
Set-Sharing is Redundant for Pair-Sharing ?

Roberto Bagnara

Department of Mathematics, University of Parma, I-43100 Parma, Italy,
bagnara@cs.unipr.it

Patricia M. Hill

School of Computer Studies, University of Leeds, Leeds, LS2 9JT, U.K.,
hill@scs.leeds.ac.uk

Enea Zaffanella

Department of Mathematics, University of Parma, I-43100 Parma, Italy,
zaffanella@cs.unipr.it

Abstract

Although the usual goal of sharing analysis is to detect which pairs of variables share,
the standard choice for sharing analysis is a domain that characterizes set-sharing.
In this paper, we question, apparently for the first time, whether this domain is
over-complex for pair-sharing analysis. We show that the answer is yes. By defining
an equivalence relation over the set-sharing domain we obtain a simpler domain,
reducing the complexity of the abstract unification procedure. We present experi-
mental results showing that, in practice, our domain compares favorably with the
set-sharing one over a wide range of benchmark and real programs.

Key words: Logic Programming; Data-flow Analysis; Abstract Interpretation;
Sharing Analysis.

? This work is a revised and extended version of [3].
1 Most of the work of R. Bagnara has been conducted while the author was at the
School of Computer Studies, University of Leeds, Leeds, LS2 9JT, U.K. His work
has been supported by EPSRC under grant GR/L19515.

Preprint submitted to Theoretical Computer Science

1 Introduction

1.1 Basic Notions and Motivations

In the execution of a logic program, two variables are aliased, at some program
point, if they are bound to terms that share a common variable. In logic
programming, a knowledge of the possible aliasing between variables has some
important applications.

Information about variable aliasing is essential for the efficient exploitation of
AND-parallelism [10,38,43,52]. Informally, two atoms in a goal are executed in
parallel if, by a mixture of compile-time and run-time checks, it can be guar-
anteed that they do not share any variable. This implies the absence of binding
conflicts at run-time, that is, it will never happen that the processes associated
to the two atoms try to bind the same variable. Another significant applica-
tion is known as occur-check reduction [28,53,55]. It is well-known that many
implemented logic programming languages (in particular, almost all Prolog
systems) omit the occur-check from the unification procedure. Occur-check
reduction amounts to identifying the unifications where such omission is safe,
and, for this purpose, information on the possible aliasing of program variables
is crucial. Aliasing information can also be used indirectly in the computation
of other interesting program properties. For instance, the precision with which
freeness information can be computed depends on the precision with which
aliasing can be tracked [5,6,12,31,46,47,51].

Notice that, often, it is not a knowledge about possible aliasing that is required
but its converse, called “definite independence”. Two variables are indepen-
dent if they are bound to terms that have no variables in common. Thus,
when an analysis concludes that two variables are not possibly aliased we can
deduce that they are definitely independent. It is also worth noticing that an-
other property of interest in logic programming is the dual concept of definite
aliasing [56,59]. Definite aliasing, however, is beyond the scope of this paper.

Before continuing, a brief note on terminology: a variable is free if it is un-
bound, it is ground if it is bound to a term containing no variables, it is linear
if it is free or ground or bound to a term that does not contain multiple oc-
currences of a variable, it is compound if it is bound to a compound term.
In logic programming the expression “sharing information” often refers to a
mixture of groundness, aliasing, and linearity information, since groundness
and linearity are properties that allow a more precise characterization of the
sharing of program variables. Thus, what is called “a domain for sharing” usu-
ally captures groundness, aliasing, and quite often also linearity. A “sharing
analysis” is an analysis based on a sharing domain. Notice that this idiom is

2

nothing more than a historical accident: as we will briefly mention in the se-
quel, freeness, compoundness, and other kinds of structural information could
also be included in the collective term “sharing information”.

1.2 Historical Remarks

Sharing analysis has a long history and several domains have been presented.
We will just mention the more influential ones. Chang [9] proposed to capture
variable sharing by classifying each clause variable as either ground or belong-
ing to a “coupling class” of mutually dependent variables. Such a partitioning
describes all the substitutions that share no variables across coupling classes
and that satisfy the specified groundness conditions. The domain of Chang
suffered from a lack of expressivity: both variable aliasing and ground de-
pendencies could be represented with very limited accuracy. As far as ground
dependencies are concerned, the domain of Chang was improved by Citrin [11].

Jones and Søndergaard described an abstract domain constituted by sets of
pairs of clause variables that might be aliased [44]. An approach that is es-
sentially equivalent was introduced by Debray [29]. Here each clause variable
is mapped to the set of variables with which it might share. These domains,
compared to those defined by Chang and Citrin, capture the independence
of variables with much greater accuracy. The same is not true for groundness
dependencies.

The domains that have influenced most of the recent research on sharing
analysis are the following:

• the domain ASub of Søndergaard [55], which combines elementary informa-
tion on groundness, pair-sharing, and linearity. The abstract operators were
formalized rigorously in [13].
• the domain Sharing of Jacobs and Langen [42,43,47], which is based on the

concept of sharing set (in contrast with the concept of sharing pair adopted
by ASub).

While ASub takes advantage of linearity information, Sharing is more accurate
in capturing groundness dependencies. See Section 8 for a brief review of the
research work that has been devoted to the comparison and combination of
ASub with Sharing and to the combination with other domains.

3

1.3 The Present Work

Today, talking about sharing analysis for logic programs is almost the same as
talking about the set-sharing domain Sharing. The adequacy of this domain
is not normally questioned. Researchers appear to be more concerned as to
which add-ons are best: linearity, freeness, depth-k abstract substitutions and
so on [5,6,12,45,46,51], rather than whether it is the optimal domain for the
sharing information under investigation.

What is the reason for this “standard” choice? Well, the set-sharing domain is
quite accurate: when integrated with linearity information it is strictly more
precise than its classic challenger, the pair-sharing domain ASub. 2 Indeed,
Sharing encodes a lot of information. As a consequence, it is quite difficult to
understand: taking an abstract element and writing down its concretization
(namely, the concrete substitutions that are approximated by it) is not easy. So
the question arises: is this complexity actually needed for an accurate sharing
analysis?

Before answering this question we must agree on what the purpose of sharing
analysis is. This paper relies on the following

Assumption: The goal of sharing analysis for logic programs is to detect
which pairs of variables are definitely independent (namely, they cannot be
bound to terms having one or more variables in common).

As far as we know, this assumption is true. In the literature we can find no
reference to the “independence of a set of variables”. All the proposed appli-
cations of sharing analysis (compile-time optimizations, occur-check reduction
and so on) are based on information about the independence of pairs of vari-
ables.

We thus focus our attention on the pair-sharing property and assume that set-
sharing is just a way to compute pair-sharing with a high degree of accuracy.
In this paper we question, apparently for the first time, whether the Sharing
domain is really the best one for detecting which pairs of variables can share.
The answer turns out to be negative: there exists a domain that is simpler
than Sharing and, at the same time, as precise as Sharing, as far as pair-sharing
is concerned 3 . This domain is the subject of this paper.

2 We note in passing that Langen’s PhD thesis [47] contains the definition of an
extended version of Sharing, called ESharing, which integrates linearity. This fact
seems to have escaped the attention of most researchers in the field. See Section 8
for more on this subject.
3 It is well-known, and we will show it later, that being as precise as Sharing on

4

The paper is organized as follows. In the next section, we introduce the nota-
tion and recall the definition of the abstract domain Sharing. Section 3 recalls
the pair-sharing property, while Section 4 presents an intuitive explanation
of the information content of Sharing. In Section 5, we show that Sharing is
unnecessarily complex for capturing pair-sharing information. A new equiva-
lence relation between its elements is defined which is shown to exactly factor
out the unwanted information. Section 6 explains the practical consequences
of these results and shows that the complexity of abstract unification using
our domain is polynomial (in the number of sharing groups) compared to the
exponential complexity for Sharing. Section 7 gives the experimental results,
Section 8 describes some work that is more or less related to ours, and Sec-
tion 9 concludes the paper. The proofs of the presented results can be found
in Appendix A, while some details on the programs used in the experimental
evaluation are given in Appendix B.

2 Preliminaries

In this section we introduce some mathematical notation that will be used
in the paper, as well as recalling the set-sharing domain of Jacobs and Lan-
gen [42,43,47].

2.1 Basic Concepts and Notation

For a set S, #S is the cardinality of S, ℘(S) is the powerset of S, whereas
℘f(S) is the set of all the finite subsets of S.

A preorder � over a set P is a binary relation that is reflexive and transitive.
If � is also antisymmetric, then it is called a partial order. A partial order �
is a linear order or total order if any two elements are comparable, that is,
for each x, y ∈ P , either x � y or y � x. A set P equipped with a partial
order � is said to be partially ordered and sometimes written 〈P,�〉. Partially
ordered sets are also called posets. An increasing chain over the poset 〈P,�〉
is a subset X of P such that � is a linear order on X.

Given a poset 〈P,�〉 and S ⊆ P , y ∈ P is an upper bound for S if and only
if x � y for each x ∈ S. An upper bound y for S is the least upper bound (or
lub) of S if and only if, for every upper bound y′ for S, y � y′. The lub, when
it exists, is unique. In this case we write y = lubS. The terms lower bound
and greatest lower bound (or glb) are defined dually. A complete partial order,

pair-sharing implies being as precise as Sharing on groundness.

5

or simply cpo, is a poset such that every increasing chain has a least upper
bound.

A poset 〈L,�〉 such that, for each x, y ∈ L, both lub{x, y} and glb{x, y} exist,
is called a lattice. In this case, lub and glb are also called, respectively, the join
and the meet operations of the lattice. A complete lattice is a lattice 〈L,�〉
such that every subset of L has both a least upper bound and a greatest lower
bound. The top element of a complete lattice L, denoted by >, is such that
> ∈ L and ∀x ∈ L : x � >. The bottom element of L, denoted by ⊥, is defined
dually.

An algebra 〈L,∧,∨〉 is also called a lattice if ∧ and ∨ are two binary operations
over L that are commutative, associative, idempotent, and satisfy the following
absorption laws, for each x, y ∈ L: x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x. The
two definitions of lattices are equivalent. This can be seen by setting up the

isomorphism given by: x � y
def⇐⇒ x∧ y = x

def⇐⇒ x∨ y = y, glb{x, y} def
= x∧ y,

and lub{x, y} def
= x ∨ y.

Let 〈P,�〉 be a poset. A function f : P → P is called monotonic if, for each
x, y ∈ P , x � y implies f(x) � f(y), whereas it is called idempotent if, for

each x ∈ P , f(x) = f
(
f(x)

)
.

Given two posets 〈P [,�[〉 and 〈P],�]〉, a Galois connection is a pair of mono-
tonic functions α : P [→ P] and γ : P] → P [such that

∀x[∈ P [: x[�[γ
(
α(x[)

)
,

∀x[∈ P [: α
(
γ(x])

)
�[x].

In this case α and γ are often called, respectively, the abstraction function and
the concretization function of the Galois connection.

A monotone and idempotent self-map ρ : P → P over a poset 〈P,�〉 is called
a closure operator (or upper closure operator) if it is also extensive, namely
∀x ∈ P : x � ρ(x). If C is a complete lattice, then each upper closure operator
ρ over C is uniquely determined by the set of its fixpoints, that is, by its image

ρ(C)
def
=
{
ρ(x)

∣∣∣ x ∈ C }. The set of all upper closure operators over a complete

lattice C, denoted by uco(C), form a complete lattice ordered as follows: if
ρ1, ρ2 ∈ uco(P), ρ1 v ρ2 if and only if ρ2(C) ⊆ ρ1(C). Upper closure operators
are often denoted by the sets of their fixpoints. The reader is referred to [37]
for an extensive treatment of closure operators.

The symbol Vars denotes a denumerable set of variables and TVars the set of
first-order terms over Vars . The set of variables occurring in a syntactic object
o is denoted by vars(o). A substitution σ is a total function σ : Vars → TVars

6

that is the identity almost everywhere; in other words, the domain of σ,

dom(σ)
def
=
{
x ∈ Vars

∣∣∣ σ(x) 6= x
}
,

is finite. Substitutions are denoted by the set of their bindings, thus σ is
identified with

{
x 7→ σ(x)

∣∣∣ x ∈ dom(σ)
}

. A substitution σ is idempotent if

vars
(
σ(x)

)
∩ dom(σ) = ∅ for each x ∈ dom(σ). The set of all the idempotent

substitutions is denoted by Subst .

2.2 The Sharing Domain

The literature on Sharing is almost unanimous in defining sharing sets so that
they always contain the empty set. We deviate from this de facto standard:
in our approach sharing sets never contain the empty set. We do this because
the definitions turn out to be easier and, moreover, they describe the imple-
mentation (where the empty set never appears in sharing sets) more faithfully.

Definition 1 (The set-sharing lattice.) Let

SG
def
=
{
S ∈ ℘f(Vars)

∣∣∣ S 6= ∅}
and let

SH
def
= ℘(SG).

The set-sharing lattice is given by the set

SS
def
=
{

(sh, U)
∣∣∣ sh ∈ SH , U ∈ ℘f(Vars),∀S ∈ sh : S ⊆ U

}
∪ {⊥,>}

ordered by �SS defined as follows, for each d, (sh1, U1), (sh2, U2) ∈ SS:

⊥ �SS d,

d �SS >,
(sh1, U1) �SS (sh2, U2) ⇐⇒ (U1 = U2) ∧ (sh1 ⊆ sh2).

It is straightforward to see that every subset of SS has a least upper bound
with respect to �SS . Hence SS is a complete lattice 4 . We refer the reader
to, for instance, [17] for a formal definition of the concretization function
γ : SS → Subst × ℘f(Vars).

4 Notice that the only reason we have > ∈ SS is in order to turn SS into a lattice
rather than a cpo. Observe also that the description > is never used in the analysis.

7

Before introducing the abstract operations over SS we define all the required
functions over SH .

Definition 2 (Functions over SH .) The closure under union function (or
star-union, as it is also called), (·)? : SH → SH , is given, for each sh ∈ SH ,
by

sh?
def
=
{
S ∈ SG

∣∣∣ ∃n ≥ 1 . ∃T1, . . . , Tn ∈ sh . S = T1 ∪ · · · ∪ Tn
}
.

Observe that (·)? is an upper closure operator over 〈SH ,⊆〉.

For each sh ∈ SH and each T ∈ ℘f(Vars), the extraction of the relevant
component of the sharing set sh with respect to T is encoded by the function
rel : ℘f(Vars)× SH → SH defined as

rel(T, sh)
def
= {S ∈ sh | S ∩ T 6= ∅ }.

For each sh1, sh2 ∈ SH , the binary union function bin: SH × SH → SH is
given by

bin(sh1, sh2)
def
= {S1 ∪ S2 | S1 ∈ sh1, S2 ∈ sh2 }.

