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A UNIFIED PROOF FOR THE CONVERGENCE OF JACOBI AND
GAUSS-SEIDEL METHODS *

ROBERTO BAGNARA
†

Abstract. We present a new unified proof for the convergence of both the Jacobi and the

Gauss–Seidel methods for solving systems of linear equations under the criterion of either (a) strict
diagonal dominance of the matrix, or (b) diagonal dominance and irreducibility of the matrix. These
results are well known. The proof for criterion (a) makes use of Geršgorin’s theorem, while the proof

for criterion (b) uses Taussky’s theorem that extends Geršgorin’s work. Hence the topic is interesting
for teaching purposes.
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We present a unified proof for the convergence of both the Jacobi and the Gauss–
Seidel iterative methods for solving systems of linear equations under the criterion
of either (a) strict diagonal dominance of the matrix, or (b) diagonal dominance and
irreducibility of the matrix. These results are well known [2]. For each criterion, the
proof is unified in that it uses similar arguments for both the methods. The proof
is simple because low level details are contained in an easy Lemma and a couple
of Observations, while the rest of the analysis is based on elementary properties of
matrices and their eigenvalues.

We recall three fundamental results about the location of the eigenvalues, known
as Geršgorin type theorems [1]. Let A ∈ Cn×n be a complex matrix: the Geršgorin
(row) disks of A are given, for i = 1, . . . , n, by

(1) Ki =

{
z ∈ C

∣∣∣∣∣ |z − aii| ≤
n∑
j=1
j 6=i

|aij |

}
.

The first Geršgorin theorem says that the eigenvalues of A are contained within the
union, K, of the disks, where

(2) K =
n⋃
i=1

Ki.

The second Geršgorin theorem says further that any union of k disks of A not inter-
secting the remaining (n−k) disks, must contain exactly k of the eigenvalues (counting
multiplicities).
The third Geršgorin type theorem was established by Taussky [1] and says that if A is
irreducible and has an eigenvalue λ on the boundary of K, then λ is on the boundary
of each of the n Geršgorin disks of A. Notice that since A and AT have exactly the
same eigenvalues, analogous results hold when column sums of A, instead of row sums,
are used to define the radii of the corresponding (column) disks.
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We now define the terms used in criteria (a) and (b):
Definition 1. A complex matrix A ∈ Cn×n is reducible iff there exist a permu-

tation matrix Π (i.e., Π is obtained from the identity, I, by a permutation of the rows
of I) and an integer k ∈ {1, . . . , n− 1} such that

(3) ΠAΠT =
(
A11 A12

0 A22

)
,

where A11 is k × k and A22 is (n− k)× (n− k). If A is not reducible, than A is said
to be irreducible (see [1] for further discussion of irreducibility).

Note that premultiplication of A by Π, produces a matrix ΠA that consists of the
rows of A in the same order that the rows of I appear in Π. On the other hand, when
the columns of I are permuted in that order, then the matrix ΠT is produced. Thus,
AΠT is a matrix consisting of the columns of A in that same order.

Definition 2. A ∈ Cn×n is said to be strictly diagonally dominant (by rows)
iff, for each i = 1, . . . , n,

(4) |aii| >
n∑
j=1
j 6=i

|aij |;

similarly, A is said to be strictly diagonally dominant (by columns) iff, for each
j = 1, . . . , n,

(5) |ajj | >
n∑
i=1
i 6=j

|aij |.

Definition 3. A ∈ Cn×n is said to be diagonally dominant (by rows) iff, for
each i = 1, . . . , n,

(6) |aii| ≥
n∑
j=1
j 6=i

|aij | and ∃ s ∈ {1, . . . , n} such that |ass| >
n∑
j=1
j 6=s

|asj |;

similarly, A is said to be diagonally dominant (by columns) iff, for each j = 1, . . . , n,

(7) |ajj | ≥
n∑
i=1
i 6=j

|aij | and ∃ t ∈ {1, . . . , n} such that |att| >
n∑
i=1
i 6=t

|ait|.

Here are a couple of observations which are useful in proving the convergence
theorem:

Observation 1. If the matrix, A, is strictly diagonally dominant, then A is
nonsingular.

Proof. None of the Geršgorin disks of A contain the origin and therefore, by the
first Geršgorin theorem, zero is not an eigenvalue of A.

Observation 2. If the matrix, A, is irreducible and diagonally dominant, then
A is nonsingular.

Proof. Otherwise, if A were singular, then one of its eigenvalues would be zero
and, by the first Geršgorin theorem, would be contained in at least one of the disks.
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But, by the assumed diagonal dominance, zero cannot be in the interior of any of
the disks. Thus, zero would have to be on the boundary of the union, K, of the
disks. However, Taussky’s theorem would then place zero on the boundary of each
of the disks. But, this would be impossible for either of the disks labelled s or t in
Definition 3.

The Jacobi and Gauss-Seidel iterative methods to solve the system

(8) Ax = b

where A ∈ Cn×n, x,b ∈ Cn, are formulated in terms of a decomposition of the matrix
A:

(9) A = D −B − C,

where the components of D, B, and C are defined by

(10) dij =
{
aij , if i = j,
0, if i 6= j; bij =

{
−aij , if i > j,
0, if i ≤ j; cij =

{
−aij , if i < j,
0, if i ≥ j.

