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Abstract. Logic languages based on the theory of rational, possibly in-
finite, trees have much appeal in that rational trees allow for faster unifi-
cation (due to the omission of the occurs-check) and increased expressiv-
ity. Note that cyclic terms can provide a very efficient representation of
grammars and other useful objects. Unfortunately, the use of infinite ra-
tional trees has problems. For instance, many of the built-in and library
predicates are ill-defined for such trees and need to be supplemented by
run-time checks whose cost may be significant. Moreover, some widely-
used program analysis and manipulation techniques are only correct for
those parts of programs working over finite trees. It is thus important to
obtain, automatically, a knowledge of those program variables (the finite
variables) that, at the program points of interest, will always be bound
to finite terms. For these reasons, we propose here a new data-flow anal-
ysis that captures such information. We present a parametric domain
where a simple component for recording finite variables is coupled with
a generic domain (the parameter of the construction) providing sharing
information. The sharing domain is abstractly specified so as to guar-
antee the correctness of the combined domain and the generality of the
approach.

1 Introduction

The intended computation domain of most logic-based languages1 includes the
algebra (or structure) of finite trees. Other (constraint) logic-based languages,
such as Prolog II and its successors [10, 12], SICStus Prolog [36], and Oz [34], refer
to a computation domain of rational trees. A rational tree is a possibly infinite
tree with a finite number of distinct subtrees and, as is the case for finite trees,
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where each node has a finite number of immediate descendants. These properties
will ensure that rational trees, even though infinite in the sense that they admit
paths of infinite length, can be finitely represented. One possible representation
makes use of connected, rooted, directed and possibly cyclic graphs where nodes
are labeled with variable and function symbols as is the case of finite trees.

Applications of rational trees in logic programming include graphics [18],
parser generation and grammar manipulation [10, 21], and computing with finite-
state automata [10]. Other applications are described in [20] and [23]. Going from
Prolog to CLP, [31] combines constraints on rational trees and record structures,
while the logic-based language Oz allows constraints over rational and feature
trees [34]. The expressive power of rational trees is put to use, for instance, in
several areas of natural language processing. Rational trees are used in imple-
mentations of the HPSG formalism (Head-driven Phrase Structure Grammar)
[32], in the ALE system (Attribute Logic Engine) [8], and in the ProFIT system
(Prolog with Features, Inheritance and Templates) [19].

While rational trees allow for increased expressivity, they also come equipped
with a surprising number of problems. As we will see, some of these problems
are so serious that rational trees must be used in a very controlled way, disal-
lowing them in any context where they are “dangerous”. This, in turn, causes
a secondary problem: in order to disallow rational trees in selected contexts one
must first detect them, an operation that may be expensive.

The first thing to be aware of is that almost any semantics-based program
manipulation technique developed in the field of logic programming —whether
it be an analysis, a transformation, or an optimization— assumes a computation
domain of finite trees. Some of these techniques might work with the rational
trees but their correctness has only been proved in the case of finite trees. Others
are clearly inapplicable. Let us consider a very simple Prolog program:

list([]).
list([ |T]) :- list(T).

Most automatic and semi-automatic tools for proving program termination and
for complexity analysis agree on the fact that list/1 will terminate when in-
voked with a ground argument. Consider now the query

?- X = [a|X], list(X).

and note that, after the execution of the first rational unification, the variable
X will be bound to a rational term containing no variables, i.e., the predicate
list/1 will be invoked with X ground. However, if such a query is given to, say,
SICStus Prolog, then the only way to get the prompt back is by pressing ^C.
The problem stems from the fact that the analysis techniques employed by these
tools are only sound for finite trees: as soon as they are applied to a system
where the creation of cyclic terms is possible, their results are inapplicable. The
situation can be improved by combining these termination and/or complexity
analyses by a finiteness analysis providing the precondition for the applicability
of the other techniques.
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The implementation of built-in predicates is another problematic issue. In-
deed, it is widely acknowledged that, for the implementation of a system that
provides real support for the rational trees, the biggest effort concerns proper
handling of built-ins. Of course, the meaning of ‘proper’ depends on the actual
built-in. Built-ins such as copy_term/2 and ==/2 maintain a clear semantics
when passing from finite to rational trees. For others, like sort/2, the extension
can be questionable:2 both raising an exception and answering Y = [a] can be
argued to be “the right reaction” to the query

?- X = [a|X], sort(X, Y).

Other built-ins do not tolerate infinite trees in some argument positions. A good
implementation should check for finiteness of the corresponding arguments and
make sure “the right thing” —failing or raising an appropriate exception— al-
ways happens. However, such behavior appears to be uncommon. A small ex-
periment we conducted on six Prolog implementations with queries like

?- X = 1+X, Y is X.
?- X = [97|X], name(Y, X).
?- X = [X|X], Y =.. [f|X].

resulted in infinite loops, memory exhaustion and/or system thrashing, segmen-
tation faults or other fatal errors. One of the implementations tested, SICStus
Prolog, is a professional one and implements run-time checks to avoid most cases
where built-ins can have catastrophic effects.3 The remaining systems are a bit
more than research prototypes, but will clearly have to do the same if they evolve
to the stage of production tools. Again, a data-flow analysis aimed at the de-
tection of those variables that are definitely bound to finite terms would allow
to avoid a (possibly significant) fraction of the useless run-time checks. Note
that what has been said for built-in predicates applies to libraries as well. Even
though it may be argued that it is enough for programmers to know that they
should not use a particular library predicate with infinite terms, it is clear that
the use of a “safe” library, including automatic checks which ensure that such
predicates are never called with an illegal argument, will result in more robust
systems. With the appropriate data-flow analyses, safe libraries do not have to
be inefficient libraries.

