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Abstract

Many interesting analyses for constraint logic-based languages are aimed at the de-
tection of monotonic properties, that is to say, properties that are preserved as the
computation progresses. Our basic claim is that most, if not all, of these analyses
can be described within a unified notion of constraint domains. We present a class
of constraint systems that allows for a smooth integration within an appropriate
framework for the definition of non-standard semantics of constraint logic-based
languages. Such a framework is also presented and motivated. We then show how
such domains can be built, as well as construction techniques that induce a hier-
archy of domains with interesting properties. In particular, we propose a general
methodology for domain combination with asynchronous interaction (i.e., the inter-
action is not necessarily synchronized with the domains’ operations). By following
this methodology, interesting combinations of domains can be expressed with all
the the semantic elegance of concurrent constraint programming languages.

Key words: Constraint Systems; Constraint-based Languages; Data-flow Analysis;
Abstract Interpretation.

1 Introduction

Many interesting and useful data-flow analyses for constraint logic-based lan-
guages are aimed at the detection of monotonic properties, that is to say, prop-
erties that are preserved as the computation progresses. They usually consist
in determining the shape of the set of solutions of the constraint store at some
program points. Analyses that fall in this category include definiteness (or
groundness), symbolic patterns, types, numerical bounds and relations, sym-
bolic size-relations and so on. The typical examples of non-monotonic proper-
ties are freeness and aliasing. A key observation is that monotonic properties
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can be conveniently expressed by constraints, which are then accumulated
in the analysis process much in the same way as during the “concrete” ex-
ecutions. Thus, frameworks of constraint-based languages are, in principle,
general enough to encompass several of their own data-flow analyses. Intu-
itively, this is done by replacing the standard constraint domain with one
suitable for expressing the desired information. This fundamental aspect was
brought to light, for the case of CLP, in [10] and elaborated in [22]. In [22]
a generalized algebraic semantics for constraint logic programs is presented,
which is parameterized with respect to an underlying constraint domain. The
main advantages of this approach are that: (1) different instances of CLP can
be used to define non-standard semantics for constraint logic programs; and
(2) several abstract interpretations of CLP programs can be thus formalized
inside the CLP paradigm. In this setting, data-flow analysis is then performed
(or at least justified) through abstract interpretation [14,15], i.e., “mimicking”
the program run-time behavior by “executing” it, in a finite way, on an ap-
proximated (abstract) constraint domain. By following a generalized semantic
approach, the concrete and abstract semantics are more easily related, being
instances (over two different constraint systems) of the same generalized se-
mantics, which is entirely parametric on a constraint domain. Thus, to ensure
correctness, it will be sufficient to exhibit an “abstraction function” α that is
a semi-morphism between the constraint domains [8,16].

We move our steps from [22] by providing a more general notion of constraint
domain that allows one to adequately describe both the “logical part” of con-
crete computations (i.e., answer constraints) and all the monotonic abstract
interpretations we know of. In particular our notion of constraint system is
able to accommodate approximate inference techniques whose importance re-
lies on very practical considerations, such as representing good compromises
between precision and computational efficiency. Some of these techniques will
be sketched in the examples. The new notion of constraint domain requires
the introduction of a new generalized semantics framework that is more liberal
than the one of [22].

Moreover, and here comes the main point, we show that our constraint do-
mains admit interesting constructions. The most important one consists in
upgrading a domain so that it will be able to represent and manipulate de-
pendencies among constraints. This is done by regarding a restricted class of
cc agents as constraints. This construction, among other things, opens up the
possibility of combining domains in a novel and interesting way. By follow-
ing this methodology, the asynchronous interaction between domains can be
expressed with all the elegance that derives from the cc framework.

For space reasons we have omitted many details. The interested reader is
referred to [4], a much longer version of this paper including all the proofs and
more examples. The plan of the paper is as follows: Section 2 introduces some
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basic notions and notations used throughout the paper. Section 3 explains our
generalized semantics for CLP languages, as well as the abstract interpretation
framework we employ. Section 4 introduces simple constraint systems : some
important building blocks of the hierarchy. Section 5 builds on the previous
one presenting standard ways of representing and composing finite constraints:
determinate constraint systems. In Section 6 it is shown how a constraint
system is upgraded to incorporate a weak form of disjunction (suitable to
monotonic properties) by means of powerset constraint systems. Section 7
presents a different kind of upgrade: the one needed in order to have the notion
of dependency built into the constraint system. This is done considering ask-
and-tell constraint systems. Section 8 deals with the interesting problem of
combining domains. A technique is shown that consists in applying the ask-
and-tell construction to product constraint systems. We feel that, indeed, this
is one of the more important contributions of this work. Finally, Section 9
draws some conclusions and presents some directions for further study.

2 Preliminaries

Throughout the paper we will assume familiarity with the basic notions of
lattice theory, semantics of logic programming languages, and abstract inter-
pretation.

Let U be a set. The set of all subsets of U will be denoted by ℘(U). The
set of all finite subsets of U will be denoted by ℘f(U). The notation S ⊆f T
stands for S ∈ ℘f(T ). For S ⊆ U we will denote the complement U \ S by S,
when U is clear from the context. For S, T ⊆ U the notation S ] T denotes
disjoint union, emphasizing the fact that S ∩ T = ∅. By U? we will denote
the set of all finite sequences of elements drawn from U . The empty sequence
is denoted by ε. For x ∈ U?, the length of x will be denoted by # x, and, for i
such that 1 ≤ i ≤ #x, the notation x[i] stands for the i-th element of x. Let
S1, . . . , Sn be sets. We will denote elements of S1 × · · · × Sn by 〈e1, . . . , en〉.
The projection mappings πi : S1× · · · ×Sn → Si are defined, for i = 1, . . . , n,

by πi(〈e1, . . . , en〉) def
= ei. The liftings πi : ℘(S1 × · · · × Sn) → ℘(Si) given by

πi(T )
def
= { πi(t) | t ∈ T } will also be used.

A partial order � over a set P is a binary relation that is reflexive, transitive,
and antisymmetric. � is a total order if, in addition, for each x, y ∈ P , either
x � y or y � x. A set P equipped with a partial (resp. total) order � is said
to be partially ordered (resp. totally ordered), and sometimes written 〈P,�〉.
Partially ordered sets are also called posets. A subset S of a poset 〈P,�〉 is
said to be a chain if it is totally ordered wrt �. Given x ∈ P , the downward
closure of x in 〈P,�〉 is given by { y ∈ P | y � x } and denoted by ↓x.
Given a poset 〈P,�〉 and S ⊆ P , y ∈ P is an upper bound for S iff x � y
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for each x ∈ S. An upper bound y for S is the least upper bound (or lub)
of S iff for every upper bound y′ for S it is y � y′. The lub, when it exists,
is unique. In this case we write y = lub S. Lower bounds and greatest lower
bounds are defined dually. 〈P,�〉 is said to be bounded if it has a minimum and
a maximum element. A monotone and idempotent self-map ρ : P → P over a
poset 〈P,�〉 is a kernel operator (or lower closure operator) if it is reductive,
that is to say ∀x ∈ P : ρ(x) � x.

A poset 〈L,�〉 such that, for each x, y ∈ L, both lub{x, y} and glb{x, y} exist,
is called a lattice. In this case, lub and glb are also called, respectively, the join
and the meet operations of the lattice. A poset where only the glb operation is
well-defined is called a meet-semilattice. A complete lattice is a lattice 〈L,�〉
such that every subset of L has both a least upper bound and a greatest lower
bound.

An algebra 〈L,∧,∨〉 is also called a lattice if ∧ and ∨ are two binary operations
over L that are commutative, associative, idempotent, and satisfy the following
absorption laws, for each x, y ∈ L: x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x. The
two definitions of lattices are equivalent. This can be seen by setting up the

isomorphism given by: x � y
def⇐⇒ x∧ y = x

def⇐⇒ x∨ y = y, glb{x, y} def
= x∧ y,

and lub{x, y} def
= x ∨ y.

The notions of meet-semilattice and of bounded lattice are imported into the
algebraic definition in the natural way. For instance, a bounded lattice is an
algebra 〈L,∧,∨,⊥,>〉 such that 〈L,∧,∨〉 is a lattice and the following two
annihilation laws are satisfied for each x ∈ L: x ∧ ⊥ = ⊥ and x ∨ > = >. A
lattice is called distributive if it satisfies, for each x, y, z ∈ L, the distributive
laws x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z). It is
well known that, for lattices, the distributive laws are equivalent.

An algebra 〈M, ·, 1〉 is a monoid iff ‘·’ is an associative binary operator over
M , and 1 ∈ M satisfies the identity law : for each x ∈ M , x · 1 = 1 · x = x.
The monoid 〈M, ·, 1〉 is called commutative or idempotent if ‘·’ is so.

The sets of all natural, real, and ordinal numbers will be denoted, respectively,
by N, R, and O. The first limit ordinal equipotent with the set of natural
numbers is denoted by ω.

3 A case study: CLP

The constraint domains that are the subject of this work are not bound to a
particular class of constraint logic-based languages. However, for the sake of
clarity and to help the intuition, we will focus on the class of CLP languages
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[27,29], which is more and more influential and captures several existing, im-
plemented languages. We will present a generalized approach to the semantics
of CLP programs of which abstract interpretation is an important instance.
This is necessary for a full understanding of how the domains of later sections
are employed in data-flow analysis of CLP languages.

3.1 CLP: the syntax

Here we give a precise definition of what we will call a CLP(C) program. Notice
that here we are concerned with syntax only. In general, C (the language of
atomic constraints) is a subset of a first order language L (the language of
constraints). Let us start by defining L itself.

Definition 1 (Language of constraints.) Let V and Λ be two disjoint denu-
merable sets of variable symbols. Let us also fix two particular isomorphisms

between Λ and N, and between V and N. Let Vars
def
= V ]Λ. Let Ω and ΠC be

two finite sets of operation and predicate symbols, respectively, each symbol be-
ing characterized with its arity. Let also Vars, Ω and ΠC be mutually disjoint.
L = L(Vars ,Ω,ΠC , . . . ) is a language of constraints iff it is any first order
language with equality built (by means of standard constructions, possibly with
connectives and quantifiers) over the given sets of symbols.

(The extra-set of variables Λ allows us to simplify the following treatment.
We will stipulate that the heads of clauses can only contain variable symbols
drawn from Λ.) Now, a CLP language can impose restrictions on the form of
constraints that may actually appear in programs. However these restrictions
must not destroy too much of the language’s expressivity.

Definition 2 (Atomic constraint.) Given a language of constraints L, any
subset C of L is a language of atomic constraints if

(1) it is closed under variable renaming; and
(2) it contains all the formulas of the form X = t, where X ∈ Vars and t is

a term built over Ω and Vars.

Before introducing the full syntax of CLP programs a few remarks about
notation are in order. We will denote program variables by means of capital
letters. Tuples of distinct variable will be denoted by X̄, Ȳ , and so forth. Tuples
are always assumed to be of the right cardinality, e.g., if p is a predicate symbol
of arity n and we write p(X̄), then X̄ is an n-tuple. Special tuples denoted

by ~Λ, denoting initial finite segments of Λ, will also be used (notice that we

have fixed a total ordering on Λ). In the above hypotheses, by writing p(~Λ)

we understand that ~Λ denotes the n-tuple consisting of the first n variable
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symbols in Λ. We will also abuse the notation occasionally by treating a tuple
as the set of its components. We can now introduce the notion of CLP(C)
program.

