants of the analysis arising from all possible combinations of the
following options:

1. the analysis can be goal independent or goal dependent;
2. the set-sharing component may or may not have widening enabled (Zaffanella

et al. 1999);
3. the abstract domain may or may not be upgraded with structural information

using the Pattern(·) operator (see (Bagnara et al. 2000) and (Bagnara et al.
2001, Section 5)).

The experiments have been conducted using the China analyzer (Bagnara 1997)
on a GNU/Linux PC system. China is a data-flow analyzer for (constraint) logic
programs performing bottom-up analysis and deriving information on both call-
patterns and success-patterns by means of program transformations and optimized
fixpoint computation techniques. An abstract description is computed for the call-
and success-patterns for each predicate defined in the program. The benchmark
suite, which is composed of 372 logic programs of various sizes and complexity, can
be considered representative.

The precision results for the goal independent comparisons are summarized in
Table 1. For each benchmark, precision is measured by counting the number of
independent pairs as well as the numbers of definitely ground, free and linear vari-
ables detected. For each variant of the analysis, these numbers are then compared
by computing the relative precision improvements and expressing them using per-
centages. The benchmark suite is then partitioned into several precision equivalence
classes and the cardinalities of these classes are shown in Table 1. For example, when
considering a goal independent analysis without structural information and without
widenings, the value 5 found at the intersection of the row labeled ‘0 < p ≤ 2’ with
the column labeled ‘I’ should be read: “for five benchmarks there has been a (pos-
itive) increase in the number of independent pairs of variables which is less than
or equal to two percent.” Note that we only report on independence and linearity
(in the columns labeled ‘I’ and ‘L’, respectively), because no differences have been
observed for groundness and freeness. The precision class labeled ‘unknown’ identi-
fies those benchmarks for which the analyses timed-out (the time-out threshold was

Correct and Efficient Integration of Set-Sharing, Freeness and Linearity 29

Goal Without Widening With Widening

Independent w/o SI with SI w/o SI with SI

Prec. class I L I L I L I L

5 < p ≤ 10 — 2 — 2 — 2 — 2

2 < p ≤ 5 — — — — — — — 1

0 < p ≤ 2 5 5 9 6 6 6 12 8

same precision 357 355 337 338 366 364 360 361

unknown 10 10 26 26 — — — —

Table 1. Classical Pos × SFL2 versus enhanced one: precision.

fixed at 600 seconds). Hence, for goal independent analyses, a precision improve-
ment affects from 1.6% to 3% of the benchmarks, depending on the considered
variant.

When considering the goal dependent analyses, we obtain a single, small improve-
ment, so that no comparison tables are included here: the improvement, affecting
linearity information, can be observed when the abstract domain includes structural
information.

With respect to differences in the efficiency, the introduction of the new abstract
unification operator has no significant effect on the computation time: small differ-
ences (usually improvements) are observed on as many as 6% of the benchmarks for
the goal independent analysis without structural information and without widen-
ings; other combinations register even less differences.

We note that it is not surprising that the precision and efficiency improvements
occur very rarely since the abstract unification operators behave the same except
under very specific conditions: the two terms being unified must not only be defi-
nitely linear, but also possibly non-free and share a variable.

7 Related Work

Sharing information has been shown to be important for finite-tree analysis (Bag-
nara et al. 2001; Bagnara et al. 2001). This aims at identifying those program
variables that, at a particular program point, cannot be bound to an infinite ratio-
nal tree (in other words, they are necessarily bound to acyclic terms). This novel
analysis is irrelevant for those logic languages computing over a domain of finite
trees, while having several applications for those (constraint) logic languages that
are explicitly designed to compute over a domain including rational trees, such as
Prolog II and its successors (Colmerauer 1982; Colmerauer 1990), SICStus Pro-
log (Swedish Institute of Computer Science, Programming Systems Group 1995),
and Oz (Smolka and Treinen 1994). The analysis specified in (Bagnara et al. 2001)
is based on a parametric abstract domain H × P , where the H component (the
Herbrand component) is a set of variables that are known to be bound to finite
terms, while the parametric component P can be any domain capturing aliasing,
groundness, freeness and linearity information that is useful to compute finite-tree
information. An obvious choice for such a parameter is the domain combination