The function proj : SH × ℘f(Vars) → SH projects an element of SH onto a
set of variables of interest: if sh ∈ SH and V ∈ ℘f(Vars), then

proj(sh, V)
def
= {S ∩ V | S ∈ sh, S ∩ V 6= ∅ }.

The function amgu captures the effects of a binding x 7→ t on an element of
SH . Let x be a variable and t a term in which x does not occur. Let also
sh ∈ SH and

A
def
= rel

(
{x}, sh

)
,

B
def
= rel

(
vars(t), sh

)
.

Then

amgu(sh, x 7→ t)
def
=
(
sh \ (A ∪B)

)
∪ bin(A?, B?).

It is shown in [40,41] that amgu is both commutative and idempotent. Thus
we can define the extension amgu: SH × Subst → SH by

amgu(sh, ∅) def
= sh,

amgu
(
sh, {x 7→ t} ∪ σ

)
def
= amgu

(
amgu(sh, x 7→ t), σ \ {x 7→ t}

)
.

8

The Sharing domain is given by the complete lattice SS together with the
following abstract operations needed for the analysis. Trivial operations, such
as the consistent renaming of variables, are omitted.

Definition 3 (Abstract operations over SS .) The lub operation over SS
is given by the function t : SS × SS → SS defined as follows, for each d ∈ SS
and each (sh1, U1), (sh2, U2) ∈ SS:

⊥ t d def
= d t ⊥ def

= d,

> t d def
= d t > def

= >,

(sh1, U1) t (sh2, U2)
def
=

 (sh1 ∪ sh2, U1), if U1 = U2;

>, otherwise.

The projection function Proj : SS × ℘f(Vars) → SS is given, for each set of
variables of interest V ∈ ℘f(Vars) and each description (sh, U) ∈ SS, by

Proj(⊥, V)
def
= ⊥,

Proj(>, V)
def
= >,

Proj
(
(sh, U), V

)
def
=
(
proj(sh, V), U ∩ V

)
.

The operation Amgu: SS × Subst → SS extends the SS description it takes
as an argument, to the set of variables occurring in the substitution it is given
as the second argument. Then it applies amgu:

Amgu
(
(sh, U),σ

)
def
=

(
amgu

(
sh ∪

{
{x}

∣∣∣ x ∈ vars(σ) \ U
}
, σ
)
, U ∪ vars(σ)

)
.

For the distinguished elements ⊥ and > of SS we have

Amgu
(
⊥, σ

)
def
= ⊥,

Amgu
(
>, σ

)
def
= >.

3 The Pair-Sharing Property

Let us define the pair-sharing property through a domain that captures it ex-
actly. This domain is similar to Søndergaard’s ASub (but without the ground-
ness and linearity information) [55].

9

Definition 4 (The pair-sharing domain.) Let S be a set. Then

pairs(S)
def
=
{
P ∈ ℘(S)

∣∣∣ #P = 2
}
.

The pair-sharing domain is given by the complete lattice

PS
def
=
{

(ps , U)
∣∣∣ U ∈ ℘f(Vars), ps ∈ ℘

(
pairs(U)

)}
∪ {⊥,>}

ordered by �PS , which is defined, for each d, (ps1, U1), (ps2, U2) ∈ PS, by

⊥ �PS d,

d �PS >,
(ps1, U1) �PS (ps2, U2) ⇐⇒ (U1 = U2) ∧ (ps1 ⊆ ps2).

An element of the pair-sharing domain is, roughly speaking, the “end-user
image” of the result of the analysis. That is, the only interest of the end-user
of our analysis (e.g., the optimizer module of the compiler) is knowing which
pairs of variables possibly share. The PS domain will be used to measure the
accuracy of the other domains in computing pair-sharing.

4 What Is in Sharing

We now look at the information content of the elements of the Sharing domain.
First consider the pair-sharing information.

Pair-sharing. Clearly, PS is a strict abstraction of SS through the abstrac-
tion function αPS : SS → PS given, for each (sh, U) ∈ SS , by

αPS (⊥)
def
= ⊥,

αPS (>)
def
= >,

αPS

(
(sh, U)

)
def
=
(
Down(sh) ∩ pairs(U), U

)
,

where

Down(sh)
def
=
{
S ∈ ℘(Vars)

∣∣∣ ∃T ∈ sh . S ⊆ T
}
.

As it has been observed by several authors, the SS lattice encodes several
properties besides pair-sharing. We next give examples that show the relevance
of these properties with respect to computing the pair-sharing information. In

10

what follows, the set of variables of interest is fixed as U
def
= {x, y, z} and will

be omitted from elements of SS . Moreover, the elements of SH will be written
in a simplified notation, omitting the inner braces. For example,({

{x}, {x, y}, {x, z}
}
, {x, y, z}

)
will be written simply as

{x, xy, xz}.

Groundness. Consider sh1
def
= {xy} and sh2

def
= {xy, z}. They encode the

same pair-sharing information, namely αPS (sh1) = αPS (sh2) = {xy}. Since
z does not occur in any sharing group of sh1, we know that the variable z
is ground. In contrast, in concrete substitutions abstracted by sh2, z is not
necessarily ground. This knowledge is useful for pair-sharing detection:

αPS

(
amgu(sh1, x 7→ z)

)
= αPS (∅) = ∅,

αPS

(
amgu(sh2, x 7→ z)

)
= αPS

(
{xyz}

)
= {xy, xz, yz}.

Incidentally, this example constitutes a proof of the fact that any domain
as precise as Sharing on pair-sharing (like the domain that is the subject of
this paper) is also as precise as Sharing on groundness. The proof is by con-
traposition: lose only one ground variable and precision on pair-sharing is
compromised.

Ground dependencies. Let sh1
def
= {xy, xyz} and sh2

def
= {xy, xz, yz}.

They still encode the same pair-sharing information. They also encode the
same groundness information (no variable is ground). However, in contrast to
sh2, x occurs in all sharing groups in sh1 that contain y. Thus, for sh1, the
groundness of y depends solely on the groundness of x. Let us ground x and
see what happens:

αPS

(
amgu(sh1, x 7→ a)

)
= αPS (∅) = ∅,

αPS

(
amgu(sh2, x 7→ a)

)
= αPS

(
{yz}

)
= {yz}.

Therefore, a knowledge of ground dependencies is important for pair-sharing
detection.

Pair-sharing dependencies. This example is taken from [17]. Let

sh1
def
= {x, y, z, xyz},

sh2
def
= {x, y, z, xy, xz, yz}.

11

They encode the same pair-sharing, groundness, and ground dependency in-
formation. Again, let us ground x and look at the results:

αPS

(
amgu(sh1, x 7→ a)

)
= αPS

(
{y, z}

)
= ∅,

αPS

(
amgu(sh2, x 7→ a)

)
= αPS

(
{y, z, yz}

)
= {yz}.

In sh1, x occurs in all the sharing groups that contain the pair yz. Thus in sh1

the sharing between y and z depends on the (non-) groundness of x, while in
sh2 this is not the case.

Redundant information? Given these three examples, one gets the im-
pression that different elements in SH do encode different information with
respect to the computation of the pair-sharing property. However, this is not
always the case. Consider

sh1
def
= {x, y, z, xy, xz, yz},

sh2
def
= {x, y, z, xy, xz, yz, xyz}.

These two different elements do encode the same pair-sharing, groundness,
ground dependency, and sharing dependency information. Since the set of
variables of interest is U = {x, y, z}, we can observe that sh2 = ℘(U). This
means that any sharing is possible, and thus that sh2 describes all the idem-
potent substitutions over U . In contrast, the only relevant information in sh1

is that the sharing group xyz is not allowed: sh1 represents all the idempotent
substitutions σ over U such that

vars
(
σ(x)

)
∩ vars

(
σ(y)

)
∩ vars

(
σ(z)

)
= ∅.

That is, the variables x, y, and z cannot share the same variable (but they still
can share pairwise). As observed before, this difference is irrelevant from the
end-user point of view. We will show that sh1 and sh2 are completely equivalent
with respect to the pair-sharing property and that the sharing group xyz in
sh2 is redundant for pair-sharing.

5 Sharing Is Redundant for Pair-Sharing

In the previous example, we noted that xyz was redundant in sh2. We now
formalize this notion of redundancy.

Definition 5 (Redundancy.) Let sh ∈ SH and S ∈ SG. S is redundant for
sh if and only if #S > 2 and

pairs(S) =
⋃{

pairs(T)
∣∣∣ T ∈ sh, T ⊂ S

}
.

12

Read it this way: S is redundant for sh if and only if all its sharing pairs can
be extracted from the elements of sh that are contained in S. As the name
suggests, redundant sharing groups can be dropped. For the moment, as we
are walking on theoretical ground, we add them so as to obtain a sort of
normal form. A notable advantage is that we can still use subset inclusion for
the ordering. We thus define an upper closure operator over SH that induces
an equivalence relation over the elements of SH .

Definition 6 (A closure operator on SH .) The function ρ : SH → SH is
given, for each sh ∈ SH , by

ρ(sh)
def
= sh ∪ {S ∈ SG | S is redundant for sh }.

Theorem 7 The function ρ : SH → SH is indeed an upper closure operator.

In Definition 5, a sharing group S can be added to a sharing set sh without
changing the pair-sharing information if and only if, for each variable x in
S, every pair such as xy in S is in some sharing group in sh which is also a
subset of S. This implies that, for each variable x in S, S must be the union of
some of the sets in sh that contain x. This observation leads to the following
alternative definition for ρ.

Theorem 8 If sh ∈ SH then

ρ(sh) =
{
S ∈ SG

∣∣∣ ∀x ∈ S : S ∈ rel
(
{x}, sh

)? }
.

While the original definition refers directly to the pair-sharing concept, the
alternative definition provided by Theorem 8 is very elegant and concise, and
turns out to be useful for proving several results.

Abusing notation, we can easily define the overloading ρ : SS → SS such that

ρ(⊥)
def
= ⊥,

ρ(>)
def
= >,

ρ
(
(sh, U)

)
def
=
(
ρ(sh), U

)
.

We have thus implicitly defined a new domain that we will denote by SS ρ.
The domain SS ρ is the quotient of SS with respect to the equivalence relation
induced by ρ: d1 and d2 are equivalent if and only if ρ(d1) = ρ(d2). Clearly,
SS ρ is a proper abstraction of SS .

It is straightforward to prove the following.

Theorem 9 For each d ∈ SS we have αPS

(
ρ(d)

)
= αPS (d).

13

Thus the addition of redundant sharing groups does not cause any precision
loss, as far as pair-sharing is concerned. In other words, SS ρ is as good as
SS for representing pair-sharing. We now show that ρ is a congruence with
respect to the operations Amgu, t, and Proj.

Theorem 10 Let d1, d2 ∈ SS. If ρ(d1) = ρ(d2) then, for each σ ∈ Subst, each
d′ ∈ SS, and each V ∈ ℘f(Vars),

(1) ρ
(
Amgu(d1, σ)

)
= ρ

(
Amgu(d2, σ)

)
;

(2) ρ(d′ t d1) = ρ(d′ t d2); and

(3) ρ
(
Proj(d1, V)

)
= ρ

(
Proj(d2, V)

)
.

As a corollary of the two results above we have that SS ρ is as good as SS for
propagating pair-sharing through the analysis process. We also show that any
proper abstraction of SS ρ is less precise than SS ρ on computing pair-sharing.

Theorem 11 For each d1, d2 ∈ SS, ρ(d1) 6= ρ(d2) implies

∃σ ∈ Subst . αPS

(
Amgu(d1, σ)

)
6= αPS

(
Amgu(d2, σ)

)
.

To summarize, the equivalence relation induced by ρ identifies two elements
if and only if their behavior in the analysis process is indistinguishable with
respect to the pair-sharing property.

6 Star-Union Is Not Needed

When moving from the theoretical to the practical ground, the first issue
concerns the choice of an actual representation for the elements of SS ρ, which
are the equivalence classes induced by ρ over SS . One possibility is to fix
once and for all the representative of each equivalence class. In particular,
this would allow for an implementation of the equivalence check as an identity
check.

One obvious candidate representative for the class is the image under ρ of any
element of the class. By a standard result of the theory of closure operators,
this element is the maximum element in its class with respect to the lattice
ordering. Of course, as far as efficiency is concerned, this would be a really
unfortunate choice as, in general, # ρ(sh) is an exponential function of # sh.

A much more interesting alternative is made possible by the following result,
which shows that all the equivalence classes based on ρ are also endowed with
a minimum element with respect to the lattice ordering.

14

Theorem 12 For all sh1, sh2 ∈ SH ,

ρ(sh1) = ρ(sh2) =⇒ ρ(sh1 ∩ sh2) = ρ(sh2).

Not surprisingly, the minimum element is the only element of the equivalence
class containing no redundant sharing groups.

Theorem 13 For all sh ∈ SH ,

sh \ {S ∈ SG | S is redundant for sh } =
⋂{

sh ′ ∈ SH
∣∣∣ ρ(sh ′) = ρ(sh)

}
.

Using the minimum elements (from now on also called reduced elements) as
representatives for the equivalence classes would seem the best thing to do:
memory occupation and the computational cost would be kept at a minimum.
However, it must not be forgotten that reducing a sharing-set (i.e., removing
all its redundant sharing groups) has a price. Moreover, the abstract operators
on sharing-sets may generate non-reduced elements even from reduced ones.

A different solution to the problem of deciding on the classes’ representatives
is to allow the implementation to select it dynamically. In this setting, the
implementation is left free to choose any element of an equivalence class as the
representative of the class. Moreover, the implementation can make different
choices at different times during the analysis. These choices can be guided
by several heuristics, with the objective of finding a good trade-off between
the cost of reductions and the benefits of working with smaller, and possibly
minimal, elements. One of the consequences of allowing this kind of freedom is
that the equivalence check can no longer be implemented as an identity check.
This does not constitute a serious drawback: as we will see in Section 7, the
complexity of the equivalence check is bounded by the square of the number
of sharing groups.

Since the computational complexity of all the abstract operators depends on
the cardinality of the sharing-sets involved, a general recipe for efficiency is
avoiding, wherever possible, the generation of redundant sharing groups. For
this purpose, another very interesting practical consequence of the theory de-
veloped in the previous section is that the star-union operator can be safely
replaced by the binary-union operator.

Theorem 14 For each sh ∈ SH we have sh? = ρ
(
bin(sh, sh)

)
.

In words, bin(sh, sh) is granted to be in the same equivalence class of sh? and
it is quite likely to contain less redundant sharing groups. Moreover, in the
worst-case, the complexity of the star-union operator is exponential in the
number of sharing groups of the input, while for the binary-union operator
the complexity is quadratic.