Definition 3 (CLP program.) Let C be a language of atomic constraints with
distinguished variable symbols in Λ. Let ΠP be a finite set of predicate symbols,
disjoint from the symbols used in C. We will denote by AP the set of atoms
over ΠP , that is

AP
def
=
{
q(X̄)

∣∣∣ q ∈ ΠP , X̄ ∈ Vars?
}
.

A CLP(C) program P over ΠP is a finite sequence of clauses of the form

p(~Λ) :− 〈b1, . . . , bk〉, with p ∈ ΠP and k ≥ 0,

where, for 1 ≤ i ≤ k, bi ∈ C ∪ AP and vars(bi) ∩ Λ ⊆ ~Λ. p(~Λ) is called the
head of the rule, whereas 〈b1, . . . , bk〉 is the body.

The syntax of any CLP language can be defined in such a way, by augmenting
the first order language on which it is based with the set of distinguished vari-
able symbols Λ and transforming each program along the lines of Definition 3
by means of standard techniques. This transformation is always possible by
virtue of Definition 2. This normalization of programs has the property that
predicate’s symbols are always applied to tuples of distinct variables. Further,
all the heads of the rules defining a program predicate p/n have the same vari-

ables in the same positions. Observe that the body B of a clause p(~Λ) :− B
is a sequence, that is an element of (C ∪ AP )?. As programs themselves are
sequences, the semantic constructions will be free to take into account the
selection and search rules used in real languages. So far for the syntax, we
now examine the (possibly non-standard) semantics of CLP languages.

3.2 Non-standard semantics for CLP

Here we start from very basic facts. We recognize the existence of four dif-
ferent activities in the execution, and thus in the analysis, of constraint logic
programs:

(1) different execution paths are explored;
(2) along any path, constraints are accumulated in the so-called constraint

store;
(3) the constraint store is recursively subdivided into parts. The activity of

imposing restrictions in the way different parts can interact is usually
called hiding.

(4) Pieces of information (parameters) are passed between program rules.
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In a generalized semantics setting [22] these activities are captured by algebraic
structures of the form〈

D,E,⊗,⊕,0,1, {∃̄̄∃~Λ}~Λ∈Λ? , {dX̄Ȳ }X̄,Ȳ ∈Vars?

〉
,

The ⊕ operator models the merging of information coming from different
execution paths. The 0 elements represent the information content of an empty
(or failed) execution path. The ⊗ operator models the constraint accumulation
process. The element 1 stands, intuitively, for the empty constraint store, i.e.,
the one containing no information at all. The ∃̄̄∃~Λ operators represent the hiding

process: any variable X /∈ ~Λ appearing in the scope of ∃̄̄∃~Λ is isolated (hidden)
from other occurrences of X outside the scope. The “complement sign” that
appears on top of ∃̄̄∃~Λ signifies that we formalize hiding in a dual way with
respect to traditional approaches [36,22]. The so-called diagonal elements dX̄Ȳ
represent, roughly speaking, the fact that the tuples of variables X̄ and Ȳ are
tightly correlated with respect to the properties of interest. The relation E
specifies the relative precision of program properties. D1 E D2 means that
“D1 is more precise than D2”. In other words, every set of computations that
enjoys property D1 also enjoys property D2. In the framework of abstract
interpretation, E is referred to as the approximation ordering of the domain
[16].

The way we define domains of interpretation for CLP languages is clearly
highly dependent on the application we have in mind. For our current pur-
poses we restrict ourselves to a specific class of domains that is obtained by
imposing restrictions on the general scheme (see [4]). For a full understanding
of the hypotheses that are behind our approach, we now spell out the above
mentioned restrictions. This makes clear what is the class of properties that
are captured by the hierarchy of domains that will be presented later.

• We are interested in properties of programs that are valid for all terminating
and successful computations;
• we are neither interested in the order in which computations are taken, nor

in their multiplicities ;
• we focus on monotonic properties, that is, those which are preserved as

computation progresses;
• further, we restrict our interest to logical properties. This means, roughly

speaking, that ⊗ is interpreted as logical conjunction.

Now the question is: how do we represent the properties of interest? A simple,
but far reaching answer was first given in [10]: we can represent properties by
means of constraints. This opens up the possibility of computing non-standard
semantics of CLP, and, in particular, abstract interpretations, within the CLP
framework. In this setting the result of the abstract interpretation of a CLP
program P is obtained by “executing” (in a finite way) another CLP pro-
gram P ′, strongly related to P , over a non-standard domain. Intuitively, this
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is done by replacing the standard constraint domain with one suitable for
expressing the desired information. This possibility led to the idea of a gener-
alized semantics for CLP programs, proposed in [22]. A generalized semantics
is parameterized over the (possibly non-standard) constraint system that con-
stitutes the domain of the computation. The main advantages of this approach
are that:

(1) different instances of CLP can be used to define non-standard semantics
for constraint logic programs;

(2) the semantics of these instances are all captured within a unified algebraic
framework; and, in particular,

(3) many relevant abstract interpretations of CLP programs can be formal-
ized inside the CLP paradigm.

The next section is devoted to the class of domains outlined above.

3.3 Constraint systems

Since we aim at a pervasive treatment, we would like to avoid talking too much
about what a constraint is. However, we cannot overlook some basic facts on
the relationship between constraints and program variables. The purpose of
constraints is, roughly speaking, to restrict the range of values variables can
take. For our present objectives the following definition suffices.

Definition 4 (Constraint.) The class of constraints is defined by:

(1) a well-formed formula of any first-order language L with variable symbols
in Vars is a constraint;

(2) any set of constraints is a constraint;
(3) any (meta-level) predicate p/n applied to n constraints is a constraint;
(4) nothing is a constraint if not by virtue of (1), (2), and (3).

Now, on the relationship between constraints and variables, we can reason
inductively as follows.

Definition 5 (Variables, free variables, and renaming.) With reference to
Definition 4, if c is a constraint by virtue of (1) then the notions of vari-
ables of c and of free variables of c are assumed as primitive. These sets of
variables are denoted, respectively, by vars(c) and FV (c). An invertible and
idempotent mapping from and to variable symbols that is the identity almost
everywhere is called renaming. We will use the notation [Ȳ /X̄] for renamings,
where Ȳ and X̄ are disjoint tuples of distinct variables. The renaming [Y/X]
has no effect on c if X /∈ FV (c), whereas variables’ capture is avoided by
consistent renaming of bound variables. Besides that, the constraint c[Ȳ /X̄] is
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assumed as defined.

If C is a constraint because of (2) then vars(C)
def
=
⋃
c∈C vars(c) and 1

FV (C)
def
=
{
X ∈ Vars

∣∣∣ ∃c ∈ C . ∃Y ∈ Vars . c[Y/X] /∈ C
}
. (1)

With these definitions the notion of renaming for C is extended as expected.
The application of a renaming to C is defined element-wise.

If µ(C1, . . . , Cn) is a constraint by virtue of (3) then the above notions are
extended as they would be in any first-order language.

In the sequel we will apply renamings carefully so that, when we write C[Ȳ /X̄],
it is ensured that FV (C)∩ Ȳ = ∅. We will emphasize this fact by saying that
[Ȳ /X̄] is a renaming for C.

All the members of our hierarchy of domains will turn out to be constraint
systems in the precise sense stated by the following definition.

Definition 6 (Constraint system.) Any algebra D̄ of the form〈
D,⊗,⊕,0,1, {∃̄̄∃~Λ}~Λ∈Λ? , {dX̄Ȳ }X̄,Ȳ ∈Vars?

〉
is a constraint system if and only if it satisfies the following conditions:

G0. D is a set of constraints;
G1. 〈D,⊗,1〉 is a commutative and idempotent monoid;
G2. 〈D,⊕,0〉 is a commutative and idempotent monoid;
G3. 0 is an annihilator for ⊗, i.e., for each C ∈ D, C ⊗ 0 = 0;
G4. for each C1, C2 ∈ D, C1 ⊗ (C1 ⊕ C2) = C1;

G5. for each ~Λ ∈ Λ? and C ∈ D, it is FV
(
∃̄̄∃~ΛC

)
⊆ ~Λ.

A c.s. induces the relation ` ⊆ D ×D given, for each C1, C2 ∈ D, by

C1 ` C2
def⇐⇒ C1 ⊗ C2 = C1. (2)

The relation ‘`’ is referred to as the approximation ordering of the constraint
system. The notation C1  C2 stands for (C1 ` C2) ∧ (C1 6= C2).

In the sequel we will feel free to drop the quantifiers from the notation of the
families of projection operators and diagonal elements. Condition G4 can be
restated as

C1 ` C1 ⊕ C2 and C2 ` C1 ⊕ C2.

1 This definition of FV is an adaptation of the one of dependent variables given in
[34, Definition 2.3].
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In this form it clearly stands for the correctness of the merge operation, char-
acterizing it as a (not necessarily least) upper bound operator with respect to
the approximation ordering.

Hypothesis 7 Indeed, constraint systems must satisfy some other (very tech-
nical) conditions related to how they deal with variables. For instance, they do
not invent new free variables: FV (C1 ⊗ C2) ⊆ FV (C1) ∪ FV (C2), and simi-
larly for the merge operator. The operators are also generic in that they are
insensible to variable names. This implies that, if [Ȳ /X̄] is a renaming for
both C1 and C2, then

(C1 ⊗ C2)[Ȳ /X̄] = C1[Ȳ /X̄]⊗ C2[Ȳ /X̄].

In particular, if we have also C1 ` C2, then C1[Ȳ /X̄] ` C2[Ȳ /X̄]. In the sequel
we will take all these overwhelmingly reasonable requirements for granted.

Constraint systems enjoy several properties.

Proposition 8 (Properties of c.s.) Any constraint system satisfies the follow-
ing properties, for each C,C1, C2 ∈ D:

(1) 〈D,`,⊗,0,1〉 is a bounded meet-semilattice;
(2) C ⊕ 1 = 1;
(3) C1 ` C1 ⊕ (C1 ⊗ C2);
(4) C1 ⊕ C2 = C2 =⇒ C1 ` C2.

Observe that 〈D,⊗,⊕,0,1〉, in general, is not a lattice. Both ‘⊗’ and ‘⊕’ are
associative, commutative, and idempotent, but, as stated above, while one of
the absorption laws holds (axiom G4 of Definition 6), only one direction of the
dual law is generally valid (property (3) of Proposition 8). In particular, ‘⊕’
might be not component-wise monotone with respect to ‘`’, and ‘⊕’ does not
distribute, in general, over ‘⊗’ (this would imply the equivalence of the two
absorption laws).

So far for generic constraint systems, we consider now some strengthenings of
Definition 6.

Definition 9 (Stronger c.s.’s) Consider the following conditions:

Gc. for each family {Ci ∈ D}i∈N,
⊕

i∈NCi
def
= C1⊕C2⊕· · · exists and is unique

in D; moreover, associativity, commutativity, and idempotence of ‘⊕’ apply
to denumerable as well as to finite families of operands;

Gd. 〈D,⊗,⊕,0,1〉 is a distributive lattice;
GD. for each C ∈ D and each family {Ci ∈ D}i∈N such that

⊕
i∈NCi exists,

we have C ⊗ (
⊕

i∈NCi) =
⊕

i∈N(C ⊗ Ci);
GN . in D every strictly ascending chain, C0  C1  C2  · · · , is finite.
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A constraint system is said to be closed if it satisfies condition Gc. It is said
to be distributive if it satisfies Gd. If it satisfies the stronger condition GD

then it is called completely distributive. Finally, a constraint system is said
to be Noetherian if it satisfies the ascending chain condition GN .