Another serious problem is the following: the ISO Prolog standard term
ordering cannot be extended to rational trees [M. Carlsson, Personal commu-
nication, October 2000]. Consider the rational trees defined by A = f(B, a)
and B = f(A, b). Clearly, A == B does not hold. Since the standard term or-
dering is total, we must have either A @< B or B @< A. Assume A @< B. Then
f(A, b) @< f(B, a), since the ordering of terms having the same principal
functor is inherited by the ordering of subterms considered in a left-to-right
fashion. Thus B @< A must hold, which is a contradiction. A dual contradiction
2 Even though sort/2 is not required to be a built-in by the standard, it is offered as

such by several implementations.
3 SICStus 3.8.5 still loops on ?- X = [97|X], name(Y, X).
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is obtained by assuming B @< A. As a consequence, applying one of the Prolog
term-ordering predicates to one or two infinite terms may cause inconsistent
results, giving rise to bugs that are exceptionally difficult to diagnose. For this
reason, any system that extends ISO Prolog with rational trees ought to detect
such situations and make sure they are not ignored (e.g., by throwing an ex-
ception or aborting execution with a meaningful message). However, predicates
such as the term-ordering ones are likely to be called a significant number of
times, since they are often used to maintain structures implementing ordered
collections of terms. This is another instance of the efficiency issue mentioned
above.

In this paper, we present a parametric abstract domain for finite-tree analysis,
denoted by H × P . This domain combines a simple component H (the finite-
ness component), recording the set of definitely finite variables, with a generic
domain P (the parameter of the construction), providing sharing information.
The term “sharing information” is to be understood in its broader meaning,
which includes variable aliasing, groundness, linearity, freeness and any other
kind of information that can improve the precision on these components, such
as explicit structural information. Several domain combinations and abstract
operators, characterized by different precision/complexity trade-offs, have been
proposed to capture these properties (see [5] for an account of some of them).
By giving a generic specification for this parameter component, in the style of
the open product construct proposed in [14], it is possible to define and establish
the correctness of the abstract operators on the finite-tree domain independently
from any particular domain for sharing analysis.

The paper is structured as follows. The required notations and preliminary
concepts are given in Section 2. The finite-tree domain is then introduced in
Section 3: Section 3.1 provides the specification of the parameter domain P ;
Section 3.2 defines the abstraction function for the finiteness component H ;
Section 3.3 defines the abstract unification operator for H ×P . A description of
some ongoing work on the subject is given in Section 4 where a possible instance
of the parameter P is also specified. We conclude in Section 5.

A longer version of this paper with proofs of the results presented here is
available as a technical report [1].

2 Preliminaries

2.1 Infinite Terms and Substitutions

For a set S, ℘(S) is the powerset of S, whereas ℘f(S) is the set of all the finite
subsets of S. Let Sig denote a possibly infinite set of function symbols, ranked
over the set of natural numbers. It is assumed that Sig contains at least one
function symbol having rank 0 and one having rank greater than 0. Let Vars
denote a denumerable set of variables, disjoint from Sig . Then Terms denotes the
free algebra of all (possibly infinite) terms in the signature Sig having variables
in Vars. Thus a term can be seen as an ordered labeled tree, possibly having
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some infinite paths and possibly containing variables: every inner node is labeled
with a function symbol in Sig with a rank matching the number of the node’s
immediate descendants, whereas every leaf is labeled by either a variable in Vars
or a function symbol in Sig having rank 0 (a constant).

If t ∈ Terms then vars(t) and mvars(t) denote the set and the multiset of
variables occurring in t, respectively. We will also write vars(o) to denote the set
of variables occurring in an arbitrary syntactic object o. If a occurs more than
once in a multiset M we write a AM .

Suppose s, t ∈ Terms: s and t are independent if vars(s) ∩ vars(t) = ∅; if
y ∈ vars(t) and ¬

(
y A mvars(t)

)
we say that variable y occurs linearly in t,

more briefly written using the predication occ lin(y, t); t is said to be ground
if vars(t) = ∅; t is free if t ∈ Vars; t is linear if, for all y ∈ vars(t), we have
occ lin(y, t); finally, t is a finite term (or Herbrand term) if it contains a finite
number of occurrences of function symbols. The sets of all ground, linear and
finite terms are denoted by GTerms, LTerms and HTerms, respectively. As we
have specified that Sig contains function symbols of rank 0 and rank greater
than 0, GTerms ∩HTerms 6= ∅ and GTerms \HTerms 6= ∅.

A substitution is a total function σ : Vars → HTerms that is the identity
almost everywhere; in other words, the domain of σ,

dom(σ) def=
{
x ∈ Vars

∣∣ σ(x) 6= x
}
,

is finite. Given a substitution σ : Vars → HTerms, we overload the symbol ‘σ’
so as to denote also the function σ : HTerms → HTerms defined as follows, for
each term t ∈ HTerms:

σ(t) def=


t, if t is a constant symbol;
σ(t), if t ∈ Vars;
f
(
σ(t1), . . . , σ(tn)

)
, if t = f(t1, . . . , tn).

