
Possibly Not Closed Convex Polyhedra
and the Parma Polyhedra Library?

Roberto Bagnara1, Elisa Ricci1, Enea Zaffanella1, and Patricia M. Hill2

1 Department of Mathematics, University of Parma, Italy
{bagnara,ericci,zaffanella}@cs.unipr.it

2 School of Computing, University of Leeds, UK
hill@comp.leeds.ac.uk

Abstract. The domain of convex polyhedra is employed in several sys-
tems for the analysis and verification of hardware and software compo-
nents. Current applications span imperative, functional and logic lan-
guages, synchronous languages and synchronization protocols, real-time
and hybrid systems. Since the seminal work of P. Cousot and N. Halb-
wachs, convex polyhedra have thus played an important role in the for-
mal methods community and several critical tasks rely on their software
implementations. Despite this, existing libraries for the manipulation of
convex polyhedra are still research prototypes and suffer from limita-
tions that make their usage problematic, especially in critical applica-
tions. Furthermore, there is inadequate support for polyhedra that are
not necessarily closed (NNC), i.e., polyhedra that are described by sys-
tems of constraints where strict inequalities are allowed to occur. This
paper presents the Parma Polyhedra Library, a new, robust and complete
implementation of NNC convex polyhedra, concentrating on the distinc-
tive features of the library and on the novel theoretical underpinnings.

Dedicated to the memory of Hervé Le Verge

1 Introduction

Convex polyhedra are regions of some n-dimensional space that are bounded
by a finite set of hyperplanes. A convex polyhedron in Rn describes a relation
between n real-valued quantities. The seminal work of P. Cousot and N. Halb-
wachs [15] introduced the use of convex polyhedra as a domain of descriptions
to solve, by abstract interpretation [13], a number of important data-flow anal-
ysis problems such as array bound checking, compile-time overflow detection,
loop invariant computations and loop induction variables. Convex polyhedra are
also used, among many other applications, for the analysis and verification of

? This work has been partly supported by MURST projects “Abstract Interpretation,
type systems and control-flow analysis” and “Aggregate- and number-reasoning for
computing: from decision algorithms to constraint programming with multisets, sets,
and maps” and by EPSRC grant GR/R53401/01.

synchronous languages [6, 18] and of linear hybrid automata (an extension of
finite-state machines that models time requirements) [20, 22], for the computer-
aided formal verification of concurrent and reactive systems based on temporal
specifications [27], for inferring argument size relationships in logic languages
[5], and for the automatic parallelization of imperative programs [30]. Since the
work of Cousot and Halbwachs, convex polyhedra have thus played an impor-
tant role in the formal methods community and new uses continue to emerge
(see, e.g., [11, 16]). As a consequence, several critical tasks, such as checking
the correctness of synchronization protocols or verifying the absence of run-time
errors of systems whose failure can cause serious damage, rely on the software
implementations of convex polyhedra.

Traditionally, convex polyhedra are assumed to be topologically closed and
described by constraint systems containing linear equations and non-strict lin-
ear inequalities. However, some tasks need to use convex polyhedra that are not
necessarily closed (NNC), i.e., polyhedra that are described by constraint sys-
tems possibly containing strict linear inequalities (in addition to equations and
non-strict inequalities). Strict inequalities are important, for instance, in order
to directly represent non-intersecting temporal regions, as is often the case when
modeling applications where synchronization protocols, asynchronous interac-
tions and temporal constraints come into play. Recently, they have also been
used for the automatic computation of linear ranking functions [11].

Prior to the release of the Parma Polyhedra Library (PPL) [2] which is the
subject of this paper, four libraries for the manipulation of convex polyhedra
were (and continued to be) available:3

1. Polylib, designed and written by H. Le Verge and D. K. Wilde [25, 32];
2. PolyLib, the successor of the library by Le Verge and Wilde [26];
3. New Polka, by B. Jeannet [24];
4. the polyhedra library that comes with the HyTech tool [22].

All libraries,4 including the PPL, use the same basic technique for representing
convex polyhedra (the double description method recalled in Section 3) and the
same core algorithm for manipulating that representation (the implementation
and extension of N. V. Chernikova’s algorithms [8–10] by Le Verge [25], possibly
with the improvements of K. Fukuda and A. Prodon [17]).

Apart from the PPL, only New Polka supports NNC polyhedra. However, this
support is incomplete, incurring avoidable inefficiencies and leaving the client
application with the non-trivial task of a correct interpretation of the results.

Libraries 1 and 4 may incur overflow problems whereas 2 and 3 can use
unbounded integers as coefficients. Libraries 2 and 3 can be configured to use
finite integral types for extra speed but this, of course, comes with the possibility
of overflows.
3 We restrict ourselves to those libraries that are freely available and provide the

services required by applications in static analysis and computer-aided verification.
4 We refer to the following versions that, at the time of writing, are the latest available:

Polylib 2.1, PolyLib 5.0.4, New Polka 1.1.3c, HyTech 1.04f.

In libraries 1–4, matrices of coefficients, which are the main data structures
used to represent polyhedra, cannot grow dynamically and the client applica-
tion is ultimately responsible for specifying their dimensions. Since the worst case
space complexity of the methods employed is exponential, in general the client
application cannot make a safe and practical choice: specifying small dimen-
sions may provoke a run-time failure; generous dimensions may waste significant
amounts of memory and, again, result in unnecessary run-time failures.

The problems caused by run-time errors such as overflow and memory al-
location failure could be mitigated or even solved by suitable mechanisms for
error detection, handling and recovery. This requires the ability to detect the
problem, releasing any affected data-structure whether it be completely or only
partially constructed,and continue the computation with an alternative method
(e.g., by reverting to an interval-based approximation). Library 1 detects some
errors and sets an error flag whereas libraries 3 and 4 detect some errors, print
an error message and abort. Library 2 detects more errors, sometimes setting a
flag and sometimes printing a message and aborting.

