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Series Foreword

Complexity analysis aims at the derivation of upper and lower bounds to
the complexity of algorithms, processes and data structures. The results of
such analyses, which may be part or wholly automated, can be used, say,
to decide whether mobile agents should be allowed to run in a given con-
text, assist programmers in reasoning about the behavior of programs, guide
applications of optimized program transformations, and discover efficiency
bugs that are otherwise very difficult to detect.

Recurrence relations play an important role in the field of complexity
analysis since complexity measures of, e.g., programs, can usually be very
elegantly expressed by means of such relations. Therefore there is significant
demand for efficient software systems capable of solving, with a high degree
of precision, systems of recurrence relations. Moreover, to be really useful,
the solvers need to be fully automatic, obtaining such solutions without
human intervention.

Although the mathematical and computing literature describes several
techniques and software for solving recurrences, these do not fulfill all of
the above requirements; on the one hand, many of the methods assume
interaction with a human operator and only deal with a rather restricted
range of cases, while, on the other hand, the fully automated tools that are
available only provide quite crude approximations of the exact solutions.

The PURRS project (Parma University’s Recurrence Relation Solver,
see http://www.cs.unipr.it/purrs/) is working at improving the state of
the art in this field. The aim of the project is to create a software library
that provides the services needed for efficiently computing the solution or an
approximation of the solution of a system of recurrence relations that arise
in performing fully automated complexity analysis.

Finding exact solutions and/or tight approximations in closed form in
an acceptable timescale for a large class of recurrence relations is a chal-
lenging task; such an objective requires solutions to a host of unresolved
theoretical and practical problems. The current series of papers is devoted
to the presentation of all the mathematics behind the PURRS project. As
our aim is to provide both rigor and thoroughness, the series will not only
include original work but also accounts of known results, describing any
useful extensions or modifications.
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Abstract

We describe algorithmic techniques for the efficient solution of a
wide class of linear recurrences of finite order with constant coefficients.
We give an outline of the underlying theory both from an abstract and
a more concrete point of view, in an attempt to convey the general
principles as clearly as possible yet providing a well marked path for
the implementation. In particular, the presentation is thorough and
reasonably self-contained, covering topics such as the automatic solu-
tion of polynomial equations and efficient, exact symbolic summation
of some special functions.
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1 Introduction

In this part of the series we deal only with linear recurrences of finite order
with constant coefficients, in the cases when it is possible to give an exact
closed formula for the solution without resorting to complex methods for
summation in closed form.1

Linear recurrences of finite order with constant coefficients (LRFOCCs,
for short) arise frequently in complexity analysis. For instance, several com-
mon algorithms on lists and other kinds of sequences work by manipulating
a few elements on, say, the front of the sequence, and invoke themselves
recursively to get the job done on the entire list. In the analysis of func-
tional and logic programs this is most often the case, and linear recurrences
with constant coefficients of order 1 or 2 cover the vast majority of the re-
currences an automatic complexity analysis tool has to solve. LRFOCCs
of higher order are also important since, as we will see, they arise in the
solution of systems of LRFOCCs of order 1.

Luckily enough, LRFOCCs are relatively easy to solve efficiently, espe-
cially if their order is small. In this paper we give an outline of the theoretical
results underlying the automatic solution of LRFOCCs. This is presented
both from an abstract and a more concrete point of view, in an attempt
to convey the general principles as clearly as possible yet providing a well
marked path for the implementation. In fact, the illustrated techniques (or
variants of them) are used in the PURRS system (Parma University’s Re-
currence Relation Solver, see http://www.cs.unipr.it/purrs/). Care is
taken to provide a presentation that is thorough, reasonably self-contained,
and can be followed both by mathematicians and computer scientists.

The plan of the paper is as follows: Section 2 introduces preliminary
concepts and notations; Section 3 is the main one and presents solution
techniques for linear recurrences with constant coefficients of order 1, 2 and
higher; Section 4 shows how to solve systems of linear recurrences of order
1 with constant coefficients by reducing them to a set of autonomous re-
currences (that is, independent of one another) of higher order; Section 5
discusses related work in this field while Section 6 concludes the main body
of the paper. The appendix contains the tools required to turn the solution
methods into actual algorithms. Procedures for the solution of polynomial
equations of degree up to 4 are described in Appendix A. The exact sym-
bolic summation of an important class of functions (linear combinations of
products of polynomials and exponential functions) is treated in detail in
Appendix B. Finally, several examples are collected in Appendix C so as to
show the solution algorithms at work.

1Such methods are best viewed within the context of linear recurrences with variable
coefficients [5]. Approximate summation will be the topic of another paper of this series
[4]. We will discuss generalized recurrences like those arising from the analysis of “divide
et impera” algorithms in [3].
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2 Preliminaries

Throughout the paper we will use the following conventions: we denote by
N the set of nonnegative integers, so that 0 ∈ N; we denote by C(k) the k-th
iterate of the operator C; the value of an empty sum is 0.

We assume that the reader is familiar with the basic properties of poly-
nomials (roots and their multiplicity, division with quotient and remainder,
greatest common divisor), and has a working knowledge of calculus and of
linear algebra (eigenvalues, eigenvectors, characteristic equation of a matrix,
vector spaces, dimension, kernel of a linear operator).

