
Checking and Bounding the Solutions
of Some Recurrence Relations?

Roberto Bagnara and Alessandro Zaccagnini

Department of Mathematics, University of Parma, Italy
bagnara@cs.unipr.it, alessandro.zaccagnini@unipr.it

Abstract. Recurrence relations play an important role in the field of
complexity analysis since complexity measures can often be elegantly
expressed by systems of such relations. This justifies the interest in au-
tomatic, precise, efficient and correct systems able to solve or to approx-
imate the solution of systems of recurrence relations. Assume such a
system is built. Since closed-form solutions for recurrences of even mod-
est complexity can be so big and complex to be unmanageable, how can
confidence on such a system be gained? How can we quickly validate or
perhaps disprove its results? And, in those cases where the exact solu-
tion is too complex to be of practical use, how can we trade precision
for efficiency by approximating them from below and from above? We
also concern ourselves with a problem related to the handling of sets of
solutions of recurrence relations: how can we confine by means of a lower
bound and an upper bound a set of such solutions? We provide some so-
lutions to these problems where we are careful to rely, whenever possible,
on fast integer computations and/or conditions that are easy to check
in a completely automatic way. The ongoing experimental evaluation of
these ideas is giving very promising results, showing order-of-magnitude
speedups over the more traditional methods.

1 Introduction

An important aspect of automatic complexity analysis [2, 6–8, 11, 13, 14, 18] is the
possibility of automatically solving or approximating the solutions of systems of
recurrence relations. In the literature, there are both techniques [4, 10] and soft-
ware1 for solving recurrences, but they only deal with a rather restricted range of
cases and sometimes assume the interaction with a human operator. On the other
hand, existing, completely automatic systems such as [6, 7] only provide quite
rough approximations of the solutions. An attempt at improving the state of the

? The work of R. Bagnara has been partly supported by MURST project “Constraint
Based Verification of Reactive Systems.” The work of A. Zaccagnini has been partly
supported by MIUR project “Zeta and L Functions and Diophantine Problems in
Number Theory.”

1 Such as, for instance, Maxima (http://sourceforge.net/projects/maxima/) and
MuPAD (http://www.mupad.de/).

art in this field is being made in the context of the PURRS project (Parma Uni-
versity’s Recurrence Relation Solver, see http://www.cs.unipr.it/purrs/).
This project aims at the creation of a software library providing all the ser-
vices needed for the efficient solution and approximation of recurrence relations,
and is especially targeted at fully automatic complexity analysis. Quickly find-
ing exact solutions and/or tight approximations, in closed form, to recurrence
relations is certainly an important and challenging task. In this paper, however,
we concentrate on some problems concerning the manipulation of such solu-
tions/approximations, in a way that is totally independent from the techniques
with which they have been obtained.

A system for automatic complexity analysis must provide an abstraction of
(possibly infinite) sets of sequences of real numbers. A sequence of real numbers
expresses the “cost” of one “process” in terms of some “input measure” expressed
by means of a natural number. Notice that this definition is quite general: cost
may be in terms of elapsed time, number of statements executed, memory used,
number of packets exchanged over the network, . . . ; a process may be a piece
of software but also a communication protocol; the input measure can be any
metric of the input of a program/procedure, or, say, the number of participants
to some synchronization protocol. Because of well-known undecidability results,
effective complexity analysis can only be based on approximations [5] and this
is one of the reasons why we need to deal with sets of sequences. The domain of
the analysis is thus given by ℘

(
RN
∞

)
: during the analysis, elements of ℘

(
RN
∞

)
are

generated by imposing a recurrence relation that the sequences must satisfy, by
computing approximations of set union (this is required in order to approximate
the complexity of conditionals), of addition (in order to approximate sequential
composition), and so forth.

Assume that a recurrence relation solver is built and suppose, quite reason-
ably, that it is sophisticated and complex enough so that proving its overall
correctness is beyond the state-of-the-art in program verification. Closed-form
solutions for recurrences of modest complexity can require several pages to be
printed out so that manually checking them is not an option. As we discovered
the hard way, the naive approach of substituting the solution provided by the
system into the original recurrence and simplifying the resulting expression is
also impractical as it leads to serious efficiency problems. Thus, the first problem
we attack in this paper is the following: how can confidence on such a solver be
gained? To what extent can we validate its results? This is very important from
a software engineering perspective, since it allows automatic regressions testing
of the solver2 and is also an important tool for the development of critical sys-
tems (e.g., hard real-time systems in charge of crucial tasks) where the cost of
an undetected bug in the recurrence relation solver could be too high. For both

2 There is an always increasing recognition of the importance of unit testing
in software development. The Extreme Programming methodology (http://www.
extremeprogramming.org/), for instance, pushes this to the point of requiring that
the test is written before the unit.

2

these applications, it is also important that checking of the candidate solutions
can be done quickly.

The problem of checking the correctness of the solution provided by a recur-
rence relation solver is easily reduced to the following problem: given f : N → R
in some restricted, syntactically characterized class of functions, does f vanish
identically? That is, do we have ∀n ∈ N : f(n) = 0? The automatic solution
of this problem presents two main difficulties: the first is that the computer al-
gebra system may not be able to completely simplify expressions involving one
integer variable; the second is that, even when this simplification succeeds, it
may require too much computation resources (on the order of several minutes of
CPU time even for the verification of modestly sized recurrences). The approach
proposed in this paper is much more efficient.

The exact solutions of recurrence relations can also be very big and complex.
This, besides the impact on the cost of verification, poses a more fundamental
problem: the solution can be so complex so as to be unmanageable and thus
useless to the client application. This suggests the need to find upper and lower
approximations of the exact solutions by means of suitable, “simpler” functions,
and this constitutes the second contribution of this paper (the recognition of the
importance of approximating the solutions of recurrence equations dates back
to Cohen and Katcoff [4]).

The last problem we tackle in this paper is tightly related to the previous
one as it deals with the manipulation of lower and upper bounds in order to
define approximations of ℘

(
RN
∞

)
. Formally, for some class of boundary functions

B ∈ ℘
(
RN
∞

)
, we restrict ourselves to the representation of the subset of ℘

(
RN
∞

)
defined by

F
def=

{
F ∈ ℘

(
RN
∞

) ∣∣ ∃l, u ∈ B . ∀f ∈ F : l ≤ f ≤ u
}

.