30 P. M. Hill, E. Zaffanella, and R. Bagnara

SFL. It is worth noting that, in (Bagnara et al. 2001), the correctness of the finite-
tree analysis is proved by assuming the correctness of the underlying analysis on
the parameter P . Thus, thanks to the results shown in this paper, the proof for the
domain H × SFL can now be considered complete.

Codish et al. (Codish et al. 2000) describe an algebraic approach to the sharing
analysis of logic programs that is based on set logic programs. A set logic program
is a logic program in which the terms are sets of variables and standard unification
is replaced by a suitable unification for sets, called ACI1-unification (unification in
the presence of an associative, commutative, and idempotent equality theory with
a unit element). The authors show that the domain of set-substitutions, with a few
modifications, can be used as an abstract domain for sharing analysis. They also
provide an isomorphism between this domain and the set-sharing domain SH of
Jacobs and Langen. The approach using set logic programs is also generalized to
include linearity information, by suitably annotating the set-substitutions, and the
authors formally state the optimality of the corresponding abstract unification op-
erator lin-mguACI1 (Lemma A.10 in the Appendix of (Codish et al. 2000)). However,
this operator is very similar to the classical combinations of set-sharing with linear-
ity (Bruynooghe et al. 1994a; Hans and Winkler 1992; Langen 1990): in particular,
the precision improvements arising from this enhancement are only exploited when
the two terms being unified are definitely independent. As we have seen in this pa-
per, such a choice results in a sub-optimal abstract unification operator, so that the
optimality result cannot hold. By looking at the proof of Lemma A.10 in (Codish
et al. 2000), it can be seen that the case when the two terms possibly share a vari-
able is dealt with by referring to an example:5 this one is supposed to show that all
the possible sharing groups can be generated. However, even our improved operator
correctly characterizes the given example, so that the proof is wrong. It should be
stressed that the amguS operator presented in this paper, though remarkably pre-
cise, is not meant to subsume all of the proposals for an improved sharing analysis
that appeared in the recent literature (for a thorough experimental evaluation of
many of these proposals, the reader is referred to (Bagnara et al. 2000; Zaffanella
2001)). In particular, it is not difficult to show that our operator is not the optimal
approximation of concrete unification.

In a very recent paper (Howe and King 2003), J. Howe and A. King consider the
domain SFL and propose three optimizations to improve both the precision and the
efficiency of the (classical) abstract unification operator. The first optimization is
based on the same observation we have made in this paper, namely that the inde-
pendence check between the two terms being unified is not necessary for ensuring
the correctness of the analysis. However, the proposed enhancement does not fully
exploit this observation, so that the resulting operator is strictly less precise than
our amguS operator (even when the operator cyclict

x does not come into play). In
fact, the first optimization of (Howe and King 2003) is not uniformly more precise
than the classical proposals. The following example illustrates this point.

5 The proof refers to Example 8, which however has nothing to do with the possibility that the
two terms share; we believe that Example 2 was intended.

Correct and Efficient Integration of Set-Sharing, Freeness and Linearity 31

Example 48

Let VI = {x, y, z1, z2, z3}, (x 7→ y) ∈ Bind and d def= 〈sh, ∅,VI 〉, where sh =
{xz1, xz2, xz3, yz1, yz2, yz3}.

Since x and y are linear and independent, amguS as well as all the classical
abstract unification operators will compute d1 =

〈
sh1, ∅, {x, y}

〉
, where

sh1
def= bin(shx, shy) = {xyz1, xyz1z2, xyz1z3, xyz2, xyz2z3, xyz3}.