If x ∈ Vars and t ∈ HTerms \ {x}, then x 7→ t is called a binding. The set
of all bindings is denoted by Bind . Substitutions are denoted by the set of their
bindings, thus a substitution σ is identified with the (finite) set{

x 7→ σ(x)
∣∣ x ∈ dom(σ)

}
.

We denote by vars(σ) the set of variables occurring in the bindings of σ.
A substitution is said to be circular if, for n > 1, it has the form

{x1 7→ x2, . . . , xn−1 7→ xn, xn 7→ x1},

where x1, . . . , xn are distinct variables. A substitution is in rational solved form
if it has no circular subset. The set of all substitutions in rational solved form is
denoted by RSubst .

If t ∈ HTerms, we write tσ to denote σ(t) and t[x/s] to denote t{x 7→ s}.
The composition of substitutions is defined in the usual way. Thus τ ◦ σ is

the substitution such that, for all terms t ∈ HTerms,

(τ ◦ σ)(t) = τ
(
σ(t)

)
5



and has the formulation

τ ◦σ =
{
x 7→ xστ

∣∣ x ∈ dom(σ), x 6= xστ
}
∪
{
x 7→ xτ

∣∣ x ∈ dom(τ) \dom(σ)
}
.

As usual, σ0 denotes the identity function (i.e., the empty substitution) and,
when i > 0, σi denotes the substitution (σ ◦ σi−1).

For each σ ∈ RSubst , s ∈ HTerms, the sequence of finite terms

σ0(s), σ1(s), σ2(s), . . .

converges to a (possibly infinite) term, denoted σ∞(s) [25, 29]. Therefore, the
function rt : HTerms × RSubst → Terms such that

rt(s, σ) def= σ∞(s)

is well defined. Note that, in general, this function is not a substitution: while
having a finite domain, its “bindings” x 7→ t can map a domain variable x into
a term t ∈ Terms \HTerms.

2.2 Equations

An equation is of the form s = t where s, t ∈ HTerms. Eqs denotes the set of all
equations. A substitution σ may be regarded as a finite set of equations, that is,
as the set {x = t | x 7→ t ∈ σ }. We say that a set of equations e is in rational
solved form if

{
s 7→ t

∣∣ (s = t) ∈ e
}
∈ RSubst . In the rest of the paper, we will

often write a substitution σ ∈ RSubst to denote a set of equations in rational
solved form (and vice versa).

Languages such as Prolog II, SICStus and Oz are based on RT , the theory
of rational trees [10, 11]. This is a syntactic equality theory (i.e., a theory where
the function symbols are uninterpreted), augmented with a uniqueness axiom
for each substitution in rational solved form. Informally speaking these axioms
state that, after assigning a ground rational tree to each non-domain variable,
the substitution uniquely defines a ground rational tree for each of its domain
variables. Thus, any set of equations in rational solved form is, by definition,
satisfiable inRT . Note that being in rational solved form is a very weak property.
Indeed, unification algorithms returning a set of equations in rational solved form
are allowed to be much more “lazy” than one would usually expect. We refer the
interested reader to [27, 28, 30] for details on the subject.

Given a set of equations e ∈ ℘f(Eqs) that is satisfiable in RT , a substitution
σ ∈ RSubst is called a solution for e in RT if RT ` ∀(σ → e), i.e., if every
model of the theory RT is also a model of the first order formula ∀(σ → e). If in
addition vars(σ) ⊆ vars(e), then σ is said to be a relevant solution for e. Finally,
σ is a most general solution for e in RT if RT ` ∀(σ ↔ e). In this paper, the set
of all the relevant most general solution for e in RT will be denoted by mgs(e).
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2.3 The Concrete Domain

Throughout the paper, we assume a knowledge of the basic concepts of abstract
interpretation theory [15, 16].

For the purpose of this paper, we assume a concrete domain constituted by
pairs of the form (Σ, V ), where V is a finite set of variables of interest and Σ is
a (possibly infinite) set of substitutions in rational solved form.

Definition 1. (The concrete domain.) Let D[ def= ℘(RSubst) × ℘f(Vars).
If (Σ, V ) ∈ D[, then (Σ, V ) represents the (possibly infinite) set of first-order
formulas

{
∃∆ . σ

∣∣ σ ∈ Σ,∆ = vars(σ)\V
}

where σ is interpreted as the logical
conjunction of the equations corresponding to its bindings.

Concrete domains for constraint languages would be similar. If the analyzed
language allows the use of constraints on various domains to restrict the values
of the variable leaves of rational trees, the corresponding concrete domain would
have one or more extra components to account for the constraints (see [2] for an
example).

The concrete element
({
{x 7→ f(y)}

}
, {x, y}

)
expresses a dependency be-

tween x and y. In contrast,
({
{x 7→ f(y)}

}
, {x}

)
only constrains x. The same

concept can be expressed by saying that in the first case the variable name ‘y’
matters, but it does not in the second case. Thus, the set of variables of interest
is crucial for defining the meaning of the concrete and abstract descriptions.
Despite this, always specifying the set of variables of interest would significantly
clutter the presentation. Moreover, most of the needed functions on concrete and
abstract descriptions preserve the set of variables of interest. For these reasons,
we assume the existence of a set VI ∈ ℘f(Vars) that contains, at each stage
of the analysis, the current variables of interest.4 As a consequence, when the
context makes it clear that Σ ∈ ℘(RSubst), we will write Σ ∈ D[ as a shorthand
for (Σ,VI ) ∈ D[.