So, the operation of merging together the information coming from all the
computation paths always makes sense in a closed constraint system. Notice
however that property Gc is only necessary when the semantic construction
requires it. This will never happen when considering “abstract semantic con-
structions” formalizing data-flow analyses (which are finite in nature). In these
cases the idea of merging infinitely many pieces of information is nonsense in
itself. Closedness will instead be required for the constraint systems intended
to capture “concrete” program semantics. Distributivity is useful for proving
the equivalence of different abstract semantics constructions used for data-
flow analysis. Complete distributivity is required for proving that a concrete
semantics corresponds to the operational model of the language [22]. Observe
that closed and completely distributive constraint systems are instances of the
closed semi-rings used in [22].

For the abstract semantics constructions we will make use of another class of
operators over constraints. These operators were introduced in [13].

Definition 10 (Widening, Cousot and Cousot [13].) Given a constraint sys-
tem D̄, a binary operator ∇ : D → D is called a widening for D̄ if

W1. for each C1, C2 ∈ D we have C1 ` C1 ∇ C2 and C2 ` C1 ∇ C2;
W2. for each increasing chain C0 ` C1 ` C2 ` · · · , the sequence given by

C ′0
def
= C0 and, for n ≥ 1, C ′n

def
= C ′n−1∇Cn, is stationary after some k ∈ N.

Widenings allow to define convergence acceleration methods that ensure ter-
mination of the “abstract interpreter”. However, even when termination is
granted anyway (e.g., when the constraint system is Noetherian), these meth-
ods are often crucial for achieving rapid termination, that is, for obtaining us-
able data-flow analyzers. More sophisticated methods for convergence acceler-
ation exist that employ also narrowing operators, and more complex widenings
than the ones defined above (see [17,16]).

3.4 Generalized semantics

In a generalized semantics setting, the first thing to do is to provide atomic
constraints with an interpretation on the chosen constraint system. Suppose
that we are interested in deriving information about just two kind of program
points: clause’s entries and clause’s successful exits. In a data-flow analysis
setting (where this is often the case) that is to say that we want to derive
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call-patterns and success-patterns. In other words, for each clause we want to
derive properties of the constraint store that are valid

• whenever the clause is invoked (call-patterns);
• whenever a computation starting with the invocation of the clause termi-

nates with success (success-patterns).

Observe that call-patterns depend on the ordering of atoms in the body of
clauses and on the selection rule employed. By means of program transforma-
tions similar to the magic one [9,20] we can obtain the call-patterns of the orig-
inal program (with respect to the selection rule employed) as success-patterns
of the transformed one. These transformations, in fact, besides modifying the
clauses of the original program, introduce new clauses that characterize the
conditions under which the original clauses are invoked. In the transformed
program the ordering of atoms in the clause’s bodies is no longer important.
Notice that the technique proposed in [20], while restricted to logic programs 2 ,
is more sophisticated than usual transformation approaches, and preserves the
connection between call and success patterns. For these reasons we will con-
sider only one kind of program points: clause’s exits. Furthermore, in our
domains the operation capturing constraint composition is associative, com-
mutative, and idempotent. This means that we can assume without prejudice
that all the clauses are of the form

p(~Λ) :− {c1, . . . , cn} � {b1, . . . , bk},

where {c1, . . . , cn} is a set of atomic constraints, and {b1, . . . , bk} is a set
of atoms. All the other restrictions imposed by Definition 3 must continue to
hold. We now must associate a meaning to the finite sets of atomic constraints
that occur in clauses.

Definition 11 (Constraint interpretation.) Given a language C of atomic
constraints and a constraint system D̄, a constraint interpretation of C in
D̄ is a computable function [[·]]D̄

C
: ℘f(C)→ D.

Then usually one considers, instead of the syntactic program P , its semantic
version over the domain D̄, obtained by interpreting the atomic constraints of
clauses through [[·]]D̄

C
. For r = 1, . . . , #P , we denote the r-th clause of P by

P [r].

Definition 12 (Generalized program.) When D̄ is a constraint system, a
CLP(D̄) program is a sequence of Horn-like formulas of the form

p(~Λ) :− C � {b1, . . . , bk},

2 Actually, we have developed a technique, still based on program transformation,
which is general enough to accommodate the entire CLP framework [5].
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where C ∈ D̄ is finitely representable. Given a CLP(C) program P and a
constraint interpretation [[·]]D̄

C
, the CLP(D̄) program [[P ]]D̄

C
is given, for each

r = 1, . . . , #P , by

[[P ]]D̄
C
[r] ≡ p(~Λ) :− [[C]]D̄

C
� B

def⇐⇒ P [r] ≡ p(~Λ) :− C � B. (3)

An interpretation for a program P over a constraint system D̄ is a function
from its program points (one for each clause) to D.

Definition 13 (Interpretation.) Let D̄ be a constraint system, and P be a
CLP(D̄) program. An interpretation for P over D̄ is any element of

I D̄P
def
= {1, . . . ,#P} → D.

All the operations and relations over D̄ are extended point-wise to I D̄P . In
particular I D̄P is partially ordered by the lifting of `, i.e., for each I1, I2 ∈ I D̄P ,

I1 ` I2
def⇐⇒ ∀r ∈ {1, . . . ,#P} : I1(r) ` I2(r).

We will represent interpretations by means of function graphs. It is straight-
forward to show that all the interesting properties of constraint systems lift
smoothly to interpretations.

We are left with the choice of the semantics construction, that is, of the “inter-
pretation transformer”. For the purpose of this work we choose a bottom-up
construction expressed by a flavor of the usual immediate consequence operator
TP , taking an interpretation and returning a new interpretation.

Our set of program variables is Vars = Λ ] V , where Λ and V are totally
ordered. For ~Λ ∈ Λ? and W ⊆f Vars , we denote by Ȳ �~Λ W the fact that,
with respect to the ordering of V , Ȳ is a tuple of distinct consecutive variables
in V such that # Ȳ = # ~Λ and the first element of Ȳ immediately follows the
greatest variable in W .

Definition 14 (Interpretation transformer.) Let P be a CLP(D̄) program,
where D̄ is a constraint system. The operator induced by P over I D̄P , T D̄P : I D̄P →
I D̄P , is

T D̄P (I)
def
=
{(

r, T D̄P (r, I)
) ∣∣∣∣ 1 ≤ r ≤ #P

}
, (4)
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where T D̄P : {1, . . . ,#P} × I D̄P → D is given by

T D̄P (r, I)
def
=
⊕



∃̄̄∃~Λ C̃

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P [r] ≡ p(~Λ) :− C �
{
p1(X̄1), . . . , pn(X̄n)

}
and, for each i = 1, . . . , n:

P [ri] ≡ pi(~Λi) :− Ci � Bri

Ȳi �~Λi
FV

(
P [r]

)
∪ Ȳ1 ∪ · · · ∪ Ȳi−1

C̃i = I(ri)[Ȳi/~Λi]

C ′i = dX̄iȲi ⊗ C̃i
C̃ = C ⊗ C ′1 ⊗ · · · ⊗ C ′n



. (5)

Notice that, in this construction, the merge operator is applied only to finite
sets of operands. In summary, once we have fixed the constraint domain D̄
and the interpretation of atomic constraints [[·]]D̄

C
, the meaning of a CLP(C)

program P over D̄ is encoded into the T D̄P operator. Before rushing to require
that T D̄P must be continuous on the complete lattice D̄ we better have a closer
look to our real needs.

3.5 Defining, computing and correlating non-standard semantics

Given our current focus on data-flow analysis of CLP programs, we consider,
for simplicity, only the typical case in this field. On one hand we have a “con-
crete” constraint system D̄\: it must capture the properties of interest, it must
ensure the existence of the least fixpoint of T D̄

\

P\
, that is, of the meaning of each

program P . And, of course, this meaning must correspond to the one obtained
by means of the top-down construction representing the operational model of
the language (namely, some kind of extended SLD-resolution). This last re-
quirement implies, as shown in [22], that D̄\ must be closed and completely
distributive, hence a complete lattice.

On the other hand, in data-flow analysis, we have an “abstract” constraint
system D̄]. Here we are much less demanding: we simply want to compute
in a finite way an approximation of a post-fixpoint of T D̄

]

P]
(the least fixpoint

might not even exist, or it might be too expensive to compute). And, of course,
we need a guarantee that what we compute is a correct approximation of the
concrete meaning. Finite computability can be ensured, in general, by using a
widening operator. Thus, in this setting, the concrete and abstract iteration
sequences defining, respectively, the concrete meaning and approximations of
the abstract meaning of programs are quite different.

14



Definition 15 (Concrete and abstract iteration sequences.) Consider a closed
and completely distributive constraint system D̄\, and a CLP(D̄\) program P \.
The concrete iteration sequence for P \ is inductively defined as follows, for
all ordinals κ ∈ O:


T D̄

\

P\
↑ 0

def
= 0\,

T D̄
\

P\
↑ (κ+ 1)

def
= T D̄

\

P\

(
T D̄

\

P\
↑ κ
)
,

T D̄
\

P\
↑ κ def

=
⊕\

β<κ

(
T D̄

\

P\
↑ β

)
, when κ > 0 is a limit ordinal.

(6)

Let D̄] be any constraint system, and let ∇] be a widening operator over D̄]. For
a CLP(D̄]) program P ], the abstract iteration sequence for P ] with widening
∇] is inductively defined by

 T D̄
]

P]
⇑ 0

def
= 0],

T D̄
]

P]
⇑ (k + 1)

def
=

(
T D̄

]

P]
⇑ k

)
∇] T D̄

]

P]

(
T D̄

]

P]
⇑ k

)
, for k ∈ N.

(7)

Observe that, when D̄] is Noetherian or when termination can be ensured in
other ways, π2 (the second projection) can be substituted for ∇] in (7). In
these cases, indeed, the restriction of π2 to the iterates’ values is a widening
operator. The following fact is easily proved using standard techniques [22].

Theorem 16 If D̄\ is a closed and completely distributive constraint system
then, for each CLP(D̄\) program P \ the least fixpoint of T D̄

\

P\
exists and is given

by lfp(T D̄
\

P\
) = T D̄

\

P\
↑ ω.

We now come to the problem of ensuring the correctness of the analysis.
We use an abstraction correspondence between the concrete and the abstract
constraint systems, which induces an abstraction correspondence between the
respective semantics [8,16].

Definition 17 (Abstraction function.) Let D̄\ and D̄] be two constraint sys-
tems as in Definition 15. A function α : D\ → D] is an abstraction function
of D̄\ into D̄] if and only if

A1. α is a semi-morphism, namely, for each C\, C\
1, C

\
2, d

\
X̄Ȳ
∈ D\ and ~Λ ∈ Λ?:

α(C\
1 ⊗\ C

\
2) `] α(C\

1)⊗] α(C\
2), α(0\) `] 0],

α(C\
1 ⊕\ C

\
2) `] α(C\

1)⊕] α(C\
2), α

(
d\
X̄Ȳ

)
`] d]

X̄Ȳ
,

α
(
∃̄̄∃\~ΛC

\
)
`] ∃̄̄∃]~Λ α(C\).
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A2. for each increasing chain {C\
j ∈ D\}j∈N, and each C] ∈ D],

∀j ∈ N : α(C\
j) `] C] =⇒ α

(⊕\

j∈N
C\
j

)
`] C];

A3. for each C\ ∈ D\ and each renaming [Ȳ /X̄] for C\, it happens that

α(C\)[Ȳ /X̄] = α
(
C\[Ȳ /X̄]

)
.