In contrast, a computation based on (Howe and King 2003, Definition 3.2), results
in the less precise abstract element d2 =

〈
sh2, ∅, {x, y}

〉
, where

sh2
def= bin(sh?

x, shy) ∩ bin(shx, sh?
y) = sh1 ∪ {xyz1z2z3}.

The second optimization shown in (Howe and King 2003) is based on the en-
hanced combination of set-sharing and freeness information, which was originally
proposed in (Filé 1994). In particular, the authors propose a slightly different
precision enhancement, less powerful as far as precision is concerned, which how-
ever seems to be amenable for an efficient implementation. The third optimization
in (Howe and King 2003) exploits the combination of the domain SFL with the
groundness domain Pos.

8 Conclusion

In this paper we have introduced the abstract domain SFL, combining the set-
sharing domain SH with freeness and linearity information. While the carrier of SFL
can be considered standard, we have provided the specification of a new abstract
unification operator, showing examples where this operator achieves more precision
than the classical proposals. The main contributions of this paper are the following:

• we have defined a precise abstraction function, mapping arbitrary substitu-
tions in rational solved form into their most precise approximation on SFL;

• using this abstraction function, we have provided the mandatory proof of
correctness for the new abstract unification operator, for both finite-tree and
rational-tree languages;

• we have formally shown that the domain SFL is uniformly more precise than
the domain ASub; we have also provided an example showing that all the clas-
sical approaches to the combinations of set-sharing with freeness and linearity
fail to satisfy this property;

• we have shown that, in the definition of SFL, we can replace the set-sharing
domain SH by its non-redundant version PSD . As a consequence, it is possible
to implement an algorithm for abstract unification running in polynomial time
and still obtain the same precision on all the considered observables, that is
groundness, independence, freeness and linearity.

32 P. M. Hill, E. Zaffanella, and R. Bagnara

Acknowledgment

We recognize the hard work required to review technical papers such as this one
and would like to express our real gratitude to the Journal referees for their critical
reading and constructive suggestions for preparing this improved version.

References

Bagnara, R. 1997. Data-flow analysis for constraint logic-based languages. Ph.D. thesis,
Dipartimento di Informatica, Università di Pisa, Pisa, Italy. Printed as Report TD-1/97.

Bagnara, R., Gori, R., Hill, P. M., and Zaffanella, E. 2001. Finite-tree analysis for
constraint logic-based languages. In Static Analysis: 8th International Symposium, SAS
2001, P. Cousot, Ed. Lecture Notes in Computer Science, vol. 2126. Springer-Verlag,
Berlin, Paris, France, 165–184.

Bagnara, R., Hill, P. M., and Zaffanella, E. 1997. Set-sharing is redundant for
pair-sharing. In Static Analysis: Proceedings of the 4th International Symposium, P. Van
Hentenryck, Ed. Lecture Notes in Computer Science, vol. 1302. Springer-Verlag, Berlin,
Paris, France, 53–67.

Bagnara, R., Hill, P. M., and Zaffanella, E. 2000. Efficient structural information
analysis for real CLP languages. In Proceedings of the 7th International Conference
on Logic for Programming and Automated Reasoning (LPAR 2000), M. Parigot and
A. Voronkov, Eds. Lecture Notes in Artificial Intelligence, vol. 1955. Springer-Verlag,
Berlin, Réunion Island, France, 189–206.

Bagnara, R., Hill, P. M., and Zaffanella, E. 2002. Set-sharing is redundant for
pair-sharing. Theoretical Computer Science 277, 1-2, 3–46.

Bagnara, R., Zaffanella, E., Gori, R., and Hill, P. M. 2001. Boolean functions for
finite-tree dependencies. In Proceedings of the 8th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning (LPAR 2001), R. Nieuwenhuis and
A. Voronkov, Eds. Lecture Notes in Artificial Intelligence, vol. 2250. Springer-Verlag,
Berlin, Havana, Cuba, 579–594.