3 An Abstract Domain for Finiteness Analysis

Finite-tree analysis applies to logic-based languages computing over a domain
of rational trees where cyclic structures are allowed. In contrast, analyses aimed
at occurs-check reduction [17, 35] apply to programs that are meant to compute
on a domain of finite trees only, but have to be executed over systems that are
either designed for rational trees or intended just for the finite trees but omit the
occurs-check for efficiency reasons. Despite their different objectives, finite-tree
and occurs-check analyses have much in common: in both cases, it is important
to detect all program points where cyclic structures can be generated.
4 This parallels what happens in the efficient implementation of data-flow analyzers.

In fact, almost all the abstract domains currently in use do not need to represent
explicitly the set of variables of interest. In contrast, this set is maintained externally
and in a unique copy, typically by the fixpoint computation engine.
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Note however that, when performing occurs-check reduction, one can take
advantage of the following invariant: all data structures generated so far are
finite. This property is maintained by transforming the program so as to force
finiteness whenever it is possible that a cyclic structure could have been built.5

In contrast, a finite-tree analysis has to deal with the more general case when
some of the data structures computed so far may be cyclic. It is therefore natural
to consider an abstract domain made up of two components. The first one simply
represents the set of variables that are guaranteed not to be bound to infinite
terms. We will denote this finiteness component by H (from Herbrand).

Definition 2. (The finiteness component.) The finiteness component is the
set H def= ℘(VI ) partially ordered by reverse subset inclusion.

The second component of the finite-tree domain should maintain any kind of
information that may be useful for computing finiteness information.

It is well-known that sharing information as a whole, therefore including
possible variable aliasing, definite linearity, and definite freeness, has a crucial
role in occurs-check reduction so that, as observed before, it can be exploited
for finite-tree analysis too. Thus, a first choice for the second component of the
finite-tree domain would be to consider one of the standard combinations of
sharing, freeness and linearity as defined, e.g., in [5, 6, 22]. However, this would
tie our specification to a particular sharing analysis domain, whereas the overall
approach seems to be inherently more general. For this reason, we will define a
finite-tree analysis based on the abstract domain schema H×P , where the generic
sharing component P is a parameter of the abstract domain construction. This
approach can be formalized as an application of the open product operator [14].

3.1 The parameter component P

Elements of P can encode any kind of information. We only require that substi-
tutions that are equivalent in the theory RT are identified in P .

Definition 3. (The parameter component.) The parameter component P
is an abstract domain related to the concrete domain D[ by means of the con-
cretization function γP : P → ℘(RSubst) such that, for all p ∈ P,(

σ ∈ γP (p) ∧
(
RT ` ∀(σ ↔ τ)

))
=⇒ τ ∈ γP (p).

The interface between H and P is provided by a set of predicates and func-
tions that satisfy suitable correctness criteria. Note that, for space limitations,
we will only specify those abstract operations that are useful to define abstract
unification on the combined domain H × P . The other operations needed for a
full description of the analysis, such as renamings, upper bound operators and
projections, are very simple and, as usual, do not pose any problems.
5 Such a requirement is typically obtained by replacing the unification with a call to
unify with occurs check/2. As an alternative, in some systems based on rational
trees it is possible to insert, after each problematic unification, a finiteness test for
the generated term.
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Definition 4. (Abstract operators on P .) Let s, t ∈ HTerms be finite terms.
For each p ∈ P, we define the following predicates:
s and t are independent in p if and only if indp : HTerms2 → Bool holds for
(s, t), where

indp(s, t) =⇒ ∀σ ∈ γP (p) : vars
(
rt(s, σ)

)
∩ vars

(
rt(t, σ)

)
= ∅;

s and t share linearly in p if and only if share linp : HTerms2 → Bool holds for
(s, t), where

share linp(s, t) =⇒ ∀σ ∈ γP (p) :

∀y ∈ vars
(
rt(s, σ)

)
∩ vars

(
rt(t, σ)

)
:

occ lin
(
y, rt(s, σ)

)
∧ occ lin

(
y, rt(t, σ)

)
;

t is ground in p if and only if groundp : HTerms → Bool holds for t, where

groundp(t) =⇒ ∀σ ∈ γP (p) : rt(t, σ) ∈ GTerms;

t is ground-or-free in p if and only if gfreep : HTerms → Bool holds for t, where

gfreep(t) =⇒ ∀σ ∈ γP (p) : rt(t, σ) ∈ GTerms ∨ rt(t, σ) ∈ Vars;

s and t are or-linear in p if and only if or linp : HTerms2 → Bool holds for (s, t),
where

or linp(s, t) =⇒ ∀σ ∈ γP (p) : rt(s, σ) ∈ LTerms ∨ rt(t, σ) ∈ LTerms;

s is linear in p if and only if linp : HTerms → Bool holds for s, where

linp(s) def⇐⇒ or linp(s, s).

For each p ∈ P, the following functions compute subsets of the set of variables
of interest:
the function share same varp : HTerms × HTerms → ℘(VI ) returns a set of
variables that may share with the given terms via the same variable. For each
s, t ∈ HTerms,

share same varp(s, t) ⊇

 y ∈ VI

∣∣∣∣∣∣∣
∃σ ∈ γP (p) .
∃z ∈ vars

(
rt(y, σ)

)
.

z ∈ vars
(
rt(s, σ)

)
∩ vars

(
rt(t, σ)

)
;

the function share withp : HTerms → ℘(VI ) yields a set of variables that may
share with the given term. For each t ∈ HTerms,

share withp(t) def=
{
y ∈ VI

∣∣ y ∈ share same varp(y, t)
}
.