Any abstraction function α : D\ → D] is extended pointwise to α : I D̄\
P\
→ I D̄]

P]
,

when #P \ = #P ].

As anticipated above, one of the beautiful things of the generalized approach
is that the abstract meaning of CLP programs can be encoded into another
CLP program. We have thus an abstract compilation approach, where the

soundness of the compilation function [[·]]D̄
]

C
is expressed, for CLP(C) programs,

by the requirement α ◦ [[·]]D̄
\

C
`] [[·]]D̄

]

C
. The following result is an application of

a theorem in [16, Proposition 6.20].

Theorem 18 Given a CLP(C) program P , two constraint systems D̄\ and

D̄], the constraint interpretations [[·]]D̄
\

C
and [[·]]D̄

]

C
, and the abstraction function

α : D\ → D] such that α ◦ [[·]]D̄
\

C
`] [[·]]D̄

]

C
, P \ = [[P ]]D̄

\

C
and P ] = [[P ]]D̄

]

C
, we have

that the abstract iteration with widening (7) is eventually stable after ` ∈ N
steps and

α
(
lfp(T D̄

\

P\
)
)

= α
(
T D̄

\

P\
↑ ω

)
`]
(
T D̄

]

P]
⇑ `
)
.

We now describe a hierarchy of constraint systems that capture most of the
analysis domains used for deriving monotonic properties of programs, as well
as the “concrete” collecting semantics they abstract. The basis is constituted
by any constraint system that satisfies the conditions of Definition 6. In Sec-
tion 5 we will show a way (which, of course, is not the only one) of defining
such a structure. This requires introducing simple constraint systems, which
is the purpose of the following section.

4 Simple constraint systems

A constraint system can be built starting from a set of finite constraints (or
tokens), each expressing some partial information. We now define a notion of
simple constraint systems (or s.c.s.), very similar to the one introduced in [36].

Definition 19 (Simple constraint system.) A simple constraint system is a
structure 〈C,`,⊥,>〉, where C is a set of constraints, ⊥ ∈ C, > ∈ C, and
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` ⊆ ℘f(C) × C is an entailment relation such that, for each C,C ′ ∈ ℘f(C),
each c, c′ ∈ C, and X, Y ∈ Vars:

E1. c ∈ C =⇒ C ` c;
E2. C ` >;
E3. (C ` c) ∧ (∀c′ ∈ C : C ′ ` c′) =⇒ C ′ ` c;
E4. {⊥} ` c;
E5. C ` c =⇒ C[Y/X] ` c[Y/X].

The ‘`’ symbol is overloaded to denote also the extension ` ⊆ ℘(C) × ℘(C)
such that, for each C,C ′ ∈ ℘(C),

C ` C ′ def⇐⇒ ∀c′ ∈ C ′ : ∃C ′′ ⊆f C . C ′′ ` c′.

It is clear that condition E1 implies reflexivity of ‘`’, while condition E3

amounts to transitivity. E2 qualifies ‘>’ as the least informative token: it will
be needed just as a “marker” when the product of simple constraint systems
will be considered (see Section 8 and [37]). E4 ensures that C is a finitely
generable element (see Definition 21). Condition E5, referred to as genericity,
states that the entailment is insensible to variables’ names 3 .

By axioms E1 and E3 of Definition 19 the entailment relation of a simple con-
straint system is a preorder. Now, instead of considering the quotient poset
with respect to the induced equivalence relation, a particular choice of the
equivalence classes’ representatives is made: closed sets with respect to en-
tailment. This representation is a very convenient domain-independent strong
normal form for constraints.

Definition 20 (Elements, Saraswat, Rinard, Panangaden [36].) The elements
of an s.c.s. 〈C,`,⊥,>〉 are the entailment-closed subsets of C, namely those
C ⊆ C such that, whenever ∃C ′ ⊆f C . C ′ ` c, then c ∈ C. The set of elements
of 〈C,`,⊥,>〉 is denoted by |C|.

The poset of elements is thus given by 〈|C|,⊇〉. Notice that we deviate from
[36] in that we order our constraint systems in the dual way.

Definition 21 (Inference map, finite elements.) Given a simple constraint
system 〈C,`,⊥,>〉, the inference map of 〈C,`,⊥,>〉 is ρ : ℘(C)→ ℘(C) given,
for each C ⊆ C, by

ρ(C)
def
= { c | ∃C ′ ⊆f C . C ′ ` c }.

3 In [34] a stronger notion of genericity is used, namely C[t/X] ` c[t/X] whenever
C ` c, for any term t. This is too strong for our purposes: e.g., it would force us to
treat non-linear numeric constraints in the same way as linear ones in CLP(R).
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It is well known that ρ is a kernel operator, over the complete lattice 〈℘(C),⊇〉,
whose image is |C|. The image of the restriction of ρ onto ℘f(C) is denoted by
|C|0. Elements of |C|0 are called finitely generated constraints or simply finite
constraints.

From here on we will only work with finitely generated constraints, since we
are not concerned with infinite behavior of (CLP) programs.

In general, describing the “standard” semantics of a CLP(X ) language is done
as follows. Let T be the theory that corresponds to the domain X [27]. LetD be
an appropriate set of formulas in the vocabulary of T closed under conjunction
and existential quantification. Define Γ ` c iff Γ entails c in the logic, with
non-logical axioms T . Then (D,`) is the required simple constraint system.
For CLP(H) (i.e., pure Prolog) one takes the Clark’s theory of equality. For
CLP(R) 4 the theory RCF of real closed fields would do the job. We see now
some examples of simple constraint systems.

4.1 The atomic simple constraint system

This is probably the simplest useful s.c.s. The tokens include variable names.
A variable name, when present in a constraint, expresses the fact that the
variable has some (unspecified) property. For instance, being definitely bound
to a ground value. In this case, X is just a shorthand for ground(X). This s.c.s.

is thus given by C def
= Vars∪{⊥,>} and by the smallest relation ` ⊆ ℘f(C)×C

satisfying conditions E1–E5 of Definition 19. In the sequel we will refer to this
structure as the atomic s.c.s.

A useful extension is to include tokens involving two variable names. These
tokens state that the two variables involved share the property of interest: one
enjoys it iff the other one does. More formally, we have

C ′ def
= C ∪ {X � Y | X, Y ∈ Vars },

and the entailment relation is suitably extended to C ′ requiring, for each
X, Y, Z ∈ Vars :

{X � Y } ` Y � X; {X � Y, Y � Z} ` X � Z; {X,X � Y } ` Y.

4 Beware not to confuse CLP(R), the idealized language over the reals [29], with
CLP(R), the (far from ideal) implemented language and system [28].
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4.2 Bounds and relations analysis for numeric domains

The analysis described in [6,7,3] is based on constraint inference, a variant of
constraint propagation [19]. This technique, developed in the field of artificial
intelligence, has been applied to temporal and spatial reasoning [1,38].

Let us focus our attention to arithmetic domains, where the constraints are
binary relations over expressions. Let E be the set of arithmetic expressions of
interest. Let F ⊂ R a computable set of numbers, e.g., some family of rational

numbers. The set of boundaries is given by B
def
= F∪{+∞,−∞}, and is ordered

by the natural extension of the ‘≤’ relation. The set I of intervals is

I
def
=
{

(b1, b2)
∣∣∣ b1 ∈ B, b2 ∈ B

}
∪
{

[ b1, b2)
∣∣∣ b1 ∈ F, b2 ∈ B

}
∪
{

(b1, b2 ]
∣∣∣ b1 ∈ B, b2 ∈ F

}
∪
{

[ b1, b2 ]
∣∣∣ b1 ∈ F, b2 ∈ F

}
.

Since any I ∈ I is a finite representations of a subset of R we will confuse
intervals with their denotation. Thus we can state that intervals are closed
under intersection, i.e., for each I1, I2 ∈ I, I1 ∩ I2 ∈ I. The set of arithmetic

relations is R
def
= {=, 6=,≤<,≥, >} and our constraints are given by

C def
=
{
e1 ./ e2

∣∣∣ e1, e2 ∈ E, ./ ∈ R
}
∪ { e C I | e ∈ E, I ∈ I } ∪ {⊥,>}.

The meaning of the constraint e C I is the obvious one: any real value the
expression e can take is contained in I. Thus C provides a mixture of qualitative
(relationships between expressions) and quantitative (bounds on the values of
the expressions) knowledge.

The approximate inference techniques we are interested in can be encoded
into an entailment relation ‘`’ over C. First we need to specify how we deal
with intervals: we can intersect them, weaken them, and we detect failure by
recognizing the empty ones:

{e C I1, e C I2} ` e C I1 ∩ I2,

{e C I} ` e C I ′, if I ⊆ I ′,

{e C I} ` ⊥, if I = ∅.

Two techniques for exploiting pure qualitative information are symmetric and
transitive closure:

{e1 ./ e2} ` e2 ./
−1 e1,

{e1 ./ e2, e2 ./
′ e3} ` e1 ./

′′ e3, if ./′′ = tc(./, ./′),
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where ./−1 is the inverse of ./ (e.g., < is the inverse of >, ≥ of ≤ and so on),
and tc : R×R� R is the partial function individuated by the following table:

tc < ≤ > ≥ = 6=

< < < <

≤ < ≤ ≤

> > > >

≥ > ≥ ≥

= < ≤ > ≥ = 6=

6= 6=

This technique allows the inference of A < C from A ≤ B and B < C. Of
course, qualitative information can be combined and can lead to the detection
of inconsistencies:

{e1 ./ e2, e1 ./
′ e2} ` e1 ./

′′ e2, if ∀x, y ∈ R : (x ./ y ∧ x ./′ y)⇒ x ./′′ y,

{e1 ./ e2, e1 ./
′ e2} ` ⊥, if ∀x, y ∈ R : ¬(x ./ y ∧ x ./′ y).

A classical quantitative technique is interval arithmetic that allows to infer the
variation interval of an expression from the intervals of its sub-expressions. Let
f(e1, . . . , ek) be any arithmetic expression having e1, . . . , ek as subexpressions.
Then{

f(e1, . . . , ek) C I, e1 C I1, . . . , ek C Ik
}
` f(e1, . . . , ek) C f̈(I1, . . . , Ik),

where f̈ : Ik → I is such that for each x1 ∈ I1, . . . , xk ∈ Ik, it happens
that f(x1, . . . , xk) ∈ f̈(I1, . . . , Ik). For example, A C [ 3, 6) ∧ B C [−1, 5 ] `
A+B C [ 2, 11). Another technique is numeric constraint propagation, which
consists in determining the relationship between two expressions when their
associated intervals do not overlap, except possibly at their endpoints. The
associated family of axioms is

{e1 C I1, e2 C I2} ` e1 ./ e2, if ∀x1 ∈ I1, x2 ∈ I2 : x1 ./ x2.