15

This method for computing (a representative of) the star-union can be safely
applied in the computation for abstract unification. We prove here the result
for amgu when it is applied to a single binding. As Amgu is defined in terms
of amgu, the revised definition for amgu can be used in the computation of
Amgu.

Theorem 15 Let x be a variable and t a term in which x does not occur. Let
also sh ∈ SH and

A
def
= rel

(
{x}, sh

)
,

B
def
= rel

(
vars(t), sh

)
.

Then

ρ
(
amgu(sh, x 7→ t)

)
= ρ

((
sh \ (A ∪B)

)
∪ bin

(
bin(A,A), bin(B,B)

))
.

7 Experimental Evaluation

The ideas presented in this paper have been experimentally validated in the
context of the development of the China analyzer [2]. China is a data-flow an-
alyzer for CLP(HN) languages (i.e., Prolog, CLP(R), clp(FD) and so forth),
HN being an extended Herbrand system where the values of a numeric do-
main N can occur as leaves of the terms. China, which is written in C++,
performs bottom-up analysis deriving information on both call-patterns and
success-patterns by means of program transformations and optimized fixpoint
computation techniques.

7.1 The Implementation

At the implementation level, each variable is associated to a non-negative inte-
ger. Thus variables inherit from the integers the usual total ordering relation.
Finite sets of variables are represented by dynamically resizing bit-vectors.
Sharing-sets, that is sets of sets of variables, are implemented by means of
the set associative container provided by standard C++. The total ordering
relation employed to this purpose, < ⊆ ℘f(N0)×℘f(N0), is an extension of the
⊂ partial ordering. In other words, for each S1, S2 ∈ ℘f(N0), if S1 ⊂ S2 then
S1 < S2. This ordering is exploited in several places in the implementation
and proved to be a very effective device.

It is important to remark that the implementation of Sharing we use for com-
parison against SS ρ is a rather refined one. For instance, care was taken in

16

Require: the sharing set sh
def
= {S1, . . . , Sn} such that S1 < · · · < Sn.

Ensure: on exit shstar = sh?.

1: shstar := ∅
2: shdone := ∅
3: for i := 1 to n do
4: if Si 6=

⋃{T ∈ shdone | T ⊂ Si } then
5: shdone := shdone ∪ {Si}
6: shstar := shstar ∪ {Si} ∪ {Si ∪ U | U ∈ shstar }
7: end if
8: end for

Fig. 1. An optimized algorithm for computing star-union.

the implementation of star-union. The algorithm we used is given in Figure 1.
The optimization implemented by lines 2, 4, and 5 avoids the computation of
redundant unions, and can give rise to efficiency gains of an order of magni-
tude and more. Suppose sh = {S1, . . . , Sn}, i ∈ {1, . . . , n}, J ⊂ {1, . . . , n}
with i /∈ J , and Si =

⋃
j∈J Sj. Then sh? =

(
sh \ {Si}

)?
. Observe how the

total ordering used for representing sharing-sets simplifies the task of check-
ing the applicability condition for this optimization (line 4 of the algorithm
in Figure 1). In fact, in order to have Si =

⋃
j∈J Sj and i /∈ J we must have

∀j ∈ J : Sj ⊂ Si and thus ∀j ∈ J : Sj < Si.

Theorem 16 On exit from the algorithm of Figure 1, shstar = sh?.

As far as the implementation of SS ρ is concerned, the code for all the abstract
operations can be reused, once star-union has been replaced by binary union.
This does not mean that it is not possible to produce sharing-sets with less
redundant sharing groups. For instance, consider the amgu operation applied
to a sharing-set sh and a binding x 7→ t. Then, if we let

A
def
= rel

(
{x}, sh

)
,

B
def
= rel

(
vars(t), sh

)
,

Theorem 15 tells us that

(
sh \ (A ∪B)

)
∪ bin

(
bin(A,A), bin(B,B)

)
(1)

is in the same equivalence class as amgu(sh, x 7→ t). We will show that ex-
pression (1), even though, in general, produces less redundant sharing groups

17

than amgu(sh, x 7→ t), it is not optimal in this respect. Let us define

Â
def
= A \B,

B̂
def
= B \ A,

C
def
= A ∩B.

Thus A = Â ∪ C and B = B̂ ∪ C. For sh ∈ SH , let us define, for each n ∈ N,

shn
def
= {S1 ∪ · · · ∪ Sn | S1 ∈ sh, . . . , Sn ∈ sh },

so that sh1 = sh, sh2 = bin(sh, sh), sh3 = bin(sh, sh2) = bin(sh2, sh), and so
forth. For sh1, sh2 ∈ SH , we have (sh1 ∪ sh2)2 = sh2

1 ∪ sh2
2 ∪ bin(sh1, sh2). So,

the expansion of expression (1) looks like

· · · ∪ bin
(
bin(A,A), bin(B,B)

)
= · · · ∪ bin

(
A2, B2

)
= · · · ∪ bin

(
(Â ∪ C)2, (B̂ ∪ C)2

)
= · · · ∪ bin(· · · ∪ C2, · · · ∪ C2)

= · · · ∪ · · · ∪ C4.

However, it is straightforward to show that, for each n ≥ 2, ρ(shn) = ρ(sh2)
and shn ⊇ sh2. It is thus clear that expression (1), by computing C4, may
introduce (and, in fact, often introduces) redundant sharing groups. It can be
proved that a better way to compute a sharing-set in the same equivalence
class of amgu(sh, x 7→ t) is given by the following expression:(

sh \ (Â ∪ B̂ ∪ C)
)
∪
(
bin(Â ∪ C, B̂) ∪ bin(Â, C)

)2
∪ C2. (2)

Theoretically speaking, expression (2) is undoubtedly better than expres-
sion (1). Nonetheless we were unable, despite our attempts, to obtain a com-
petitive implementation of the abstract mgu operation based on expression (2):
the implementation relying on expression (1) followed by the elimination of
redundant sharing groups was more efficient. Of course, this does not prove
anything, and the question whether even more efficient abstract operations
can be obtained remains open.

The algorithm for removing redundant sharing groups is pretty easy. The only
important observation is that redundant sharing groups can be removed in any
order. In fact, suppose two sharing groups S, T ∈ sh are redundant for sh and

let sh1
def
= sh \ {S} and sh2

def
= sh \ {T}. Then ρ(sh1) = ρ(sh2) = ρ(sh) and,

by Theorem 12, ρ(sh1 ∩ sh2) = ρ
(
sh \ {S, T}

)
= ρ(sh).

It turns out that reduction (i.e., the elimination of redundant sharing groups)
and equivalence check fit together very well. Thus we present an algorithm for

18

achieving both at the same time in Figure 2.

Require: the sharing sets shnew
def
= {S1, . . . , Sn} and shold

def
= {T1, . . . , Tm}

obtained at the current and previous iteration, respectively. The set shold

is guaranteed not to contain redundant sharing groups. Moreover, we have
S1 < · · · < Sn and T1 < · · · < Tm.

Ensure: on exit sh is guaranteed not to contain redundant sharing groups
and ρ(sh) = ρ(shnew). Moreover, the Boolean variable changed is set to
true if and only if sh 6= shold and hence ρ(shnew) 6= ρ(shold).

1: sh := shnew

2: changed := false
3: i := 1
4: j := 1
5: while ¬changed and i ≤ n and j ≤ m do
6: if Si = Tj then
7: i := i+ 1
8: j := j + 1
9: else if redundant(Si, sh) then

10: sh := sh \ {Si}
11: i := i+ 1
12: else
13: changed := true
14: end if
15: end while
16: while i ≤ n do
17: if redundant(Si, sh) then
18: sh := sh \ {Si}
19: else
20: changed := true
21: end if
22: i := i+ 1
23: end while

Fig. 2. An optimized algorithm for applying redundancy elimination and checking
whether a fixpoint has been reached at the same time.

The function redundant, when given a sharing-set sh ∈ SH and a sharing
group Si ∈ sh, returns the Boolean value true if and only if Si is redundant in
sh. Its implementation is straightforward and matches the condition given in
Definition 5. Notice that the implementation of redundant benefits from the
total ordering used to represent sharing-sets as ordered sequences of sharing
groups.

If we assume (as we do in our implementation) that the result of the abstract
evaluation of each clause is reduced, then the algorithm of Figure 2 allows

19

to reuse part of the reduction work done at iteration k in order to simplify
reduction at iteration k + 1, and to perform the equivalence check (i.e., the
test required to detect whether a local fixpoint has been reached) at the same
time. Here, once again, the total ordering among sharing groups proves very
useful. The algorithm proceeds as follows: the sharing groups in the sharing-
sets obtained at iterations k and k + 1 (shold and shnew, respectively) are
considered in ascending order (recall that Si ⊂ Sj implies Si < Sj and thus,
by contraposition, Si ≥ Sj implies Si 6⊂ Sj). Since a sharing group can be
“made redundant” only by its proper subsets, and since shold is reduced, as
long as no difference is observed between the sharing groups in shold and shnew,
we know that the sharing groups seen so far are not redundant. Notice that,
as a consequence of the analysis process, we have shold ⊆ shnew, since shnew

is always obtained as shold ∪ sh ′ for some sh ′ ∈ SH (set theoretic union is
the lub on SH). When two different sharing groups are observed there are
two possibilities: either the sharing group Si ∈ shnew is redundant, in which
case it is eliminated and the algorithm proceeds with the first loop, or Si is
not redundant, in which case we know that the fixpoint has not been reached
(changed := true) and the algorithm continues with simple reduction at lines
16–23. The algorithm for reduction only can be obtained by just considering
lines 1, 3, 16–18, and 21–23.

7.2 Experimental Results

We have compared the performance of our implementations of SS and SS ρ

on a number of Prolog and CLP program with the China analyzer. The
comparison has been done on a very practical setting, so as to be as conclusive
as possible. First of all, following several other authors (see, e.g., [45]), we
observed in [3] that, from a practical point of view, sharing analysis without
freeness or linearity does not make sense. Both these properties allow, in a
significant proportion of cases, to dispense with costly operations (such as star-
union or binary union) increasing the precision of sharing information at the
same time, and this with very little overhead that is repayed by consistent, and
sometimes huge, speedups. Moreover, freeness is a useful property in itself. We
have thus compared the combination of SS with the usual domains for freeness
and linearity with the same combination where SS has been replaced by SS ρ.
These combinations have been performed following [6]. The reader interested
in the comparison between plain SS and SS ρ is referred to [3], where all the
possible combinations (with freeness only, with linearity only, with both, and
with none of them) are taken into account. Of course, in absence of freeness
and/or linearity the analysis based on SS has to perform more star-unions.
Since star-union is much more computationally complex than binary union,
the lack of freeness and/or linearity is more penalizing for SS than it is for
SS ρ.

20

The second ingredient of what we called “practical setting” concerns the choice
of the programs used as benchmarks. Our comparison involved all the 260
programs in the current test-suite of China. This includes all the programs
we have found by dredging the Web, and not only the few benchmarks that,
unfortunately, are still customary in the field. Some details on the programs,
which count several real applications among them, are given in Appendix B.
The only programs omitted in the following table are the smallest ones, i.e.,
analyzable in a few hundredths of a second, plus the Goedel, LogTalk, and QD-
Janus compilers and run-time systems. For these latter ones, China answers
a plain “don’t know”: while Goedel and LogTalk contain goals of the form
assert(G), where the principal functor of G is unknown, QD-Janus makes
use of setarg/3. 5

Full timing information is reported in Table 1, where the fixpoint computa-
tion time, in seconds, is given for all the programs such that at least one
timing was above 0.1 seconds. The number of clauses of the programs are
also reported. Table entries containing ‘> 103’ mean that the outer widening
employed in China fired. This widening imposes a time limit (1,000 seconds
for the experiments presented here) on the analysis of a program. When this
limit is reached China forces a “don’t know” result for those call-patterns
and success-patterns whose analysis is still incomplete.

The experiments were performed on a PC equipped with an AMD K6-2 clocked
at 300MHz and running Linux 2.2.5. The timings are in seconds of user time
as provided by the getrusage system call. Notice that for these tests we have
switched off all the other domains currently supported by China. 6

Table 1: SS vs SS ρ: fixpoint computation timings in sec-
onds.

Goal-Independent Goal-Dependent

Program # cl SS SS ρ SS SS ρ

action.pl 174 0.94 0.46 99.01 14.63

aircraft.pl 878 0.15 0.18 0.92 0.92

ann.pl 224 0.18 0.21 0.61 0.72

aqua c.pl 4662 > 103 > 103 > 103 > 103

5 As setarg/3 has been dropped by SICStus since version 3.6 (and we hope has
been/will be dropped by all major implementations) we decided that implementing
its support in China was not worthwhile.
6 Namely, numerical bounds and relations, groundness, compoundness, and poly-
morphic types.