9



The function amguP : P×Bind → P correctly captures the effects of a binding
on an element of P. For each (x 7→ t) ∈ Bind and p ∈ P, let

p′ def= amguP
(
p, x 7→ t

)
.

For all σ ∈ γP (p), if τ ∈ mgs
(
σ ∪ {x = t}

)
, then τ ∈ γP (p′).

As it will be shown in Section 4.1, some of these generic operators can be di-
rectly mapped into the corresponding abstract operators defined for well-known
sharing analysis domains. However, the specification given in Definition 4, be-
sides being more general than a particular implementation, also allows for a
modular approach when proving correctness results.

3.2 The abstraction function for H

When the concrete domain is based on the theory of finite trees, idempotent
substitutions provide a finitely computable strong normal form for domain ele-
ments, meaning that different substitutions describe different sets of finite trees.6

In contrast, when working on a concrete domain based on the theory of ratio-
nal trees, substitutions in rational solved form, while being finitely computable,
no longer satisfy this property: there can be an infinite set of substitutions in
rational solved form all describing the same set of rational trees (i.e., the same
element in the “intended” semantics). For instance, the substitutions

σn = {x 7→
n︷ ︸︸ ︷

f(· · · f(x) · · · )}

for n = 1, 2, . . . , all map the variable x into the same rational tree (which is
usually denoted by fω).

Ideally, a strong normal form for the set of rational trees described by a sub-
stitution σ ∈ RSubst can be obtained by computing the limit σ∞. The problem
is that we may end up with σ∞ /∈ RSubst , as σ∞ can map domain variables to
infinite rational terms.

This poses a non-trivial problem when trying to define a “good” abstraction
function, since it would be really desirable for this function to map any two
equivalent concrete elements to the same abstract element. As shown in [24], the
classical abstraction function for set-sharing analysis [13, 26], which was defined
for idempotent substitutions only, does not enjoy this property when applied,
as it is, to arbitrary substitutions in rational solved form. A possibility is to
look for a more general abstraction function that allows to obtain the desired
property. For example, in [24] the sharing-group operator sg of [26] is replaced
by an occurrence operator, occ, defined by means of a fixpoint computation. We
now provide a similar fixpoint construction defining the finiteness operator.

6 As usual, this is modulo the possible renaming of variables.
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Definition 5. (Finiteness functions.) For each n ∈ N, the finiteness function
hvarsn : RSubst → ℘(Vars) is defined, for each σ ∈ RSubst, by

hvars0(σ) def= Vars \ dom(σ)

and, for n > 0, by

hvarsn(σ) def= hvarsn−1(σ) ∪
{
y ∈ dom(σ)

∣∣ vars(yσ) ⊆ hvarsn−1(σ)
}
.

For each σ ∈ RSubst and each i ≥ 0, we have hvarsi(σ) ⊆ hvarsi+1(σ) and
also that Vars \ hvarsi(σ) ⊆ dom(σ) is a finite set. By these two properties, the
following fixpoint computation is well defined and finitely computable.

Definition 6. (Finiteness operator.) For each σ ∈ RSubst, the finiteness
operator hvars : RSubst → ℘(Vars) is given by hvars(σ) def= hvars`(σ) where
`

def= `(σ) ∈ N is such that hvars`(σ) = hvarsn(σ) for all n ≥ `.

The following proposition shows that the hvars operator precisely captures
the intended property.

Proposition 1. If σ ∈ RSubst and x ∈ Vars then

x ∈ hvars(σ) ⇐⇒ rt(x, σ) ∈ HTerms.

Example 1. Consider σ ∈ RSubst , where

σ =
{
x1 7→ f(x2), x2 7→ g(x5), x3 7→ f(x4), x4 7→ g(x3)

}
.

Then,

hvars0(σ) = Vars \ {x1, x2, x3, x4},
hvars1(σ) = Vars \ {x1, x3, x4},
hvars2(σ) = Vars \ {x3, x4}

= hvars(σ).

Thus, x1 ∈ hvars(σ), although vars(x1σ) ⊆ dom(σ).

The abstraction function for H can then be defined in the obvious way.

Definition 7. (The abstraction function for H .) The abstraction function
αH : RSubst → H is defined, for each σ ∈ RSubst, by

αH(σ) def= VI ∩ hvars(σ).

The concrete domain D[ is related to H by means of the abstraction function
αH : D[ → H such that, for each Σ ∈ ℘(RSubst),

αH(Σ) def=
⋂{

αH(σ)
∣∣ σ ∈ Σ }.
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Since the abstraction function αH is additive, the concretization function is given
by its adjoint [15]:

γH(h) def=
{
σ ∈ RSubst

∣∣ αH(σ) ⊇ h
}
.

With these definitions, we have the desired result: equivalent substitutions
in rational solved form have the same finiteness abstraction.

Theorem 1. If σ, τ ∈ RSubst and RT ` ∀(σ ↔ τ), then αH(σ) = αH(τ).

3.3 Abstract unification on H × P

The abstract unification for the combined domain H ×P is defined by using the
abstract predicates and functions as specified for P as well as a new finiteness
predicate for the domain H .

Definition 8. (Abstract unification on H × P .) A term t ∈ HTerms is a
finite tree in h if and only if the predicate htermh : HTerms → Bool holds for t,
where htermh(t) def= vars(t) ⊆ h.