For example, if A ∈ (−∞, 2 ], B ∈ [ 2,+∞), and C ∈ [ 5, 10 ], we can infer
that A ≤ B and A < C. It is also possible to go the other way around, i.e.,
knowing that U < V may allow to refine the intervals associated to U and V
so that they do not overlap. We call this weak interval refinement :

{e1 ./ e2, e1 C I1, e2 C I2} ` e1 C I ′1

where I ′1
def
= {x1 ∈ I1 | ∃x2 ∈ I2 . x1 ./ x2 }. This is an example of local-

consistency technique [33,31]. In summary, by considering the transitive clo-
sure of ` and with some minor technical additions we end up with a simple
constraint system that characterizes precisely the combination of the above
techniques. Other techniques, such as interval refinement, can be easily in-
corporated. What we have just presented is a watered-down version of the
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numerical component (presented as a simple constraint system) employed in
the China analyzer [3].

5 Determinate constraint systems

Determinate constraint systems are at the bottom of the hierarchy. Such a
construction is uniquely determined by a simple constraint system together
with appropriate merge operator and diagonal elements. Notice that, for sim-
plicity, we present only the finite fragment of the constraint system, that is,
the sub-structure consisting of the finite elements only.

Definition 22 (Determinate constraint system.) Let S def
= 〈C,`,⊥,>〉 be a

simple constraint system. Let 0,1 ∈ |C|0 and ⊗ : |C|0 × |C|0 → |C|0 be given,
for each C1, C2 ∈ |C|0, by

0
def
= C, 1

def
= ρ(∅), C1 ⊗ C2

def
= ρ(C1 ∪ C2).

Let ⊕ : |C|0 × |C|0 → |C|0 be an operator satisfying conditions G2 and G4 of
Definition 6. The projection operators ∃̄̄∃~Λ : |C|0 → |C|0 are given, for each
~Λ ∈ Λ? and each C ∈ |C|0, by

∃̄̄∃~ΛC
def
= ρ

({
c ∈ C

∣∣∣ FV (c) ⊆ ~Λ
})
.

Finally, let {dX̄Ȳ }X̄,Ȳ ∈Vars? be a family of elements of |C|0. We will call the
structure 〈|C|0,⊗,⊕,0,1, {∃̄̄∃~Λ}, {dX̄Ȳ }〉 a determinate constraint system over
S and ‘⊕’.

Theorem 23 Each determinate constraint system is indeed a constraint sys-
tem. Also, for each C1, C2 ∈ |C|0, we have C1 ` C2 ⇐⇒ C1 ⊇ C2.

The choice of a suitable merge operator, required in addition to an s.c.s. to
obtain a determinate constraint system, can be done with relative freedom.
This freedom can often be conveniently exploited in order to get a reason-
able complexity/precision tradeoff. The same will apply to the ask-and-tell
constraint systems of Section 7.

Observe that, given C1, C2 ∈ |C|0, there is no a priori guarantee that C =
C1 ∩C2 ∈ |C|0. In fact, there are simple constraint systems where this is false.
Defining the merge operator as set intersection, however, works in many cases.
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A trivial example of merge operator is the following, whose definition is inde-
pendent from the simple constraint system at hand:

C1 ⊕ C2
def
=


C1, if C1 = C2 or C2 = 0;

C2, if C1 = 0;

1, otherwise.

(8)

For a less trivial example, suppose we are approximating subsets of Rn by
means of (closed) convex polyhedra. Of course they will be represented by
sets of linear disequations over x1, . . . , xn, but, for the purpose of the present
example, we will consider the polyhedra themselves. For any convex polyhedra
X, Y ⊆ Rn, define X ` Y iff X ⊆ Y and

X ⊕ Y def
=


X, if X = Y or Y = ∅;

Y, if X = ∅;

bb(X ∪ Y ), otherwise,

(9)

where bb(Z) is the smallest “bounding box” containing Z ⊆ Rn, namely

bb(Z)
def
=
{

(x1, . . . , xn)
∣∣∣ ∀i = 1, . . . , n : inf πi(Z) ≤ xi ≤ sup πi(Z)

}
.

The most precise merge operator is, of course, given by the convex hull, i.e.,

X ⊕ Y def
= min

{
W ⊆ Rn

∣∣∣ W ⊇ X ∪ Y and W is a c.p.
}
. (10)

Notice that (10) satisfies both the absorption laws (thus giving rise to a lat-
tice), (8) and (9) do not. None of them results in a distributive constraint
system. Furthermore, (8) and (9) are closed, while (10) is not.

5.1 Definiteness analysis: Con

Consider the extension of the atomic simple constraint system, C ′, introduced
in Section 4.1, and apply to it the determinate constraint system construction

with C1⊕C2
def
= C1 ∩C2 for each C1, C2 ∈ |C ′|. Let also the diagonal elements

be given, for each X̄, Ȳ ∈ Vars? of the same cardinality, by

dX̄Ȳ
def
= ρ

(
{ πi(X̄)� πi(Ȳ ) | 1 ≤ i ≤ # X̄ }

)
.

The resulting domain (a closed and Noetherian d.c.s.) is the simplest one for
definiteness analysis, and it was used in early groundness analyzers [32,30].
The name Con comes from the fact that elements of the form {X1, . . . , Xn}
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are usually regarded as the conjunctionX1∧· · ·∧Xn, meaning thatX1, . . . , Xn

are definitely bound to a unique value. In this view ‘⊗’ corresponds to logical
conjunction. Con is a very weak domain for definiteness analysis. It cannot
capture either “aliasing” (apart from the special kind of aliasing arising from
parameter passing) or more complex dependencies between variables such as
those implied by “concrete” constraints like A = f(B,C) and A+B+C = 0.
Moreover it cannot represent or exploit disjunctive information.

6 Powerset constraint systems

For the purpose of program analysis of monotonic properties it is not necessary
to represent the “real disjunction” of constraints collected through different
computation paths, since we are interested in the common information only. To
this end, a weaker notion of disjunction suffices. We define powerset constraint
systems, which are instances of a well known construction, i.e., disjunctive
completion [16]. For doing that we need some notions from the theory of
posets.

Given a poset 〈L,⊥,≤〉, the relation � ⊆ ℘(L)×℘(L) induced by ≤ is given,
for each S1, S2 ∈ ℘(L) by

(S1 � S2) ⇐⇒ (∀x1 ∈ S1 : ∃x2 ∈ S2 . x1 ≤ x2).

A subset S ∈ ℘(L) is called non-redundant iff ⊥ /∈ S and

∀x1, x2 ∈ S : x1 ≤ x2 =⇒ x1 = x2.

The set of non-redundant subsets of L wrt ≤ is denoted by ℘n(L,≤). The
function Ω≤L : ℘(L)→ ℘n(L,≤) mapping each set into its non-redundant coun-
terpart is given, for each S ∈ ℘(L), by

Ω≤L(S) = S \ { x ∈ S | x = ⊥ ∨ ∃x′ ∈ S . x < x′ }.

Thus, for S ∈ ℘(L), Ω≤L(S) is the set of maximal elements of S. However, there
is no guarantee, in general, that such maximal elements exist: L could be an
infinite chain without an upper bound in L, and thus would be mapped to
∅ by Ω≤L . We will denote by ℘c(L) the set of all those S ∈ ℘(L) such that,
if S contains an infinite chain C, then it also contains an upper bound for
C. Observe that ℘f(L) ⊆ ℘c(L) and that, if L satisfies the ascending chain
condition, then ℘(L) = ℘c(L).

The powerset construction upgrades a domain by considering sets of elements
of the base-level domain that are non-redundant with respect to the approxi-
mation ordering.
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Definition 24 (Powerset constraint systems.) Given a Noetherian constraint
system D̄ = 〈D,⊗,⊕,0,1, {∃̄̄∃~Λ}, {dX̄Ȳ }〉, the powerset constraint system over
D̄ is given by 〈

℘n(D,`),⊗P,⊕P,0P,1P, {∃̄̄∃
P

~Λ}, {dP

X̄Ȳ }
〉
,

where

S1 ⊗P S2
def
= Ω`D

(
{C1 ⊗ C2 | C1 ∈ S1, C2 ∈ S2 }

)
,

S1 ⊕P S2
def
= Ω`D(S1 ∪ S2),

0P

def
= ∅,

1P

def
= {1},

∃̄̄∃P

~Λ S
def
= Ω`D

(
{ ∃̄̄∃~ΛC | C ∈ S }

)
,

dP

X̄Ȳ
def
= {dX̄Ȳ }.

If D̄ is any constraint system, the finite powerset constraint system over D̄ is〈
℘n(D,`) ∩ ℘f(D),⊗P,⊕P,0P,1P, {∃̄̄∃

P

~Λ}, {dP

X̄Ȳ }
〉
,

where all the operators are as above.

This double definition reflects the two possible uses of powerset constraint
systems. One is to define concrete domains in those cases where the base-
level constraint system is Noetherian. The other is when designing abstract
domains, where clearly only the finite elements are of interest. In both cases,
when we deal with monotonic properties, we lose nothing if we restrict our-
selves to non-redundant sets in order to capture the non-determinism of CLP
languages. This is a consequence of the fact that, when 〈L,⊥,≤〉 is a poset,
we have both Ω≤L(S) � S and S � Ω≤L(S), for each S ∈ ℘c(L). Of course, when
the base-level c.s. is not Noetherian, one has to consider all the subsets in the
design of a concrete domain.

Theorem 25 Any powerset constraint system built over a Noetherian c.s. D̄,〈
℘n(D,`),⊗P,⊕P,0P,1P, {∃̄̄∃

P

~Λ}, {dP

X̄Ȳ }
〉
,

is a closed and completely distributive constraint system, where the ordering
is given, for each S1, S2 ∈ ℘n(D,`), by

S1 `P S2 ⇐⇒ ∀C1 ∈ S1 : ∃C2 ∈ S2 . C1 ` C2. (11)

For any c.s. D̄, the finite powerset c.s. built over D̄ is a distributive constraint
system, where the ordering is given by (11), for S1, S2 ∈ ℘n(D,`) ∩ ℘f(D).
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7 Ask-and-tell constraint systems

We now consider constraint systems having additional structure. This addi-
tional structure allows to express, at the constraint system level, that the
imposition of certain constraints must be delayed until some other constraints
are imposed. In [35] similar constructions are called ask-and-tell constraint
systems. In our construction, ask-and-tell constraint systems are built from
constraint systems by regarding some kernel operators as constraints. We fol-
low [35] in considering cc as the language framework for expressing and com-
puting with kernel operators. For this reason we will present kernel operators
as cc agents. For our current purposes we need only a very simple fragment
of the determinate cc language: the one of finite cc agents. This fragment is
described in [36] by means of a declarative semantics. Here we give also an
operational characterization that is better suited to our needs.

Definition 26 (Finite cc agents: syntax.) A finite cc agent over a constraint
system D̄ = 〈D,⊗,⊕,0,1, {∃̄̄∃~Λ}, {dX̄Ȳ }〉 is any string generated by the follow-
ing grammar:

A ::= tell(C) | ask(C)→ A | A ‖A

where C ∈ D. We will denote by A(D̄) the language of such strings. The
following explicit definition is also given:

ask(C1; . . . ;Cn)→ A ≡
(

ask(C1)→ A
)
‖ · · · ‖

(
ask(Cn)→ A

)
.