In order to adopt this approach we need ways to compute the lower and upper
bounds required for approximating the union of F1, F2 ∈ F, that is, for computing
a (possibly) small F ∈ F such that F ⊇ F1 ∪ F2. This problem reduces to the
following: given b1, b2 ∈ B, approximate, within the chosen class B of boundary
functions, max{b1, b2} from above and min{b1, b2} from below. (A definition of
B that suits the needs of the present paper is given in Section 5.)

Our long-term plan is, of course, to solve these three problems for a class of
recurrence relations that is as wide as possible. In this paper we concentrate on
the case when an exact formula for the solution of the recurrence exists, that
is for linear recurrences of finite order with constant coefficients3 and also for
those recurrences with variable coefficients that possess a hypergeometric solu-
tion [12]. For these classes of recurrences (which arise with very high frequency
in, e.g., the complexity analysis of high-level languages), this paper presents a
unified approach to the solution of the aforementioned problems. The solutions
we propose share some aspects, such as the identification of dominant terms.

3 The classical case; see, e.g., [1] for a detailed description of both the theoretical
aspects and the implementation issues.

3

What makes them particularly interesting is the fact that the problem of prov-
ing/disproving ∀n ∈ N : f(n) = 0 and the problem of finding g such that
∀n ∈ N : g(n) ≥ max

{
f1(n), f2(n)

}
or ∀n ∈ N : g(n) ≤ min

{
f1(n), f2(n)

}
are

reduced to testing a finite (and usually very small) set of conditions. Moreover,
in several cases these conditions are simple comparisons between integers (i.e.,
they are very fast and exact) or amount to the numerical evaluation of suitable
subexpressions of f , f1 and f2 at a small number of integers. We are not aware
of other research works tackling these problems.

Notice that we are mainly interested in exact solutions and in the possibility
of extracting from them upper and lower bounds that are valid for all positive
integers: this is the reason why we do not deal with asymptotics here, though
there are well-known techniques for obtaining them. See for example Wilf [17,
Chapter 5], for a general description, or Gourdon and Salvy [9] for a case similar
to the one considered here.

The paper is structured as follows: Section 2 recalls the classes of recurrence
relations relevant to the present paper; Section 3 presents our proposal to val-
idate candidate solutions to such recurrences; Sections 4 and 5 deal with the
problems of computing upper and lower bounds, respectively; Section 6 con-
cludes by presenting our first experimental results and discussing current and
future work. The proofs of all the stated results are in Section A.

2 Preliminaries

Consider the linear recurrence with constant coefficients given by

xn = a1xn−1 + a2xn−2 + · · ·+ akxn−k + p(n), (2.1)

for n ≥ k, where k is a fixed positive integer that is called order of the recurrence
relation (2.1), and p is a function defined over the set of natural numbers. Here
we assume tacitly that the coefficients a1, . . . , ak are real numbers, that ak 6= 0,
and that the values x0, . . . , xk−1 are given real numbers. Eq. (2.1) is associated
to the homogeneous recurrence

gn = a1gn−1 + a2gn−2 + · · ·+ akgn−k,

g0 = 1,

gn = a1gn−1 + a2gn−2 + · · ·+ ang0, 1 ≤ n < k.

(2.2)

This can be solved by means of the characteristic equation

λk = a1λ
k−1 + · · ·+ ak−1λ + ak. (2.3)

Let this polynomial equation have roots λ1 with multiplicity µ1, . . . , λr with
multiplicity µr, where the λj ’s are distinct complex numbers, and the µj ’s are
positive integers. The general solution of (2.2) is

gn =
r∑

j=1

(αj,0 + αj,1n + · · ·+ αj,µj−1n
µj−1)λn

j , (2.4)

4

and the values of the coefficients α must be determined to fit the initial conditions
in (2.2). Now the general solution of (2.1) is given by the formula, valid for n ≥ k,

xn =
n∑

i=k

gn−ip(i) +
k−1∑
i=0

gn−i

(
xi −

i∑
j=1

ajxi−j

)
. (2.5)

This is essentially equation (5) of [4]. It is worth stressing that even when it
is possible to give a closed form for it, the right hand side of (2.5) can be,
and in practice often is, quite complicated. This is partly due to the complex
numbers arising from the solution of (2.3): these can be represented by algebraic
expressions or in trigonometric form and, in the sequel, we will allow for both
alternatives.

The other class of recurrences that we will deal with in this paper is the class
of linear recurrences with variable coefficients of order 1, like

xn = a(n)xn−1 + p(n), (2.6)

where a : N → R\{0} is any sequence. The simplest such example is the factorial
function where a(n) = n, x0 = 1 and p(n) = 0 identically. The general solution
of (2.6), for n ≥ 1, is

xn =
(

x0 +
n∑

k=1

p(k)
k∏

j=1

a(j)−1

) n∏
k=1

a(k). (2.7)

3 Validating Candidate Solutions

Assume an automatic recurrence relation solver produces the closed-form answer
Xn for the recurrence (2.1) or for (2.6). A natural strategy for possibly validating
or rejecting Xn as a solution is the following: first check whether Xn = xn for
n = 0, . . . , k − 1, i.e., that Xn satisfies the initial conditions. Secondly, define
f : N → R as

f(n) def= Xn − (a1Xn−1 + · · ·+ akXn−k)− p(n),

for n ≥ k, or
f(n) def= Xn − a(n)Xn−1 − p(n),

for n ≥ 1, depending on the kind of recurrence we are dealing with, and try to
verify or disprove that f vanishes identically.

Of course, it is the second condition that is hard to verify in practice4, since it
is possible that the simplification routines provided by the underlying computer
4 The verification of the initial conditions, though usually easier since it is essentially

a numerical problem, is not necessarily trivial, especially in the case when the char-
acteristic equation (2.3) has irrational roots, and it seems to be fairly hard in the
case of irreducible equations of degree 3.