Libraries 1–3 are free software released under the GNU General Public Li-
cense (GPL, see http://www.gnu.org/). Thus, when faced with the need to
overcome the above mentioned limitations, anyone can freely take and use them
as the basis for further development. However, it appears that none of the li-
braries provide documentation for the interfaces and code that is adequate for
an outsider to make such improvements with any real confidence. This feeling of
insecurity is aggravated by the discovery of some errors and imprecisions in the
theoretical sections of the documentation of some libraries (for more information
see [3], which itself contains an error, now corrected in [4]). Moreover, a complete
solution to issues such as error recovery and fully dynamic memory allocation
requires a somewhat radical departure from the existing code bases.

For all these reasons we decided to write the PPL, a robust and complete im-
plementation of convex polyhedra. This paper describes the library concentrating
on some of its distinctive features and the novel theoretical underpinnings.

The plan of the paper is as follows: Section 2 recalls some basic notation and
terminology; Section 3 introduces convex polyhedra and the double description
method paying attention to common pitfalls; Section 4 presents the NNC poly-
hedra and describes (from a theoretical perspective) how they are handled in the
PPL; Section 5 briefly describes the design and implementation of the PPL and
how it addresses all the limitations we have just discussed; Section 6 concludes.

A longer version of this paper, containing the proofs of the results presented
here, is available as a technical report [3].

2 Preliminaries

In this paper, all topological arguments refer to the topological space Rn with
the standard topology. The topological closure of S ⊆ Rn is denoted by C(S)
and defined as C(S) def=

⋂
{C ⊆ Rn | S ⊆ C and C is closed }. We denote the

set of all non-negative reals by R+. For each i ∈ {1, . . . , n}, vi denotes the i-th

component of the (column) vector v ∈ Rn. We denote by 0 the vector of Rn,
called the origin, having all components equal to zero. A vector v ∈ Rn can also
be interpreted as a matrix in Rn×1 and manipulated accordingly using the usual
definitions for addition, multiplication (both by a scalar and by another matrix),
and transposition, which is denoted by vT. The scalar product of v,w ∈ Rn,
denoted 〈v,w〉, is the real number vTw =

∑n
i=1 viwi. For any relational operator

./ ∈ {=,≥,≤, <, >}, we write v ./ w to denote the conjunctive proposition∧n
i=1(vi ./ wi). In contrast, v 6= w will denote the proposition ¬(v = w). We

will sometimes use the convenient notation a ./1 b ./2 c to denote the conjunction
a ./1 b ∧ b ./2 c and we will not distinguish conjunctions of propositions from
sets of propositions. For each set S ⊆ Rn of finite cardinality m, we denote by
matrix(S) ⊆ Rn×m the set of all matrices having S as the set of their columns.

3 Convex Polyhedra and the Double Description Method

For each vector a ∈ Rn and scalar b ∈ R, where a 6= 0, the linear (non-strict)
inequality constraint 〈a,x〉 ≥ b defines a closed affine half-space. The linear
equality constraint 〈a,x〉 = b defines an affine hyperplane. Convex polyhedra are
usually described as finite systems of linear equality and inequality constraints.
When working at the theoretical level, it is simpler to express each equality
constraint as the intersection of the two half-spaces 〈a,x〉 ≥ b and 〈−a,x〉 ≥ −b.

Definition 1. (Closed polyhedron.) The set P ⊆ Rn is a closed polyhedron
if and only if either P can be expressed as the intersection of a finite number of
closed affine half-spaces of Rn, or n = 0 and P = ∅.

Alternatively, the definition of a convex polyhedron can be based on some
of the geometric features of the set of solutions of such a system of constraints.
A vector r ∈ Rn such that r 6= 0 is a ray (or direction of infinity) of a non-
empty polyhedron P ⊆ Rn if, for every point p ∈ P and every λ ∈ R+, it holds
p+λr ∈ P; a vector l ∈ Rn is a line of P if both l and−l are rays of P. The empty
polyhedron has no rays and no lines. As was the case for equality constraints,
the theory can dispense with the use of lines by using the corresponding pair
of opposite rays. The following theorem is a simple consequence of well known
theorems by Minkowski and Weyl [31].

Theorem 1. The set P ⊆ Rn is a closed polyhedron if and only if there exist
finite sets R,P ⊆ Rn of cardinality k and `, respectively, such that 0 /∈ R
and, for any matrices K ∈ Rn×k and L ∈ Rn×` where K ∈ matrix(R) and
L ∈ matrix(P),

P =
{

Kµ + Lν ∈ Rn
∣∣ µ ∈ Rk

+,ν ∈ R`
+,

∑`
i=1 νi = 1

}
.

When P 6= ∅, we say that P is described by the generator system G = (R,P). In
particular, the vectors of R and P are rays and points of P, respectively. Infor-
mally speaking, if no “supporting point” is provided then an empty polyhedron

is obtained; formally, P = ∅ if and only if P = ∅. By convention, the empty
system (i.e., the system with R = ∅ and P = ∅) is the only generator system
for the empty polyhedron. It is worth stressing that, in general, the vectors in
R and P are not the extreme rays and the vertices of the polyhedron [3]: for
instance, any half-space of R2 has two extreme rays and no vertices, but any
generator system describing it will contain at least three rays and one point.

The combination of the two approaches outlined above is the basis of the
Double Description (DD) method [29], which exploits the duality principle to
compute each representation starting from the other one, possibly minimizing the
descriptions. We will write con(C) and gen(G) to denote the polyhedra described
by the finite constraint system C and generator system G, respectively.