When this will not cause confusion we will freely drop the syntactic sugar,
writing C and C → A where tell(C) and ask(C) → A are intended. One
of the beautiful properties of kernel operators is that they can be uniquely
represented by their range, i.e., the set of their fixed points [24]. The denota-
tional semantics of finite cc agents over D̄ is thus conveniently expressed by a
function [[·]] : A(D̄)→ ℘(D) defined following [36].

Definition 27 (Semantics of finite cc agents.) The semantics of finite cc
agents is given by the following equations:

[[C]]
def
= ↓C, [[C → A]]

def
= ↓C ∪ [[A]], [[A ‖B]]

def
= [[A]] ∩ [[B]].

Observe that the actual kernel operator AK corresponding to a finite agent

A ∈ A(D̄) can be recovered from [[A]] as AK
def
= λC . sup((↓C) ∩ [[A]]). The

introduction of a syntactic normal form for finite cc agents allows to simplify
the subsequent semantic treatment.

Definition 28 (Finite cc agents: syntactic normal form.) The transformation
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η over A(D̄) is defined, for Ca, Ca
1 , C

a
2 , C

t ∈ D and A,A1, A2 ∈ A(D̄), as
follows:

η(Ca → Ct)
def
=

1→ 1, if Ca ` Ct;

Ca → (Ca ⊗ Ct), otherwise;

η(Ct)
def
= 1→ Ct;

η
(
Ca

1 → (Ca
2 → A)

)
def
= η

(
(Ca

1 ⊗ Ca
2 )→ A

)
;

η
(
Ca → (A1 ‖ A2)

)
def
= η

(
(Ca → A1) ‖ (Ca → A2)

)
;

η(A1 ‖ A2)
def
= η(A1) ‖ η(A2).

The following fact is easily proved.

Proposition 29 The transformation η of Definition 28 is well defined. Fur-
thermore, if A ∈ A(D̄) then [[η(A)]] = [[A]] and η(A) is of the form

(Ca
1 → Ct

1) ‖ · · · ‖ (Ca
n → Ct

n), where Ct
i  C

a
i for each i = 1, . . . , n.

Thus, by considering only agents of the form ‖ni=1 C
a
i → Ct

i we do not lose
any generality. We will call elementary agents of the kind Ca → Ct ask-tell
pairs. Now we express the operational semantics of finite cc agents by means of
rewrite rules. An agent in syntactic normal form is rewritten by applying the
logical rules of the calculus modulo a structural congruence. This congruence
states, intuitively, that we can regard an agent as a set of (concurrent) ask-tell
pairs. The semantics given in Definition 27 clearly allows that. From now on
we will treat the ‘‖’ operator as a (polymorphic) constructor for flat sets.

Definition 30 (A calculus of finite cc agents.) Let 1A

def
= 1 → 1. The struc-

tural congruence of the calculus is the smallest congruence relation ≡s such
that 〈A(D̄), ‖,1A〉/≡s is a commutative and idempotent monoid. The reduc-
tion rules of the calculus are given in Figure 1. We also define the relation
ρA ⊆ A(D̄)×A(D̄) given, for each A,A′ ∈ A(D̄), by

A ρA A
′ def⇐⇒ ∃n ∈ N . (A = A1) ∧ (An = A′) ∧ A1 7→ A2 7→ · · · 7→ An 79

In the following we will systematically abuse the notation denoting A(D̄)/≡s
simply by A(D̄). Consequently, every assertion concerning A(D̄) is to be un-
derstood modulo structural congruence. We introduce now, following [36], a
normal form for finite cc agents.
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Structure

A1 ≡s A′1 A′1 7−→ A′2 A′2 ≡s A2

A1 7−→ A2

A1 7−→ A′1

A1 ‖ A2 7−→ A′1 ‖ A2

Reduction r(1, 2)

Ca
1 ` Ca

2 Ca
1 ⊗ Ct

2 ` Ct
1

(Ca
1 → Ct

1) ‖ (Ca
2 → Ct

2) 7−→ (Ca
2 → Ct

2)

Deduction d(1, 2)

Ct
1 ` Ca

2 Ct
1 0 C

t
2

(Ca
1 → Ct

1) ‖ (Ca
2 → Ct

2) 7−→
(
Ca

1 → (Ct
1 ⊗ Ct

2)
)
‖ (Ca

2 → Ct
2)

Absorption a(1, 2)

Ca
1  C

a
2 Ca

1 0 C
t
2 Ct

1  C
a
1 ⊗ Ct

2

(Ca
1 → Ct

1) ‖ (Ca
2 → Ct

2) 7−→
(
(Ca

1 ⊗ Ct
2)→ Ct

1

)
‖ (Ca

2 → Ct
2)

Fig. 1. Reduction rules for finite cc agents.

Definition 31 (Semantic normal form.) [36] An agent A ∈ A(D̄) is in se-
mantic normal form if and only if A = 1A or A = ‖ni=1 C

a
i → Ct

i and, for each
i, j ∈ {1, . . . , n}:

N1. C
t
i  C

a
i ;

N2. i 6= j =⇒ Ca
i 6= Ca

j ;
N3. C

a
i  C

a
j =⇒ Ca

i  C
t
j;

N4. C
t
i ` Ca

j =⇒ Ct
i ` Ct

j.

It turns out that this normal form is indeed very strong, whence its name.

Theorem 32 [36] Two agents A1, A2 ∈ A(D̄) have the same semantic normal
form if and only if [[A1]] = [[A2]].

The purpose of our rewriting system is to put finite cc agents into semantic
normal form, preserving their original semantics.

Theorem 33 For each agent A ∈ A(D̄) in syntactic normal form, if A ρA

A′ then [[A]] = [[A′]] and A′ is in semantic normal form. The term-rewriting
system depicted in Figure 1 is strongly normalizing. Thus the relation ρA is
indeed a function ρA : A(D̄) → A(D̄). Finally, for A1, A2 ∈ A(D̄) we have
ρA(A1) = ρA(A2) if and only if [[A1]] = [[A2]].
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The situation here is almost identical to the one of Definition 21, in that we
have a domain-independent strong normal form also for the present class of
constraints (i.e., agents) incorporating the notion of dependency.

Definition 34 (Elements.) The elements of A(D̄) are the fixed points of the
inference map ρA. The set of elements of A(D̄) will be denoted by |A(D̄)|.

We are now in position to introduce a new class in our hierarchy of constraint
systems.

Definition 35 (Ask-and-tell constraint system.) Given a constraint system
D̄ = 〈D,⊗,⊕,0,1, {∃̄̄∃~Λ}, {dX̄Ȳ }〉, let A = |A(D̄)|. Then let 0A,1A ∈ A, and
⊗A : A×A → A be given, for each A1, A2 ∈ A, by

0A

def
= 1→ 0,

1A

def
= 1→ 1,

A1 ⊗A A2
def
= ρA(A1 ‖ A2).

The projection operators ∃̄̄∃A

~Λ : A → A are given, for each ~Λ ⊆f Vars and
A ∈ A, by

∃̄̄∃A

~ΛA
def
= ρA



(
∃̄̄∃~ΛC

a → ∃̄̄∃~ΛC
t
) ∣∣∣∣∣∣∣

(
Ca → Ct

)
∈ A and((

1→ ∃̄̄∃~ΛCa
)
⊗A A

)
`A

(
1→ Ca

)

 .

Finally, let ⊕A : A×A → A be an operator satisfying the conditions G2 and
G4 of Definition 6. For any indexed family {dA

X̄Ȳ }X̄,Ȳ ∈Vars? of elements of

A, we will call 〈A(D̄),⊗A,⊕A,0A,1A, {∃̄̄∃
A

~Λ}, {dA

X̄Ȳ }〉 an ask-and-tell constraint
system over D̄ and ‘⊕A’.

Notice that, as far as the diagonal elements are concerned, we have left com-
plete freedom. This is because, in an ask-and-tell construction, the induced

diagonals dA

X̄Ȳ

def
= 1→ dX̄Ȳ are not necessarily a good choice (see Section 7.3

for a simple example).

Theorem 36 If D̄ is a c.s., then 〈|A(D̄)|,⊗A,⊕A,0A,1A, {∃̄̄∃
A

~Λ}, dA

X̄Ȳ 〉 is so.

The projection operators are indeed quite complicated. The problem originates
from requirement N3 of the normal form of Definition 31. This requirement
enforces the need of the absorption rule in the calculus. The rule, by strength-
ening the ask-constraint of pairs, introduces “false dependencies”. Consider,
for instance, a constraint system where elements include the finite subsets of
{ p(X), q(X), r(X) | X ∈ Vars } and the operators ⊗ and ⊕ are set union and
intersection, respectively. The non-normalized cc agent over this constraint
system

A = 1→ {q(Y )} ‖ {p(X)} → {r(X), q(Y )}
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is normalized, by means of the absorption rule, to

A′ = 1→ {q(Y )} ‖ {p(X), q(Y )} → {r(X), q(Y )}.

The absorption rule has thus introduced the dependency of r(X) from q(Y ),
which is indeed false in the context of A′ (as it was in the context of A).
A definition of the projection operators not taking into account this phe-
nomenon would cause the inaccurate result ∃̄̄∃A

X A
′ = 1A. The projection oper-

ators given in Definition 35, instead, recognize the false dependency by not-
ing that {p(X)} = ∃̄̄∃X{p(X), q(Y )} is, in the context of A′, equivalent to
{p(X), q(Y )}, that is

1→ {p(X)} ‖ A′ `A 1→ {p(X), q(Y )}.

We can thus obtain the expected result ∃̄̄∃A

X A
′ = {p(X)} → {r(X)}. We will

see in a moment other problems provoked by the absorption rule and, in turn,
by the normal form we employ for agents.

7.1 Merge Operators

Even though the ask-and-tell construction is parameterized with respect to a
merge operator, it is possible to induce such an operator from the one of the
base-level constraint system. Since this is a problematic point we proceed with
care.

Suppose that the base-level constraint system D̄ is a lattice. Thus kernel op-
erators over D̄ form again a lattice, where the lub is given, for k1 and k2 kernel
operators and for each C ∈ D, by

(k1 t k2)(C)
def
= k1(C)⊕ k2(C), for C ∈ D, (12)

whose fixed points are

(k1 t k2)(D) =
{
C1 ⊕ C2

∣∣∣ C1, C2 ∈ k1(D) ∪ k2(D)
}
.

In terms of kernel operators, as pointed out in [35], this can be thought of as
a kind of determinate disjunction: k1tk2 gives, on any input C, the strongest
common information between k1 and k2. The computational significance of
this concept has been first recognized in [39], where determinate disjunction
allows for significant improvements in some constraint propagation algorithms.

The problem is that, even when k1 and k2 are represented by finite cc agents
A1 and A2, namely k1 = AK1 and k2 = AK2 , we have no guarantees whatsoever
that k1 t k2 is representable by a finite cc agent. In other words, (syntactic)
finite cc agents are not, in general, closed under the (semantic) lub operation.
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As a consequence, we must content ourselves with upper bounds (unless we
are willing to enrich our representation language with a construct like A1 +A2

expressing determinate disjunction, and we are not). Observe that the very
precise effect of (12) can be obtained (at a consequently high cost) apply-
ing a powerset construction (Section 6) to the ask-and-tell constraint system
considered. This way, when merging two (non-redundant) agents we will keep
both of them, thus realizing, in practice, the ‘+’ construct mentioned above.
If we do that, obviously, there is no need at all to define a merge operator at
the ask-and-tell level.