5

algebra package fail to simplify completely the expression f . Even in the fairly
trivial case of the Fibonacci numbers, checking automatically that Binet’s closed
formula actually holds is not really easy:5 in fact, it is equivalent to proving that,
for all n ∈ N, we have

φn − φn−1 − φn−2 − (−φ)−n + (−φ)1−n + (−φ)2−n = 0, (3.1)

where φ and −φ−1 are the two roots of the characteristic equation λ2 = λ + 1.
It is clear that this really is the case if we collect a factor φn from the first three
terms, and (−φ)−n from the last three, and then recall that both φ and −φ−1

satisfy λ2 = λ + 1. Much more convoluted examples arise in practice, and we
thus need an efficient procedure for deciding whether an expression which is not
syntactically 0 vanishes identically as a function of the non negative integer n.

The objective is to find a finite (and possibly small) set of conditions that
ensure that the expression f vanishes for all n ∈ N (an infinite set of conditions).
When possible, this task should be reduced to comparisons between integers or
to the numerical evaluation of suitable subexpressions of f at a small number of
integers. One possible general approach can be summarized as follows:

1. Deduce from either (2.1) or (2.6) the shape that any solution Xn must have,
i.e., how it should look like from a purely syntactical point of view.

2. Check that Xn (and therefore f) has the appropriate shape.
3. Break down f into suitable subexpressions, and prove that each one vanishes

identically, by evaluating it numerically, if necessary, at a small number of
integers.

The next few subsections tackle this last problem for various classes of ex-
pressions, in increasing order of difficulty. The main idea is to find the dominant
term in the expression f because this enables us to prove or disprove that they
vanish identically, and also because we will use the same procedure for finding
upper and lower bounds.

3.1 Polynomials and Exponentials

We begin with the “easy” case of the linear combination of products of polyno-
mials and exponentials. Let C[n] denote the set of polynomials in the variable n,
with coefficients in C; lead(p) denotes the leading coefficient of the polynomial p
and deg(p) its degree, while coeffk(p) is the coefficient of the monomial nk. For
completeness, we also state the classical result alluded to above.

Theorem 31 If q ∈ C[n] then either q is the zero polynomial or it vanishes for
at most deg(q) complex numbers.

5 It is, admittedly, a trivial example but we give it only to make our point clearer:
more realistic examples, like the full exact solution of the recurrence xn = xn−1 +
xn−2 + xn−3 + n, say, would take far too much space.

6

We now introduce the class where, in view of (2.4) and (2.5), the solutions
lie whenever p, the non-homogeneous part of the recurrence (2.1), is itself in the
same class. It contains linear combinations of polynomials and complex expo-
nentials, including polynomials themselves as a special case. The solutions we
are concerned with are real-valued, but the definition is more general as there is
no simplification in assuming that the elements of the class are also real valued.

Definition 32 (Exponential type functions) Let E denote the set{
f : N → C

∣∣∣∣∣ ∃r ∈ N . ∀j = 1, . . . , r : ∃qj ∈ C[n]
. ∃αj ∈ C \ {0} . f(n) =

∑r
j=1 qj(n)αn

j

}
.

Notice that the complex numbers αj need not be distinct, since this would
make things harder in practice: if they are, then the representation in the def-
inition is unique, apart from reordering, that is, in this case the integer r and
the polynomials qj are uniquely determined by f .

The following result generalizes Theorem 31 to the class E . It is necessary
to assume that the values of the bases of the exponentials in Definition 32 be
distinct: this will make the theorem difficult to use, and shows the need for some
further manipulation of the expression.

Theorem 33 Let f ∈ E be given as in Definition 32 with the additional proviso
that αj 6= αk if j 6= k. Then f vanishes for all n ∈ N if, and only if, qj is the
constant polynomial 0 for all j = 1, . . . , r.

Note that the function f(n) = 1n+(−1)n vanishes for arbitrarily large values
of n (but not identically for n ∈ N), so that the exact analogue of the situation
with polynomials (with respect to Theorem 31) does not hold. This particular f
is the solution of the recurrence x(n) = x(n− 2), with x(0) = 2 and x(1) = 0, so
this is not a contrived example, but one that may actually appear in practice.

Assuming f is given in such a way as to satisfy the hypothesis, the problem
of deciding whether it vanishes reduces, thanks to Theorem 31, to the problem
of deciding whether coeffk(qj) = 0 for each j = 1, . . . , r and each k = 0,
. . . , D, where D is the largest degree of the qj ’s. We are thus left with the
problem of ensuring that the expression f is of the form given in the statement
of Theorem 33, and therefore that the values of αj are distinct. Notice that
this does not happen in (3.1). Moreover, a direct approach would require the
ability to compare complex numbers given by arbitrary algebraic expressions.
This problem can be avoided by rearranging f in a different way: instead of
collecting terms with respect to the exponential functions, as in Definition 32,
collect with respect to the monomials nd, so that

f(n) = h0(n) + nh1(n) + · · ·+ nDhD(n), (3.2)

where each hj is just a linear combination of powers of the complex numbers αk,
and therefore has the general form

h(n) = β1α
n
1 + · · ·+ βrα

n
r (3.3)

7

for suitable coefficients β1, . . . , βr. This manipulation can be done quite effi-
ciently and only requires comparisons between non negative integers.

The following lemma shows that it is sufficient to evaluate each hj numerically
at rj consecutive integers, where rj is the number of summands in hj . If any
of these values is different from 0, then f does not vanish for all integers, and
therefore the suggested solution is not correct.

Lemma 34 Let α1, . . . , αr be distinct non-zero complex numbers, and β1,
. . . , βr ∈ C. If there exists an integer n0 such that the expression h defined
by (3.3) vanishes for n = n0, . . . , n0 + r − 1, then β1 = · · · = βr = 0.

For example, in the case of (3.1), we have D = 0 so that we need to evaluate
the left-hand side for n = 0, . . . , 5 to ensure that it actually vanishes for all
n. This can be done automatically6, so as to obtain a proof that Binet’s
formula actually holds. Of course, if we are able to rewrite the left hand side as
φn(1−φ−1−φ−2)+(−φ)−n(−1−φ+φ2), then only two evaluations are needed.

If it could only be proved that h(n) is very small for n = n0, . . . , n0 + r− 1,
it is clear from the proof of Lemma 34 in the appendix that all the coefficients
β are very small in their own turn.

3.2 Rational and Trigonometric Functions

It is possible to replace “polynomial” by “rational function” in the statement of
Theorem 33: this is useful in the case when p, the non-homogeneous part of the
recurrence (2.1), is a rational function itself.