Bagnara, R., Zaffanella, E., and Hill, P. M. 2000. Enhanced sharing analysis
techniques: A comprehensive evaluation. In Proceedings of the 2nd International ACM
SIGPLAN Conference on Principles and Practice of Declarative Programming, M. Gab-
brielli and F. Pfenning, Eds. Association for Computing Machinery, Montreal, Canada,
103–114.

Bagnara, R., Zaffanella, E., and Hill, P. M. 2001. Enhanced sharing analysis
techniques: A comprehensive evaluation. Submitted for publication. Available at http:
//www.cs.unipr.it/~bagnara/.

Bruynooghe, M. and Codish, M. 1993. Freeness, sharing, linearity and correctness
— All at once. In Static Analysis, Proceedings of the Third International Workshop,
P. Cousot, M. Falaschi, G. Filé, and A. Rauzy, Eds. Lecture Notes in Computer Sci-
ence, vol. 724. Springer-Verlag, Berlin, Padova, Italy, 153–164. An extended version is
available as Technical Report CW 179, Department of Computer Science, K.U. Leuven,
September 1993.

Bruynooghe, M., Codish, M., and Mulkers, A. 1994a. Abstract unification for a
composite domain deriving sharing and freeness properties of program variables. In
Verification and Analysis of Logic Languages, Proceedings of the W2 Post-Conference
Workshop, International Conference on Logic Programming, F. S. de Boer and M. Gab-
brielli, Eds. Santa Margherita Ligure, Italy, 213–230.

Correct and Efficient Integration of Set-Sharing, Freeness and Linearity 33

Bruynooghe, M., Codish, M., and Mulkers, A. 1994b. A composite domain for free-
ness, sharing, and compoundness analysis of logic programs. Technical Report CW 196,
Department of Computer Science, K.U. Leuven, Belgium. July.

Bruynooghe, M., Codish, M., and Mulkers, A. 1995. Abstracting unification: A key
step in the design of logic program analyses. In Computer Science Today: Recent Trends
and Developments, J. van Leeuwen, Ed. Lecture Notes in Computer Science, vol. 1000.
Springer-Verlag, Berlin, 406–425.

Clark, K. L. 1978. Negation as failure. In Logic and Databases, H. Gallaire and J. Minker,
Eds. Plenum Press, Toulouse, France, 293–322.

Codish, M., Dams, D., Filé, G., and Bruynooghe, M. 1993. Freeness analysis for
logic programs — and correctness? In Logic Programming: Proceedings of the Tenth
International Conference on Logic Programming, D. S. Warren, Ed. MIT Press Series
in Logic Programming. The MIT Press, Budapest, Hungary, 116–131. An extended
version is available as Technical Report CW 161, Department of Computer Science,
K.U. Leuven, December 1992.

Codish, M., Dams, D., Filé, G., and Bruynooghe, M. 1996. On the design of a correct
freeness analysis for logic programs. Journal of Logic Programming 28, 3, 181–206.

Codish, M., Dams, D., and Yardeni, E. 1991. Derivation and safety of an abstract
unification algorithm for groundness and aliasing analysis. See Furukawa (1991), 79–93.

Codish, M., Lagoon, V., and Bueno, F. 2000. An algebraic approach to sharing analysis
of logic programs. Journal of Logic Programming 42, 2, 111–149.

Codish, M., Mulkers, A., Bruynooghe, M., Garc̀ıa de la Banda, M., and Hermen-
egildo, M. 1993. Improving abstract interpretations by combining domains. In Pro-
ceedings of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation. ACM Press, Copenhagen, Denmark, 194–205. Also available as
Technical Report CW 162, Department of Computer Science, K.U. Leuven, December
1992.