21

Table 1: (continued)

Goal-Independent Goal-Dependent

Program # cl SS SS ρ SS SS ρ

arch1.pl 215 0.26 0.23

bmtp.pl 1795 222.83 19.83

boyer.pl 144 0.04 0.03 0.51 0.29

bp0-6.pl 56 0.07 0.08 0.10 0.09

bryant.pl 99 0.10 0.11 0.29 0.30

bup-all.pl 194 0.16 0.11

caslog.pl 2914 > 103 661.24 > 103 > 103

cg parser.pl 382 0.13 0.14

chasen-all.pl 114 0.03 0.04 1.54 0.23

chat80.pl 2754 248.05 11.54 > 103 358.64

chat parser.pl 499 25.21 1.18 > 103 114.78

chess.pl 198 0.05 0.06 0.33 0.33

cobweb.pl 236 > 103 0.92

crip.pl 92 0.06 0.07 0.11 0.10

cugini ut.pl 326 0.13 0.13

dpos an.pl 450 0.13 0.16 0.93 1.03

eliza.pl 178 0.08 0.08 1.14 0.53

ftfsg.pl 265 0.11 0.12 0.09 0.10

ftfsg2.pl 358 0.13 0.15 0.27 0.27

ga.pl 171 0.04 0.05 0.12 0.14

ileanTAP.pl 91 > 103 33.53 > 103 > 103

ime v2-2-1.pl 51 0.07 0.08 0.26 0.28

jugs.pl 30 0.02 0.03 0.25 0.24

lc.pl 58 0.05 0.06 0.18 0.21

ldl-all.pl 10063 > 103 > 103

22

Table 1: (continued)

Goal-Independent Goal-Dependent

Program # cl SS SS ρ SS SS ρ

leanTAP.pl 153 0.08 0.08 62.08 2.37

lg sys.pl 4701 > 103 640.67

linTAP.pl 98 > 103 374.87 > 103 > 103

ljt.pl 101 3.69 0.72 0.14 0.16

llprover.pl 511 0.18 0.19 1.56 2.21

log interp.pl 354 0.57 0.53 4.49 2.67

lojban.pl 305 663.28 11.30 > 103 179.44

metutor.pl 894 0.22 0.23

mixtus-all.pl 1897 > 103 22.66

nand.pl 205 > 103 > 103 0.41 0.42

nbody.pl 97 0.06 0.07 0.30 0.30

oldchina.pl 1625 > 103 5.47 > 103 > 103

parser dcg.pl 172 0.11 0.12 0.60 0.64

peephole1.pl 292 0.09 0.09 1.10 0.94

pets an.pl 940 > 103 23.31 > 103 276.67

peval.pl 321 0.36 0.40 299.18 6.94

plaiclp.pl 1246 0.67 0.72 0.02 0.03

pmatch.pl 483 > 103 228.17 > 103 > 103

press.pl 123 0.09 0.12 0.71 0.75

puzzle.pl 21 4.40 0.12 63.90 2.56

quot an.pl 536 0.35 0.39 4.30 3.76

read.pl 159 0.14 0.14 0.82 0.76

reducer.pl 106 0.06 0.08 40.59 4.45

reg.pl 455 > 103 133.28 2.82 0.77

rubik.pl 277 0.05 0.05 0.28 0.29

23

Table 1: (continued)

Goal-Independent Goal-Dependent

Program # cl SS SS ρ SS SS ρ

sax-all.pl 1991 > 103 58.13

scc.pl 52 > 103 210.20 0.15 0.15

sdda.pl 93 0.46 0.24 24.91 3.75

semi.pl 51 0.03 0.03 0.16 0.16

sim.pl 300 > 103 55.27 > 103 > 103

sim v5-2.pl 318 0.17 0.18 0.53 0.52

simple an.pl 136 0.11 0.13 1.07 0.75

slice-all.pl 1180 1.35 0.98

spsys.pl 1004 8.22 2.63

trs.pl 112 > 103 34.10 > 103 > 103

unify.pl 74 0.07 0.10 0.58 0.82

warplan.pl 53 0.04 0.04 0.70 0.72

The blank entries in the goal-dependent columns are for those program whose
goal-dependent analysis is pointless. This usually happens because the pro-
gram contains a procedure call to an unknown procedure (e.g., by means of
call/1). The China analyzer promptly recognizes these cases and reverts to
a goal-independent analysis. This is one of the reasons why focusing only on
goal-dependent analyses is, in our opinion, a mistake. The other reason being
that the ability of analyzing libraries (like cugini ut.pl) once and for all is
desirable and, more generally, so is the separate analysis of different program
modules, especially in very large projects. Focusing only on goal-independent
analyses is the opposite mistake: goal-dependent analyses, when possible, are
more precise than goal-independent ones. For these reasons, we insist in pre-
senting experimental results for both.

Note that in Table 1 we report on the results obtained with Prolog programs
only. This is because, while the CLP programs in our test-suite are (unfor-
tunately) quite small, they are also characterized by a high percentage of
numeric variables. As numeric variables cannot share with other variables (at
least, not in the sense that is of interest in this work), our CLP benchmarks
fell under the 0.1 seconds threshold.

24

As far as the choice of representatives for the SS ρ equivalence classes is con-
cerned, the results presented in Table 1 refer to the case where reduction is
performed after each binary union operation, at the end of each clause evalu-
ation, and during the equivalence check.

Experimentation shows clearly that the SS ρ domain is indeed a good idea.
The results indicate that by replacing SS with SS ρ we have, in the worst case,
a limited slowdown (40% at most, and this is only in cases when SS takes
less that 2 seconds). In the best case, instead, we obtain significant speedups
(up to three orders of magnitude), the average case being definitely in favor
of SS ρ. It is interesting to observe that the speedups occur when they are
most needed, that is for the analysis of programs where SS behaves badly.
In other words, SS ρ has a much more stable behavior: this is no surprise,
since, among other things, we have replaced an algorithm with exponential
complexity with a quadratic one. This stability is highly desirable for practical
data-flow analyzers. Of course, analyses based on SS ρ always require less (often
much less) memory than those based on SS .

The observed slowdowns happen when reduction is repeatedly attempted on
sharing sets that have few or no redundant sharing groups. As pointed out
in [3], the slowdowns can be almost eliminated by not applying reduction after
each binary union. With this choice, SS ρ is always more efficient than SS but
the maximal speedups obtained are not as high as Table 1, even though they
reach an order of magnitude. We have conducted some experimentation on
the use of heuristics in order to trigger the reduction process. Simple heuris-
tics, such as performing reduction after binary unions only if the size of the
sharing-set involved exceeds a certain threshold, work very well. This is be-
cause large sharing-sets, besides being the culprit for bad performance, almost
always contain many redundant sharing groups. However, after a careful ex-
perimentation, we decided to set aside this line of work on the basis that the
observed slowdowns are of really minor importance, both in relative and ab-
solute terms (the largest slowdown observed in the test-suite amounts to 0.65
seconds of CPU time).

We refer the interested reader to [3], where a number of programs are analyzed
using composite domains of the kind Pattern(D), whereD is one of our analysis
domains and Pattern(·) [2] is a generic structural domain similar to Pat(<)
[23,24]. The construction Pattern(·) upgrades a domainD (which must support
a certain set of basic operations) with structural information. The resulting
domain, where structural information is retained to some extent, is usually
much more precise then D alone. Of course, there is a price to be paid: in the
analysis based on Pattern(D), the elements of D that are to be manipulated
are often bigger (i.e., they consider more variables) than those that arise in
analyses that are simply based on D. Thus, it is not surprising that the results
reported in [3] confirm the superiority of SS ρ, even though they refer to a less

25

refined implementation with respect to the one we use now.

The last lesson to be learned from Table 1 is that, even though SS ρ is an
important step towards practical and precise sharing analysis for (constraint)
logic programs, it is not the last one. We refer the reader to the very recent
work presented in [60], where we propose a family of widenings on SS ρ that,
at the cost of an almost negligible precision loss, allows to achieve the desired
goal. As a final remark, it is perhaps interesting to observe that some of the
theoretical consequences of the work described in this paper are conveniently
exploited in [60].

8 Related Work

8.1 Comparisons and Integrations

In [20] Cortesi, Filé and Winsborough establish that ASub and Sharing are
incomparable from the precision point of view. While ASub has its strength in
keeping track of linearity, Sharing is more accurate as far as groundness and
sharing information is concerned.

The relationship between ASub and Sharing has been studied later by Cortesi
and Filé in [17]. They also introduced the domain Sharing⊗ that is aimed at
capturing all the information of ASub and Sharing. In reality, Sharing⊗ is more
precise than the reduced product [25] of ASub and Sharing, as Sharing⊗ con-
tains the domain Prop [19,49] (or Pos, as it is now less ambiguously called [1])
for the propagation of groundness information.

Codish et al. propose a more pragmatic way of integrating the information of
ASub and Sharing [15]: performing the analysis with both the domains at the
same time, and exchanging information between the two components at each
step.

It is interesting to note that the remedy to the only weakness of Sharing with
respect to ASub (lack of linearity) was proposed by one of the inventors of
Sharing in his PhD thesis [47]. It is really unfortunate that this work, which
has anticipated a substantial part of the subsequent research, has remained
virtually unknown. Besides the integration of linearity information into Shar-
ing, [47] shows how the aliasing information allows freeness to be computed
with a good degree of accuracy. This integration of freeness is, however, not
complete, since freeness is not used to improve the aliasing analysis.

The synergy attainable from a real integration between aliasing and freeness

26

information has been pointed out, for the first time, by Muthukumar and
Hermenegildo [51]. It must be noted that the relationship between freeness
and aliasing is more complex than the relationship between linearity and alias-
ing. In fact, a knowledge of freeness allows to infer more accurate structural
information. The later research works [5,6,12,46] are thus seeking a better
integration of aliasing and freeness information. These works reached conclu-
sions that are quite similar to one another, the main differences concerning
the complexity and precision of the abstract operators employed.

Codish et al. [12] use systems of abstract equations and a non-deterministic
operator that, while granting a high degree of precision, is computationally
quite complex. Bruynooghe et al. [5] extend the approach of [12] to linearity,
in addition to sharing and freeness. In [6], a different kind of abstract equation
is used together with a deterministic operator that uses and computes infor-
mation on sharing, freeness, and linearity. In addition the operator computes
the property of compoundness, although that, however, is never used. (In the
version published as technical report [7] compoundness is employed in order
to improve freeness and, consequently, also aliasing and linearity.) It must be
stressed that our theoretical results, obtained in this paper for SS , can also
be obtained for the combination SS plus Lin plus Free as described in [6]. 7

We emphasize that this claim holds for the analysis (domain and operators)
defined in [6]. As we will see in a moment, it is known that this analysis,
though very accurate, is not optimal.

King and Soper propose, in [46], the integration of sharing and freeness with a
depth-k component [48,54]. King [45] shows also how a more refined tracking
of linearity (essentially, pushing linearity at the levels of sharing groups) allows
for further precision improvements.

A remarkable piece of work, in terms of elegance and cleanliness, is constituted
by [31]. Here Filé is the first to define formally the reduced product between
Sharing and Free (the usual domain for freeness), identifying the elements of
the Cartesian product that are redundant. The important merit of this work is
due to the fact that it operates a clear distinction between the benefits of the
integration between Sharing and Free from those obtainable by the integration
of Sharing, Free, and some kind of structural information. (Notice that most
abstract equation systems that have been proposed in the literature contain a
significant amount of structural information, though in a more or less hidden
way.)

The abstract unification operator defined in [31] is more powerful than the
operator, restricted to sharing and freeness, of [6]. The more refined operator
exploits some non-trivial interactions between the sharing and the freeness

7 Note that when considering freeness information we have to consider accuracy
with respect to the freeness property also.

27

components. When this refined operator is employed, it is no longer true that
SS ρ plus Lin plus Free is as accurate as SS plus Lin plus Free. However, our
experimentation has revealed that the abstract operator formalized in [31] is
characterized by an extremely unfavorable cost/precision ratio.

It is interesting to observe that all the works mentioned above use, for the rep-
resentation of sharing information, the domain of Jacobs and Langen “as is”.
In the next subsection we review some (more or less) alternative approaches.

8.2 Alternative Domains and Representations

Bruynooghe et al. [8] propose a new domain for sharing and freeness analysis
based on the concept of pre-interpretation [4]. The domain elements are sets
of domain relations, where a domain relation is a set of assignments of val-
ues from the pre-interpretation to the tuple of variables of interest. Roughly
speaking, since it is possible to map a domain relation onto a set of sharing
groups (plus freeness), this domain seems to have the same expressive power
of the disjunctive completion [26] of the domain of Jacobs and Langen. How-
ever, the semantic operators defined in [8] are responsible, in certain cases,
for some precision loss, thus making the analyses based on the two domains
incomparable. Moreover, it seems that the efficiency of the analysis described
in [8] relies on considering, as variables of interest, the tuple of arguments in
the head of the (normalized) clause: it is not clear what impact the integration
of more accurate structural information could have.

In [30], Fecht proposes a domain derived from Sharing. This domain is obtained
by only considering downward closed sharing sets, that is, if a sharing set
sh contains the sharing group S, then it also contains the sharing group S ′

for S ′ ⊂ S. Downward closed sharing sets can be efficiently represented by
means of the sets of their maximal elements. The resulting domain, called
↓JL, is, essentially, PS ⊗ Ground , where ‘⊗’ denotes the reduced product
and Ground is the simplest domain for groundness [44,50]. In fact, in ↓JL,
ground dependencies and pair-sharing dependencies are lost. To compensate
this loss of precision, Fecht combines ↓JL with Pos and then with Lin, where
Lin is the usual, simple domain for linearity. 8 For the analyses based on these
combined domains, Fecht reports huge speedups and only a negligible loss of
precision, compared to Sharing with or without the addition of linearity.

Codish et al. describe, in [14], an algebraic approach to the sharing analysis
of logic programs that is based on set logic programs. A set logic program is a
logic program in which the terms are sets of variables, and standard unification

8 It is interesting to note that the reduced product of ↓JL with Pos with Lin is
exactly the ASub+ domain of [17].

28

is replaced by a suitable unification for sets based on the notion of ACI1-
unification. Namely, unification in the presence of an associative, commutative,
and idempotent equality theory with a unit element (the empty set). The
abstract domain described in [14] is also shown to be isomorphic to Sharing and
thus, in view of the present work, it is redundant with respect to pair-sharing.
A suggested advantage of the approach proposed in [14] is that the adoption
of an abstract compilation technique [16,34,39] for the implementation of a
sharing analyzer is made easier.

8.3 The Quotient of Abstract Interpretations

After an initial attempt in [20], Cortesi, Filé, and Winsborough defined, in [21],
the notion of quotient of an abstract interpretation with respect to a certain
property. This notion is intended to isolate, in a given abstract domain, those
parts that are useful to compute the selected property. Our work can thus
be considered as an application of [21] where we take Sharing as the starting
domain and pair-sharing (PS) as the property under investigation. However,
we chose not to fully adhere to the terminology and the methodology proposed
in [21].

In our opinion, the terminology adopted in [21] can be the source of mis-
understandings. When the authors talk about the quotient of a domain D
“with respect to the property P”, it seems that they mean “with respect to
the equivalence relation ≡αP induced by the property P”. Such a relation is
defined by

d1 ≡αP d2
def⇐⇒ ∀i ≥ 0 : ∀µ : αP

(
µi(d1)

)
= αP

(
µi(d2)

)
, (3)

where µ is an arbitrary “derived operator”, that is, any expression built from
operators and elements of the domain D and involving only one variable. In
contrast the, by now standard, notion of equivalence relation induced by an
abstraction function (see [25]) is formalized as follows:

d1 ≡αP d2
def⇐⇒ αP (d1) = αP (d2).

As far as the overall approach is concerned, let us briefly review the methodol-
ogy we have followed 9 . For the purpose of the present discussion, let us adopt
the closure operator approach to abstract interpretation and let us call SS
the “concrete domain” and SS ρ the “abstract domain”. We have looked for
an upper closure operator over SS that is

9 All the conceptual devices we have resorted to are part of the classic inheritance of
the semantics of programming languages. In this respect, we did not invent anything.

29

(1) “more concrete” than the upper closure operator associated to PS , and
(2) such that the induced equivalence relation over SS is a congruence rela-

tion with respect to all the semantic operators of the domain.