Theorem 35 Let f : N \A → C be defined by

f(n) def=
r∑

j=1

qj(n)αn
j ,

where r ≥ 1 is an integer, qj ∈ C(n) for j = 1, . . . , r, αj ∈ C \ {0} for j = 1,
. . . , r, αj 6= αk if j 6= k, and A denotes the (finite) set of all zeros of all
denominators of the rational functions qj. Then f vanishes for all n ∈ N \A if,
and only if, qj is the constant rational function 0 for all j = 1, . . . , r.

There is even more in Theorem 33 than meets the eye: In fact, recall the de
Moivre formulæ, valid for θ ∈ R:

cos(θz) =
eiθz + e−iθz

2
, sin(θz) =

eiθz − e−iθz

2i
. (3.4)

They can be used to transform a function of the form

f(n) def=
r∑

j=1

qj(n)αn
j +

r+s∑
j=r+1

qj(n)αn
j cos(θjn) +

r+s+t∑
j=r+s+1

qj(n)αn
j sin(φjn)

6 For example, as in our prototype system, using the GiNaC library (http://www.
ginac.de/).

8

into a function of the shape of the statement of Definition 32, and vice versa. This
can be useful when the characteristic equation (2.3) has complex roots and it is
preferred to work only with real functions. Notice that even if the α’s, θ’s and
φ’s are distinct, the resulting values of the new α’s need not be all different. In
other words, the rewritten expression may not satisfy the hypotheses of Theorem
33. The simplest example of this phenomenon is probably the function f(n) =
sin(πn), that vanishes for all n ∈ Z without being the zero function. Since we only
need to know whether f vanishes for all nonnegative integers, we could plug (3.4)
into f(n), and then rearrange the resulting expression according to the values
of the new αj ’s. However, these substitutions do not change the degrees of the
polynomials involved and the computations can be arranged as in Section 3.1,
without any explicit substitutions, collecting with respect to monomials, and
writing f(n) in the form (3.2) where D is the largest degree occurring in any
term in f , and hd(n) has the form

hd(n) =
r∑

j=1

βd,jα
n
j +

r+s∑
j=r+1

βd,jα
n
j cos(θjn) +

r+s+t∑
j=r+s+1

βd,jα
n
j sin(φjn)

for suitable complex numbers βd,j . In other words, each hd is (implicitly) a linear
combination of at most r+2s+2t complex exponentials. Lemma 34 implies that
g vanishes at all integers if hd(n) vanishes at r +2s+2t consecutive integers, for
d = 0, . . . , D.

3.3 Factorials

Formula (2.7) shows that natural candidates as solutions of linear recurrences
with variable coefficients like (2.6) include the factorial function, or functions
allied to it. In this case the results above can be somewhat generalized, since, for
n → +∞, the function n! grows more rapidly than any function in the class E :
This is an immediate consequence of Stirling’s formula (see [15, Section 4.42]),
which we state in the slightly more general form that is needed in our applica-
tions. For any fixed a ∈ N \ {0} and b ∈ Z, for n →∞ we have

log(an + b)! = an log n + a(log a− 1)n +
(
b +

1
2

)
log n

+
(
b +

1
2

)
log a +

1
2

log(2π) +O
(
n−1

)
. (3.5)

Because of the functional equation satisfied by the factorial function (namely
(n + 1)! = n!(n + 1)), in some cases it may be necessary to apply the rewrite
rule below before it is possible to compare the order of magnitude of expressions
containing factorials, exponentials and polynomials. Assume a ∈ N \ {0} and
b ∈ Z. Then

(an + b)! =

(an)!(an + 1) · · · (an + b), if b ∈ N \ {0};
(an)!, if b = 0;

(an)!
(an)(an− 1) · · · (an + b + 1)

, if b ∈ Z \ N.

9

Linear Combinations of Factorials Consider a linear combination of expres-
sions like (an + b)!, where a ∈ N \ {0}, and b ∈ Z, with coefficients in the form
of products of a rational function and an exponential. Once the rewrite rule has
been applied on each factorial function in our expression, we clear denominators
and are left with an expression of the form

f(n) =
r∑

j=1

hj(n) (ajn)!, (3.6)

where hj ∈ E for j = 1, . . . , r. We may assume, without any loss of generality,
that a1 = a2 = · · · = as > as+1 ≥ as+2 ≥ · · · ≥ ar. Once again, only com-
parisons between integers are required. Stirling’s Formula (3.5) implies that the
dominant term in (3.6) is g(n) def= (h1(n) + · · ·+ hs(n))(a1n)!: therefore f(n) is
0 for all n ∈ N only if g(n)/(a1n)! vanishes for all n ∈ N, and we are back to
the case studied in Section 3.1, since g(n)/(a1n)! belongs to E . Once we have
verified that g vanishes identically, we can consider f − g, and repeat.

Products of Factorials More generally, we consider other combinations of the
factorial function, beginning with products of several such functions: once again,
formula (2.7) shows that this case is relevant for our problem.

Definition 36 (Factorial type functions) Let F denote the set f : N \A → C

∣∣∣∣∣∣∣∣∣
A is a finite set,
∃r ∈ N . ∀j = 1, . . . , r

: ∃aj ∈ N \ {0} . ∃bj ∈ Z
. f(n) =

∏r
j=1(ajn + bj)!

.

In order to compare rates of growth of f and g in F and to fix notation, let
aj ∈ N \ {0} and bj ∈ Z for j = 1, . . . , r, and αj ∈ N \ {0} and βj ∈ Z for j = 1,
. . . , s. Let

f(n) def=
r∏

j=1

(ajn + bj)! and g(n) def=
s∏

j=1

(αjn + βj)!.

By (3.5) we have that

log
r∏

j=1

(ajn + bj)! is dominated by
r∑

j=1

ajn log n,

so that we can compare rates of growth of f and g by means of a comparison
between the integers

r∑
j=1

aj and
s∑

j=1

αj . (3.7)

10

If these integers are equal, we compare the second most important terms in (3.5),
that is, we compare

r∑
j=1

aj(log aj − 1) and
s∑

j=1

αj(log αj − 1),

subject to the quantities in (3.7) being equal. Taking the latter into account and
simplifying, this is equivalent to comparing the integers

r∏
j=1

a
aj

j and
s∏

j=1

α
αj

j . (3.8)

It is actually possible that two different functions f and g ∈ F have the same
values in both (3.7) and (3.8), as shown by the example

f(n) = (2n)!4 and g(n) = (4n)!n!4.