We let C[n] denote the ring of polynomials in the indeterminate n with
coefficients in C. This is the smallest set (with respect to inclusion) that
contains the set of complex numbers C, the indeterminate n /∈ C, and is
closed with respect to addition and multiplication. The rings Z[n], Q[n]
and R[n] are defined similarly. Let p ∈ C[n] \ {0}: we denote by deg(p)
the degree of the polynomial p and by lead(p) its leading coefficient, that
is, the coefficient of the monomial ndeg(p). We also let coeffj(p) denote
the coefficient of the monomial of degree j of the polynomial p. With this
notation, lead(p) = coeffdeg(p)(p). A more abstract definition of polynomial
is given in Mignotte and Ştefănescu [19].

We are particularly interested in deriving, when possible, mathematical
formulas that are in closed form, a concept that we define informally as
follows: a mathematical expression denoting a function f : N → C is said
to be in elementary closed form if it is, syntactically, a linear combination
of a fixed number, r, say, of products of polynomials in C[n] and (complex)
exponentials. The number r must be an absolute constant, that is, it must be
independent of all variables and parameters of the problem. As an example,
the left hand side of the identity

n∑
k=0

(
n

k

)
= 2n

is not in closed form, while the right hand side is.
Generally speaking, we focus on effectively computable methods that

can constitute the basis of practical, efficient algorithms. As a consequence,
very often we refer to syntax instead of semantics. Moreover, in an attempt
to keep the discussion more fluid, we do that implicitly. Thus, when we say
“p is a polynomial” we actually mean “p is an expression that, syntactically,
is a polynomial” or “p is, syntactically, of the form a0λ

k + a1λ
k−1 + · · · +

ak−1λ + ak where . . . ” Of course, sticking to pure syntactic equality would
be too restricting. Hence, mathematical formulas are evaluated modulo a
computable equality theory EQ. While it is reasonable to assume that this
theory captures associativity and commutativity of ‘+’ and ‘·’ and other
simple properties of elementary operations, EQ is otherwise left unspecified.

2



We will write a
.= b when we want to emphasize that the expressions a

and b are equal under EQ. It must be stressed that, while ‘ .=’ is decidable,
ordinary mathematical equality is not. For example, it is well-known that
it is undecidable whether an expression involving polynomials and the sine
function is equal to zero [7, 21, 22].

We prefer to use the term “recurrence relations,” but in the literature
it is also possible to encounter the term difference equations. The latter
is mainly used in a mathematical context, in order to give prominence to
the tie with the differential equations. In fact, difference equations can be
considered the discrete analogue of differential equations, and there exists
a collection of mathematical tools, called difference calculus, which is quite
similar to differential calculus. Throughout the paper we will use both terms.

3 Linear Recurrences of Finite Order with Con-
stant Coefficients

A linear recurrence of finite order with constant coefficients is a recurrence
of the form

xn = a1xn−1 + a2xn−2 + · · ·+ akxn−k + p(n), (3.1)

for n ≥ k, where k is a fixed positive integer that is called order of the
recurrence relation (3.1). Here and throughout we implicitly assume that
ak 6= 0, for otherwise the order would be smaller. In Equation (3.1) the
coefficients aj are real or complex numbers. The function p is defined on
N ∩ [k, +∞), and is the non-homogeneous part of the recurrence (3.1). If
p

.= 0 (that is, p vanishes identically from a syntactical point of view), we
say that the recurrence (3.1) is homogeneous. Every recurrence of the form
(3.1) is given with a set of k initial values x0, x1, . . . , xk−1, which we assume
to be known.

In the next section we present the general solution technique for this class
of recurrences, whereas Section 3.2 presents the problem and its solution in
a more abstract setting. The problem is then reconsidered under a more
concrete point of view. Sections 3.3 and 3.4 are devoted to the “easy” cases
of linear recurrences with constant coefficients of order 1 and 2, respectively;
the description of tailor-made, more efficient solution methods for these
subclasses is justified by the observation that these cases appear to be the
most frequent ones in the context of complexity analysis. Section 3.5 deals
with the general case of linear recurrences with constant coefficients of any
finite order, while in Section 3.6 we show how to solve special recurrences of
higher order in a more efficient way.
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3.1 The Basic Solution Technique

We associate to any recurrence like (3.1) the homogeneous recurrence

gn = a1gn−1 + a2gn−2 + · · ·+ akgn−k. (3.2)

We first solve this recurrence by means of the characteristic equation that,
by definition, is the polynomial equation

λk = a1λ
k−1 + · · ·+ ak−1λ + ak. (3.3)

We use throughout the notation g for the homogeneous recurrence associated
to a general recurrence of finite order, and λ for the complex variable in the
associated characteristic equation. In general, the characteristic equation
(3.3) has k complex roots λ1, . . . , λk. If these roots are all distinct (we
also say that they are simple), the general solution of the homogeneous
recurrence (3.2) is given by

gn = α1λ
n
1 + · · ·+ αkλ

n
k , (3.4)

where α1, . . . , αk are complex numbers. It is quite easy to see that αiλ
n
i is

a solution of (3.2), for i = 1, . . . , k. This is an immediate consequence of
the fact that each λi is a root of (3.3). Furthermore, it is also easy to see
that the sum of any two solutions of (3.2) is again a solution, so that the
right hand side of (3.4) gives indeed solutions of the homogeneous recurrence
(3.2).

If the characteristic equation (3.3) has multiple (or repeated) roots, we
collect them: say they are λ1 with multiplicity µ1, . . . , λr with multiplicity
µr, where the λj ’s are different complex numbers, and the µj ’s are positive
integers. In this case the general solution is

gn =
r∑

j=1

(αj,0 + αj,1n + · · ·+ αj,µj−1n
µj−1)λn

j . (3.5)

Of course, (3.5) contains (3.4) as the special case where r = k and µj = 1
for j = 1, . . . , r. The proof of this result can be found in Kelley & Peterson
[14, Theorem 3.7]. Note that assuming that ak 6= 0 is tantamount to saying
that λ = 0 is not a solution of (3.3), but it is clear from either (3.4) or (3.5)
that this does not really matter.