In our general situation, the base-level constraint system D̄ might not be a
lattice, and (12) might not define a kernel operator. In these cases, an upper
bound on the poset of kernel operators over D̄ can be given as

(k1 t̃ k2)(C)
def
= C ⊗

(
k1(C)⊕ k2(C)

)
, for C ∈ D, (13)

which, still, is not guaranteed to correspond to any finite cc agent over D̄. We
stress again that our non-commitment to lattices in the general definition of
constraint systems (Section 3.3) is not merely dictated by the desire of freely
managing the complexity/precision tradeoff. In cases like the one at hand we
have no other sensible choice due to representation problems.

Our study of computable merge operators starts with a simple operation merg-
ing two (not necessarily normalized) agents into one. This is done, roughly
speaking, by taking the meet of the ask constraints, and the merge of the tell
constraints.

Definition 37 (Merge operator over agents.) Consider a constraint system
D̄ = 〈D,⊗,⊕,0,1, {∃̄̄∃~Λ}, {dX̄Ȳ }〉, and any two finite cc agents over D̄ in
syntactic normal form: A1 = ‖ni=1 C

a
i → Ct

i and A2 = ‖mj=1 D
a
j → Dt

j. Then

A1 ⊕̃A A2
def
=

n

‖
i=1

m

‖
j=1

(Ca
i → Ct

i ) ⊕̃A (Da
j → Dt

j), (14)

where, if we define Ca
ij

def
= Ca

i ⊗Da
j and Ct

ij
def
= Ct

i ⊕Dt
j, we have

(Ca
i → Ct

i ) ⊕̃A (Da
j → Dt

j)
def
=

1A, if Ca
ij ` Ct

ij;

Ca
ij → (Ca

ij ⊗ Ct
ij), otherwise.

(15)

It is easy to see that this syntactic operation corresponds, at the semantic
level, to an upper bound.

Proposition 38 If A1 and A2 are as stated in Definition 37, then A1 ⊕̃A A2

is in syntactic normal form. Further, we have both [[A1]] ⊆ [[A1 ⊕̃A A2]] and
[[A2]] ⊆ [[A1 ⊕̃A A2]], that is, A1 `A A1 ⊕̃A A2 and A2 `A A1 ⊕̃A A2.
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We now have an obvious merge operator that is completely determined by the
underlying, base-level constraint system.

Definition 39 (Canonical ask-and-tell merge operator.) Let A def
= |A(D̄)|.

The operator ⊕̂A : A×A → A given, for each A1, A2 ∈ A, by

A1 ⊕̂A A2
def
= ρA(A1 ⊕̃A A2)

is called the canonical merge operator over A induced by D̄.

Unfortunately, the canonical merge operator turns out to be inaccurate, due to
the normal form employed for agents. Consider the ask-and-tell construction
applied to the Con domain of Section 5.1, and the agents in normal form 5

A1
def
= 1→ Z ‖XZ → XY Z and A2

def
= X → XY.

It easy to see that the canonical merge operator gives

A1 ⊕̂A A2
def
= ρA(A1 ⊕̃A A2) = XZ → XY Z.

If we consider the non-normalized agent A′1 = 1 → Z ‖X → XY Z, we have
[[A′1]] = [[A1]] but ρA(A′1 ⊕̃A A2) = X → XY , which is strictly stronger than
A1 ⊕̂A A2. The problem can be tracked down, as in the case of the projection
operators, to the introduction, by means of the absorption rule, of “unnec-
essary dependencies” needed to satisfy condition N3 of the semantic normal
form. However, while for projection operators we had a standard solution, here
the situation is more difficult. As the example suggests, in order to define a
precise merge operator we need mechanisms for

(1) weakening constraints (now we only strengthen them), and
(2) splitting ask-tell pairs (now we only combine them).

We now give a general way of defining merge and widening operators for
the ask-and-tell construction that are more precise than the canonical merge
operator. First of all, let us deal with the problem of constraints’ weakening.

Definition 40 (Weakening.) An operation } : D → D over a constraint sys-
tem D̄ = 〈D,⊗,⊕,0,1, {∃̄̄∃~Λ}, {dX̄Ȳ }〉 is called a weakening operator for D̄ if
it satisfies, for each C1, C2 ∈ D:

Q1. (C1 } C2)⊗ C1 = C1,
Q2. (C1 } C2)⊗ C2 = C1 ⊗ C2,
Q3. (C1 } C2)} C2 = C1 } C2.

5 For simplicity we use juxtaposition instead of the usual set notation.

31



The intuitive explanation of this axiomatization is as follows. Condition Q1,
which can be restated as C1 ` C1 } C2, means that the weakening operation
is correct (it does not add anything). Condition Q2 states that weakenings are
not too aggressive: a weakened constraint can be restored by adding what was
taken out. Q3 says that taking out twice the same thing is pointless. Observe
that these conditions are very weak, while being sufficient for what follows.

Example 41 (Weakening over intervals.) Consider a domain for numerical
bounds analysis based on intervals. For instance, take the simple constraint
system of Section 4.2, restricted to the intervals component, and apply to it
the determinate c.s. construction. A weakening operator can be defined along
the following lines, considering, for simplicity, only closed intervals:

[ l1, u1 ]} [ l2, u2 ]
def
= [ l, u ],

where

l
def
=

−∞, if l1 ≤ l2;

l1, otherwise;
and u

def
=

+∞, if u1 ≥ u2;

u1, otherwise.

Such an operator is easily verified being a weakening.

We are now in position to define a class of procedures for weakening the ask
constraints of finite cc agents while preserving the semantics. As this operation
is somewhat opposite to the absorption rewrite rule of our rewriting system,
we call it de-absorption. This involves the splitting of ask-tell pairs.

Definition 42 (De-absorption step.) Let A = ‖ni=1 C
a
i → Ct

i be an agent in
syntactic normal form over a c.s. D̄, and let } be a weakening over D̄. Then
A′ is obtained from A by means of a de-absorption step based on } if and only
if h, k ∈ {1, . . . , n} are such that Ca

h ` Ca
k , the condition Ca

h 6= (Ca
h}C

t
k)⊗Ca

k

holds, and

A′ =
(
(Ca

h } C
t
k)⊗ Ca

k → Ct
h

)
‖ A.

Observe that any de-absorption step results in the strict weakening of an ask
constraint. In fact, we have Ca

h ` (Ca
h}C

t
k) by Q1, and Ca

h ` Ca
k by hypothesis,

thus Ca
h  (Ca

h } C
t
k)⊗ Ca

k .

Definition 43 (De-absorption procedure.) A de-absorption procedure is any
algorithm transforming a finite cc agents in syntactic normal form that can
be characterized as follows:

Phase 1. Transform the input agent A into A′ by performing any number of
de-absorption steps.

32



Phase 2. Transform A′ into the output agent A′′ by applying the rewriting
system of Figure 1 restricted to the structural and reduction rules.

A de-absorption procedure will be called maximal if it applies all the possible
de-absorption steps.

It is now possible to prove the following result.

Theorem 44 Any de-absorption procedure is semantics-preserving.

In all those cases where we have a de-absorption procedure that is a function
over |A(D̄)| we have an obvious way to define a merge operator: by applying
the syntactic merge operator of Definition 39 to de-absorbed agents.

Definition 45 (Merge operator with de-absorption.) Let D̄ be a constraint
system, and let δ} : |A(D̄)| → A(D̄) be a de-absorption procedure. The merge
operator based on δ} is given, for each A1, A2 ∈ |A(D̄)|, by

A1 ⊕̇A A2
def
= ρA

(
δ}(A1) ⊕̃A δ}(A2)

)
.

Any such operator, by virtue of Theorem 44 and Proposition 38, is clearly a
merge operator in the sense of Definition 6. De-absorption procedures that are
not functions are still useful for designing widening operators.

We now quickly show some examples of ask-and-tell constraint systems. For
the more interesting things we have to wait until the next section, where
combination of constraint domains are introduced.

7.2 More bounds and relations analysis for numeric domains

Ask-and-tell constraint systems are suitable for modeling approximate infer-
ence techniques that are very useful in a practical setting. Following Sec-
tion 4.2, there is another technique that is used for the analysis described in
[6,7,3]: relational arithmetic [38]. This technique allows to infer constraints on
the qualitative relationship of an expression to its arguments. Consider the
simple constraint system of Section 4.2, and apply to it the determinate con-
struction of Section 5. Now apply the ask-and-tell construction to the result.
Relational arithmetic can be described by a number of (concurrent) agents.
Here are some of them, where x and y are arithmetic expressions, and ./ ranges

in R
def
= {=, 6=,≤<,≥, >}:
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ask(x ./ 0)→ tell
(
(x+ y) ./ y

)
ask(x > 0 ∧ y > 0 ∧ x ./ 1)→ tell

(
(x ∗ y) ./ y

)
ask(x > 0 ∧ y < 0 ∧ x ./ 1)→ tell

(
y ./ (x ∗ y)

)
ask(x ./ y)→ tell(ex ./ ey)

An example of inference is deducing X+1 ≤ Y +2X+1 from X ≥ 0∧Y ≥ 0.
Notice that there is no restriction to linear constraints.

7.3 Definiteness analysis: Def, Pos, and more

The prototypical example of data-flow analysis taking advantage of depen-
dency information is definiteness analysis. In our setting a domain for defi-
niteness can be obtained as follows. Take the atomic s.c.s. of Section 4.1. Apply
to it the determinate construction as outlined in Section 5.1. Now apply the
ask-and-tell construction to the result, with the merge operator obtained along
the lines of Definition 45 choosing:

(1) diagonal elements like dA
XY

def
= {X} → {X,Y } ‖ {Y } → {X, Y };

(2) set-theoretic difference as weakening operator;
(3) the maximal de-absorption procedure (i.e., the one that applies all the

possible de-absorption steps).

It can be shown that the domain so obtained is Def [18,2]. Its elements can
keep track of non-trivial dependencies like the ones induced by symbolic and
numeric constraints. For example, the dependencies of A = f(B,C) are cap-
tured by the agent {A} → {B,C} ‖ {B,C} → {A}. This example gives
us the possibility of pointing out that the entire business of weakenings and
de-absorption procedures is not something we can easily avoid. When using
definite sentences to represent dependencies, as in our case and in the rep-
resentations for Def studied in [2], obtaining a maximal weakening of the
antecedents is crucial for obtaining precise merge operators, let alone for com-
puting the join when it exists. Our present requirement of employing maximal
de-absorption corresponds to the requirement, in the representations studied
in [2], of the sentences being in orthogonal form (which has its costs, since or-
thogonality must be obtained and preserved by all the domain’s operations).
In [2] a merge operator is also presented, for the representation RCNFDef, in-
tended to trade precision for efficiency. It does that by not insisting on orthog-
onality, which in our setting corresponds to the use of a partial de-absorption
procedure.

Pos is (like Def ) a domain of boolean functions [11,2]. It consists precisely
of those functions assuming the true value under the everything-is-true as-
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signment. In [2] it is shown that Pos is strictly more precise than Def for
groundness analysis. If we apply the powerset construction of Section 6 to the
ask-and-tell c.s. of the previous section we obtain a very precise (and complex)
domain for simple dependencies. In [23] it is referred to as f(Def) (where f
denotes disjunctive completion) and is shown to be equivalent to f(Pos). On
the other hand, in [21] it has been shown that f(Pos) is strictly more pre-
cise than Pos, even though this extra-precision is not needed for definiteness
analysis.