Definition 2. (DD pair and minimal forms.) If con(C) = gen(G) = P, then
(C,G) is said to be a DD pair for P, and we write (C,G) ≡ P. We say that

– C is in minimal form if there does not exist C′ ⊂ C such that con(C′) = P;
– G = (R,P) is in minimal form if there does not exist G′ = (R′, P ′) such that
G′ 6= G, R′ ⊆ R, P ′ ⊆ P and gen(G′) = P;

– the DD pair (C,G) is in minimal form if C and G are both in minimal form.

The set of all closed polyhedra on the vector space Rn, denoted CPn, can be
partially ordered by set-inclusion to form a lattice having the empty set and Rn

as the bottom and top element, respectively. The binary meet operation is thus
given by set-intersection, which is easily implemented by taking the union of the
constraint systems representing the two arguments. The binary join operation,
denoted] and called convex polyhedral hull (poly-hull, for short), is implemented
by taking the union of the two arguments’ generator systems. Note that, in
general, the poly-hull of two polyhedra is different from their convex hull [31].

4 Handling Not Necessarily Closed Polyhedra

For each vector a ∈ Rn and scalar b ∈ R, where a 6= 0, the linear strict inequality
constraint 〈a,x〉 > b defines an open affine half-space. By allowing strict inequal-
ities to occur in the system of constraints, it is possible to define polyhedra that
are not necessarily closed (NNC polyhedra, for short).

Definition 3. (NNC polyhedron.) The set P ⊆ Rn is a NNC polyhedron if
and only if either P can be expressed as the intersection of a finite number of
(not necessarily closed) affine half-spaces of Rn, or n = 0 and P = ∅.

We denote by Pn the set of all NNC polyhedra on the vector space Rn.
Obviously, we have CPn ⊆ Pn (note that CPn = Pn if and only if n = 0). When
partially ordered by set-inclusion, Pn is a lattice and CPn is a sublattice of Pn.

To the best of the authors’ knowledge, the first software library (based on the
DD method) allowing for the computation over the domain Pn was the Polka
library [20], where each NNC polyhedron P ∈ Pn is embedded into a closed
polyhedron R ∈ CPn+1. The additional dimension of the vector space, usually

labeled by the letter ε, encodes the topological closeness of each affine half-space
in the constraint description for P. Namely, if P = con(C), where

C =
{
〈ai,x〉 ./i bi

∣∣ i ∈ {1, . . . ,m},ai ∈ Rn, ./i ∈ {≥, >}, bi ∈ R
}
,

then the representation polyhedron is defined as R = con
(
con repr(C)

)
, where

con repr(C) def=
{
0 ≤ ε ≤ 1

}
∪

{
〈ai,x〉 − 1 · ε ≥ bi

∣∣ i ∈ {1, . . . ,m}, ./i ∈ {>}
}

∪
{
〈ai,x〉+ 0 · ε ≥ bi

∣∣ i ∈ {1, . . . ,m}, ./i ∈ {≥}
}
.

It should be stressed that the choice of the value −1 for the coefficients of
the additional variable ε in the constraints representing strict inequalities is
rather arbitrary: any other negative value will do. Similarly, the side constraint
ε ≤ 1 could be replaced by any other ε-upper-bound constraint, i.e., by any
constraint ε ≤ δ such that δ > 0. Different, though equivalent, constraint sys-
tems Cj describing P may be embedded into different representation polyhedra
Rj = con

(
con repr(Cj)

)
. We shall abuse notation by writing R = con repr(P)

as a shorthand for R = con
(
con repr(C)

)
, provided the constraint system C

describing P is clear from context.

4.1 The Generators of NNC Polyhedra

One of the fundamental features of the DD method, and the very reason for its
name, is the ability to represent a closed polyhedron using a system of constraints
or a system of generators. While being equivalent, there are contexts where each
of these descriptions is the most appropriate, so that a good library should
provide the client application with both possibilities.

Any NNC polyhedron can be easily described by using constraint systems
containing strict inequalities, but a similar generalization of the concept of gen-
erator system seems to be missing. This causes an asymmetry in the handling
of NNC polyhedra using the DD method that is reflected in existing software
libraries. For instance, the following sentence comes from the documentation of
New Polka [24, Section 1.1.4, page 10] (where s denotes the ε coefficient):

Don’t ask me the intuitive meaning of s 6= 0 in rays and vertices !

The problem is discussed in some more detail in [19, Section 4.5, pp. 10–11]:

While strict inequations handling is transparent for constraints (being
displayed accurately), the extra dimension added to the variables space
is apparent when it comes to generators : one extra coefficient, resp.
extra vertices (as epsilon is bounded), materialize this dimension in
every generator, resp. generators system.
This makes more difficult to define polyhedra with the only help of gen-
erators : one should carefully study the extra vertices with non null
epsilon coefficients added to constraints defined polyhedra, in the case
of large inequations, and the case of strict inequations.

A clear understanding of the generator systems of NNC polyhedra is helpful,
for instance, in order to generalize to the domain Pn those operators on closed
polyhedra that are defined or implemented in terms of the generator system
representation (such as the time-elapse operator of [20, 21] or the generators-
based widening of [6]).

We will now show how, by decoupling the user interface from the details of
the particular implementation, it is possible to provide an intuitive generalization
of the concept of generator system, so that the geometric features of any NNC
polyhedron can be accurately represented. The key step is the introduction of a
new kind of generator.

Definition 4. (Closure point.) A vector c ∈ Rn is a closure point of S ⊆ Rn

if and only if c ∈ C(S).

When considering NNC polyhedra, closure points can be characterized by a
property which is similar to the one used when defining rays.

Proposition 1. A vector c ∈ Rn is a closure point of the NNC polyhedron
P ∈ Pn if and only if P 6= ∅ and λp + (1− λ)c ∈ P for every point p ∈ P and
λ ∈ R such that 0 < λ < 1.

We are now able to provide a parametric description for any NNC polyhedron.