The results above mean that any recurrence relation of the type (3.2)
has a solution of the type (3.4) or (3.5), for suitable values of the coefficients
α, which are determined by means of the initial values g0, . . . , gk−1.

Once the general solution of the homogeneous equation (3.2) has been
found, we have to solve the complete equation (3.1): by linearity, it is suffi-
cient to find any solution of the complete equation (we call this a particular
solution), sum the general solution of the homogeneous equation and impose
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that the initial conditions hold. This is the so-called superposition principle
(see Kelley & Peterson [14, Theorem 3.3]): we show why it is true by means
of an analogy. In order to know a straight line in the usual plane, it is suf-
ficient to know which straight line through the origin it is parallel to (and
this is uniquely determined) and any point on the original line, it does not
matter which one. In our case we need to know the complete solution of the
homogeneous equation (3.2) (which plays the role of the line through the
origin), and any solution of the complete, non-homogeneous equation (3.1).

3.2 Abstract Setting of the Problem

We now restate the problem we are interested in in a more abstract manner,
and fully characterize the set of non-homogeneous parts of a recurrence of
the type (3.1) that possess a solution whose elementary closed form can be
computed without transcendental summation methods that will be the topic
of [5]. Some remarks on how to actually and efficiently compute these closed
forms can be found in Appendix B.

In the language of linear algebra, we are trying to solve the equation
Ax = p, where A is a linear operator, so we first compute the kernel of
A which we denote by ker(A) (that is, we solve the equation Ax = 0).
The theory of linear operators guarantees that the general solution of Ax =
p is given by the sum of an element of ker(A) and any solution of the
complete equation. Furthermore, the dimension of ker(A) is precisely the
same as the order of the recurrence, so that (3.5) gives all solutions of
the homogeneous recurrence (3.2): in fact, there are exactly k unknown
coefficients, and the functions ni ·λn

j , for j = 1, . . . , r and i = 0, . . . , µj − 1,
are linearly independent over C provided that the values of the λj ’s are
different. This means that the dimension of the vector space generated by
these functions is precisely k. More concretely, we are talking about the
space X of complex-valued sequences defined over N, which, endowed with
the obvious operations, can be considered a vector space over C: if (xn)n∈N,
(yn)n∈N ∈ X , and λ, µ ∈ C, then

λ · (xn)n∈N + µ · (yn)n∈N
def= (λxn + µyn)n∈N ∈ X .

For a recurrence of order k as in (3.1), the operator A is defined by

A
(
(xn)n∈N

) def=
(
xn − (a1xn−1 + a2xn−2 + · · ·+ akxn−k)

)
n∈N,

with the convention that, if 0 ≤ n < k, the above definition has to be
replaced by 0. It is easily seen that A is linear, that is

A
(
λ · (xn)n∈N + µ · (yn)n∈N

)
= λ ·A

(
(xn)n∈N

)
+ µ ·A

(
(yn)n∈N

)
,

for any (xn)n∈N, (yn)n∈N ∈ X , and λ, µ ∈ C. Thus ker(A) is exactly the set
of solutions of (3.2). The fact that A is linear is the property that ensures
that the superposition principle holds.
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Summing up, the solution of a homogeneous linear recurrence of finite
order with constant coefficient is completely straightforward from a theo-
retical point of view, the main difficulty being in the solution of the char-
acteristic equation (3.3). On the contrary, finding the particular solution of
the general equation (3.1) is non-trivial, and an elementary closed form can
only be obtained in comparatively few cases: in general we have recourse to
summation formulæ and other approximations that will be explained in [4].

The ideas expressed above are now rigorously formalized.

Definition 3.1 (Shift and identity operators.) Let X denote the com-
plex vector space of all sequences defined over the set N of natural numbers.
We denote by (xn)n∈N its generic element (sometimes dropping the subscript
for brevity). We consider the shift operator E : X → X defined by

E
(
(xn)n∈N

) def= (xn+1)n∈N.

We also consider the identity operator I : X → X (which does nothing).

We need linear combinations of iterates of these two operators: we define
∆(α) def= E− αI, and introduce the family

F def=
{

∆(α1) ◦ · · · ◦∆(αk)
∣∣ k ∈ N \ {0}, α1, . . . , αk ∈ C

}
.

We remark that the operators ∆ commute. With this notation, we first
rewrite (3.1) in the form

xn+k −
(
a1xn+k−1 + a2xn+k−2 + · · ·+ akxn

)
= p(n + k),

and then (
E(k) − a1E(k−1) − · · · − ak−1E− akI

)
(xn) = p(n + k).

If p vanishes identically, the formal analogy with the characteristic equation
(3.3) is clear. It is also clear that we would like to write the linear operator
on the left as a composition of ∆(α) for suitable complex numbers α. This
corresponds to solving the characteristic equation, for once we know that its
roots are λ1 with multiplicity µ1, . . . , λr with multiplicity µr, we have

E(k) − a1E(k−1) − · · · − ak−1E− akI = ∆(λ1)(µ1) ◦ · · · ◦∆(λr)(µr). (3.6)

Here we exploit the commutativity of these operators. In order to solve ho-
mogeneous recurrences we need to understand the kernel of these operators.