If this happens, we have to look at the third highest term in (3.5), and compare

r∑
j=1

(
bj +

1
2

)
and

s∑
j=1

(
βj +

1
2

)
,

and, after multiplication by 2, we need another integer comparison between

r + 2
r∑

j=1

bj and s + 2
s∑

j=1

βj . (3.9)

The functions f(n) = (2n)!7(2n+1)! and g(n) = (4n)!2 n!8 have a common value
in (3.7)–(3.9), and therefore the ratio f(n)/g(n) tends to a finite, nonzero limit
as n → +∞. The other terms in (3.5) only contribute a bounded amount, and
they can be used, in general, to compute the value of the limit of f(n)/g(n).
Indeed, the limit has the value{

(2π)r−s
r∏

j=1

a
2bj+1
j

s∏
j=1

α
−2βj−1
j

}1/2

. (3.10)

In this case, unless r = s, it is impossible to confine computations within the
integers, since π /∈ Q.

Products of Factorials, Exponentials and Polynomials The situation
where functions belonging to F are freely mixed with polynomials and expo-
nentials is even more complicated: the simplest and most striking example of
this fact is possibly given by the functions f(n) = πn(2n)!2 and g(n) = n!4 · 24n,
whose ratio has the limit 1 as n → +∞. In this case, Stirling’s formula (3.5) is
not sufficient to determine the limit of f(n) − g(n) as n → +∞. The question

11

can be settled using the more precise formula where the O
(
n−1

)
term is replaced

by 1/(12n) +O
(
n−2

)
.

Let f(n) = q(n)αng(n), where q ∈ C[n], α ∈ C\{0} and g ∈ F has the shape
of Definition 36. If lead(q) > 0, then for sufficiently large n we have that log f(n)
is dominated by n log n

∑r
j=1 aj + n

(
log α +

∑r
j=1 aj(log aj − 1)

)
. It is therefore

possible to repeat, to some extent, what we did in Section 3.3 and compare the
order of magnitude of two such functions, though, in general, we may have to
compare quantities involving logarithms of complex numbers.

The following examples show that all situations described earlier in this sec-
tion may actually arise in practice, as solutions of suitable recurrences: The
functions f(n) = n!2 and g(n) = (2n)! are the solutions of the recurrences
x(n) = n2x(n− 1) with x(0) = 1, and y(n) = 2n(2n− 1)y(n− 1) with y(1) = 1,
respectively. They have the common value 2 in (3.7), but then they have the
different values 1 and 4 respectively in (3.8). The functions f(n) = (2n)!4 and
g(n) = (4n)!n!4 are the solutions of the recurrences x(n) = 16n4x(n − 1) with
x(0) = 1, and y(n) = 4n5(4n− 1)(4n− 2)(4n− 3)y(n− 1) with y(0) = 1 respec-
tively. They have the common value 8 in (3.7), and the common value 256 in
(3.8), but then they have the different values 4 and 5 respectively in (3.9). Note
that g(n)/f(n) ∼ cn1/2 as n →∞, for a suitable constant c > 0. This is only one
of a pattern of similar functions: take f(n) = (kn)!k

k

and g(n) = (kkn)!n!k
k(k−1),

where k ∈ N \ {0}. These functions have the common value kk+1 in (3.7), and
the common value kkk+1

in (3.8), but for k > 1 they have the different values kk

and kk(k−1)+1 respectively in (3.9). The functions f(n) = (2n)!7(2n+1)! and
g(n) = (4n)!2 n!8 are the solutions of linear, first order recurrences with variable
coefficients similar to the ones in the example above. They agree throughout
(3.7)–(3.9). The functions f(n) = πn(2n)!2 and g(n) = n!424n are the solutions
of the recurrences x(n) = 4n3(2n − 1)2x(n − 1)/(n − 1) with x(1) = π, and
y(n) = 16n4y(n− 1) with y(0) = 1 respectively. Finally, notice that the identity
(n!)! = (n!− 1)! · n! is valid for all n ∈ N.

3.4 Higher Transcendental Functions

We recall that a function f : C → C is entire if it is everywhere differentiable in
the complex sense. Let A ⊂ C be a (possibly infinite) set of complex numbers
such that the topological closure of A is empty. In other words, let A intersected
with any circle be a finite set. For each a ∈ A let ma be a positive integer. A
Theorem of Weierstrass (see [15, Section 8.11]) implies that there is an entire
function f that has a zero of multiplicity ma at the point a ∈ A, and does not
vanish for z /∈ A. This means that it is very difficult to extend the results of the
previous section to a larger class of functions, including higher transcendental
functions like hypergeometric functions that may arise as solutions of recurrences
of the form (2.6), or Euler’s Gamma: for example, the entire function 1/Γ (−z)
vanishes if and only if z ∈ N.

12

4 Upper Bounds and Maxima

Here we deal with the problem of determining upper bounds for the exact solu-
tion of a recurrence, or for max{f1(n), f2(n)}, where both f1 and f2 are exact
solutions of some recurrences, or some upper bounds themselves. The problem
is more difficult than validation, also because we are looking for rather different
answers: we are interested both in tight bounds (and accept the fact that they
may be very complicated) and in simple bounds (and accept that they may not
be very sharp). In the latter case, we are ready to accept that the bounds may
be valid only for all sufficiently large natural numbers. This raises the question
of knowing exactly what “sufficiently large” means.

Another feature that makes the problem more difficult than validation is the
possibility that, though we deal with real-valued solutions of recurrences like
(2.1), the solutions themselves may contain complex numbers arising from the
(possibly complex) roots of the characteristic equation (2.3). Terms involving
complex roots may be rewritten as explained in Section 3.2 (actually, going the
other way around) so that complex numbers disappear, but the problem is that
they oscillate in sign.

The ideas explained in Section 3 can be also used to perform these tasks, and
we briefly sketch the argument.