Theorem 2. The set P ⊆ Rn is an NNC polyhedron if and only if there exist
finite sets R,P, C ⊆ Rn of cardinality k, ` and m, respectively, such that 0 /∈ R
and, for any matrices K ∈ Rn×k, L ∈ Rn×`, M ∈ Rn×m where K ∈ matrix(R),
L ∈ matrix(P) and M ∈ matrix(C),

P =

{
Kµ + Lν + Mη ∈ Rn

∣∣∣∣∣ µ ∈ Rk
+,ν ∈ R`

+,ν 6= 0,η ∈ Rm
+ ,∑`

i=1 νi +
∑m

i=1 ηi = 1

}
.

When P 6= ∅, we say that P is described by the extended generator system
G = (R,P, C). As was the case for closed polyhedra, the vectors in R and P are
rays and points of P, respectively. The condition ν 6= 0 ensures that at least one
of the points of P plays an active role in any convex combination of the vectors
of P and C. It follows from Proposition 1 that the vectors of C are closure points
of P. Since rays and closure points need a supporting point, we have P = ∅ if
and only if P = ∅.

In Figure 1, we provide a few examples of the use of extended generator
systems for the description of NNC polyhedra: (closure) points are represented
by small (un-) filled circles, whereas rays are represented by vectors that, for
notational convenience, are applied to points. The NNC polyhedron P1 is an
open rectangle and is described by the closure points A, B, C, D and the point
E; note that E could have been replaced by any other point of P1, whereas
all the four closure points have to be included in any generator system for P1.
The NNC polyhedron P2 is another rectangle that is neither closed nor open:
since A′ is a point, the open segments]A′, B′[and]A′, D′[are included in P2;
similarly, the open segment]B′, C ′[is included in P2 because E′ is a point of the

O
-

x

6
y

P1aA a B

a CaD qE P2qA′ a B′

a C′aD′ q E′

P3

aF

q
G
-

r1
6

r2

Fig. 1. Using closure points to define NNC polyhedra.

generator system (note that E′ is needed, since both B′ and C ′ are not in P2,
but it could have been replaced by any other point lying on this open segment);
in contrast, the closed segment [C ′, D′] is disjoint from P2, because neither C ′

nor D′ are points of P2. Finally, the NNC polyhedron P3 can be regarded as
the translation by F of the open positive quadrant. Thus the generator system
includes the closure point F , the rays r1 and r2 and the point G; again, the
latter could have been replaced by any other point of P3.

We will now show how the high level description of an NNC polyhedron pro-
vided by an extended generator system can be mapped into an implementation
based on the ε dimension approach. Namely, if G = (R,P, C) is the extended
generator system describing P ∈ Pn, the corresponding closed representation
R ∈ CPn+1 is described by the generator system gen repr(G) def= (R′, P ′) where

R′ =
{

(rT, 0)T
∣∣ r ∈ R

}
,

P ′ =
{

(pT, 1)T
∣∣ p ∈ P

}
∪

{
(xT, 0)T

∣∣ x ∈ P ∪ C
}
.

Even in this case, the value 1 for the coordinate of the ε dimension in the
translation of points is almost arbitrary: any other positive value could be chosen.
Different though equivalent extended generator systems Gj describing P ∈ Pn

may result in different representation polyhedra Rj = gen
(
gen repr(Gj)

)
. It is

worth noting that the closure points of P are mapped to points of R having a
zero ε coordinate. In contrast, the points of P are mapped to a pair of points of
R, having a zero and a strictly positive ε coordinate, respectively; by doing this,
we explicitly enforce in the closed representation the key invariant saying that
any point of P is also a closure point of P.

Definition 5. (ε-representation.) A polyhedron R ∈ CPn+1 is said to be an
ε-representation if and only if

∃δ > 0 . R ⊆ con
(
{0 ≤ ε ≤ δ}

)
; (1)(

∃ε > 0 . (xT, ε)T ∈ R
)

=⇒ (xT, 0)T ∈ R. (2)

R is said to be an ε-representation for P ∈ Pn, denoted R Vε P, if R is an
ε-representation and

P = [[R]] def=
{

x ∈ Rn
∣∣ ∃ε > 0 . (xT, ε)T ∈ R

}
. (3)

Proposition 2. Let (C,G) ≡ P ∈ Pn. Then we have con
(
con repr(C)

)
Vε P

and gen
(
gen repr(G)

)
Vε P.

Operations such as the intersection of NNC polyhedra and the application of
affine transformations can be safely performed on any of the ε-representations of
the arguments; the same holds for the poly-hull operation, provided none of the
arguments is an empty NNC polyhedron. Some care has to be taken when testing
the emptiness of an NNC polyhedron or the inclusion of an NNC polyhedron into
another one [20]. For instance, any ε-representation included in the hyperplane
ε = 0 actually encodes the empty NNC polyhedron.

Proposition 3. Let R Vε P, R1 Vε P1 and R2 Vε P2. Then

1. P = ∅ if and only if R ⊆ con
(
{ε ≤ 0}

)
;

2. R1 ∩R2 Vε P1 ∩ P2;
3. (P1 6= ∅ ∧ P2 6= ∅) =⇒ (R1]R2 Vε P1] P2);

4. let f
def= λx ∈ Rn . Ax + b be any affine transformation defined on Pn; then

g(R) Vε f(P), where

g
def= λ

(
x
ε

)
∈ Rn+1 .

(
A 0
0T 1

) (
x
ε

)
+

(
b
0

)
is the corresponding affine transformation on CPn+1.

4.2 The Issue of Minimization

When adopting the ε dimension approach proposed in [20], the computed repre-
sentation R ∈ CPn+1 of an NNC polyhedron P ∈ Pn will depend not only on the
particular constraint system considered, but also on the sequence of operations
(intersections, poly-hulls, affine transformations, etc.) performed on the poly-
hedron. If not properly handled, such an abundance of possible representations
may cause problems when trying to provide a non-redundant description of P.