8 Combination of domains

It is well known that different data-flow analyses can be combined together.
In the framework of abstract interpretation this can be achieved by means
of standard constructions such as reduced product and down-set completion
[14,15]. The key point is that the combined analysis can be more precise than
each of the component ones for they can mutually improve each other. How-
ever, the degree of cross-fertilization is highly dependent on the degree and
quality of interaction taking place among the component domains.

We now propose a general methodology for domain combination with asyn-
chronous interaction. The interaction among domains is asynchronous in that
it can occur at any time, or, in other words, it is not synchronized with the
domain’s operations. This is achieved by considering ask-and-tell constraint
systems built over product constraint systems. These constraint systems al-
low to express communication among domains in a very simple way. They
also inherit all the semantic elegance of concurrent constraint programming
languages, which provide the basis for their construction. Recently, a method-
ology for the combination of abstract domains has been proposed in [12], which
is directly based on low-level actions such as tests and queries. While the ap-
proach in [12] is immediately applicable to a wider range of analyses (including
the ones dealing with non-monotonic properties) the approach we follow here
for our restricted set of analyses has the merit of being much more elegant. We
start with a finite set of constraint systems each expressing some properties of
interest, and we wish to combine them so as to: (1) perform all the analyses at
the same time; and (2) have the domains cooperate to the intent of mutually
improving each other. The first goal is achieved by considering the product of
the given constraint systems.

A product constraint system can easily be obtained: given the constraint sys-
tems D̄1, . . . , D̄n just consider their algebraic direct product (where all the
operations and relations are defined point-wise). An alternative way of ob-
taining a product constraint system is to start from a collection of simple
constraint systems and then to apply the determinate construction.
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Definition 46 (Product of simple constraint systems.) Given a finite family
of simple constraint systems Si = 〈Ci,`i,⊥i,>i〉 for i = 1, . . . , n, the product
of the family is the structure given by

n∏
i=1

Si def
= 〈C×,`×,⊥×,>×〉,

where the product tokens are

C× def
=
{

(c1,>2, . . . ,>n)
∣∣∣ c1 ∈ C1

}
∪
{

(>1, c2,>3, . . . ,>n)
∣∣∣ c2 ∈ C2

}
...

∪
{

(>1, . . . ,>n−1, cn)
∣∣∣ cn ∈ Cn }

∪ {⊥×},

⊥× def
= (⊥1, . . . ,⊥n), >× def

= (>1, . . . ,>n), and the product entailment is de-
fined as the least relation satisfying conditions E1–E5 of Definition 19 and the
following ones, for each C ∈ ℘f(C×):

π1(C) `1 c1 =⇒ C `× (c1,>2, . . . ,>n)
...

...
...

πn(C) `n cn =⇒ C `× (>1, . . . ,>n−1, cn).

Taking the product of constraint systems, we have realized the simplest form
of domain combination. It corresponds to the direct product construction of
[14], allowing for different analyses to be carried out at the same time. Notice
that there is no communication at all among the domains.

However, as soon as we consider the ask-and-tell constraint system built over
the product, we can express asynchronous communication among the domains
in complete freedom. At the very least we would like to have the smash product
among the component domains. This is realized by the agent ‖ni=1 0i → 0×.
To say it operationally, the smash agent globalizes the (local) failure on any
of the component domains. This is the only domain-independent agent we
have. Things become much more interesting when instantiated over particular
constraint domains. In the CLP(R) system [28] non-linear constraints (like
X = Y ∗ Z) are delayed (i.e., not treated by the constraint solver) until they
become linear (e.g., until either Y or Z are constrained to take a single value).
In standard semantic treatments this is modeled in the operational semantics
by carrying over, besides the sequence of goals yet to be solved, a set of delayed
constraints. Constraints are taken out from this set (and incorporated into the
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constraint store) as soon as they become linear. We believe that this can be
viewed in an alternative way that is more elegant, as it easily allows for taking
into account the delay mechanism also in the bottom-up semantics, and makes
sense from an implementation point of view. The basic claim is the following:
CLP(R) has three computation domains: Herbrand, R (well, an approximation
of it), and definiteness. In other words, it also manipulates, besides the usual
ones, constraints of the kind ground\(X), which is interpreted as the variable
X being definitively bound to a unique value. We can express the semantics of
CLP(R) (at a certain level of abstraction) with delay of non-linear constraints
by considering the ask-and-tell constraint system over the product of the above
three domains. In this view, a constraint of the form X = Y ∗Z in a program
actually corresponds to the agent

ask
(
ground\(Y ); ground\(Z)

)
→ tell(X = Y ∗ Z).

In fact, any CLP(R) user must know that X = Y ∗ Z is just a shorthand
for that agent! (A similar treatment can be done for logic programs with
delay declarations.) Obviously, this cannot be forgotten in abstract constraint
systems intended to formalize correct data-flow analyses of CLP(R). Referring
back to Sections 4.2 and 7.2, when the abstract constraint system extracts
information from non-linear constraints, for example with the agent

A = ask(Y > 0 ∧ Z > 0 ∧ Y ./ 1)→ tell
(
(Y ∗ Z) ./ Z

)
of relational arithmetic, you cannot simply let X = Y ∗ Z stand by itself.
By doing this you would incur the risk of overshooting the concrete constraint
system (thus loosing soundness), which is unable to deduce anything from non-
linear constraints. The right thing to do is to combine the numeric abstract
constraint system with one for definiteness (by the product and the ask-and-
tell constructions) and using, instead of A, the agent

A′ = ask
(
ground](Y ); ground](Z)

)
→ A.

Beware not to confuse ground\(X) with ground](X). The first is the concrete
one: X is definite if and only if ground\(X) is entailed in the current concrete
store. In contrast, having ground](X) entailed in the abstract constraint store
at some program point, and assuming a correct definiteness analysis, means
that X is certainly bound to a unique value in the concrete computation at
that program point. The converse, of course, does not necessarily hold.

Let us see another example. The analysis described in [25] aims at the compile-
time detection of those non-linear constraints that will become linear at run-
time. This analysis is important for remedying the limitation of CLP(R) to
linear constraints by incorporating powerful (and computationally complex)
methods from computer algebra as the ones employed in RISC-CLP(Real)
[26]. With the results of the above analysis this extension can be done in
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a smooth way: non-linear constraints that are guaranteed to become linear
will be simply delayed, while only the other non-linear constraints will be
treated with the special solving techniques. Thus, programs not requiring the
extra power of these techniques will be hopefully recognized as such, and will
not pay any penalties. The analysis of [25] is a kind of definiteness. One of
its difficulties shows up when considering the simplest non-linear constraint:
X = Y ∗Z. Clearly X is definite if Y and Z are such. But we cannot conclude
that the definiteness of Y follows from the definiteness of X and Z, as we
also need the condition Z 6= 0. Similarly, we would like to conclude that
X is definite if Y or Z has a zero value. Thus we need approximations of
the concrete values of variables (i.e., bounds analysis), something that is not
captured by common definiteness analyses while being crucial when dealing
with non-linear constraints. If we take the ask-and-tell construction over the
product of a constraint system for definiteness with a numerical one, we can
solve the problem. X = Y ∗ Z would be abstractly compiled into the agent

ask
(
ground](Y ) ∧ ground](Z)

)
→ tell

(
ground](X)

)
‖ ask(Y = 0;Z = 0)→ tell

(
ground](X)

)
‖ ask

(
ground](X) ∧ ground](Z) ∧ Z 6= 0

)
→ tell

(
ground](Y )

)
‖ ask

(
ground](X) ∧ ground](Y ) ∧ Y 6= 0

)
→ tell

(
ground](Z)

)
.

Of course, this is much more precise than the Def formula X ← Y ∧ Z. Ob-
serve that, when analyzing CLP(R) programs, there is a bidirectional flow of
information: definiteness information is required for a correct handling of de-
layed constraints and thus for deriving more precise numerical patterns that,
in turn, are used to provide more precise definiteness information. There is
another obvious way in which numerical bounds and relations improve def-
initeness (and any other analysis, indeed): by excluding computation paths
that are doomed to fail (this is modeled in a domain-independent way by the
smash agent seen above). We are thus requiring a quite complicated interac-
tion between domains. It is even more complicated if you consider that the
numerical component we have sketched is the combination (in the sense of the
present section) of a domain for intervals with one for arithmetic relationships
(even though, for simplicity, it was not presented in that way).

The techniques we propose are suitable for approximating the behavior of sev-
eral common built-ins. Consider, for instance, the functor/3 built-in. Con-
sider a product constraint system with four components: one for simple types
(where tokens like compound(X) or atom(X) indicate that the variable X is
bound to take Herbrand compounds or constants, respectively) one for def-
initeness, one incorporating numerical information (including at least signs,
e.g., tokens of the kind X ≥ 0, X > 0 and X = 0), and one involving symbolic,
structural information. Then, the (success) semantics of functor(T, F, N)
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can be approximated easily and quite precisely by means of the following finite
agent over the product:

tell
(
term(T ), atom(F ), ground(F ), integer(N), N ≥ 0, ground(N)

)
‖

ask
(
atom(T );N = 0;T = F

)
→

tell
(
atom(T ), ground(T ), N = 0, T = F

)
‖

ask
(
compound(T );N > 0;T 6= F

)
→

tell
(
compound(T ), N > 0, T 6= F

)
.

9 Conclusion and future work

We have shown a notion of constraint system that is general enough to en-
compass both the concrete domains of computation of actual constraint logic-
based languages, and several of their abstract interpretations useful for data-
flow analysis. We have also shown how these constraint systems are integrated
within an appropriate framework for the definition of non-standard semantics
of constraint logic-based languages. Some significant members of the intro-
duced class of constraint systems have been presented, together with con-
struction techniques that induce a hierarchy of domains. These domains have
several nice features from a theoretical point of view. In particular, we have
proposed a general methodology for domain combination with asynchronous
interaction. In this kind of combination the communication among domains
can be expressed in a very simple way. The methodology also inherits all the
semantic elegance of concurrent constraint programming languages, that pro-
vide the basis on which it is built. Future work includes studying in depth
the problem of the semantic normal form for finite cc agents, both in general
and in particular cases. The aim is to find more satisfactory solutions to the
problem of merging finite cc agents. We also would like to answer the following
question: are there variations of these ideas that are applicable also to analysis
oriented towards “non-logical” properties?

Acknowledgement

I wish to thank Maurizio Gabbrielli, Roberto Giacobazzi, Andrew M. King,
Giorgio Levi, Catuscia Palamidessi, Francesca Rossi, Vijay Saraswat, William
H. Winsborough, and Enea Zaffanella for the discussions we had on the subject
and for reading draft versions of this paper. Enea was especially kind in helping

39



me with some technical issues. Special thanks to Giorgio for his extensive
support.

References

[1] J. F. Allen. Maintaining knowledge about temporal intervals. Communications
of the ACM, 26(11):832–843, 1983.

[2] T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Two classes of
boolean functions for dependency analysis. Technical Report 94/211, Dept.
Computer Science, Monash University, Melbourne, 1994.

[3] R. Bagnara. On the detection of implicit and redundant numeric constraints
in CLP programs. In M. Alpuente, R. Barbuti, and I. Ramos, editors,
Proceedings of the “1994 Joint Conference on Declarative Programming (GULP-
PRODE ’94)”, pages 312–326, Peñ́ıscola, Spain, September 1994.
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