These properties give rise to a completeness result of the abstract seman-
tics (SS ρ) with respect to the concrete semantics (SS). In other words, every
pair-sharing captured by SS is also captured by SS ρ, with their respective
operations. Moreover, we established that ρ is the weakest upper closure oper-
ator satisfying the above requisites. This property constitutes a full abstraction
result of the abstract semantics with respect to the property under investiga-
tion: if two elements are different in the abstract semantics then there exists
a context (i.e., a program, in our case a single substitution) that shows the
difference between the two elements in terms of pair-sharing. Once put to-
gether, the completeness and full abstraction results mean that the domain
SS ρ we have found is exactly the quotient of SS with respect to PS (using the
terminology of [21]).

Comparing the proposed methodology in [21] with our approach, we see that
although the results would possibly have been more general, the proofs would
have been more complex. However, generality is not a concern for us as we are
not proposing, as [21], a framework but rather an interesting application to a
specific domain and a specific language for which “our” alternative approach
works well.

It is interesting to note that, in the view of recent results on abstract do-
main completeness [35], SS ρ is the least fully-complete extension (lfce) of PS
with respect to SS . From a purely theoretical point of view, the quotient of
an abstract interpretation with respect to a property of interest and the least
fully-complete extension of an upper closure operator are not equivalent. It is
known [21] that the quotient may not exist, while the lfce is always defined
(assuming the concrete semantics operators are continuous, as it is almost al-
ways the case). However, it is also known [36] that when the quotient exists
it is exactly the same as the lfce. Moreover, it should be noted that the quo-
tient will exist as long as we consider a semantics where at least one of the
domain operators is additive and this is almost always the case (just consider
the merge-over-all-paths operator, usually implemented as the lub of the do-
main). Therefore, for the case considered here, these two approaches to the
completeness problem in abstract interpretation are equivalent.

8.4 The Pseudo-Complement of Abstract Interpretations

Another interesting operator over semantic domains is the pseudo-complement,
which has been introduced recently by Cortesi et al. in [18]. In this case, given a

30

domain D and a property P that is represented in D, the aim is to characterize
the information that remains in D after the removal of P . More formally, the
pseudo-complement of P in D is the weakest abstraction Q of the domain D
such that the reduced product [25] of P and Q (re-) generates D. The pseudo-
complement can be used in order to decompose a complex domain into its
basic components. In fact, the pseudo-complement can obtain a factorization
that avoids the duplication of information in the factors.

One of the most studied domains for the application of the pseudo-complement
operator has been Sharing. In particular, in [18] the authors compute the com-
plement of Def with respect to Sharing. The result, called Sharing+, has been
further studied and decomposed in [32], where an attempt has been made
to remove the pair-sharing information. Here Filé and Ranzato introduce a
new method for computing the pseudo-complement. This is much simpler
than the original proposal of [18], as it allows the computation of the pseudo-
complement by observing only the meet-irreducible elements of the reference
domain. As an application, [32] shows a decomposition of Sharing into three
components “each representing one of the elementary properties that coexist
in the elements of Sharing”, 10 that is, groundness dependencies, pair-sharing,
and set-sharing (the latter intended to be without the previous two). The
authors observe that SS ∼ PS = SS (where SS ∼ PS denotes the pseudo-
complement of PS with respect to SS) and conclude that PS is too abstract
to be extracted from SS by means of complementation. For a non-trivial de-
composition of SS they propose a different (and unnatural) definition for pair-
sharing called PS ′. The problem outlined above is due to the “information pre-
serving” property of pseudo-complementation, as any factorization obtained
in this way is such that the reduced product of the factors give back the
original domain. In particular, any factorization of SS encodes the redundant
information identified in the present work. Such a problem disappears if one
considers SS ρ as the reference domain, thus eliminating any redundant infor-
mation. In [61] it is proved that we have SS ρ ∼ PS 6= SS ρ, and hence the
natural definition of PS allows for a non-trivial decomposition of SS ρ. 11

9 Conclusion

We have questioned, apparently for the first time, whether the set-sharing
domain Sharing is the most adequate for tracking pair-sharing between pro-
gram variables. The answer turned out to be negative. We have presented a
new domain SS ρ that is, at the same time, a strict abstraction of SS and as
precise as SS on pair-sharing. We have also shown that no abstract domain

10 Op. cit., Section 1.
11 For the expert: PS does represent exactly some meet-irreducible elements of SS ρ.

31

weaker than SS ρ can enjoy this last property. This theoretical work has led
us to an important practical result: the exponential star-union operation in
the abstract unification procedure can be safely replaced by the binary-union
operation, which has quadratic complexity. We have presented experimental
results showing that, in practice, our new domain compares favorably with SS
over a wide range of benchmark and real programs.

References

[1] T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Two classes of
Boolean functions for dependency analysis. Science of Computer Programming,
31(1):3–45, 1998.

[2] R. Bagnara. Data-Flow Analysis for Constraint Logic-Based Languages. PhD
thesis, Dipartimento di Informatica, Università di Pisa, Corso Italia 40, I-56125
Pisa, Italy, March 1997. Printed as Report TD-1/97.

[3] R. Bagnara, P. M. Hill, and E. Zaffanella. Set-sharing is redundant for pair-
sharing. In Van Hentenryck [57], pages 53–67.

[4] D. Boulanger, M. Bruynooghe, and M. Denecker. Abstracting S-semantics
using a model-theoretic approach. In M. Hermenegildo and J. Penjam, editors,
Proceedings of the 6th International Symposium on Programming Language
Implementation and Logic Programming, volume 844 of Lecture Notes in
Computer Science, pages 432–446, Madrid, Spain, 1994. Springer-Verlag, Berlin.

[5] M. Bruynooghe and M. Codish. Freeness, sharing, linearity and correctness
— All at once. In P. Cousot, M. Falaschi, G. Filé, and A. Rauzy, editors,
Static Analysis, Proceedings of the Third International Workshop, volume 724
of Lecture Notes in Computer Science, pages 153–164, Padova, Italy, 1993.
Springer-Verlag, Berlin. An extended version is available as Technical Report
CW 179, Department of Computer Science, K.U. Leuven, September 1993.

[6] M. Bruynooghe, M. Codish, and A. Mulkers. Abstract unification for a
composite domain deriving sharing and freeness properties of program variables.
In F. S. de Boer and M. Gabbrielli, editors, Verification and Analysis of Logic
Languages, Proceedings of the W2 Post-Conference Workshop, International
Conference on Logic Programming, pages 213–230, Santa Margherita Ligure,
Italy, 1994.

[7] M. Bruynooghe, M. Codish, and A. Mulkers. A composite domain for freeness,
sharing, and compoundness analysis of logic programs. Technical Report
CW 196, Department of Computer Science, K.U. Leuven, Belgium, July 1994.

[8] M. Bruynooghe, B. Demoen, D. Boulanger, M. Denecker, and A. Mulkers. A
freeness and sharing analysis of logic programs based on a pre-interpretation.
In Cousot and Schmidt [27], pages 128–142.

32

[9] J.-H. Chang. High Performance Execution of Prolog Programs Based on a Static
Data Dependency Analysis. PhD thesis, Computer Science Division (EECS),
University of California at Berkeley, 1986. Printed as Report UCB/CSD 86/263.

[10] J.-H. Chang, A. M. Despain, and D. DeGroot. AND-parallelism of logic
programs based on a static data dependency analysis. In Digest of Papers
of COMPCON Spring’85, pages 218–225. IEEE Computer Society Press, 1985.

[11] W. V. Citrin. Parallel Unification Scheduling in Prolog. PhD thesis, Computer
Science Division (EECS), University of California at Berkeley, 1988. Printed as
Report UCB/CSD 88/415.

[12] M. Codish, D. Dams, G. Filé, and M. Bruynooghe. Freeness analysis for
logic programs-and correctness? In D. S. Warren, editor, Logic Programming:
Proceedings of the Tenth International Conference on Logic Programming, MIT
Press Series in Logic Programming, pages 116–131, Budapest, Hungary, 1993.
The MIT Press. An extended version is available as Technical Report CW 161,
Department of Computer Science, K.U. Leuven, December 1992.

[13] M. Codish, D. Dams, and E. Yardeni. Derivation and safety of an abstract
unification algorithm for groundness and aliasing analysis. In Furukawa [33],
pages 79–93.

[14] M. Codish, V. Lagoon, and F. Bueno. An algebraic approach to sharing analysis
of logic programs. In Van Hentenryck [57], pages 68–82.

[15] M. Codish, A. Mulkers, M. Bruynooghe, M. Garc̀ıa de la Banda, and
M. Hermenegildo. Improving abstract interpretations by combining domains.
ACM Transactions on Programming Languages and Systems, 17(1):28–44,
January 1995.

[16] P. Codognet and G. Filé. Computations, abstractions and constraints.
In Proceedings of the Fourth IEEE International Conference on Computer
Languages. IEEE Computer Society Press, 1992.

[17] A. Cortesi and G. Filé. Comparison and design of abstract domains for sharing
analysis. In D. Saccà, editor, Proceedings of the “Eighth Italian Conference
on Logic Programming (GULP’93)”, pages 251–265, Gizzeria, Italy, 1993.
Mediterranean Press.

[18] A. Cortesi, G. Filé, R. Giacobazzi, C. Palamidessi, and F. Ranzato.
Complementation in abstract interpretation. ACM Transactions on
Programming Languages and Systems, 19(1):7–47, 1997.

[19] A. Cortesi, G. Filé, and W. Winsborough. Prop revisited: Propositional formula
as abstract domain for groundness analysis. In Proceedings, Sixth Annual IEEE
Symposium on Logic in Computer Science, pages 322–327, Amsterdam, The
Netherlands, 1991. IEEE Computer Society Press.

[20] A. Cortesi, G. Filé, and W. Winsborough. Comparison of abstract
interpretations. In M. Kuich, editor, Proceedings of the 19th International
Colloquium on Automata, Languages and Programming (ICALP’92), volume

33

623 of Lecture Notes in Computer Science, pages 521–532, Wien, Austria, 1992.
Springer-Verlag, Berlin.

[21] A. Cortesi, G. Filé, and W. Winsborough. The quotient of an abstract
interpretation for comparing static analyses. In M. Alpuente, R. Barbuti,
and I. Ramos, editors, Proceedings of the “1994 Joint Conference on
Declarative Programming (GULP-PRODE’94)”, pages 372–397, Peñ́ıscola,
Spain, September 1994. An extended version has been published as [22].

[22] A. Cortesi, G. Filé, and W. Winsborough. The quotient of an abstract
interpretation for comparing static analyses. Theoretical Computer Science,
202(1&2):163–192, 1998.

[23] A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Conceptual and software
support for abstract domain design: Generic structural domain and open
product. Technical Report CS-93-13, Brown University, Providence, RI, 1993.

[24] A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Combinations of abstract
domains for logic programming. In Conference Record of POPL ’94: 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 227–239, Portland, Oregon, 1994.

[25] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints.
In Proceedings of the Fourth Annual ACM Symposium on Principles of
Programming Languages, pages 238–252, 1977.

[26] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511–547, 1992.

[27] R. Cousot and D. A. Schmidt, editors. Static Analysis: Proceedings of the 3rd
International Symposium, volume 1145 of Lecture Notes in Computer Science,
Aachen, Germany, 1996. Springer-Verlag, Berlin.

[28] L. Crnogorac, A. D. Kelly, and H. Søndergaard. A comparison of three occur
check analysers. In Cousot and Schmidt [27], pages 159–173.

[29] S. K. Debray. Static inference of modes and data dependencies in logic
programs. ACM Transactions on Programming Languages and Systems,
11(3):418–450, 1989.

[30] C. Fecht. Efficient and precise sharing domains for logic programs. Technical
Report A/04/96, Universität des Saarlandes, Fachbereich 14 Informatik,
Saarbrücken, Germany, 1996.

[31] G. Filé. Share× Free: Simple and correct. Technical Report 15, Dipartimento
di Matematica, Università di Padova, December 1994.

[32] G. Filé and F. Ranzato. Complementation of abstract domains made easy. In
M. Maher, editor, Logic Programming: Proceedings of the Joint International
Conference and Symposium on Logic Programming, MIT Press Series in Logic
Programming, pages 348–362, Bonn, Germany, 1996. The MIT Press.

34

[33] K. Furukawa, editor. Logic Programming: Proceedings of the Eighth
International Conference on Logic Programming, MIT Press Series in Logic
Programming, Paris, France, 1991. The MIT Press.

[34] R. Giacobazzi, S. K. Debray, and G. Levi. Generalized semantics and abstract
interpretation for constraint logic programs. Journal of Logic Programming,
25(3):191–247, 1995.

[35] R. Giacobazzi and F. Ranzato. Completeness in abstract interpretation: a
domain perspective. In M. Johnson, editor, Proceedings of the 6th International
Conference on Algebraic Methodology and Software Technology (AMAST’97),
volume 1349 of Lecture Notes in Computer Science, pages 231–245, Sydney,
Australia, 1997. Springer-Verlag, Berlin.

[36] R. Giacobazzi, F. Ranzato, and F. Scozzari. Complete abstract interpretations
made constructive. In J. Gruska and J. Zlatuska, editors, Proceedings of 23rd
International Symposium on Mathematical Foundations of Computer Science
(MFCS’98), volume 1450 of Lecture Notes in Computer Science, pages 366–
377. Springer-Verlag, Berlin, 1998.

[37] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S.
Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, 1980.

[38] M. Hermenegildo and K. J. Greene. &-Prolog and its performance: Exploiting
independent And-Parallelism. In D. H. D. Warren and P. Szeredi, editors,
Logic Programming: Proceedings of the Seventh International Conference on
Logic Programming, MIT Press Series in Logic Programming, pages 253–268,
Jerusalem, Israel, 1990. The MIT Press.

[39] M. Hermenegildo, R. Warren, and S. K. Debray. Global flow analysis as a
practical compilation tool. Journal of Logic Programming, 13(4):349–366, 1992.

[40] P. M. Hill, R. Bagnara, and E. Zaffanella. The correctness of set-sharing. In
G. Levi, editor, Static Analysis: Proceedings of the 5th International Symposium,
volume 1503 of Lecture Notes in Computer Science, pages 99–114, Pisa, Italy,
1998. Springer-Verlag, Berlin.

[41] P. M. Hill, R. Bagnara, and E. Zaffanella. The correctness of set-sharing.
Technical Report 98.03, School of Computer Studies, University of Leeds, 1998.

[42] D. Jacobs and A. Langen. Accurate and efficient approximation of variable
aliasing in logic programs. In E. L. Lusk and R. A. Overbeek, editors, Logic
Programming: Proceedings of the North American Conference, MIT Press Series
in Logic Programming, pages 154–165, Cleveland, Ohio, USA, 1989. The MIT
Press.

[43] D. Jacobs and A. Langen. Static analysis of logic programs for independent
AND parallelism. Journal of Logic Programming, 13(2&3):291–314, 1992.