The reason is that libraries such as New Polka compute the minimal forms of
the closed representation R. Very often, such an approach results in a redundant
description of the represented NNC polyhedron: there may be a different ε-
representation for P that is characterized by a smaller number of constraints
(generators). The following example illustrates this point.

Consider the two NNC polyhedra P1,P2 ∈ P1 defined as

P1
def= con

(
{0 < x < 2}

)
, P2

def= con
(
{2 < x < 3}

)
.

These polyhedra are encoded by the closed polyhedra R1,R2 ∈ CP2 such that5

R1
def= con repr(P1) =

{
(x, ε)T ∈ R2

∣∣ ε ≥ 0, x− ε ≥ 0, −x− ε ≥ −2
}
,

R2
def= con repr(P2) =

{
(x, ε)T ∈ R2

∣∣ ε ≥ 0, x− ε ≥ 2, −x− ε ≥ −3
}
.

O
-

x

6
ε

ε = 1

R1q
O

qB
q
A

�
�
�
��@

@
@
@@

R2q
A

q
C

qD
�
��@

@@q
O

qB
qD

q
C

�
�

�
��

PPPPPPP
@

@@
O

-
x

6
ε

ε = 1

R1q
O

qB
q
A

�
�
�
��@

@
@
@@

R4

q
C

q
D

qEqF
q
C

q
D

q GqH �
��

(a) (b)

Fig. 2. (a) The poly-hull of R1 and R2; (b) The intersection of R1 and R4.

Suppose now that the user wants to compute the poly-hull of the two original
polyhedra, therefore obtaining the NNC polyhedron P3

def= con
(
{0 < x < 3}

)
.

At the representation level, the situation will be the one described in Fig-
ure 2(a): P3 is represented by the closed polyhedron generated by the four ver-
tices O, C, D, and B, whereas point A is identified as redundant. Formally,

R3
def=

{
(x, ε)T ∈ R2

∣∣ ε ≥ 0, x− ε ≥ 0, −x− ε ≥ −3, −x− 3ε ≥ −4
}
.

The last non-strict inequality, which corresponds to the segment [B,D] in Fig-
ure 2(a), is not redundant as far as the ε-representation R3 is concerned. How-
ever, this non-strict inequality stands for the strict inequality x < 4, which is
clearly redundant when considering the represented polyhedron P3.

The problem outlined above is even more critical when dealing with higher
dimension vector spaces: it is straightforward to devise examples where more
than half of the constraints in the “minimized” representation happen to be
redundant. Even when disregarding these pathological cases, redundancy could
have a serious negative impact on the efficiency of some of the operations com-
puted on the polyhedron, e.g., those characterized by a worst case complexity
that is exponential in the size of the description.

Besides efficiency issues, the presence of redundant constraints may also cause
headaches to the users of the library. For instance, suppose one wants to know
if a given NNC polyhedron is not topologically closed. Ordinary users (i.e., all
the users but the experts) may be tempted to implement such a test by checking
whether the constraint system in minimal form contains any strict inequality.
Unfortunately, such an approach would be unsound, as can be easily observed
by considering the scenario proposed in Figure 2(b). Here, the NNC polyhedron
P1 is intersected with the NNC polyhedron P4

def= con
(
{1 ≤ 4x ≤ 3}

)
, whose

representation R4 = con repr(P4) is the rectangle having vertices C, D, E and
F . The resulting trapezium is another ε-representation for the NNC polyhedron
P4, which is topologically closed. However, any constraint system describing the
trapezium will also encode the strict inequality x > 0, corresponding to the
closed segment [G, H].

5 In both cases, we do not explicitly include the ε-upper-bound constraint ε ≤ 1, which
happens to be redundant.

It is therefore meaningful to address the problem of providing a minimization
procedure that is able to remove all of these redundancies. To this end, the
introduction of some notation will be helpful.

We say that a vector v saturates the constraint 〈a,x〉 ./ b if and only if
〈a,v〉 = b. For any constraint system C and generator system G = (R,P), we
define

sat con(v, C) def= { c ∈ C | v saturates c };

sat gen(c,G) def= {v ∈ R ∪ P | v saturates c }.

Let (C,G) ≡ R ∈ CPn+1 be such that R Vε P. The set of strict and non-strict
inequality encodings C> and C≥ of constraint system C are defined as

C>
def=

{(
〈a,x〉+ s · ε ≥ b

)
∈ C

∣∣∣ a 6= 0, s < 0
}

;

C≥
def=

{(
〈a,x〉+ s · ε ≥ b

)
∈ C

∣∣∣ a 6= 0, s = 0
}

;

we also define the set of ε-upper-bounds as

Cε
def=

{(
〈a,x〉+ s · ε ≥ b

)
∈ C

∣∣∣ a = 0, s < 0
}

.

For ease of notation, a constraint c ∈ Cε will be usually denoted as ε ≤ δ, where
δ

def= b/s. Note that, by Proposition 3, we have δ > 0 whenever P 6= ∅. Similarly,
the set of closure point encodings GC , the set of point encodings GP , and the set
of unmatched point encodings GU ⊆ GP of the generator system G = (R,P) are
defined as follows:

GC
def=

{
(pT, e)T ∈ P

∣∣ e = 0
}
;

GP
def=

{
(pT, e)T ∈ P

∣∣ e > 0
}
;

GU
def=

{
(pT, e)T ∈ P

∣∣ e > 0, (pT, 0)T /∈ P
}
.

Definition 6. (Strong minimal form.) Let R Vε P, where (C,G) ≡ R is a
DD pair in minimal form. Then, we say that

– C is in strong minimal form if there does not exist a constraint system C′ in
minimal form such that (C′> ∪ C′≥) ⊂ (C> ∪ C≥) and con(C′) Vε P;

– G = (R,P) is in strong minimal form if there does not exist a generator
system G′ = (R′, P ′) such that G′ 6= G, R′ ⊆ R, P ′ ⊆ P and gen(G′) Vε P.