Lemma 3.2 For any α ∈ C and any integer d ∈ N we have the set identity

ker
(
∆(α)(d+1)

)
=
{(

q(n)αn
)
n∈N

∣∣∣ q ∈ C[n], q = 0 or deg(q) ≤ d
}

.
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Proof. First, assume that q ∈ C[n] is a polynomial of degree ≤ d, and note
that

∆(α)
(
q(n)αn

)
= α

(
q(n + 1)− q(n)

)
αn.

Since deg
(
q(n + 1) − q(n)

)
= d − 1, we see that ∆(α)(d)

(
q(n)αn

)
= kαn

for some constant k, and then it is easy to see that ∆(α)(kαn) vanishes
identically.

In the other direction, we assume that α 6= 0, for otherwise the result
is trivial. Now let (xn)n∈N ∈ ker

(
∆(α)(d+1)

)
. If d = 0, this means that xn

satisfies the recurrence xn+1 = αxn, whose solution is xn = αnx0. For d > 0
we write

0 =
(
∆(α)(d+1)

)
(xn) =

(
∆(α)(d)

)[(
∆(α)

)
(xn)

]
.

By the inductive hypothesis, there is a polynomial p ∈ C[n] of degree ≤ d−1
such that (

∆(α)
)
(xn) = p(n)αn.

The proof is therefore complete if we show that there exists a polynomial
q ∈ C[n] of degree deg(p) + 1 such that

α
(
q(n + 1)− q(n)

)
= p(n)

identically. This is readily done by invoking Lemma B.1 on page 37 and
observing that2

n(d) =
1

d + 1
[
(n + 1)(d+1) − n(d+1)

]
,

since this ensures that we can write every monomial in the polynomial p in
the desired form. �

The last displayed formula is the discrete analogue of the identity xd =
(d+1)−1 d

dxxd+1. Indeed, as we already mentioned above, there is an analogy
between recurrence relations and differential equations: in our case the role
of the derivative is played by the forward difference operator ∆: X → X ,
which, by definition, has the following property:

∆
(
(xn)n∈N

) def=
(
xn+1 − xn

)
n∈N.

In other words, ∆ = ∆(1). As in the case of differential equations, it can be
proved (see Kelley & Peterson [14, §2.2]) that if the non-homogeneous part
of the linear recurrence p belongs to the rather special class of functions A
defined below, then a particular solution of (3.1) can be found in a suitable
subclass of A. The analogy with differential equations, though, can not be
pushed too far: in the fairly elementary cases treated in this paper most
things have an exact counterpart in the field of differential equations, an

2n(k) is the falling factorial function defined by n(k)
def
= k!

(
n
k

)
= n(n−1) · · · (n−k +1).
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important exception being the order reduction method of Section 3.6, but in
general (for recurrences with variable coefficients, to mention one instance)
results and techniques can both be very different.

Theorem 3.3 For all elements p of the set A defined by

A def=
⋃

C∈F
ker(C),

it is possible to find an elementary closed formula for

P (n) def=
n∑

k=0

p(k).

Proof. By Lemma 3.2 every element p ∈ A has the form p(n) = r1(n)αn
1 +

· · · + rk(n)αn
k , where ri ∈ C[n] for i = 1, . . . , k, and the αi are distinct

complex numbers. It is sufficient to prove the theorem for an expression
of the form p(n) = r(n)αn. Now P (n) satisfies the first order recurrence
xn = xn−1 + p(n) and p ∈ ker

(
∆(α)(deg(r)+1)

)
by Lemma 3.2. Therefore

P ∈ ker
(
∆(α)(deg(r)+1)

)
◦∆(1), so that P ∈ A by Lemma 3.2 again. �

For ease of future reference, we state the following immediate Corollary.

Corollary 3.4 Let p ∈ A have the form p(n) = r(n)αn, where r ∈ C[n]
has degree d, and α ∈ C \ {0}, and let λ1, . . . , λr be the distinct solutions
of the characteristic equation (3.3) associated to the recurrence (3.1), with
respective multiplicities µ1, . . . , µr. Then any solution of the recurrence
(3.1) belongs to{

ker
(
∆(λ1)(µ1) ◦ · · · ◦∆(λr)(µr) ◦∆(α)(d+1)

)
, if α /∈ {λ1, . . . , λr};

ker
(
∆(λ1)(µ1+d+1) ◦ · · · ◦∆(λr)(µr)

)
, if α = λ1.

We give some examples in Appendix C.
We just saw that the elements of the set A satisfy some homogeneous

recurrence relation of finite order with constant coefficients, and that poly-
nomials, exponentials and their products all belong to A. But, since we
allow complex values of α, we see that the functions sin(nθ), cos(nθ) and
their products also belong to A, and in general, any linear combination of
terms of the form nkρn cos(nθ) and nkρn sin(nθ), for k ∈ N, ρ, θ ∈ R. In-
deed, nkρn cos(nθ) and nkρn sin(nθ) both belong to ker

(
∆(ρeiθ)(k+1)

)
, and

also to the kernel of the real operator

C =
(
E(2) − 2(ρ cos θ)E + ρ2I

)(k+1)
.

See Appendix B for the description of algorithms for finding the partic-
ular solution of a non-homogeneous recurrence in the cases just stated, and
Appendix A.8 for the computation of the coefficients α in the relation (3.5).
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3.3 Special Case: Recurrences of Order 1

The next few subsections are devoted to the special but important case of
recurrences of order 1, because we want to emphasize again some of the
features of the solution of recurrences without having to deal with irrelevant
details.