The function amguH : (H ×P)×Bind → H captures the effects of a binding
on an H element. Let 〈h, p〉 ∈ H × P and (x 7→ t) ∈ Bind. Then

amguH
(
〈h, p〉, x 7→ t

) def= h ′,

where

h ′ def=



h ∪ vars(t), if htermh(x) ∧ groundp(x);
h ∪ {x}, if htermh(t) ∧ groundp(t);
h, if htermh(x) ∧ htermh(t)

∧ indp(x, t) ∧ or linp(x, t);
h, if htermh(x) ∧ htermh(t)

∧ gfreep(x) ∧ gfreep(t);
h \ share same varp(x, t), if htermh(x) ∧ htermh(t)

∧ share linp(x, t)
∧ or linp(x, t);

h \ share withp(x), if htermh(x) ∧ linp(x);
h \ share withp(t), if htermh(t) ∧ linp(t);
h \
(
share withp(x) ∪ share withp(t)

)
, otherwise.

The abstract unification function amgu: (H × P) × Bind → H × P, for any
〈h, p〉 ∈ H × P and (x 7→ t) ∈ Bind, is given by

amgu
(
〈h, p〉, x 7→ t

) def=
〈

amguH
(
〈h, p〉, x 7→ t

)
, amguP (p, x 7→ t)

〉
.

12



In the computation of h ′ (the new finiteness component resulting from the
abstract evaluation of a binding) there are eight cases based on properties holding
for the concrete terms described by x and t.

1. In the first case, the concrete term described by x is both finite and ground.
Thus, after a successful execution of the binding, any concrete term described
by t will be finite. Note that t could have contained variables which may be
possibly bound to cyclic terms just before the execution of the binding.

2. The second case is symmetric to the first one. Note that these are the only
cases when a “positive” propagation of finiteness information is correct. In
contrast, in all the remaining cases, the goal is to limit as much as possible the
propagation of “negative” information, i.e., the possible cyclicity of terms.

3. The third case exploits the classical results proved in research work on occurs-
check reduction [17, 35]. Accordingly, it is required that both x and t describe
finite terms that do not share. The use of the implicitly disjunctive predicate
or linp allows for the application of this case even when neither x nor t
are known to be definitely linear. For instance, as observed in [17], this
may happen when the component P embeds the domain Pos for groundness
analysis.7

4. The fourth case exploits the observation that cyclic terms cannot be cre-
ated when unifying two finite terms that are either ground or free. Ground-
or-freeness [5] is a safe, more precise and inexpensive replacement for the
classical freeness property when combining sharing analysis domains.

5. The fifth case applies when unifying a linear and finite term with another
finite term possibly sharing with it, provided they can only share linearly
(namely, all the shared variables occur linearly in the considered terms). In
such a context, only the shared variables can introduce cycles.

6. In the sixth case, we drop the assumption about the finiteness of the term
described by t. As a consequence, all variables sharing with x become possi-
bly cyclic. However, provided x describes a finite and linear term, all finite
variables independent from x preserve their finiteness.

7. The seventh case is symmetric to the sixth one.
8. The last case states that term finiteness is preserved for all variables that

are independent from both x and t. Note that this case is only used when
none of the other cases apply.

The following result, together with the assumption on amguP as specified in
Definition 4, ensures that abstract unification on the combined domain H × P
is correct.

Theorem 2. Let 〈h, p〉 ∈ H ×P and (x 7→ t) ∈ Bind, where {x}∪vars(t) ⊆ VI .
Let also σ ∈ γH(h) ∩ γP (p) and h ′ = amguH

(
〈h, p〉, x 7→ t

)
. Then

τ ∈ mgs
(
σ ∪ {x = t}

)
=⇒ τ ∈ γH(h ′).

7 Let t be y. Let also P be Pos. Then, given the Pos formula φ
def
= (x ∨ y), both

indφ(x, y) and or linφ(x, y) satsify the conditions in Definition 4. Note that from φ
we cannot infer that x is definitely linear and neither that y is definitely linear.
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4 Ongoing and Further Work

4.1 An instance of the parameter domain P

As discussed in Section 3, several abstract domains for sharing analysis can be
used to implement the parameter component P . One could consider the well-
known set-sharing domain of Jacobs and Langen [26]. In such a case, all the
non-trivial correctness results have already been established in [24]: in particu-
lar, the abstraction function provided in [24] satisfies the requirement of Defini-
tion 3 and the abstract unification operator has been proven correct with respect
to rational-tree unification. Note however that, since no freeness and linearity
information is recorded in the plain set-sharing domain, some of the predicates
of Definition 4 need to be grossly approximated.

Therefore, a better choice would be to consider the abstract domain SFL [5]
(see also [6]) that represents possible sharing. This domain incorporates the
set-sharing domain of Jacobs and Langen with definite freeness and linearity in-
formation; the information being encoded by two sets of variables, one satisfying
the property of freeness and the other, the property of linearity.

Definition 9. (The set-sharing domain SH .) The set SH is defined by
SH def= ℘(SG), where SG def= ℘(VI ) \ {∅} is the set of sharing groups. SH
is ordered by subset inclusion.

Definition 10. (The domain SFL.) Let F def= ℘(VI ) and L
def= ℘(VI ) be

partially ordered by reverse subset inclusion. The domain SFL is defined by the
Cartesian product SFL def= SH × F × L ordered by ‘≤S’, the component-wise
extension of the orderings defined on the sub-domains.