[44] N. D. Jones and H. Søndergaard. A semantics-based framework for the
abstract interpretation of Prolog. In S. Abramsky and C. Hankin, editors,
Abstract Interpretation of Declarative Languages, chapter 6, pages 123–142. Ellis
Horwood Ltd, West Sussex, England, 1987.

35

[45] A. King. A synergistic analysis for sharing and groundness which traces
linearity. In D. Sannella, editor, Proceedings of the Fifth European Symposium
on Programming, volume 788 of Lecture Notes in Computer Science, pages 363–
378, Edinburgh, UK, 1994. Springer-Verlag, Berlin.

[46] A. King and P. Soper. Depth-k sharing and freeness. In P. Van Hentenryck,
editor, Logic Programming: Proceedings of the Eleventh International
Conference on Logic Programming, MIT Press Series in Logic Programming,
pages 553–568, Santa Margherita Ligure, Italy, 1994. The MIT Press.

[47] A. Langen. Static Analysis for Independent And-Parallelism in Logic Programs.
PhD thesis, Computer Science Department, University of Southern California,
1990. Printed as Report TR 91-05.

[48] K. Marriott and H. Søndergaard. On describing success patterns of logic
programs. Technical Report 12, The University of Melbourne, 1988.

[49] K. Marriott and H. Søndergaard. Analysis of constraint logic programs. In
S. K. Debray and M. Hermenegildo, editors, Logic Programming: Proceedings
of the North American Conference, MIT Press Series in Logic Programming,
pages 531–547, Austin, Texas, USA, 1990. The MIT Press.

[50] C. S. Mellish. Some global optimizations for a Prolog compiler. Journal of
Logic Programming, 2(1):43–66, 1985.

[51] K. Muthukumar and M. Hermenegildo. Combined determination of sharing
and freeness of program variables through abstract interpretation. In Furukawa
[33], pages 49–63. An extended version appeared in [52].

[52] K. Muthukumar and M. Hermenegildo. Compile-time derivation of variable
dependency using abstract interpretation. Journal of Logic Programming,
13(2&3):315–347, 1992.

[53] D. A. Plaisted. The occur-check problem in Prolog. New Generation Computing,
2(4):309–322, 1984.

[54] T. Sato and H. Tamaki. Enumeration of success patterns in logic programs.
Theoretical Computer Science, 34:227–240, 1984.

[55] H. Søndergaard. An application of abstract interpretation of logic programs:
Occur check reduction. In Proceedings of the 1986 European Symposium on
Programming, volume 213 of Lecture Notes in Computer Science, pages 327–
338. Springer-Verlag, Berlin, 1986.

[56] A. Taylor. High Performance Prolog Implementation. PhD thesis, Basser
Department of Computer Science, University of Sydney, Sydney, Australia, June
1991.

[57] P. Van Hentenryck, editor. Static Analysis: Proceedings of the 4th International
Symposium, volume 1302 of Lecture Notes in Computer Science, Paris, France,
1997. Springer-Verlag, Berlin.

[58] M. Ward. The closure operators of a lattice. Ann. Math., 43(2):191–196, 1942.

36

[59] G. Weyer and W. Winsborough. Annotated structure shape graphs for abstract
analysis of Prolog. In H. Kuchen and S. D. Swierstra, editors, Programming
Languages: Implementations, Logics and Programs, Proceedings of the Eighth
International Symposium, volume 1140 of Lecture Notes in Computer Science,
pages 92–106, Aachen, Germany, 1996. Springer-Verlag, Berlin.

[60] E. Zaffanella, R. Bagnara, and P. M. Hill. Widening set-sharing. Quaderno
188, Dipartimento di Matematica, Università di Parma, 1999.

[61] E. Zaffanella, P. M. Hill, and R. Bagnara. Decomposing non-redundant sharing
by complementation. Technical Report 99.07, School of Computer Studies,
University of Leeds, 1999.

37

A Proofs

Lemma 17 Suppose sh ∈ SH . Then S is redundant for ρ(sh) if and only if
S is redundant for sh.

PROOF. Since sh ⊆ ρ(sh), if S is redundant for sh, then S is redundant for
ρ(sh).

Suppose that S is redundant for ρ(sh). Then

S =
⋃{

Pairs(T)
∣∣∣ T ∈ ρ(sh), T ⊂ S

}
.

Thus, by definition of ρ,

S =
⋃{

Pairs(T)
∣∣∣ T ∈ sh, T ⊂ S

}
∪
⋃{

Pairs(T)
∣∣∣ T is redundant for sh, T ⊂ S

}
.

However, if T is redundant for sh,

T =
⋃{

Pairs(U)
∣∣∣ U ∈ sh, U ⊂ T

}
and hence, if T ⊂ S,

T ⊆
⋃{

Pairs(U)
∣∣∣ U ∈ sh, U ⊂ S

}
.

It follows that,

⋃{
Pairs(T)

∣∣∣ T is redundant for sh, T ⊂ S
}

⊆
⋃{

Pairs(T)
∣∣∣ T ∈ sh, T ⊂ S

}
.

Therefore

S =
⋃{

Pairs(T)
∣∣∣ T ∈ sh, T ⊂ S

}
and so S is redundant for sh. 2

Proof of Theorem 7. Monotonicity and extensivity of ρ are direct conse-
quences of the definition. For idempotency, suppose that sh ∈ SH . We show
that

ρ
(
ρ(sh)

)
= ρ(sh).

38

By definition,

ρ
(
ρ(sh)

)
= ρ(sh) ∪

{
S ∈ SG

∣∣∣ S is redundant for ρ(sh)
}
.

Therefore, by Lemma 17,

ρ
(
ρ(sh)

)
= ρ(sh) ∪

{
S ∈ SG

∣∣∣ S is redundant for sh
}

= ρ(sh).

2

Proof of Theorem 8. Let us define, for each sh ∈ SH ,

ρ̇(sh)
def
=
{
S ∈ SG

∣∣∣ ∀x ∈ S : S ∈ rel
(
{x}, sh

)? }
.

Let sh ∈ SH : we want to show that ρ(sh) = ρ̇(sh). First suppose S ∈ ρ(sh).
If S ∈ sh, then S ∈ ρ̇(sh). Suppose S 6∈ sh. Then as S is redundant for
sh, we have S = {x, x1, . . . , xn} with n ≥ 2, and, for each xi there exists a
Ti such that Ti ∈ sh, Ti ⊂ S, and {x, xi} ⊆ Ti. Thus S = T1 ∪ · · · ∪ Tn. As

T1, . . . , Tn ∈ rel
(
{x}, sh

)
, we have S ∈ rel

(
{x}, sh

)?
. Since the choice of x ∈ S

was arbitrary, S ∈ ρ̇(sh).

Secondly, suppose S ∈ ρ̇(sh). If S ∈ sh, then S ∈ ρ(sh). Suppose that S /∈ sh.
Then we need to show that S is redundant for sh. That is, we need to show
that #S > 2 and

pairs(S) =
⋃{

pairs(T)
∣∣∣ T ∈ sh, T ⊂ S

}
. (A.1)

By definition of ρ̇(sh), for each x ∈ S,

S =
⋃{

T ∈ sh
∣∣∣ T ⊆ S, x ∈ T

}
. (A.2)

Since S /∈ sh, the case T = S can be ruled out in (A.2) obtaining

S =
⋃{

T ∈ sh
∣∣∣ T ⊂ S, x ∈ T

}
, (A.3)

and thus #S > 2. Also, as (A.3) holds for all x ∈ S,

S =
⋃{

T ∈ sh
∣∣∣ T ⊂ S

}
. (A.4)

Thus,

pairs(S) ⊇
⋃{

pairs(T)
∣∣∣ T ∈ sh, T ⊂ S

}
. (A.5)

39

Suppose {x, y} ∈ pairs(S) for some x, y ∈ Vars . Then, by (A.3), there is a
T ∈ sh such that T ⊂ S and x, y ∈ T and hence {x, y} ∈ pairs(T). Hence

pairs(S) ⊆
⋃{

pairs(T)
∣∣∣ T ∈ sh, T ⊂ S

}
. (A.6)

Combining (A.5) and (A.6) gives (A.1) as required. 2

Since both ρ (by Theorem 7) and (·)? are upper closure operators it follows
that

sh1 ⊆ ρ(sh2) ⇐⇒ ρ(sh1) ⊆ ρ(sh2), (A.7)

sh1 ⊆ sh?2 ⇐⇒ sh?1 ⊆ sh?2. (A.8)

Lemma 18 For each sh ∈ SH and each V ∈ ℘f(V ars),

ρ(sh) \ rel
(
V, ρ(sh)

)
= ρ

(
sh \ rel(V, sh)

)
.

PROOF. By Theorem 8,

S ∈ ρ
(
sh \ rel(V, sh)

)
⇐⇒ ∀x ∈ S : S =

⋃T ⊆ S

∣∣∣∣∣∣∣
T ∈ rel

(
{x}, sh

)
T /∈ rel

(
V, sh

)


⇐⇒ S ∈ ρ(sh) ∧ S ∩ V = ∅
⇐⇒ S ∈ ρ(sh) \ rel

(
V, ρ(sh)

)
.

2

Lemma 19 For each sh1, sh2 ∈ SH and each V ∈ ℘f(V ars),

sh1 ⊆ ρ(sh2) =⇒ rel(V, sh1)? ⊆ rel(V, sh2)?.

PROOF. Suppose S ∈ rel(V, sh1). Then, S ∈ sh1 and V ∩ S 6= ∅. By the
hypothesis, S ∈ ρ(sh2). Suppose x ∈ V ∩ S. Then, by Theorem 8, we have
S = T1 ∪ · · · ∪ Tk where, for each i = 1, . . . , k, x ∈ Ti and Ti ∈ sh2. Hence,
Ti ∈ rel(V, sh2) for i = 1, . . . , k. Thus S ∈ rel(V, sh2)?.

The result then follows from (A.8). 2

Lemma 20 Suppose sh1, sh2 ∈ SH . Then, for each σ ∈ Subst,

ρ(sh1) = ρ(sh2) =⇒ ρ
(

amgu
(
sh1, σ

))
= ρ

(
amgu

(
sh2, σ

))
.

40

PROOF. The proof is by induction on the size of σ. The inductive step,
when σ has more than one element, is straightforward. For the base cases, if
σ = ∅, the statement is obvious from the definitions. It remains to show that

sh1 ⊆ ρ(sh2) =⇒ amgu
(
sh1, {x 7→ t}

)
⊆ ρ

(
amgu

(
sh2, {x 7→ t}

))
.

The result then follows from (A.7).

Let vx
def
= {x}, vt def

= vars(t). Suppose S ∈ amgu
(
sh1, {x 7→ t}

)
. Then, by

definition of amgu,

S ∈
(
sh1 \ rel(vx ∪ vt, sh1)

)
∪ bin

(
rel(vx, sh1)?, rel(vt, sh1)?

)
.

There are two cases:

(1) S ∈ sh1 \ rel(vx ∪ vt, sh1). Then, by hypothesis, S ∈ ρ(sh2). Hence we

have S ∈ ρ(sh2) \ rel
(
vx ∪ vt, ρ(sh2)

)
. Thus, by Lemma 18,

S ∈ ρ
(
sh2 \ rel(vx ∪ vt, sh2)

)
.

(2) S ∈ bin
(
rel(vx, sh1)?, rel(vt, sh1)?

)
. Then we must have S = T ∪R where

T ∈ rel(vx, sh1)? and R ∈ rel(vt, sh1)?. By Lemma 19 we have that T ∈
rel(vx, sh2)? and R ∈ rel(vt, sh2)?. Hence,

S ∈ bin
(
rel(vx, sh2)?, rel(vt, sh2)?

)
.

Combining cases 1 and 2 we obtain

S ∈ ρ
(
sh2 \ rel(vx ∪ vt, sh2)

)
∪ bin

(
rel(vx, sh2)?, rel(vt, sh2)?

)
.

Hence as ρ is extensive and monotonic

S ∈ ρ
((

sh2 \ rel(vx ∪ vt, sh2)
)
∪ bin

(
rel(vx, sh2)?, rel(vt, sh2)?

))
,

and hence S ∈ ρ
(

amgu
(
sh2, {x 7→ t}

))
. 2

Theorem 21 Suppose d1, d2 ∈ SS. Then, for each σ ∈ Subst,

ρ(d1) = ρ(d2) =⇒ ρ
(

Amgu
(
d1, σ

))
= ρ

(
Amgu

(
d2, σ

))
.

PROOF. There are three cases:

(1) d1 = ⊥. Then, by hypothesis, d2 = ⊥. Straightforward.

41

(2) d1 = >. Then, by hypothesis, d2 = >. Straightforward.
(3) d1 = (sh1, U). Then, by hypothesis, d2 = (sh2, U) and ρ(sh1) = ρ(sh2).

Let V
def
= vars(σ) \ U and sV

def
=
{
{x}

∣∣∣ x ∈ V }; by definition of Amgu
and ρ we have

ρ
(

Amgu
(
(sh1, U), σ

))
= ρ

((
amgu

(
sh1 ∪ sV , σ

)
, U ∪ V

))

=

(
ρ
(

amgu
(
sh1 ∪ sV , σ

))
, U ∪ V

)
,

and, similarly,

ρ
(

Amgu
(
(sh2, U), σ

))
=

(
ρ
(

amgu
(
sh2 ∪ sV , σ

))
, U ∪ V

)
.

We conclude the proof by observing that

ρ(sh1) = ρ(sh2) =⇒ ρ(sh1 ∪ sV) = ρ(sh2 ∪ sV)

and then applying Lemma 20. 2

Lemma 22 Suppose sh1, sh2 ∈ SH . Then

ρ(sh1 ∪ sh2) = ρ
(
ρ(sh1) ∪ ρ(sh2)

)
.

PROOF. This is a classical property of upper closure operators [58]. We
prove it here for completeness. By monotonicity of ρ,

ρ(sh1) ∪ ρ(sh2) ⊆ ρ(sh1 ∪ sh2).

Hence, by monotonicity and idempotency of ρ,

ρ
(
ρ(sh1) ∪ ρ(sh2)

)
⊆ ρ(sh1 ∪ sh2).

By extensiveness of ρ,

sh1 ∪ sh2 ⊆ ρ(sh1) ∪ ρ(sh2),

and hence, by monotonicity of ρ,

ρ(sh1 ∪ sh2) ⊆ ρ
(
ρ(sh1) ∪ ρ(sh2)

)
.

2

42

Theorem 23 Suppose that d1, d2 ∈ SS. Then, for all d′ ∈ SS,

ρ(d1) = ρ(d2) =⇒ ρ(d′ t d1) = ρ(d′ t d2).