It is quite easy to prove by induction that the solution of the first-order
recurrence

xn = αxn−1 + p(n),

is given by the formula

xn = αnx0 +
n∑

k=1

αn−kp(k). (3.7)

We consider the special case x0 = 0, and set{
yn = αyn−1 + p(n), for n ≥ 1;
y0 = 0,

whence, by (3.7),

yn =
n∑

k=1

αn−kp(k). (3.8)

Clearly, we just have to solve the last recurrence since then xn = αnx0 + yn.
We also remark that, by linearity, if p is the sum of several functions, p1+p2,
say, by the superposition principle (or, more simply, by (3.8)) it is enough
to solve two distinct recurrences, one with p1 in place of p, the other with
p2, and then add the results. See Appendix C.1 for some concrete examples.

3.3.1 Polynomials and Exponentials

We insist on an important theoretical point: we often need the closed for-
mula for the sum of the product of a polynomial and an exponential. In some
cases, the answer is the product of the same exponential function and an-
other polynomial of the same degree, and in some cases the degree increases:
see the abstract discussion in Section 3.2 and in particular Corollary 3.4; for
concrete cases, see Examples C.2, C.3, C.4, C.6, C.9, C.10.

Concretely, we are looking for a closed formula for the sum in (3.8) for
some α ∈ C, where p is q(n)αn and q is a polynomial. In this case we see
that the closed formula has again the shape of the product of a polynomial
and αn, but the degree of the polynomial has increased by 1. We see why it
has to be so by considering, more generally, the recurrence

xn = αxn−1 + q(n)βn,

9



where α and β are fixed, non-zero complex numbers, and q is a polynomial.
Using (3.8), we look for a closed formula for the sum

n∑
k=1

αn−kβkq(k) = αn
n∑

k=1

(β

α

)k
q(k) = αn

n∑
k=1

γkq(k), (3.9)

say. We claim that the case γ = 1 (that is, α = β) is quite special. In fact,
if r is a polynomial of degree d, say, then

γkr(k)− γk−1r(k − 1) = γk
(
r(k)− γ−1r(k − 1)

)
.

The degree of the polynomial on the right is d if and only if γ 6= 1, and is
d− 1 otherwise. To see why this fact is relevant, assume that we can find a
polynomial r such that q(k) = r(k) − γ−1r(k − 1) identically. Now we can
compute a closed formula for the sum in (3.9), far right:

n∑
k=1

γkq(k) =
n∑

k=1

γk
(
r(k)− γ−1r(k − 1)

)
=

n∑
k=1

γkr(k)−
n∑

k=1

γk−1r(k − 1)

=
n∑

k=1

γkr(k)−
n−1∑
k=0

γkr(k) = γnr(n)− r(0).

This implies that the closed formula for the right hand side of (3.9) contains
a polynomial of the same degree as q if α 6= β, and of higher degree if
α = β. The facts just stated are analogous to the computation of derivatives
and primitives. We say more on this topic in the Examples quoted at the
beginning of this section.

Lemma 3.5 Let q ∈ C[x] be any polynomial, and γ ∈ C \ {0}. There exists
a polynomial r ∈ C[x] such that

q(x) = r(x)− γ−1r(x− 1)

for all x ∈ C. Furthermore, if γ 6= 1 then deg(r) = deg(q), while if γ = 1
then deg(r) = deg(q) + 1.

Proof. If q is constant, q(x) = a, say, then we may take r(x) = aγ/(γ − 1)
if γ 6= 1, and r(x) = ax if γ = 1. If d = deg(q) ≥ 1 we proceed by induction:
let ad = lead(q), and set s(x) = adγxd/(γ−1) if γ 6= 1, and s(x) = adx

d+1/d
if γ = 1. Let t(x) = q(x)− (s(x)−γ−1s(x−1)). A simple check reveals that
deg(t) < deg(q), and therefore, by the induction hypothesis, there exists a
polynomial r1 ∈ C[x] such that t(x) = r1(x) − γ−1r1(x − 1) for all x ∈ C.
Hence r(x) = s(x) + r1(x) is the desired polynomial. �

Notice that, if q ∈ R[x], then r ∈ R[x] and, similarly, q ∈ Q[x] implies
r ∈ Q[x].
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3.4 Special Case: Recurrences of Order 2

The case of recurrences of order 2 is also interesting because it is now possible
to have characteristic equations with multiple roots, and again we can put
emphasis on quite important facts in a fairly simple situation.

We now want to solve general recurrences of order 2, like

xn = αxn−1 + βxn−2 + p(n) (3.10)

where p is a function defined over the natural numbers. Here we assume
that β 6= 0, for otherwise the recurrence would have order 1. We set

gn = αgn−1 + βgn−2, for n ≥ 2;
g0 = 1,

g1 = α,

(3.11)

for the fundamental solution. This is readily solved by means of the tech-
nique described in Section 3. It is not difficult to prove by induction that,
for n ≥ 2, the solution of (3.10) is

xn = gn−1x1 + βgn−2x0 +
n∑

k=2

gn−kp(k). (3.12)

Here and below, the solutions, as they stand, are only valid for n ≥ 2. We
observe that if λ1 6= λ2, then gn has the explicit expression

gn =
λn+1

1 − λn+1
2

λ1 − λ2
.

If λ1 = λ2, that is α2 + 4β = 0, the formula is different, though the idea is
similar; see Example C.6 on page 45. In fact (as in the case of the Fibonacci
numbers, see Example C.5 on page 44) we have

gn = aλn
1 + bλn

2 ,

for suitable complex numbers a and b, and for n = 0 and n = 1 we find{
a + b = 1,

aλ1 + bλ2 = α,
whence

{
a = λ1(λ1 − λ2)−1,

b = −λ2(λ1 − λ2)−1.