Note that a complete definition, besides explicitly dealing with the set of rele-
vant variables VI , would require the addition of a bottom element ⊥ representing
the semantics of those program fragments that have no successful computations.

In the next definition we introduce a few well-known operations on the set-
sharing domain SH . These will be used to define the operations on the domain
SFL.

Definition 11. (Abstract operators on SH .) For each sh ∈ SH and each
V ⊆ VI , the extraction of the relevant component of sh with respect to V is
given by the function rel : ℘(VI )× SH → SH defined as

rel(V, sh) def= {S ∈ sh | S ∩ V 6= ∅ }.

For each sh ∈ SH and each V ⊆ VI , the function rel : ℘(VI ) × SH → SH
gives the irrelevant component of sh with respect to V . It is defined as

rel(V, sh) def= sh \ rel(V, sh).
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The function (·)? : SH → SH , called star-union, is given, for each sh ∈ SH ,
by

sh? def=
{
S ∈ SG

∣∣∣∣ ∃n ≥ 1 . ∃T1, . . . , Tn ∈ sh . S =
n⋃
i=1

Ti

}
.

For each sh1, sh2 ∈ SH , the function bin: SH × SH → SH , called binary
union, is given by

bin(sh1, sh2) def= {S1 ∪ S2 | S1 ∈ sh1, S2 ∈ sh2 }.

It is now possible to define the implementation, on the domain SFL, of all
the predicates and functions specified in Definition 4.

Definition 12. (Abstract operators on SFL.) For each d = 〈sh, f, l〉 ∈ SFL,
for each s, t ∈ HTerms, where vars(s) ∪ vars(t) ⊆ VI , let Rs = rel

(
vars(s), sh

)
and Rt = rel

(
vars(t), sh

)
. Then

indd(s, t) def=
(
Rs ∩Rt = ∅

)
;

groundd(t) def=
(
vars(t) ⊆ VI \ vars(sh)

)
;

occ lind(y, t) def= groundd(y) ∨
(

occ lin(y, t) ∧ (y ∈ l)

∧ ∀z ∈ vars(t) :
(
y 6= z =⇒ indd(y, z)

))
;

share lind(s, t) def= ∀y ∈ vars(Rs ∩Rt) :
y ∈ vars(s) =⇒ occ lind(y, s)
∧ y ∈ vars(t) =⇒ occ lind(y, t);

freed(t) def= ∃y ∈ VI . (y = t) ∧ (y ∈ f);

gfreed(t) def= groundd(t) ∨ freed(t);

lind(t) def= ∀y ∈ vars(t) : occ lind(y, t);

or lind(s, t) def= lind(s) ∨ lind(t);

share same vard(s, t) def= vars(Rs ∩Rt);

share withd(t) def= vars(Rt).

The function amguS : SFL × Bind → SFL captures the effects of a binding
on an element of SFL. Let d = 〈sh, f, l〉 ∈ SFL and (x 7→ t) ∈ Bind, where
Vxt = {x} ∪ vars(t) ⊆ VI . Let Rx = rel

(
{x}, sh

)
and Rt = rel

(
vars(t), sh

)
. Let

also

sh ′ def= rel(Vxt, sh) ∪ bin
(
Sx, St

)
,

Sx
def=

{
Rx, if freed(x) ∨ freed(t) ∨

(
lind(t) ∧ indd(x, t)

)
;

R?x, otherwise;
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St
def=

{
Rt, if freed(x) ∨ freed(t) ∨

(
lind(x) ∧ indd(x, t)

)
;

R?t , otherwise;

f ′
def=


f, if freed(x) ∧ freed(t);
f \ vars(Rx), if freed(x);
f \ vars(Rt), if freed(t);
f \ vars(Rx ∪Rt), otherwise;

l′
def=
(
VI \ vars(sh ′)

)
∪ f ′ ∪ l′′;

l′′
def=


l \
(
vars(Rx) ∩ vars(Rt)

)
, if lind(x) ∧ lind(t);

l \ vars(Rx), if lind(x);
l \ vars(Rt), if lind(t);
l \ vars(Rx ∪Rt), otherwise.

Then amguS
(
d , x 7→ t

) def= 〈sh ′, f ′, l′〉.

It is worth noting that, when observing the term finiteness property, set-sharing
is strictly more precise than pair-sharing, since a set-sharing domain is strictly
more precise when computing the functions share same varp and share linp .8

This observation holds regardless of the pair-sharing variant considered, includ-
ing ASub [9, 35], PSD [3] and ShPSh [33].

It remains for us to establish that the relations and functions given in Def-
inition 12 satisfy all the requirements of Definitions 3 and 4. This will require
a proof of the correctness, with respect to rational unification, of the abstract
operators defined on the domain SFL, thereby generalizing and extending the
results proved in [24] for the set-sharing domain of Jacobs and Langen.

Note that the domain SFL is not the target of the generic specification given
in Definition 4; more powerful sharing domains can also satisfy this schema,
including all the enhanced combinations considered in [5]. For instance, as the
predicate gfreed defined on SFL does not fully exploit the disjunctive nature of
its generic specification gfreep , the precision of the analysis may be improved by
adding a domain component explicitly tracking ground-or-freeness, as proposed
in [5]. The same argument applies to the predicate or lind , with respect to or linp ,
when considering the combination with the groundness domain Pos.