PROOF. There are three cases:

(1) d1 = ⊥. Then, by hypothesis, d2 = ⊥. Straightforward.
(2) d1 = >. Then, by hypothesis, d2 = >. Straightforward.
(3) d1 = (sh1, U). Then, by hypothesis, d2 = (sh2, U) and ρ(sh1) = ρ(sh2).

Let d′ ∈ SS . Again, if d′ ∈ {⊥,>} the proof is straightforward. Thus, let
d′ = (sh ′, U ′); if U 6= U ′ then the proof is straightforward, so we consider
U = U ′. By definition of t we have

ρ
(
(sh ′, U) t (sh1, U)

)
= ρ

(
(sh ′ ∪ sh1, U)

)
=
(
ρ(sh ′ ∪ sh1), U

)
,

and, similarly,

ρ
(
(sh ′, U) t (sh2, U)

)
=
(
ρ(sh ′ ∪ sh2), U

)
.

We conclude the proof by applying Lemma 22. 2

Lemma 24 Suppose sh1, sh2 ∈ SH . Then, for each V ∈ ℘f(Vars),

ρ(sh1) = ρ(sh2) =⇒ ρ
(
proj(sh1, V)

)
= ρ

(
proj(sh2, V)

)
.

PROOF. We show that

sh1 ⊆ ρ(sh2) =⇒ proj(sh1, V) ⊆ ρ
(
proj(sh2, V)

)
.

The result then follows from (A.7).

Suppose sh1 ⊆ ρ(sh2) and S ∈ proj(sh1, V). Then, as proj is monotonic, we

have S ∈ proj
(
ρ(sh2), V

)
. By definition of proj and Theorem 8 there exists

S ′ ∈ ρ(sh2) such that S = S ′ ∩ V and

∀x ∈ S ′ : ∃T1, . . . , Tk ∈ rel
(
{x}, sh2

)
. S =

(
k⋃
i=1

Ti

)
∩ V,

hence

∀x ∈ S : ∃T1, . . . , Tk ∈ rel
(
{x}, sh2

)
. S =

(
k⋃
i=1

Ti

)
∩ V,

43

and hence

∀x ∈ S : ∃T1, . . . , Tk ∈ rel
(
{x}, sh2

)
. S =

k⋃
i=1

(Ti ∩ V).

However,

∀x ∈ S : (T1 ∩ V), . . . , (Tk ∩ V) ∈ rel
(
{x}, proj(sh2, V)

)
,

and thus S ∈ ρ
(
proj(sh2, V)

)
. 2

Theorem 25 Suppose that d1, d2 ∈ SS and V ∈ ℘f(Vars). Then

ρ(d1) = ρ(d2) =⇒ ρ
(
Proj(d1, V)

)
= ρ

(
Proj(d2, V)

)
.

PROOF. There are three cases:

(1) d1 = ⊥. Then, by hypothesis, d2 = ⊥. Straightforward.
(2) d1 = >. Then, by hypothesis, d2 = >. Straightforward.
(3) d1 = (sh1, U). Then, by hypothesis, d2 = (sh2, U) and ρ(sh1) = ρ(sh2).

By definition of Proj we have

ρ
(

Proj
(
(sh1, U), V

))
= ρ

((
proj(sh1, V), U ∩ V

))
=
(
ρ
(
proj(sh1, V)

)
, U ∩ V

)
,

and, similarly,

ρ
(

Proj
(
(sh2, U), V

))
=
(
ρ
(
proj(sh2, V)

)
, U ∩ V

)
.

We conclude the proof by applying Lemma 24. 2

Proof of Theorem 10.

(1) Proved as Theorem 21.
(2) Proved as Theorem 23.
(3) Proved as Theorem 25. 2

Lemma 26 Let σ
def
= {x1 7→ t1, . . . , xn 7→ tn}, where, for each i = 1, . . . , n,

ti is a ground term. Then, for all sh ∈ SH we have

amgu(sh, σ) = sh \ rel
(
{x1, . . . , xn}, sh

)
.

44

PROOF. By induction on the cardinality n of σ. If n = 0, the statement is
obvious. Suppose n = 1. Then

amgu(sh, x1 7→ t1) = sh \ rel
(
{x1}, sh

)
∪ bin

(
rel
(
{x1}, sh

)?
, rel

(
∅, sh

)?)
= sh \ rel

(
{x1}, sh

)
.

For the inductive step, suppose n > 1 and let

σ′
def
= {x1 7→ t1, . . . , xn−1 7→ tn−1}.

By definition of amgu we have

amgu(sh, σ) = amgu
(
sh, {xn 7→ tn} ∪ σ′

)
= amgu

(
amgu

(
sh, {xn 7→ tn}

)
, σ′
)

= amgu
(

sh \ rel
(
{xn}, sh

)
, σ′
)

=
(

sh \ rel
(
{xn}, sh

))
\ rel

(
{x1, . . . , xn−1}, sh \ rel

(
{xn}, sh

))
= sh \

(
rel
(
{xn}, sh

)
∪ rel

(
{x1, . . . , xn−1}, sh \ rel

(
{xn}, sh

)))
= sh \ rel

(
{x1, . . . , xn}, sh

)
.

2

Theorem 27 Let d1
def
= (sh1, U) and d2

def
= (sh2, U) be two elements of SS.

Then ρ(d1) 6= ρ(d2) implies

∃σ ∈ Subst . αPS

(
Amgu(d1, σ)

)
6= αPS

(
Amgu(d2, σ)

)
.

PROOF. Suppose ρ(d1) 6= ρ(d2). Then it follows that ρ(sh1) 6= ρ(sh2). We
assume that S ∈ ρ(sh1) \ ρ(sh2). (If such an S does not exist we simply swap
sh1 and sh2.)

Let a be a constant and let

σa
def
= {x 7→ a | x ∈ U \ S }.

Then, by Lemma 26, for i = 1, 2, we define amgu(sh i, σa)
def
= shSi where

shSi
def
= {T | T ⊆ S, T ∈ sh i }.

Suppose first that #S ≥ 2. For this case, let σ
def
= σa. Then,

Amgu
(
(sh i, U), σ

)
= (shSi , U).

45

Since S /∈ ρ(sh2), there exists a pair P ⊆ S such that

∀T ∈ sh2 : T ⊆ S =⇒ P * T.

However, by definition of shS2 , this is the same as saying ∀T ∈ shS2 : P * T or,
equivalently, P /∈ αPS (shS2 , U). Also, since S ∈ ρ(sh1), there exists T ′ ∈ sh1

such that T ′ ⊆ S and P ⊆ T ′, and, moreover, T ′ ∈ shS1 . Thus

αPS (shS1 , U) 6= αPS (shS2 , U).

Second, suppose that #S = 1 and let U ′ = U ∪ {z} and σ = σa ∪ {x 7→ z}
where S = {x} and z ∈ Vars \ U . By applying the definition of Amgu we
obtain, for each i ∈ {1, 2},

Amgu
(
(sh i, U), σ

)
=

(
amgu

(
sh i ∪

{
{z}

}
, σ
)
, U ′

)
,

=

(
amgu

(
shSi ∪

{
{z}

}
, {x 7→ z}

)
, U ′

)
.

Also, by definition of shS1 and shS2 , we have shS1 =
{
{x}

}
and shS2 = ∅. Hence

Amgu
(
(sh1, U), σ

)
, =

({
{x, z}

}
, U ′

)
,

Amgu
(
(sh2, U), σ

)
= (∅, U ′).

Thus,

αPS

(
Amgu

(
(sh1, U), σ

))
=
({
{x, z}

}
, U ′

)

is distinct from

αPS

(
Amgu

(
(sh2, U), σ

))
= (∅, U ′).

2

Proof of Theorem 11. We have four cases. If one of the following holds

1. d1 = ⊥ or d2 = ⊥,
2. d1 = > or d2 = >,
3. d1 = (sh1, U1), d2 = (sh2, U2), and U1 6= U2,

then we simply take σ = ∅. The last case,

4. d1 = (sh1, U) and d2 = (sh2, U),

46

has been proved as Theorem 27. 2

Proof of Theorem 12 From sh1 ∩ sh2 ⊆ sh2 and the monotonicity of ρ, we
have that ρ(sh1 ∩ sh2) ⊆ ρ(sh2).

In order to prove the reverse inclusion, we will prove ρ(sh1 ∩ sh2) ⊇ sh1 ∪ sh2.
Then, by ρ monotonicity and idempotency, we obtain

ρ(sh1 ∩ sh2) = ρ
(
ρ(sh1 ∩ sh2)

)
⊇ ρ(sh1 ∪ sh2)

⊇ ρ(sh2).

Let S ∈ sh1∪sh2. We will prove S ∈ ρ(sh1∩sh2) by induction on the cardinality
of S.

Let #S ≤ 2. As S ∈ ρ(sh1) = ρ(sh2) we have, by definition of ρ, both S ∈ sh1

and S ∈ sh2. Thus S ∈ sh1 ∩ sh2 and the result follows by ρ extensivity.

Let now #S = k > 2. There are three cases:

a) If S ∈ sh1 ∩ sh2 then the result follows, as before, by ρ extensivity.
b) Let S ∈ sh1\sh2. As S ∈ ρ(sh1) = ρ(sh2), we have S ∈ ρ(sh2)\sh2. Thus, by

the definition of ρ, pairs(S) =
⋃{

pairs(T)
∣∣∣ T ∈ sh2, T ⊂ S

}
. Note that,

for all such T , we have #T < k and thus, by the inductive hypothesis,
T ∈ ρ(sh1 ∩ sh2). Hence, by the definition of ρ and ρ idempotency, we have

S ∈ ρ
(
ρ(sh1 ∩ sh2)

)
= ρ(sh1 ∩ sh2).

c) The case for S ∈ sh2 \ sh1 is symmetric to case b) above. 2

Lemma 28 S is redundant for sh if and only if S is redundant for sh \ {S}.

PROOF. We have that S is redundant for sh if and only if #S > 2 and

pairs(S) =
⋃{

pairs(T)
∣∣∣ T ∈ sh, T ⊂ S

}
if and only if #S > 2 and

pairs(S) =
⋃{

pairs(T)
∣∣∣ T ∈ sh \ {S}, T ⊂ S

}
if and only if S is redundant for sh \ {S}. 2

Corollary 29 Let S ∈ sh. Then S is redundant for sh if and only if ρ(sh) =

ρ
(
sh \ {S}

)
.

47

PROOF. By the monotonicity of ρ we have ρ(sh) ⊇ ρ
(
sh \ {S}

)
. Assume S

is redundant for sh. Then by Lemma 28, S is redundant for sh \ {S} and thus

S ∈ ρ
(
sh \ {S}

)
. By the extensivity of ρ we have also sh \ {S} ⊆ ρ

(
sh \ {S}

)
,

and thus sh ⊆ ρ
(
sh \{S}

)
. By the monotonicity and idempotency of ρ we can

conclude that ρ(sh) ⊆ ρ
(
sh \ {S}

)
Assume now ρ(sh) = ρ

(
sh \{S}

)
. Since S ∈ sh then S ∈ ρ(sh) = ρ

(
sh \{S}

)
.

Thus S is redundant for sh \ {S}. 2

Proof of Theorem 13. Let

shred
def
= sh \ {S ∈ SG | S is redundant for sh }.

We first prove that

ρ(shred) = ρ(sh). (A.9)

To this end, for each S ∈ SG such that S redundant for sh, let shS
def
= sh \{S}

and note that shred =
⋂{ shS | S is redundant for sh }. By Corollary 29, we

have ρ(shS) = ρ(sh). Thus we can apply Theorem 12 and obtain ρ(shred) =
ρ(
⋂{ shS | S is redundant for sh }) = ρ(sh).

Having proved (A.9), we only need to prove

shred =
⋂{

sh ′ ∈ SH
∣∣∣ ρ(sh ′) = ρ(shred)

}
.

The inclusion shred ⊇
⋂{

sh ′ ∈ SH
∣∣∣ ρ(sh ′) = ρ(shred)

}
is obvious, since shred

is one of the sets that are intersected in the right hand side.

For the reverse inclusion, let sh ′ ∈ SH such that ρ(sh ′) = ρ(shred). We have:

S ∈ shred

⇐⇒ S ∈ sh \ {T ∈ SG | T is redundant for sh } by def. of shred

⇐⇒ S ∈ ρ(sh) \ {T ∈ SG | T is redundant for sh } by def. of ρ

⇐⇒ S ∈ ρ(sh) \
{
T ∈ SG

∣∣∣ T is redundant for ρ(sh)
}

by Lemma 17

⇐⇒ S ∈ ρ(sh ′) \
{
T ∈ SG

∣∣∣ T is redundant for ρ(sh ′)
}

as ρ(sh) = ρ(sh ′)

⇐⇒ S ∈ sh ′ \
{
T ∈ SG

∣∣∣ T is redundant for ρ(sh ′)
}

by def. of ρ

⇐⇒ S ∈ sh ′ \ {T ∈ SG | T is redundant for sh ′ } by Lemma 17

=⇒ S ∈ sh ′

Hence shred ⊆
⋂{

sh ′ ∈ SH
∣∣∣ ρ(sh ′) = ρ(shred)

}
. 2

48

Proof of Theorem 14. The fact that sh? ⊇ ρ
(
bin(sh, sh)

)
follows from

Theorem 8 and the definition of bin. We now prove that sh? ⊆ ρ
(
bin(sh, sh)

)
.

Let S ∈ sh?. Then

∃T1, . . . , Tn ∈ sh . S =
n⋃
i=1

Ti, with n ≥ 1.

If S ∈ bin(sh, sh), then, by definition, S ∈ ρ
(
bin(sh, sh)

)
, as required. Suppose

S /∈ bin(sh, sh). Then #S > 1 and there exists {x, y} ∈ pairs(S). Then
there must exist i, j ∈ {1, . . . , n} (i and j need not be distinct) such that
x ∈ Ti and y ∈ Tj. This implies {x, y} ∈ pairs(Ti ∪ Tj). However, Ti ∪ Tj ∈
bin(sh, sh). Hence, as S /∈ bin(sh, sh), Ti∪Tj ⊂ S. Since the choices of {x, y} ∈
pairs(S) and i, j ∈ {1, . . . , n} such that x ∈ Ti and y ∈ Tj were arbitrary, S
is redundant for bin(sh, sh). 2

Lemma 30 For each sh1, sh2 ∈ SH ,

ρ
(
bin(sh1, sh2)

)
= ρ

(
bin

(
ρ(sh1), ρ(sh2)

))
.

PROOF. By the monotonicity of bin and ρ, we have

ρ
(
bin(sh1, sh2)

)
⊆ ρ

(
bin

(
ρ(sh1), ρ(sh2)

))
.

Thus, we must show that

ρ
(

bin
(
ρ(sh1), ρ(sh2)

))
⊆ ρ

(
bin(sh1, sh2)

)
.