4.1 Upper Bounds for Functions in E

Let f ∈ E be written as in (3.2). For each hd, defined as in (3.3), let h+
d (n) =∑

j βjα
n
j , where the sum is restricted to the summands in hd satisfying both

βj ∈ R+ and αj ∈ R+, and let h−d (n) =
∑

j βjα
n
j , where the sum is restricted to

the summands in hd satisfying βj ∈ R− and αj ∈ R+. Observe that the function
h+

d is positive and that h−d is negative: in other words, they have a definite sign
for all n ∈ N. Finally, let h∗d = hd − h+

d − h−d : this part, if present, is oscillating.
For ease of reference let

f+(n) def=
D∑

j=0

h+
j (n)nd, f−(n) def=

D∑
j=0

h−j (n)nd, (4.1)

f∗(n) def=
D∑

j=0

h∗j (n)nd. (4.2)

An upper bound for f is therefore

f+(n) + f−(n) +
∣∣f∗(n)

∣∣. (4.3)

A simpler (but weaker) one is obtained by removing the term f− from the
expression above: this is the main reason for introducing the function f−. An
upper bound for

∣∣f∗(n)
∣∣ is obtained by replacing every term of the form βαn in

any h∗d by |β| · |α|n: the resulting bound for the function in (4.3) belongs to the
class E , but does not contain any oscillating term.

13

4.2 The Maximum of Two Functions in E

If both f1 and f2 are real-valued elements of E , we can determine an upper
bound, U(n), say, for max{f1(n), f2(n)} as follows. Assume that f1 and f2 have
the shape in Definition 32 for suitable values of the integers r1 and r2, of the
polynomials q1,j , q2,j , and of the complex numbers α1,j , α2,j , for j = 1, . . . , r1

and for j = 1, . . . , r2, respectively. Assume further that the α’s are distinct, and
that they are labeled so that for some s1 ≤ r1 we have

|α1,1| = · · · = |α1,s1 | > |α1,s1+1| ≥ · · · ≥ |αr1 |,

and let d1,j
def= deg(q1,j), and similarly for f2. Then f1(n) is dominated by the

term

g1(n) def=
s1∑

j=1
d1,j=D1

β1,jn
D1αn

1,j (4.4)

where D1
def= max{ d1,j | j = 1, . . . , s1 }, and β1,j = lead(q1,j). In fact

f1(n) = g1(n) + o
(
nD1 |α1,1|n

)
as n → +∞, (4.5)

since every term in f1(n)− g1(n) has the form βndαn, where β ∈ C, and either
|α| < |α1,1|, or |α| = |α1,1| and d < D1. Let

g+
1 (n) def=

s1∑
j=1

d1,j=D1

b1,jn
D1 |α1,j |n

where

b1,j
def=

{
β1,j if α1,j ∈ R+,
|β1,j | if α1,j /∈ R+.

Then g1(n) ≤ g+
1 (n) for all n ∈ N. For a real number x, let

x+ def= max{x, 0}, x−
def= min{x, 0}.

Now let U(n) := 0 (where ‘:=’ denotes assignment) and repeat the following
procedure.

– If |α1,1| = |α2,1| and D1 = D2, let
U(n) := U(n) + |α1,1|nnD1

·max
{
(b1,1 + · · ·+ b1,s1), (b2,1 + · · ·+ b2,s2)

}
;

f1(n) := f1(n)− g1(n);
f2(n) := f2(n)− g2(n).

14

– If |α1,1| < |α2,1| or (|α1,1| = |α2,1| and D1 < D2), let{
U(n) := U(n) + |α2,1|nnD2(b2,1 + · · ·+ b2,s2)

+;
f2(n) := f2(n)− g2(n).

– If |α2,1| < |α1,1| or (|α1,1| = |α2,1| and D2 < D1), let{
U(n) := U(n) + |α1,1|nnD1(b1,1 + · · ·+ b1,s1)

+;
f1(n) := f1(n)− g1(n).

Notice that the definition of the coefficients b ensures that the bound obtained
is sharper than the one given by replacing every β with its absolute value. In
fact, take f(n) = −3n: the latter alternative yields the upper bound f(n) ≤ 3n,
whereas our procedure gives f as an upper bound to itself. We need to take
positive parts of real numbers to avoid errors in computing the upper bound of,
say, f1(n) = 3n and f2(n) = 3n − 2n.

4.3 The Maximum of Two Linear Combinations of Factorials

The discussion in Section 3.3 shows that essentially the same procedure can be
used in the case of linear combinations of factorials, since any f of the shape
in (3.6) can be broken down into terms of decreasing order of magnitude (as
n → +∞), in the form of the product of a function from the set E and (an)!, for
some positive integer a. More precisely, if f has the shape in (3.6) and we assume
that hj ∈ E for j = 1, . . . , r, and that a1 ≥ a2 ≥ · · · ≥ as > as+1 ≥ · · · ≥ ar, we
use the procedure sketched in the previous section to get an upper bound H+

1 and
a lower bound H−

1 for the function h1+· · ·+hs ∈ E . Notice that in this case there
will be no oscillating terms, making our analysis a little simpler. We then use
the same ideas iteratively on the function f(n)− (h1(n)+ · · ·+hs(n))(an)!, that
has again the shape (3.6) for suitable values of the parameters, adding together
the upper bounds (resp. the lower bounds) found in the successive iterations.

4.4 Factorial Type Functions

Here we can use the procedure outlined in Section 3.3 to compare functions
belonging to F : deciding which is the larger of f1 and f2 in F can be done via
successive comparisons of the quantities in (3.7)–(3.9). If this is not enough to
settle the question, it means that the ratio f1/f2 has a non-zero, finite limit as
n → +∞, and therefore the constant terms in (3.5) come into play. We then
compute the expression in (3.10) and if this is larger than 1, then f1 is larger
than f2 for sufficiently large n; if it is smaller than 1, then f2 is larger, and if it is
exactly 1, then f1 and f2 have precisely the same behavior as n →∞, and then
we need a more precise form of Stirling’s Formula, as on a previous occasion in
Section 3.3.

15

5 Lower Bounds and Minima

The strategy for obtaining lower bounds and minima is very similar to the one
described in Section 4. Let f ∈ E be written as in (4.1)–(4.2). A lower bound for
f is

f+(n) + f−(n)−
∣∣f∗(n)

∣∣.
For minima, we define g− exactly as g+, but with the coefficients

b1,j
def=

{
β1,j if α1,j ∈ R+,
−|β1,j | if α1,j /∈ R+.

Then g1(n) ≥ g−1 (n) for all n ∈ N. Now let L(n) := 0, and repeat the following
procedure.