For the computation of strong minimal forms (smf’s, for short), the key step
is the identification of ε-redundant constraints and generators.

Definition 7. (ε-redundancy.) Let (C,G) ≡ R ∈ CPn+1. A constraint c is
ε-redundant in C if c ∈ C> and at least one of the following conditions holds:

sat gen(c,G) ∩ GC = ∅;
∃c′ ∈ C> \ {c} . sat gen(c,G) \ GP ⊆ sat gen(c′,G).

O
-

x

6
ε

ε = 1

q
O

qB q E
q
C

�
�
�
�� @

@
@
@@q

O
q
C

qF

�
�
�
�
�
��@

@
@
@
@
@@

O
-

x

6
ε

ε = 1

q
O

qB
q
C

�
�
�
��
HHH

HHH
HHHq

O
q
C

qD

@
@@

(a) (b)

Fig. 3. Four different ε-representations for P3, obtained by applying the strong mini-
mization process to (a) the constraint system; or (b) the generator system.

A generator p is ε-redundant in G if p ∈ GU and

∃p′ ∈ GP \ {p} . sat con(p, C) ∩ C≥ ⊆ sat con(p′, C).

Proposition 4. Let R Vε P 6= ∅, where (C,G) ≡ R is a DD pair in minimal
form. Then, the following hold:

1. If c is ε-redundant in C, then con
(
C \ {c} ∪ {ε ≤ 1}

)
Vε P;

2. If p is ε-redundant in G = (R,P), then gen
((

R,P \ {p}
))

Vε P;
3. If C contains no ε-redundant constraint, then it is in smf;
4. If G contains no ε-redundant generator, then it is in smf.

It is worth stressing that, even if (C,G) is a DD pair for R Vε P, after remov-
ing all ε-redundant constraints and generators the resulting descriptions C′ and
G′ may be such that con(C′) 6= gen(G′), so that (C′,G′) is not a DD pair. More-
over, having one of the systems in smf does not imply that the corresponding
dual description will also be in smf.

As an example, we now compute smf’s for the polyhedron R3 represented
in Figure 2(a). Let us first consider the constraint system. The two strict in-
equality encodings x − ε ≥ 0 and −x − ε ≥ −3, which correspond to segments
[O,B] and [C,D], are not ε-redundant, because they are saturated by the closure
point encodings O and C, respectively. In contrast, the constraint x − 3ε ≥ 4,
corresponding to segment [B,D], is identified as ε-redundant (no closure point
encoding saturates it) and can be removed provided we add the constraint ε ≤ 1.
The resulting constraint system, which is in smf, defines the trapezium of ver-
tices O, C, E, and B represented in Figure 3(a). Note that the generator system
for this trapezium is not in smf; this additional property can be enforced by
removing the ε-upper-bound constraint ε ≤ 1, therefore obtaining the triangle
of vertices O, C, and F .

Starting again from polyhedron R3, let us now consider the strong minimiza-
tion of its generator system, which is made up of the four points O, C, D, and B.
Each one of the two unmatched point encodings B and D is made ε-redundant
by the other one (they both saturate the empty set of non-strict inequality en-
codings); as a consequence, one of them can be removed, obtaining either one of
the triangles OCB and OCD represented in Figure 3(b), which are both in smf.

5 The Parma Polyhedra Library

The Parma Polyhedra Library (PPL, http://www.cs.unipr.it/ppl/) is a col-
laborative project started in January 2001 at the Department of Mathematics of
the University of Parma. It aims at becoming a truly professional library for the
handling of approximations based on (not necessarily closed) convex polyhedra
targeted at abstract interpretation and computer-aided verification. In this sec-
tion we briefly review some of the key features of the library. Before continuing,
it is perhaps worth stressing that the theoretical treatment of previous sections
applies to polyhedra in Rn. Not surprisingly, the implementation only deals with
rational polyhedra, that is, polyhedra that can be defined by constraints with
rational coefficients or, dually, generators with rational coordinates. It is easy to
prove that the property of being rational is preserved by all the operations of
interest for the applications the library aims at.

The library is written in standard C++ and this ensures, among other things,
maximum portability across different computing platforms. Using C++ for the
development made it easier to adopt a number of programming techniques that
are the key to the library’s robustness, generality, efficiency and usability. How-
ever, for the sake of maximal code reuse and utility, care has been taken not
to require the client application to be written in C++. The library includes a
complete C interface and thus can be interfaced to all programming languages’
implementations (there are many) that provide a C interface. There is also a
Prolog interface supporting several Prolog systems.

One of the key features of the library is robustness. In particular, this means
that failure is avoided whenever possible and, in all other cases, failure is rec-
ognized and handled properly. The PPL uses arbitrary precision integer arith-
metic to implement coefficients and coordinates, and is thus immune from both
rounding and overflow problems. In addition, all the data structures used in
the implementation are fully dynamic and can expand automatically (in amor-
tized constant time) to any dimension allowed by the available virtual memory.
Two other aspects of failure avoidance are hiding and systematic checking of
the interface invariants. In contrast to other libraries, the PPL hides the imple-
mentation details almost completely. For instance, the internal representation of
constraints, generators and systems thereof need not concern the client applica-
tion. Similarly, implementation devices such as the positivity constraint [32] and
all the matters regarding the ε-representation encoding of NNC polyhedra are
completely invisible from outside. The client application is provided with more
natural interfaces, allowing the direct manipulation of higher level concepts, such
as inequalities, lines and closure points. For instance, in the appropriate contexts,
‘X < 5*Z’ and ‘X + 2*Y + 5*Z >= 7’ is valid syntax expressing a strict and a
non-strict inequality, both in the C++ and the Prolog interfaces. Even the C
interface, which is at a considerably lower level of abstraction, refers to concepts
like linear expression, constraint and constraint system and not to their possible
implementations such as vectors and matrices. As usual, this is important for
error prevention and to allow maximum latitude for the implementation.

typedef Parma_Polyhedra_Library::NNC_Polyhedron PH;

void complex_function(const PH& ph1, const PH& ph2, PH& result) {

try {

start_timer(max_time_for_complex_function);

complex_function_on_polyhedra(ph1, ph2, result ...);

stop_timer();

}

catch (Exception& e) { // Memory exhausted or timeout or other error.