Codish, M., Mulkers, A., Bruynooghe, M., Garc̀ıa de la Banda, M., and Her-
menegildo, M. 1995. Improving abstract interpretations by combining domains. ACM
Transactions on Programming Languages and Systems 17, 1 (Jan.), 28–44.

Colmerauer, A. 1982. Prolog and infinite trees. In Logic Programming, APIC Studies
in Data Processing, K. L. Clark and S. Å. Tärnlund, Eds. Vol. 16. Academic Press, New
York, 231–251.

Colmerauer, A. 1984. Equations and inequations on finite and infinite trees. In Proceed-
ings of the International Conference on Fifth Generation Computer Systems (FGCS’84).
ICOT, Tokyo, Japan, 85–99.

Colmerauer, A. 1990. An introduction to Prolog-III. Communications of the ACM 33, 7,
69–90.

Cortesi, A. and Filé, G. 1999. Sharing is optimal. Journal of Logic Programming 38, 3,
371–386.

Cortesi, A., Filé, G., and Winsborough, W. 1998. The quotient of an abstract in-
terpretation for comparing static analyses. Theoretical Computer Science 202, 1&2,
163–192.

Cousot, P. and Cousot, R. 1977. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proceedings
of the Fourth Annual ACM Symposium on Principles of Programming Languages. ACM
Press, New York, 238–252.

Cousot, P. and Cousot, R. 1979. Systematic design of program analysis frameworks.
In Proceedings of the Sixth Annual ACM Symposium on Principles of Programming
Languages. ACM Press, New York, 269–282.

34 P. M. Hill, E. Zaffanella, and R. Bagnara

Filé, G. 1994. Share×Free: Simple and correct. Tech. Rep. 15, Dipartimento di Matem-
atica, Università di Padova. Dec.

Furukawa, K., Ed. 1991. Logic Programming: Proceedings of the Eighth International
Conference on Logic Programming. MIT Press Series in Logic Programming. The MIT
Press, Paris, France.

Giacobazzi, R., Ranzato, F., and Scozzari, F. 1998. Complete abstract interpreta-
tions made constructive. In Proceedings of 23rd International Symposium on Mathe-
matical Foundations of Computer Science (MFCS’98), J. Gruska and J. Zlatuska, Eds.
Lecture Notes in Computer Science, vol. 1450. Springer-Verlag, Berlin, 366–377.

Hans, W. and Winkler, S. 1992. Aliasing and groundness analysis of logic programs
through abstract interpretation and its safety. Tech. Rep. 92–27, Technical University
of Aachen (RWTH Aachen).

Hill, P. M., Bagnara, R., and Zaffanella, E. 1998. The correctness of set-sharing. In
Static Analysis: Proceedings of the 5th International Symposium, G. Levi, Ed. Lecture
Notes in Computer Science, vol. 1503. Springer-Verlag, Berlin, Pisa, Italy, 99–114.

Hill, P. M., Bagnara, R., and Zaffanella, E. 2002. Soundness, idempotence and
commutativity of set-sharing. Theory and Practice of Logic Programming 2, 2, 155–
201.

Hill, P. M., Bagnara, R., and Zaffanella, E. 2003. On the analysis of set-sharing,
freeness and linearity for finite and rational tree languages. Tech. Rep. 2003.08,
School of Computing, University of Leeds. Available at http://www.comp.leeds.ac.

uk/research/pubs/reports.shtml.

Howe, J. M. and King, A. 2003. Three optimisations for sharing. Theory and Practice
of Logic Programming 3, 2, 243–257.

Intrigila, B. and Zilli, M. V. 1996. A remark on infinite matching vs infinite unifica-
tion. Journal of Symbolic Computation 21, 3, 2289–2292.

Jacobs, D. and Langen, A. 1989. Accurate and efficient approximation of variable
aliasing in logic programs. In Logic Programming: Proceedings of the North American
Conference, E. L. Lusk and R. A. Overbeek, Eds. MIT Press Series in Logic Program-
ming. The MIT Press, Cleveland, Ohio, USA, 154–165.