Both iterative methods begin with an arbitrary initial vector x0 ∈ Cn and then
produce a sequence of vectors, xk, for k = 1, 2, 3, . . ., by solving either:

Dxk+1 = (B + C)xk + b, or(11) Jacobi:

(D −B)xk+1 = Cxk + b,(12) Gauss–Seidel:

for k = 0, 1, 2, . . .. It is clear that, for the Jacobi method to be applicable, D must
be invertible. Similarly, the invertibility of (D − B) is required in order to apply
the Gauss–Seidel method. The iteration matrices of the methods are then given,
respectively, by

J = D−1(B + C),(13) Jacobi:

G = (D −B)−1C.(14) Gauss–Seidel:

The iterative steps of the methods are then defined, respectively, by

xk+1 = Jxk +D−1b, or(15) Jacobi:

xk+1 = Gxk + (D −B)−1b,(16) Gauss–Seidel:

for k = 0, 1, 2, . . .. Let ρ[Q] denote the spectral radius of the matrix Q, for any
Q ∈ Cn×n. The Jacobi method is convergent iff ρ[J ] < 1, while the Gauss–Seidel
method is convergent iff ρ[G] < 1.

Theorem 1 (convergence). Let A ∈ Cn×n be decomposed as in (9), and let J
and G be defined as in (13) and (14), respectively. Under either
the criterion (a): A is strictly diagonally dominant; or
the criterion (b): A is diagonally dominant and irreducible, then

(i) both D and (D −B) are invertible; and
(ii) ρ[J ] < 1, and ρ[G] < 1.
Proof of (i). For criterion (a). We see that aii 6= 0 for all i = 1, . . . , n, whence D

and (D −B) are nonsingular.
For criterion (b). We note by Observation 2 that A is nonsingular and hence does

not have a zero row. On the other hand, if either D or (D − B) were assumed to be
singular, then dkk = 0 for some k = 1, . . . , n. But, then by diagonal dominance we
would see that row k of A would be a zero row. This contradiction establishes (i) for
criterion (b).
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Proof of (ii). In order to show that both spectral radii are less than 1, we define
the matrices AJ(λ) and AG(λ), where λ ∈ C, by

AJ(λ) = λD −B − C;(17)
AG(λ) = λ(D −B)− C;(18)

and establish the following:
Lemma. For each λ ∈ C, with |λ| ≥ 1, if A satisfies any of the following proper-

ties:
(a) A is strictly diagonally dominant (by rows or by columns);
(b) A is diagonally dominant (by rows, or by columns);
(c) A is irreducible;

then both AJ(λ) and AG(λ) satisfy the same properties.
Proof. (a) Let A be strictly diagonally dominant by rows (the proof for the other

case is almost the same). By hypothesis, for each i = 1, . . . , n,

(19) |aii| >
n∑
j=1
j 6=i

|aij |,

if |λ| ≥ 1 then, for each i = 1, . . . , n,

|λaii| = |λ||aii|(20)

> |λ|
n∑
j=1
j 6=i

|aij |(∗)

= |λ|
i−1∑
j=1

|aij |+ |λ|
n∑

j=i+1

|aij |

≥ |λ|
i−1∑
j=1

|aij |+
n∑

j=i+1

|aij |

=
i−1∑
j=1

|λaij |+
n∑

j=i+1

|aij | hence the thesis for AG(λ),

≥
i−1∑
j=1

|aij |+
n∑

j=i+1

|aij | hence the thesis for AJ(λ).

(b) Very similar to (a). The only difference is that the hypothesis ensures that strict
inequality holds in the disequation marked with (∗) for at least one i ∈ {1, . . . , n}.
Weak inequality is guaranteed for all the other cases.
(c) Since the three matrices A, AJ(λ), and AG(λ), for λ 6= 0, have zero components
in exactly the same locations, it follows that if a permutation matrix Π reduces one
of these matrices, then Π also reduces the other two matrices.

We now resume the proof of (ii), Theorem 1. The eigenvalues λ of J are all and
only the solutions of the equation

(21) det(λI − J) = 0,
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but, from properties of matrices and determinants we have

det(λI − J) = det
(
λI −D−1(B + C)

)
(22)

= det
(
λD−1D −D−1(B + C)

)
= det

(
D−1(λD −B − C)

)
= det(D−1) det(λD −B − C)
= det(D−1) det(AJ(λ).

So, for (21) to hold we must have det(AJ(λ) = 0, as we have already shown that D
is nonsingular. But, since AJ(λ) is nonsingular for |λ| ≥ 1 (by the Lemma and the
Observations), it follows that all of the eigenvalues of J are in the interior of the unit
circle. Hence, ρ[J ] < 1.
Similarly, the eigenvalues λ of G are all and only the solutions of the equation

det(λI −G) = det
(
λI − (D −B)−1C

)
(23)

= det
(
λ(D −B)−1(D −B)− (D −B)−1C

)
= det

(
(D −B)−1

(
λ(D −B)− C

))
= det

(
(D −B)−1

)
det
(
λ(D −B)− C

)
= det

(
(D −B)−1

)
det
(
AG(λ)

)
= 0.

Reasoning in the exactly the same way as above we conclude that ρ[G] < 1.
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