...

BoundingBox bb1, bb2, bb_result;

ph1.shrink_bounding_box(bb1); ph2.shrink_bounding_box(bb2);

complex_function_on_bounding_boxes(bb1, bb2, bb_result ...);

result = Polyhedron(bb_result);

}

}

Fig. 4. Falling back to bounding boxes when the analysis with polyhedra is too costly.

Forbidding access to the internal structures manipulated by the library and
systematic checking of the interface invariants could impede the overall system
performance. However, the resulting overhead can be completely repaid (to the
point of giving rise to a speedup) if the implementation exploits the freedom it
has from the user interface.

In the design of the library, particular care has been taken concerning issues
of scalability since any user of any polyhedra library must face the possibility of
excessive CPU time consumption and/or memory usage [23]. A far from satis-
factory but possible solution is to hope for the best but eventually “kill” those
processes requiring more than the available resources [7]. In contrast, what we
aim at is support for the dynamic and automatic composition of the trade-off
between expressivity and efficiency. In this scenario, the static analysis or veri-
fication procedures should, by default, use the more descriptive (and costly) do-
mains, such as the convex polyhedra. When the computation of an operation on
these descriptions requires too much time, or memory space, the system should
detect this and perform a change of representation, for instance by approximat-
ing the input polyhedra with enclosing bounding boxes (rectangular regions with
sides parallel to the axes); after the execution of the requested operation on
this less precise (but much less computationally expensive) domain, the result
is converted back into a convex polyhedron. Such a scenario is feasible only if
the polyhedra library is implemented so that it can consistently react, without
any loss of system resources, to events such as a timeout or an exception thrown
by the memory allocation routines. As far as we know, the Parma Polyhedra
Library is the first one to provide this facility. The idea is exemplified in Fig-
ure 4, where a robust C++ implementation of complex_function is sketched.
The objective is to compute the polyhedron result starting from the polyhedra
ph1 and ph2. The operation is first tried on the polyhedra themselves and, in
case of failure, the computation is done on the bounding box approximations

of ph1 and ph2. In the latter case the result of the bounding box computation,
bb_result is converted into a convex polyhedron object and assigned to the
output polyhedron result. The trade-off between efficiency and precision can
also be controlled by means of the widening operations provided by the PPL,
which are based on those originally proposed in [15] and improved in [14].

Concerning the efficiency of the PPL, at present no application can use both
the PPL and another convex polyhedra library, so comparisons are not possible.
However, the PPL has been integrated with the China analyzer [1] for the
purpose of detecting linear argument size relations [5]. The performance of the
combined system has been compared, on the same task, with the performance
of the cTI analyzer [28], which uses an implementation of convex polyhedra
based on the SICStus CLP(Q) package. The combined system China+PPL
outperformed that version of cTI in a significant way, exhibiting termination
instead of thrashing and speedups of one or more orders of magnitude.

The Parma Polyhedra Library is free software released under the GPL: code
and documentation can be downloaded and its development can be followed at
http://www.cs.unipr.it/ppl/.

6 Conclusion

Convex polyhedra provide the basis for several abstractions used in static anal-
ysis and computer-aided verification of complex and sometimes mission critical
systems. For such purposes an implementation of convex polyhedra must be
firmly based on a clear theoretical framework and written in accordance with
sound software engineering principles. In this paper we have presented some
of the most important ideas that are behind the Parma Polyhedra Library. In
particular, we have provided a novel theoretical framework for the representa-
tion and manipulation of not necessarily closed convex polyhedra. We have also
briefly sketched some important features of the design and implementation of
the library. We believe that all this work constitutes a significant improvement
in the state of the art and an encouragement to the wider adoption of abstract
interpretation techniques in static analysis and computer-aided verification.

Acknowledgments. We would like to thank Costantino Medori for the many
useful discussions we had with him on the subject of this paper, Fred Mesnard
for letting us play with cTI’s analyzer, and the anonymous reviewers for their
helpful comments and observations.

References

1. R. Bagnara. Data-Flow Analysis for Constraint Logic-Based Languages. PhD
thesis, Dipartimento di Informatica, Università di Pisa, Pisa, Italy, 1997. Printed
as Report TD-1/97.

2. R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. The Parma Polyhedra Library
User’s Manual. Department of Mathematics, University of Parma, Parma, Italy,
release 0.4 edition, July 2002. Available at http://www.cs.unipr.it/ppl/.

3. R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex
polyhedra and the Parma Polyhedra Library. Quaderno 286, Dipartimento di
Matematica, Università di Parma, Italy, 2002. See also [4]. Available at http:

//www.cs.unipr.it/Publications/.
4. R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Errata for technical report

“Quaderno 286”. Available at http://www.cs.unipr.it/Publications/, 2002.
5. F. Benoy and A. King. Inferring argument size relationships with CLP(R). In J. P.

Gallagher, editor, Logic Programming Synthesis and Transformation: Proceedings
of the 6th International Workshop, volume 1207 of Lecture Notes in Computer
Science, pages 204–223, Stockholm, Sweden, 1997. Springer-Verlag, Berlin.

6. F. Besson, T. P. Jensen, and J.-P. Talpin. Polyhedral analysis for synchronous
languages. In A. Cortesi and G. Filé, editors, Static Analysis: Proceedings of the
6th International Symposium, volume 1694 of Lecture Notes in Computer Science,
pages 51–68, Venice, Italy, 1999. Springer-Verlag, Berlin.