Jaffar, J., Lassez, J.-L., and Maher, M. J. 1987. Prolog-II as an instance of the logic
programming scheme. In Formal Descriptions of Programming Concepts III, M. Wirs-
ing, Ed. North-Holland, Amsterdam, 275–299.

Keisu, T. 1994. Tree constraints. Ph.D. thesis, The Royal Institute of Technology,
Stockholm, Sweden. Also available in the SICS Dissertation Series: SICS/D–16–SE.

King, A. 1994. A synergistic analysis for sharing and groundness which traces linearity.
In Proceedings of the Fifth European Symposium on Programming, D. Sannella, Ed.
Lecture Notes in Computer Science, vol. 788. Springer-Verlag, Berlin, Edinburgh, UK,
363–378.

King, A. 2000. Pair-sharing over rational trees. Journal of Logic Programming 46, 1–2,
139–155.

King, A. and Soper, P. 1994. Depth-k sharing and freeness. In Logic Programming: Pro-
ceedings of the Eleventh International Conference on Logic Programming, P. Van Hen-
tenryck, Ed. MIT Press Series in Logic Programming. The MIT Press, Santa Margherita
Ligure, Italy, 553–568.

Langen, A. 1990. Advanced techniques for approximating variable aliasing in logic pro-
grams. Ph.D. thesis, Computer Science Department, University of Southern California.
Printed as Report TR 91-05.

Maher, M. J. 1988. Complete axiomatizations of the algebras of finite, rational and
infinite trees. In Proceedings, Third Annual Symposium on Logic in Computer Science.
IEEE Computer Society Press, Edinburgh, Scotland, 348–357.

Correct and Efficient Integration of Set-Sharing, Freeness and Linearity 35

Muthukumar, K. and Hermenegildo, M. 1991. Combined determination of sharing
and freeness of program variables through abstract interpretation. See Furukawa (1991),
49–63. An extended version appeared in (Muthukumar and Hermenegildo 1992).

Muthukumar, K. and Hermenegildo, M. 1992. Compile-time derivation of variable
dependency using abstract interpretation. Journal of Logic Programming 13, 2&3, 315–
347.

Smolka, G. and Treinen, R. 1994. Records for logic programming. Journal of Logic
Programming 18, 3, 229–258.

Søndergaard, H. 1986. An application of abstract interpretation of logic programs:
Occur check reduction. In Proceedings of the 1986 European Symposium on Program-
ming, B. Robinet and R. Wilhelm, Eds. Lecture Notes in Computer Science, vol. 213.
Springer-Verlag, Berlin, 327–338.

Swedish Institute of Computer Science, Programming Systems Group 1995. SICStus Pro-
log User’s Manual , release 3 #0 ed. Swedish Institute of Computer Science, Program-
ming Systems Group.

Zaffanella, E. 2001. Correctness, precision and efficiency in the sharing analysis of real
logic languages. Ph.D. thesis, School of Computing, University of Leeds, Leeds, U.K.
Available at http://www.cs.unipr.it/~zaffanella/.

Zaffanella, E., Bagnara, R., and Hill, P. M. 1999. Widening Sharing. In Principles
and Practice of Declarative Programming, G. Nadathur, Ed. Lecture Notes in Computer
Science, vol. 1702. Springer-Verlag, Berlin, Paris, France, 414–431.

Zaffanella, E., Hill, P. M., and Bagnara, R. 1999. Decomposing non-redundant
sharing by complementation. In Static Analysis: Proceedings of the 6th International
Symposium, A. Cortesi and G. Filé, Eds. Lecture Notes in Computer Science, vol. 1694.
Springer-Verlag, Berlin, Venice, Italy, 69–84.

Zaffanella, E., Hill, P. M., and Bagnara, R. 2002. Decomposing non-redundant
sharing by complementation. Theory and Practice of Logic Programming 2, 2, 233–261.