Since ρ is monotonic and idempotent, we just need to show that

bin
(
ρ(sh1), ρ(sh2)

)
⊆ ρ

(
bin(sh1, sh2)

)
.

Using Theorem 8 we have:

S ∈ bin
(
ρ(sh1), ρ(sh2)

)
⇐⇒ S = S1 ∪ S2 where S1 ∈ ρ(sh1) and S2 ∈ ρ(sh2)

⇐⇒ S = S1 ∪ S2 where, for each i = 1, 2,

∀x ∈ Si : Si =
⋃{

Ti ⊆ S

∣∣∣∣ Ti ∈ rel
(
{x}, sh i

)}
=⇒ ∀x ∈ S : S =

⋃{
T ⊆ S

∣∣∣∣ T ∈ rel
(
{x}, bin(sh1, sh2)

)}
⇐⇒ S ∈ ρ

(
bin(sh1, sh2)

)
.

2

49

Proof of Theorem 15. By Definition 2 for amgu,

ρ
(
amgu(sh, x 7→ t)

)
= ρ

((
sh \ (A ∪B)

)
∪ bin(A?, B?)

)
.

So that, by Lemma 22,

ρ
(
amgu(sh, x 7→ t)

)
= ρ

(
ρ
(
sh \ (A ∪B)

)
∪ ρ

(
bin(A?, B?)

))
.

However, by Theorem 14,

bin(A?, B?) = bin
(
ρ
(
bin(A,A)

)
, ρ
(
bin(B,B)

))
.

Thus, by Lemma 30 and the idempotency of ρ,

ρ
(
bin(A?, B?)

)
= ρ

(
bin

(
bin(A,A), bin(B,B)

))
.

Therefore, by Lemma 22,

ρ
(
amgu(sh, x 7→ t)

)
= ρ

((
sh \ (A ∪B)

)
∪ bin

(
bin(A,A), bin(B,B)

))
.

2

Lemma 31 Let sh = sh1 ∪ {S}. Then sh? = sh?1 ∪ {S} ∪ {S ∪ T | T ∈ sh?1 }.

PROOF. We start by proving that sh? ⊇ sh?1 ∪ {S} ∪ {S ∪ T | T ∈ sh?1 }.
By monotonicity of (·)? we have sh?1 ⊆ sh?, whereas, by extensivity of (·)?,
we have {S} ⊆ sh?. Let T ∈ sh?1. Then, by definition of (·)?, there exist
S1, . . . , Sn ∈ sh1 such that T = S1∪· · ·∪Sn. Thus S∪T = S∪S1∪· · ·∪Sn ∈ sh?.

We now prove that sh? ⊆ sh?1 ∪ {S} ∪ {S ∪ T | T ∈ sh?1 }. Let S ′ ∈ sh?. Then
there exist S1, . . . , Sn ∈ sh such that S ′ = S1 ∪ · · · ∪ Sn.

Suppose first n = 1 and S1 = S. Then S ′ = S.

Suppose now n > 1 and there exists i ∈ {1, . . . , n} such that Si = S. Then, if
we let

T =
n⋃
j=1
j 6=i

Sj,

we have S ′ = S ∪ T and T ∈ sh?1, thus S ′ ∈ {S ∪ T | T ∈ sh?1 }.

Finally, if @i ∈ {1, . . . , n} . Si = S, then S ′ ∈ sh?1. 2

50

Lemma 32 Let shk = {S1, . . . , Sk} for k = 1, . . . , n. Let also shkstar and
shkdone denote the values of the variables shstar and shdone, respectively, just
after the k-th evaluation of the if statement (i.e., after line 7) in the algorithm
of Figure 1. Then sh?k ⊆ shkstar and shkdone ⊆ shk.

PROOF. We reason by induction on k. For the case where k = 1 we have
shk = {S1} = sh?k = shkstar = shkdone.

Next assume 1 < k ≤ n. Then shk = shk−1 ∪ {Sk}.

Suppose Sk 6=
⋃{Sj ∈ shk−1 | Sj ⊂ Sk }. By the inductive hypothesis, since

shk−1
done ⊆ shk−1, this implies that the if condition in line 4 evaluates to true

and lines 5 and 6 are executed. Clearly, after the execution of line 5, we have
shkdone ⊆ shk−1 ∪ {Sk} = shk. Moreover, after execution of line 6, we have
shkstar = shk−1

star ∪ {Sk} ∪ {Sk ∪ T | T ∈ shk−1
star }. By the inductive hypothesis,

this implies shkstar ⊇ sh?k−1∪{Sk}∪{Sk∪T | T ∈ sh?k−1 }. Thus, by Lemma 31,

sh?k ⊆ shkstar.

Suppose now Sk =
⋃{Sj ∈ shk−1 | Sj ⊂ Sk }. Then, shkdone = shk−1

done. By the
inductive hypothesis, shk−1

done ⊆ shk−1. Hence shkdone ⊆ shk. We now show that
sh?k = sh?k−1. Clearly, by monotonicity of (·)? we have sh?k ⊇ sh?k−1. Assume
now T ∈ sh?k, i.e., T = T1∪ · · · ∪Tm where Ti ∈ shk for i = 1, . . . , m. If for no
j ∈ {1, . . . ,m} we have Tj = Sk, then T ∈ sh?k−1. On the other hand, if there
exists j ∈ {1, . . . ,m} such that Tj = Sk, then

T = T1 ∪ · · · ∪ Tj−1 ∪ Tj ∪ Tj+1 ∪ · · · ∪ Tm
= T1 ∪ · · · ∪ Tj−1 ∪

⋃
{Sj ∈ shk−1 | Sj ⊂ Sk } ∪ Tj+1 ∪ · · · ∪ Tm

∈ sh?k−1.

The inductive hypothesis implies that shk−1
star ⊇ sh?k−1 = sh?k. This concludes

the proof, as the algorithm only adds to shstar and thus shkstar ⊇ shk−1
star . 2

Proof of Theorem 16. An invariant of the algorithm is that if S ∈ shstar

then S =
⋃
i∈I Si for some I ⊆ {1, . . . , n} with I 6= ∅. The invariant is

established in line 1 and preserved by any step. In particular, line 6, which
is the only one to change shstar, maintains the invariant. Thus, at the end of
the algorithm, if S is an element of shstar then S ∈ sh?, hence shstar ⊆ sh?.
The reverse inclusion is trivially satisfied for sh = ∅, while it is proven by
Lemma 32 otherwise. 2

51

B The Tested Programs

Several of the tested programs have become more or less standard for the
evaluation of data-flow analyzers. Others, the more interesting ones, are real
applications whose analysis has never before been reported in the literature.
The suite comprises the following programs: 12

action.pl: an interpreter for action semantics written by S. Diehl.
aircraft.pl: a program for reasoning on aircraft routes and profiles (author

unknown).
ann.pl: a simplified clause annotator by M. Hermenegildo, R. Warren, and

M. Muthukumar.
aqua c.pl: the Aquarius Prolog compiler, by P. Van Roy.
arch1.pl: a machine learning program implementing Winston’s incremental

learning procedure, by S. Wrobel.
bmtp.pl: a sophisticated Boyer-Moore’s theorem prover, apparently by H. Fu-

jita, copyrighted by the Institute for New Generation Computer Technology.
boyer.pl: a Boyer-Moore theorem prover written by E. Tick after the Lisp

version by R. P. Gabriel. bp0-6.pla graphs search program by E. Tick
bryant.pl: a Prolog implementation of ROBDDs by P. Schachte.
bup-all.pl: the BUP system, a parser generator from Definite Clause Gram-

mars by Y. Matsumoto.
caslog.pl: a semi-automatic complexity analysis system for logic programs,

by N.-W. Lin.
cg parser.pl: a natural deduction CG parser with semantics, by B. Carpen-

ter.
chasen-all.pl: ChaSen version 1.51, a Japanese morphological analysis sys-

tem, by Y. Den, O. Imaichi, Y. Matsumoto, and T. Utsuro.
chat80.pl: a famous query answering system by F. Pereira and D. H. D. War-

ren.
chat parser.pl: a parser for a set of English sentences taken from Chat80.
chess.pl: a Prolog chess program, originally the result of the Artificial Intel-

ligence Project at the “Computer-Club der RWTH Aachen” (KI — Gruppe
89/90), ported to standard Prolog by M. Ostermann.

cobweb.pl: a machine learning program implementing Gennari’s incremental
concept formation algorithm, by J.-U. Kietz.

crip.pl: a program to compute counter-models to intuitionistic propositional
formulae using a calculus without loop-checking, by L. Pinto and R. Dy-
ckhoff (based on a paper by the same authors at the Symposia Gaussiana
conference, Munich, 1993).

cugini ut.pl: the so-called “Cugini Utilities”, by J. Cugini.

12 We did our best to credit all the authors of the programs listed. However, some
programs in the test-suite do not give any indication in this respect.

52

dpos an.pl: a (buggy version of a) data-flow analyzer for groundness employ-
ing Pos and some abstractions of it, by A. King.

eliza.pl: a Prolog version by V. Patel of the famous Eliza program.
ftfsg.pl: a compiler and parser for flexible typed feature structure gram-

mars, by M. Dahllof.
ftfsg2.pl: a compiler and parser for flexible typed feature structure gram-

mars with a graphical interface, by M. Dahllof.
ga.pl: a simple genetic algorithm implemented in Prolog.
ileanTAP.pl: an intuitionistic theorem prover by J. Otten.
ime v2-2-1.pl: a program by L. Zhuhai for solving linear multiple equations

using Gauss method.
jugs.pl: a program to solve the “Jugs” puzzle, i.e., given two jugs of known

capacities, you have to obtain a specified amount by filling jugs, emptying
jugs, and pouring the contents of one jug into the other jug.

lc.pl: a theorem prover for propositional Dummett logic LC, i.e., intuition-
istic logic plus (A→ B) ∨ (B → A), written by R. Dyckhoff.

ldl-all.pl: version 3.4.7 of LDL, the Language Development Laboratory,
copyrighted by the University of Rostock, Germany.

leanTAP.pl: a tableau-based theorem prover for formulae in negation normal
form by B. Beckert and J.Posegga.

lg sys.pl: a huge program for computational linguistics, LexGram version
0.9.2 by E. Koenig, which includes the entire CUF system version 2.31.
The CUF system implements the Comprehensive Unification Formalism, a
formalism for unification grammars that was developed within the ESPRIT
project DYANA and extended within projects DYANA-2 (ESPRIT) and
B5 (SFB 340) at the Institut für Maschinelle Sprachverarbeitung (IMS),
Universität Stuttgart, who holds the copyright.

linTAP.pl: a theorem prover for Multiplicative Linear Logic M?LL, i.e., mul-
tiplicative linear logic with positive ‘?’ and negative ‘!’, written by J. Otten.

ljt.pl: an intuitionistic theorem prover using LWB syntax, by R. Dyckhoff.
For more information see “Contraction-free calculi for intuitionistic logic”
by the same author, appeared in the Journal of Symbolic Logic, 1992.

llprover.pl: a linear logic theorem prover for SICStus Prolog by N. Tamura
with TEX form output by E. Sugiyama.

log interp.pl: version 3.0.8 of the {log} interpreter by A. Dovier, E. Omo-
deo, C. Piazza, E. Pontelli, and G. Rossi.

lojban.pl: the Lojban semantic analyzer by N. Nicholas.
metutor.pl: the Metutor means-ends tutoring system by N. C. Rowe, with

the “firefighting tutor” example application.
mixtus-all.pl: an automatic partial evaluator for full Prolog, by D. Sahlin.
nand.pl: a program by B. Holmer implementing a rough approximation to

the algorithm presented in E. S. Davidson, “An Algorithm for NAND De-
composition Under Network Constraints”, IEEE Trans. Comp., vol. C-18,
no. 12, Dec. 1969, p. 1098.

nbody.pl: a program solving the n-body problem for star clusters by E. Tick.

53

oldchina.pl: a prehistoric version of China, when it was written in Prolog.
parser dcg.pl: a parser by R. Bagnara, based on Definite Clause Grammars,

for both an imperative and a functional higher-order languages.
peephole1.pl: the peephole optimizer of SB-Prolog 3.0.
pets an.pl: a groundness data-flow analyzer for Prolog, using the Pos do-

main implemented by means of ROBDDs, by P. Schachte.
peval.pl: a self-applicable partial evaluator for the flow-chart language de-

scribed in Chapter 4 of Partial Evaluation and Automatic Program Gener-
ation, by N. D. Jones, C. K. Gomard, and P. Sestoft, Prentice-Hall, 1993.

plaiclp.pl: a version of PLAI, the UPM-CLIP framework and environment
for developing global analyzers based on abstract interpretation.

pmatch.pl: a text-dictionary matcher by A. Michiels.
press.pl: a program for solving equations taken from Chapter 23 of The Art

of Prolog, by L. Sterling and E. Y. Shapiro, The MIT Press, 1986.
puzzle.pl: a version of the houses (zebra) program as presented in Constraint

Satisfaction in Logic Programming, by P. Van Hentenryck, The MIT Press,
1989.

quot an.pl: a data-flow analyzer for groundness employing a quotient of
Sharing, by A. King.

read.pl: a Prolog reader by D. H. D. Warren and R. O’Keefe, with modifi-
cations by A. Mycroft.

reducer.pl: a graph reducer for T-combinators by P. Van Roy.
reg.pl: the “Regular Approximation Tool” by J. Gallagher.
rubik.pl: a Rubik’s cube solver written by D. Merritt as described in Build-

ing Expert Systems in Prolog, Springer-Verlag, 1989.
sax-all.pl: the SAX natural language parsing system by Y. Matsumoto and

Y. Den.
scc.pl: a program written by S. Diehl for computing the strongly-connected

components of a graph.
sdda.pl: a data-flow analyzer that represents aliasing.
semi.pl: a program for playing with semigroups, by M. Carlsson.
sim.pl: a simulator for OR-parallel Prolog, by K. Shen.
sim v5-2.pl: an algebra simplifier by L. Zhuhai.
simple an.pl: a simple data-flow analyzer written by P. Van Roy.
slice-all.pl: an interpreter, based on the SOS approach, for both an im-

perative and a functional higher-order languages, written by R. Bagnara.
spsys.pl: the SP system, comprises a collection of programs for perform-

ing specialization (partial evaluation), some other program transformations,
and some program analyses. Copyright by J. Gallagher.

trs.pl: an automated prover for first-order classical predicate logic based on
a modified version of Gentzen’s sequent calculus LK, by K. Sakai.

unify.pl: a compiler code generator for unification written by P. Van Roy.
warplan.pl: the famous “Warplan” robot problem solver written by D. H. D.

Warren.

54