7. N. S. Bjørner, A. Browne, M. Colón, B. Finkbeiner, Z. Manna, M. Pichora,
H. B. Sipma, and T. E. Uribe. STeP: The Stanford Temporal Prover (Educa-
tional Release) User’s Manual. Computer Science Department, Stanford Univer-
sity, Stanford, California, version 1.4-α edition, July 1998. Available at http:

//www-step.stanford.edu/.
8. N. V. Chernikova. Algorithm for finding a general formula for the non-negative

solutions of system of linear equations. U.S.S.R. Computational Mathematics and
Mathematical Physics, 4(4):151–158, 1964.

9. N. V. Chernikova. Algorithm for finding a general formula for the non-negative
solutions of system of linear inequalities. U.S.S.R. Computational Mathematics
and Mathematical Physics, 5(2):228–233, 1965.

10. N. V. Chernikova. Algorithm for discovering the set of all solutions of a linear
programming problem. U.S.S.R. Computational Mathematics and Mathematical
Physics, 8(6):282–293, 1968.

11. M. A. Colón and H. B. Sipma. Synthesis of linear ranking functions. In T. Margaria
and W. Yi, editors, Proceedings of the 7th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2001), volume
2031 of Lecture Notes in Computer Science, pages 67–81, Genova, Italy, 2001.
Springer-Verlag, Berlin.

12. P. Cousot, editor. Static Analysis: 8th International Symposium, SAS 2001, volume
2126 of Lecture Notes in Computer Science, Paris, 2001. Springer-Verlag, Berlin.

13. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the Fourth Annual ACM Symposium on Principles of Programming Languages,
pages 238–252, 1977.

14. P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In M. Bruynooghe and
M. Wirsing, editors, Proceedings of the 4th International Symposium on Program-
ming Language Implementation and Logic Programming, volume 631 of Lecture
Notes in Computer Science, pages 269–295, Leuven, Belgium, 1992. Springer-
Verlag, Berlin.

15. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Conference Record of the Fifth Annual ACM Symposium
on Principles of Programming Languages, pages 84–96, Tucson, Arizona, 1978.
ACM Press.

16. N. Dor, M. Rodeh, and S. Sagiv. Cleanness checking of string manipulations in C
programs via integer analysis. In Cousot [12], pages 194–212.

17. K. Fukuda and A. Prodon. Double description method revisited. In M. Deza,
R. Euler, and Y. Manoussakis, editors, Combinatorics and Computer Science,
8th Franco-Japanese and 4th Franco-Chinese Conference, Brest, France, July 3-5,
1995, Selected Papers, volume 1120 of Lecture Notes in Computer Science, pages
91–111. Springer-Verlag, Berlin, 1996.

18. N. Halbwachs. Delay analysis in synchronous programs. In C. Courcoubetis, editor,
Computer Aided Verification: Proceedings of the 5th International Conference, vol-
ume 697 of Lecture Notes in Computer Science, pages 333–346, Elounda, Greece,
1993. Springer-Verlag, Berlin.

19. N. Halbwachs, A. Kerbrat, and Y.-E. Proy. POLyhedra INtegrated Environment.
Verimag, France, version 1.0 of POLINE edition, September 1995. Documentation
taken from source code.

20. N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems
by means of convex approximations. In B. Le Charlier, editor, Static Analysis:
Proceedings of the 1st International Symposium, volume 864 of Lecture Notes in
Computer Science, pages 223–237, Namur, Belgium, 1994. Springer-Verlag, Berlin.

21. N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design, 11(2):157–185,
1997.

22. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid
systems. Software Tools for Technology Transfer, 1(1+2):110–122, 1997.

23. T. A. Henzinger, J. Preussig, and H. Wong-Toi. Some lessons from the hytech
experience. In Proceedings of the 40th Annual Conference on Decision and Control,
pages 2887–2892. IEEE Computer Society Press, 2001.

24. B. Jeannet. Convex Polyhedra Library, release 1.1.3c edition, March 2002. Docu-
mentation of the “New Polka” library available at http://www.irisa.fr/prive/

Bertrand.Jeannet/newpolka.html.
25. H. Le Verge. A note on Chernikova’s algorithm. Publication interne 635, IRISA,

Campus de Beaulieu, Rennes, France, 1992.
26. V. Loechner. PolyLib: A library for manipulating parameterized polyhedra. Avail-

able at http://icps.u-strasbg.fr/~loechner/polylib/, March 1999. Declares
itself to be a continuation of [32].

27. Z. Manna, N. S. Bjørner, A. Browne, M. Colón, B. Finkbeiner, M. Pichora, H. B.
Sipma, and T. E. Uribe. An update on STeP: Deductive-algorithmic verification
of reactive systems. In R. Berghammer and Y. Lakhnech, editors, Tool Support
for System Specification, Development and Verification, Advances in Computing
Sciences. Springer-Verlag, Berlin, 1999.

28. F. Mesnard and U. Neumerkel. Applying static analysis techniques for inferring
termination conditions of logic programs. In Cousot [12], pages 93–110.

29. T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double de-
scription method. In H. W. Kuhn and A. W. Tucker, editors, Contributions to
the Theory of Games – Volume II, number 28 in Annals of Mathematics Studies,
pages 51–73. Princeton University Press, Princeton, New Jersey, 1953.

30. W. Pugh. A practical algorithm for exact array dependence analysis. Communi-
cations of the ACM, 35(8):102–114, 1992.

31. J. Stoer and C. Witzgall. Convexity and Optimization in Finite Dimensions I.
Springer-Verlag, Berlin, 1970.

32. D. K. Wilde. A library for doing polyhedral operations. Master’s thesis, Oregon
State University, Corvallis, Oregon, December 1993. Also published as IRISA
Publication interne 785, Rennes, France, 1993.