In order to provide an experimental evaluation of the proposed finiteness
analysis, we are implementing H × P where the P component is the SFL do-
main extended with some of the enhancements described in [5]. One of these
8 For the expert: consider the abstract evaluation of the binding x 7→ y and the

description 〈h, d〉 ∈ H × SFL, where h = {x, y, z} and d = 〈sh, f, l〉 is such that
sh =

{
{x, y}, {x, z}, {y, z}

}
, f = ∅ and l = {x, y, z}. Then z /∈ share same vard(x, y)

so that we have h ′ = {z}. In contrast, when using a pair-sharing domain such as
PSD , the element d is equivalent to d ′ = 〈sh ′, f, l〉, where sh ′ = sh ∪

{
{x, y, z}

}
.

Hence we have z ∈ share same vard′(x, y) and h ′ = ∅. Thus, in sh the information
provided by the lack of the sharing group {x, y, z} is redundant when observing pair-
sharing and groundness, but it is not redundant when observing term finiteness.
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enhancements uses information about the actual structure of terms. It has been
shown in [2] that this structural information, provided by integrating the generic
Pattern(·) construction with SFL, can have a key role in improving the precision
of sharing analysis and, in particular, allowing better identification where cyclic
structures may appear. Thus, it is expected that structural information captured
using Pattern(H ×P) can improve the precision of finite-tree analysis; both with
respect to the parametric component P and the finiteness component H itself.

4.2 Term-Finiteness Dependencies

The parametric domain H × P captures the negative aspect of term-finiteness,
that is, the circumstances under which finiteness can be lost. When a binding
has the potential for creating one or more rational terms, the operator amguH
removes from h all the variables that may be bound to non-finite terms. However,
term-finiteness has also a positive aspect: there are cases where a variable is
guaranteed to be bound to a finite term and this knowledge can be propagated
to other variables. Guarantees of finiteness are provided by several built-ins like
unify_with_occurs_check/2, var/1, name/2, all the arithmetic predicates, and
so forth. SICStus Prolog also provides an explicit acyclic_term/1 predicate.

The term-finiteness information provided by the h component of H ×P does
not capture the information concerning how finiteness of one variable affects the
finiteness of other variables. This kind of information, usually termed relational
information, is very important as it allows the propagation of positive finiteness
information. An important source of relational information comes from depen-
dencies. Consider the terms t1

def= f(x), t2
def= g(y), and t3

def= h(x, y): it is clear
that, for each assignment of rational terms to x and y, t3 is finite if and only if
t1 and t2 are so. We can capture this by the Boolean formula t3 ↔ (t1 ∧ t2). The
reasoning is based on the following facts:

1. t1, t2, and t3 are finite terms, so that the finiteness of their instances depends
only on the finiteness of the terms that take the place of x and y.

2. t3 covers both t1 and t2, that is, vars(t3) ⊇ vars(t1) ∪ vars(t2); this means
that, if an assignment to the variables of t3 produces a finite instance of t3,
that very same assignment will necessarily result in finite instances of t1 and
t2. Conversely, an assignment producing non-finite instances of t1 or t2 will
forcibly result in a non-finite instance of t3.

3. Similarly, t1 and t2, taken together, cover t3.

The important point to notice is that the indicated dependency will continue to
hold for any further simultaneous instantiation of t1, t2, and t3. In other words,
such dependencies are preserved by forward computations (since they proceed
by consistently instantiating program variables).

Consider the abstract binding x 7→ t where t is a finite term such that
vars(t) = {y1, . . . , yn}. After this binding has been successfully performed, the
destinies of x and t concerning term-finiteness are tied together forever. This tie
can be described by the dependency formula

x↔ (y1 ∧ · · · ∧ yn), (1)
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meaning that x will be bound to a finite term if and only if, for each i = 1,
. . . , n, yi is bound to a finite term. While the dependency expressed by (1) is
a correct description of any computation state following the application of the
binding x 7→ t, it is not as precise as it could be. Suppose that x and yk are
indeed the same variable. Then (1) is logically equivalent to

x→ (y1 ∧ · · · ∧ yk−1 ∧ yk+1 ∧ · · · ∧ yn). (2)

Correct: whenever x is bound to a finite term, all the other variables will be
bound to finite terms. The point is that x has just been bound to a non-finite
term, irrevocably: no forward computation can change this. Thus, the implication
(2) holds vacuously. The precise and correct description for the state of affairs
caused by the cyclic binding is, instead, the negated atom ¬x, whose intuitive
reading is “x is not (and never will be) finite.”

Following the intuition outlined above, in [4] we have studied a domain,
whose carrier is the set of all Boolean functions, for representing and propagating
finiteness dependencies. We believe that coupling this new domain with H × P
can greatly improve the precision of the analysis.

5 Conclusion

Several modern logic-based languages offer a computation domain based on ra-
tional trees. On the one hand, the use of such trees is encouraged by the possi-
bility of using efficient and correct unification algorithms and by an increase in
expressivity. On the other hand, these gains are countered by the extra problems
rational trees bring with themselves and that can be summarized as follows: sev-
eral built-ins, library predicates, program analysis and manipulation techniques
are only well-defined for program fragments working with finite trees.

In this paper we propose an abstract-interpretation based solution to the
problem of detecting program variables that can only be bound to finite terms.
The rationale behind this is that applications exploiting rational trees tend to
do so in a very controlled way. If the analysis we propose proves to be precise
enough, then we will have a practical way of taking advantage of rational trees
while minimizing the impact of their disadvantages.
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