Thus, by (3.12), for n ≥ 2 we have

xn = gn−1x1 + βgn−2x0 +
n∑

k=2

λn+1−k
1 − λn+1−k

2

λ1 − λ2
p(k) (3.13)

= gn−1x1 + βgn−2x0 +
λn+1

1

λ1 − λ2

n∑
k=2

λ−k
1 p(k)− λn+1

2

λ1 − λ2

n∑
k=2

λ−k
2 p(k).

If p is in the set A defined in Section 3.2, the sums above also belong to A,
and there is an algorithm to compute the closed formula (see Appendix B).
A similar result also holds for linear recurrences of any finite order with
constant coefficients: see Section 3.5 for the details.
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3.4.1 “Guessing” the Solution in Special Cases

We now show how to solve directly equation (3.10) when p is a polynomial
of degree d, say: we first compute the homogeneous part x1gn−1 + βx0gn−2

and seek a particular solution of the complete equation (a different approach
is based on the techniques of Appendix B). Corollary 3.4 implies that if p is
a polynomial and λ = 1 is not a solution of the characteristic equation, then
the particular solution itself is a polynomial of the same degree as p, whose
coefficients we have to find. This leads to the solution of a set of linear
equations with d + 1 unknowns. If λ = 1 is a solution of the characteristic
equation of multiplicity µ, we look for a polynomial of degree d + µ.

Example 3.6 Solve
xn = αxn−1 + βxn−2 + p(n), for n ≥ 2;
x0 = a,

x1 = b.

(3.14)

The homogeneous fundamental equation is
gn = αgn−1 + βgn−2, for n ≥ 2;
g0 = 1,

g1 = α.

For the time being, we assume that λ = 1 is not a solution of the character-
istic equation, which amounts to assuming that α+β 6= 1. By Corollary 3.4
we know that there is a polynomial q such that

xn =
(
b + q(1)

)
gn−1 + β

(
a + q(0)

)
gn−2 − q(n),

where q has to be computed as a function of p, which is the non-homogeneous
part of the recurrence. If λ = 1 is not a solution of the characteristic
equation, q can be determined by imposing that it has the same degree as
p and satisfies the functional equation

p(n) = αq(n− 1) + βq(n− 2)− q(n). (3.15)

This can be verified by induction. In order to find q it is necessary to solve
a set of linear equations with d + 1 unknowns, d being the degree of p.

Example 3.7 Solve (3.14) for α = β = 1 and p(n) = n2.

We have to find real numbers a, b and c such that

n2 =
(
a(n− 1)2 + b(n− 1) + c

)
+
(
a(n− 2)2 + b(n− 2) + c

)
−
(
an2 + bn + c

)
12



holds identically, that is, collecting and simplifying,

(a− 1)n2 + (b− 6a)n + (5a− 3b + c) = 0.

By the identity principle for polynomials, this implies that a = 1, b = 6,
c = 13. Note (in agreement with Lemma 3.5) that if λ = 1 were a solution
of the characteristic equation of multiplicity µ, the right hand side of (3.15)
would be a polynomial of degree deg(q)− µ: that is why, if µ > 0, we have
to look for a polynomial q of degree deg(p) + µ. We give more examples in
Appendix C.2: see, in particular, Examples C.11–C.14.

3.5 Higher-Order Linear Recurrences with Constant Coeffi-
cients

The theory for the higher-order cases is analogous, but the computations are
obviously heavier. Notice though that it is fairly easy to recognize special
recurrences of order k > 2 such as xn = a(n)xn−k + p(n), which can be
treated as a (much easier and faster to solve) first order recurrence. The
point is that in this case xn does not depend on xn−1, xn−2, . . . , xn−k+1,
so that it is possible to use a simpler method. A similar remark holds for
xn = xn−2 + xn−4, which should be treated as an order 2 recurrence. For
more on this topic, see Section 3.6.

We now give the general solution of (3.1); we introduce the fundamental
solution of the associated homogeneous equation, which is

gn = a1gn−1 + a2gn−2 + · · ·+ akgn−k, for n ≥ k;
g0 = 1,

gn = a1gn−1 + a2gn−2 + · · ·+ an−1g1 + ang0, for 1 ≤ n < k.

The general solution of (3.1) is then given by the formula

xn =
n∑

i=k

gn−ip(i) +
k−1∑
i=0

gn−i

(
xi −

i∑
j=1

ajxi−j

)
, (3.16)

which is valid for n ≥ k and can be proved by induction. This is essen-
tially equation (5) of Cohen & Katcoff [10], and it contains as special cases
both (3.7) and (3.12). We remark that the two sums in (3.16) correspond
naturally to the non-homogeneous part p and to the initial conditions, re-
spectively. Furthermore, the quantities in brackets on the right depend only
on the initial values and on the coefficients of the recurrence.

3.6 Order Reduction

Suppose that we want to solve the recurrence

xn = αxn−k + p(n),

13



where k ≥ 2 is a fixed integer. As we said above, this is essentially a
recurrence of order 1. We remark that the variable n runs over integers
that are congruent mod k. Hence, setting r

def= n mod k, n
def= km + r and

y
(r)
m

def= xkm+r, we consider the k recurrences{
y

(r)
m

def= αy
(r)
m−1 + p(km + r), for m ≥ 1;

y
(r)
0

def= xr,
(3.17)

which are actually of order 1 and can be solved by means of the techniques
described in Section 3.3. It is not really necessary to solve k recurrences (one
for each possible value of r) since, in a sense, the recurrences (3.17), which
may actually be distinct as Example 3.8 below shows, can be considered as
a single, parametric recurrence. Here we use the term “parametric” in a
quite narrow sense, since the parameter r is only allowed to lie in the finite
set {0, 1, . . . , k − 1}. Elsewhere in this document, a parameter is usually
allowed to take any real (or indeed complex) value, without restrictions.