– If |α1,1| = |α2,1| and D1 = D2, let
L(n) := L(n) + |α1,1|nnD1

·min
{
(b1,1 + · · ·+ b1,s1), (b2,1 + · · ·+ b2,s2)

}
;

f1(n) := f1(n)− g1(n);
f2(n) := f2(n)− g2(n).

– If |α1,1| < |α2,1| or (|α1,1| = |α2,1| and D1 < D2), let{
L(n) := L(n) + |α2,1|nnD2(b2,1 + · · ·+ b2,s2)

−;
f2(n) := f2(n)− g2(n).

– If |α2,1| < |α1,1| or (|α1,1| = |α2,1| and D2 < D1), let{
L(n) := L(n) + |α1,1|nnD1(b1,1 + · · ·+ b1,s1)

−;
f1(n) := f1(n)− g1(n).

The procedures for obtaining the minimum of two linear combinations of
factorials, or of two functions in the class F , are explained in Sections 4.3 and
4.4 respectively, since they are quite similar to those needed to compute the
maximum.

We are now in position to specify the set B of boundary functions that we
consider in this paper: it is the set of linear combinations of elements of F with
coefficients in{

f : N → R

∣∣∣∣∣ ∃r ∈ N . ∀j = 1, . . . , r : ∃qj ∈ R[n]
. ∃αj ∈ R+ . f(n) =

∑r
j=1 qj(n)αn

j

}
,

which is closed with respect to the algorithms we gave for computing lower and
upper bounds.

16

6 Conclusion and Future Work

Recurrence relations play an important role in the field of complexity analysis
since complexity measures of programs and procedures can often be elegantly
expressed by systems of such relations. Their mechanical solution is, also for this
reason, an interesting application of symbolic computation.

In this paper we have studied two problems related to the manipulation of
(candidate) solutions of recurrence relations: proving or disproving that a closed-
form expression actually solves a recurrence relation and computing non-trivial
lower and upper bounds to finite sets of such expressions. An important feature
of the techniques we propose is that they rely as much as possible on integer
computations and, more generally, can be efficiently implemented.

A prototype implementation is being developed in the context of the PURRS
project (http://www.cs.unipr.it/purrs/), and the part concerning the cor-
rectness test for the solutions is almost finished and in current use. At the time
of writing, regression testing of the PURRS solver is done on a set of 1286
(generalized) recurrences collected from various sources. Of those, 612 are linear
recurrences of finite order with constant coefficients, 579 of which can be solved
by the current version of the system. There are 542 recurrences in this class that
can be verified by the method proposed in Section 3. On 2 of them the naive
method does not terminate in reasonable time. The average speedup granted
by the new method on the remaining 540 recurrences is 16, whereas the max-
imum speedup measured for the verification of one single recurrence is about
200 (this occurs for the verification of xn = 2xn−1 + xn−2 + n3). Slowdowns are
also possible, but we have only observed them for recurrences where the cost
of verification is very small, on the order of milliseconds. On this timescale, our
measurements of CPU time are affected by very large relative errors, to the point
that a small speedup can be mistaken for a slowdown. This situation arises for
39 recurrences. There are still 37 recurrences for which we are unable to check
the solution provided by PURRS for correctness (for 33 of them the verification
causes system thrashing using both methods, whereas for the remaining 4 the
simplifier is not powerful enough): this is, of course, material for future work.

On the subject of future work, there is often the need, given two sets of
sequences F1, F2 ∈ F, to know whether one set majorizes the other, e.g., whether
we have, for each f1 ∈ F1 and each f2 ∈ F2,

∀n ∈ N : f1(n) ≤ f2(n). (6.1)

This is required, for instance, in order for an optimizing program transformer
to automatically decide whether a candidate transformation resulted into an
actual improvement [16]. This problem reduces to the problem of approximating,
as precisely as possible, the decision problem of the truth of b1 ≤ b2 given
b1, b2 ∈ B. (Notice the emphasis on approximation: as is customary in the field
of static analysis, “yes”, “no” and “don’t know” are all sensible answers.)

Future work includes, in addition, the extension to more general recurrences
than (2.1) and (2.6), also in those cases where it is possible to give lower and

17

upper approximations for the solutions, but not a closed form. In this case,
checking that approximations are correct involves solving the decision problem
(6.1). We expect the work on such inequalities to be generally beneficial. For
instance, it can be used to improve the procedure outlined in Section 4.2, which
may produce an upper bound that is not the best possible (as the example with
f1(n) = n and f2(n) = n2 shows).

Acknowledgments We wish to thank Tatiana Zolo and Enea Zaffanella for the
help they gave us in the implementation of these ideas. We are also grateful to
the reviewers of a previous version of this paper for their careful comments that
helped us improve the paper.

References

1. Bagnara, R., Zaccagnini, A., and Zolo, T. The automatic solution of re-
currence relations. I. Linear recurrences of finite order with constant coefficients.
Quaderno 334, Dipartimento di Matematica, Università di Parma, Italy, 2003.
Available at http://www.cs.unipr.it/Publications/.

2. Blieberger, J., and Lieger, R. Worst-case space and time complexity of recur-
sive procedures. Real-Time Systems 11, 2 (1996), 115–144.

3. Celis, P. Remark: Corrections and errors in John Ivie’s some MACSYMA pro-
grams for solving recurrence relations. ACM Transactions on Mathematical Soft-
ware 10, 4 (1984), 477–478. See [10].

4. Cohen, J., and Katcoff, J. Symbolic solution of finite-difference equations.
ACM Transactions on Mathematical Software 3, 3 (1977), 261–271.

5. Cousot, P., and Cousot, R. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Proceedings of the Fourth Annual ACM Symposium on Principles of Programming
Languages (New York, 1977), ACM Press, pp. 238–252.

6. Debray, S., and Lin, N.-W. Cost analysis of logic programs. ACM Transactions
on Programming Languages and Systems 15, 5 (1993), 826–875.

7. Debray, S. K., López-Garćıa, P., Hermenegildo, M. V., and Lin, N.-W.
Lower bound cost estimation for logic programs. In Logic Programming: Proceed-
ings of the 1997 International Symposium (Port Washington, NY, USA, 1997),
J. Ma luszyński, Ed., MIT Press Series in Logic Programming, The MIT Press,
pp. 291–305.

8. Flajolet, P., Salvy, B., and Zimmermann, P. Automatic average-case analysis
of algorithms. Theoretical Computer Science 79, 1 (1991), 37–109.

9. Gourdon, X., and Salvy, B. Effective asymptotics of linear recurrences with
rational coefficients. Discrete Mathematics 153, 1-3 (1996), 145–163.

10. Ivie, J. Some MACSYMA programs for solving recurrence relations. ACM Trans-
actions on Mathematical Software 4, 1 (1978), 24–33. See also [3].

11. Le Métayer, D. ACE: An automatic complexity evaluator. ACM Transactions
on Programming Languages and Systems 10, 2 (1988), 248–266.

12. Petkovšek, M., Wilf, H. S., and Zeilberger, D. A = B. A. K. Peters, Natick,
MA, 1996.

13. Rosendahl, M. Automatic complexity analysis. In Proceedings of the 4th Inter-
national Conference on Functional Programming Languages and Computer Archi-
tecture (Imperial College, London, U.K., 1989), ACM Press, pp. 144–156.

18

14. Sands, D. Complexity analysis for a lazy higher-order language. In Proceedings
of the 3rd European Symposium on Programming (Copenhagen, Denmark, 1990),
vol. 432 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 361–
376.

15. Titchmarsh, E. C. The Theory of Functions. Oxford University Press, London,
UK, 1988.

16. Wegbreit, B. Goal-directed program transformation. In Proceedings of the 3rd
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(Atlanta, Georgia, 1976), ACM Press, pp. 153–170.

17. Wilf, H. S. Generatingfunctionology. Academic Press, New York, 1994.
18. Zimmermann, P., and Zimmermann, W. Automatic complexity analysis of

divide-and-conquer algorithms. In Proceedings of the 6th International Sympo-
sium on Computer and Information Sciences (Antalya, Turkey, 1991), M. Baray
and B. Ozguc, Eds., Elsevier Science Publishers, pp. 395–404.

A Proofs

Proof of Theorem 33 on page 7. Assume that the α’s are labeled in such
a way that for some s ∈ { 1, . . . , r } we have |α1| = · · · = |αs| > |αs+1| ≥
· · · ≥ |αr|, and let dj

def= deg(qj). For brevity we refer to (4.4) and (4.5) with the
suffix 1 removed throughout. As in (4.5), for large n the function f is dominated
by g(n), which is defined as in (4.4). If s = 1 then g(n) = lead(q1)nd1αn

1 and
therefore f does not vanish for large enough n. If s > 1, then let

g(n) def=
s∑

j=1
dj=D

βjn
Dαn

j

where D
def= max{ dj | j = 1, . . . , s }, and βj = lead(qj). Let g(n) = nDh(n).

Again, we have that (4.5) holds, and this implies that the function f can not
vanish for all large n. Indeed, we prove in Lemma A1 below that h(n)/αn

1 does
not have the limit 0 as n → +∞, unless all β’s are 0 (which is against their
definition). In other words, there is a positive constant c such that for some
arbitrarily large values of n we have |h(n)/αn

1 | > c, and for these values of n the
function f does not vanish. �

Proof of Lemma 34 on page 8. By hypothesis, we have that

(β1α
n0
1)αn

1 + · · ·+ (βrα
n0
r)αn

r

vanishes for n = 0, . . . , r − 1. Therefore, changing if necessary the value of the
coefficient βj by the multiplicative factor αn0

j (which does not affect the result),
we can assume that n0 = 0. But the Vandermonde determinant

det

1 α1 α2
1 . . . αr−1

1

.
1 αr α2

r . . . αr−1
r

 =
∏
i<j

(αj − αi) 6= 0

19

since the α’s are distinct. Therefore the system in the unknowns β1, . . . , βr
β1 + β2 + . . . + βr = 0

. .
β1α

r−1
1 + β2α

r−1
2 + . . . + βrα

r−1
r = 0

has only the trivial solution β1 = · · · = βr = 0. �

Lemma A1 Let ω1, . . . , ωr be distinct complex numbers such that |ωj | = 1 for
all j, and let α1, . . . , αr be non-zero complex numbers. Then either r = 1 and
ω1 = 1, or the sequence

h(n) def= α1ω
n
1 + · · ·+ αrω

n
r

does not have any limit as n → +∞.

Proof. If r = 1 and h(n) → L, then h(n) = L + o(1) as n → ∞, and |h(n) −
h(n + 1)| = |α1ω

n
1 − α1ω

n+1
1 | = |α1(1 − ω1)| = o(1): this implies ω1 = 1 since

α1 6= 0.
Now assume that r ≥ 2, and that the statement has been proved for r− 1. If

r > 1 and h(n) had the limit 0, then consider the sequence g(n) = h(n)ω−n
r −αr,

which has the shape considered in the statement, with ω′j = ωjω
−1
r for j = 1,

. . . , r − 1, and r − 1 in place of r. Since ω′j 6= 1 for all j, the sequence g(n) has
no limit by the induction hypothesis, and therefore h does not have the limit 0.
If ωr were 1, then g(n) = h(n) − αr would have the limit L − αr, and this is
again impossible by the induction hypothesis.

We may assume from now on that h(n) has the limit L 6= 0 and that ωj 6= 1
for all j. We choose ε = 1

3 |L| > 0; for n ≥ n0(ε) we have h(n) = L + δn, where
|δn| < ε. Set sn,k = h(n) + · · ·+ h(n + k). On the one hand we have

|sn,k| =
∣∣∣ r∑
j=1

αjω
n
j

1− ωk+1
j

1− ωj

∣∣∣ ≤ r∑
j=1

2|αj |
|1− ωr|

,

which is a fixed, finite quantity, independent of n and k. On the other hand, for
n ≥ n0 we have

|sn,k − (k + 1)L| ≤ (k + 1)ε =
1
3
(k + 1)|L| =⇒ |sn,k| ≥

2
3
(k + 1)|L|,

by the triangle inequality, which is absurd for large k. �

Proof of Theorem 35 on page 8. Let qj(z) = aj(z)/bj(z), where aj , bj ∈ C[z]

are polynomials, and bj is not the 0 polynomial. Let g(z) def= f(z)b1(z) · · · br(z),
so that g has the shape of the statement of Theorem 33. By hypothesis, g(n)
vanishes for all large n, and the result follows. �

20