The advantage over the general method is best seen in the light of a
few examples. Similar remarks, of course, apply for recurrences of the form
xn = αxn−k + βxn−2k + p(n).

Example 3.8 Solve the recurrence

xn = xn−2 + n.

The general method gives the solution

xn =
1
2
(
1+(−1)n

)
x0 +

1
2
(
1− (−1)n

)
x1 +

1
4
n2 +

1
2
n+

3
8
(
(−1)n−1

)
. (3.18)

On the other hand, the substitution above leads to the recurrence{
y

(r)
m

def= y
(r)
m−1 + 2m + r, for m ≥ 1;

y
(r)
0

def= xr,

which is parametric in the parameter r in the above sense. Its solution is

y(r)
m = m2 + (1 + r)m + y

(r)
0 ,

so that, substituting again m = 1
2(n− r), we obtain

xn = xr +
1
4
n2 +

1
2
n− 1

4
r(r + 2), (3.19)

where r = n mod 2 ∈ {0, 1}. It is immediate to check that this is the same
as (3.18). It is also clear that (3.19) is more readable than (3.18), where
there is a complex part depending on the initial conditions.

The following example is perhaps even more striking.
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Example 3.9 Solve
xn = xn−3.

The reduction method yields at once xn = xn mod 3. The standard method
entails the solution of the characteristic equation λ3−1 = 0, whose roots are
λ1 = 1, λ2 = e2πi/3 and λ3 = e−2πi/3. For simplicity, we write ω = e2πi/3,
so that the roots are 1, ω, ω = ω2. We also need to solve a system of three
linear equations in order to find suitable constants a1, a2 and a3 so that

a1 + a2ω
n + a3ω

2n = xn for n = 0, 1, 2.

The solution is therefore

xn =
1
3
(x0 + x1 + x2) +

1
3
(x0 + ω2x1 + ωx2)ωn +

1
3
(x0 + ωx1 + ω2x2)ω2n

= (1 + ωn + ω2n)
x0

3
+ (1 + ωn+2 + ω2n+1)

x1

3
+ (1 + ωn+1 + ω2n+2)

x2

3
.

Though both forms of the solution are equally valid, there is no doubt that
the latter is much more complicated than the former, and that it is more
difficult to find. It is also plain that the reduction of the order allows one
to solve xn = xn−k for fixed integral, positive k, with the same amount
of computation, regardless of k, whereas the standard method, even in this
almost trivial case, requires computations whose cost increases with k. Other
examples that stress the convenience of this method are in Appendix C.4.

The remainder of this section is devoted to the transformation of the
solution obtained by means of the order reduction into the general solution
that would be obtained using the standard method: in other words, we show
in general how to deduce the exact form of the solution (3.18) from (3.19).

There are essentially two problems: expressing the terms xr where r =
n mod k, the initial conditions that appear in the “reduced” solution, and
expressing r itself. The examples above suggest that the first problem is
solved introducing suitable linear combinations of k-th roots of unity (the
complex solutions of the polynomial equation zk = 1), as the following
Lemma proves. The same result solves also the second problem.

Lemma 3.10 For any positive integer k and any r ∈ {0, . . . , k−1} there is
a linear combination of the k-th roots of unity ω1, . . . , ωk, with coefficients
α1(r), . . . , αk(r) such that for any n ∈ Z we have

α1(r)ωn
1 + · · ·+ αk(r)ωn

k =

{
1 if n ≡ r mod k,
0 otherwise.

Proof. It is sufficient to take αj(r) = ω−r
j /k, since ωn

1 + · · · + ωn
k = k if k

divides n and is 0 otherwise. �
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It is now possible to express the part depending on the initial conditions.
Let

ηr,k(n) def=
1
k

k∑
h=1

ωn−r
h ,

so that ηr,k(n) = 1 if n ≡ r mod k, and ηr,k(n) = 0 otherwise, by the
observation in the proof of Lemma 3.10. Therefore we have

xr =
k−1∑
s=0

ηs,k(n)xs. (3.20)

It might seem at first sight that the right hand side does not depend on
r, but on second thoughts it will be seen that ηr,k is periodic with period
k, since the ω’s are k-th roots of unity, so that the expression on the right
depends only on n mod k = r, and the remark after the definition of the
functions ηr,k shows that (3.20) is actually correct.

Another important consequence of Lemma 3.10 is the fact that

n mod k =
k−1∑
s=0

sηs,k(n) =
1
k

k−1∑
s=0

s

k∑
h=1

ωn−s
h =

1
k

k∑
h=1

ωn
h

k−1∑
s=0

sω−s
h . (3.21)

This expression is really too complicated to be of any practical use, but a
neat trick using some identities of Appendix B.2 will help us in finding an
equivalent expression which is much easier to handle, providing a feasible
solution to our second problem.

Lemma 3.11 Let k be a positive integer, and let 1 = ω1, ω2, . . . , ωk be the
complex k-th roots of unity. For any integer n ∈ Z we have

n mod k =
1
2
(k − 1) +

k∑
h=2

ωh

1− ωh
ωn

h .

Proof. Let z = ω−1
h for h 6= 1 and recall that ωk

h = 1 by definition. Since
z 6= 1, by (B.5) with j = 1 we have

k−1∑
s=0

szs =
z

(1− z)2
(
1− kzk−1 + (k − 1)zk

)
=

kωh

1− ωh
.

Therefore, by (3.21)

n mod k =
1
k

k∑
h=1

ωn
h

k−1∑
s=0

sω−s
h =

1
2
(k − 1) +

k∑
h=2

ωh

1− ωh
ωn

h ,

as stated. �
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3.7 Summary of the Method

Let us summarize the overall solution methodology for linear recurrences
of finite order with constant coefficients: The very first step is to recognize
whether we can apply the order reduction method, which is always bene-
ficial as it allows to work with polynomials of lower degree. After order
reduction, the homogeneous part of the recurrence is solved by the charac-
teristic equation method, which involves finding the roots of a polynomial
along with their multiplicities. Now, to obtain the general solution of the
complete equation, it is sufficient to find any one of its solutions (which is
then called the particular solution), add it to the general solution of the
homogeneous equation found with the previous step, and impose that the
initial conditions hold. For the recurrences of the first or the second order
when the characteristic equation has simple roots, a non-closed formula for
the solution is simply given by (3.7) and (3.13), respectively. For higher-
order recurrences (including order 2 when the characteristic equation has a
multiple root), the general solution is given by (3.16), which requires the
symbolic solution of a system of equations. Whatever the order is, finding
a closed-form solution requires the computation of symbolic sums that, de-
pending on the inhomogeneous term of the recurrence, can be arbitrarily
difficult when not plainly impossible (see Appendix B for the symbolic sum-
mation of an important class of functions). In some special cases, i.e., when
the non homogeneous term p belongs to the class A defined in Section 3.2,
we have shown an alternative way for “guessing” the particular solution.
Indeed, when p ∈ A, Lemma 3.2 and Corollary 3.4 characterize the shape of
the solution: in other words we know that it is the (sum of several terms of
the form) product of a polynomial and an exponential function, where we
know the degree of the polynomial and the base of the exponential function.
The actual values of the coefficients in the polynomial can be determined by
imposing that the solution really satisfies the initial recurrence. A similar
strategy is used in Examples 3.7 and C.11–C.14.

In conclusion, the above procedure allows to reduce the problem of solv-
ing LRFOCCs to (1) the solution of polynomial equations and (2) the com-
putation of closed forms for symbolic sums. In the appendix we illustrate
some useful techniques for dealing with (1) and (2); other techniques exist
and may be worth exploring, since any advancement in tackling problems
(1) and (2) will extend the class of recurrences that can be solved by this
method.

4 Systems of Linear Recurrences

In this section, we show how to solve systems of linear recurrences of finite
order with constant coefficients. We first deal with systems of recurrences
where each recurrence is of order 1. These have been studied, e.g., by Cohen
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& Katcoff [10] and by Kelley & Peterson [14]. We then turn our attention
to the solution of systems of recurrences of any order and show that they
can all be reconducted to systems of order-1 recurrences.

4.1 Systems of Recurrences of Order 1

Sets of k recurrence relations with constant coefficients of order 1 may be
tackled in two different, but essentially equivalent, ways, that are quite sim-
ilar to the solution of sets of linear equations: one can either solve for one
of the “variables” (a recurrence in our case) and then plug the result in the
remaining equations, iterating if necessary in order to get only one equation,
or see the problem from a more abstract point of view, the system being a
linear operator from the set of k-tuples of recurrences to itself, so that the
general theory developed in Section 3.2 applies. The first approach yields k
recurrences that contain only one “variable,” each recurrence being of order
k, all with the same characteristic equation of degree k; the second one needs
the solution of the characteristic equation of the linear operator referred to
above, which has degree k and is exactly the same as the characteristic equa-
tion of the linear operator: that is why the two approaches are essentially
equivalent. We give examples of both approaches below. We begin with a
set of two first-order recurrences with constant coefficients in two variables,
and we show how to transform it into two second-order recurrences, each
with only one variable. Suppose we want to solve{

xn = axn−1 + byn−1 + p(n),
yn = cxn−1 + dyn−1 + q(n).

(4.1)

The second equation with n replaced by n−1 yields cxn−2 = yn−1−dyn−2−
q(n − 1). We now replace n by n − 1 in the first equation and multiply
throughout by c. Plugging these two relations into the second equation
above, after some simplifications we obtain

yn = (a + d)yn−1 − (ad− bc)yn−2 + q(n)− aq(n− 1) + cp(n− 1).

A similar argument gives

xn = (a + d)xn−1 − (ad− bc)xn−2 + p(n)− dp(n− 1) + bq(n− 1).

Observe that the equations (4.1) imply that x1 = ax0 + by0 + p(1) and
that y1 = cx0 + dy0 + q(1). Notice also that the coefficients of the new
recurrences are the trace and the opposite of the determinant of the matrix
of the coefficients in the system (4.1). This discussion means that we can
always transform a system of two linear recurrences of the first order with
constant coefficients into a pair of linear recurrences of the second order,
with the variables decoupled.
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The procedure is quite general, and, as a more difficult example, we
show how to reduce a system of 5 equations of order 1 to a single equation
of order 5 (this is Example 12 in Table II of the paper by Cohen & Katcoff
[10]). Actually, one should repeat the same procedure in order to get 5
equations, one involving a single variable, but it is also possible to find the
solution to one and then substitute in the original problem, repeating until
all equations have been solved.

Example 4.1 Solve 

an = an−1 + bn−1 + 2n,

bn = 5an−1 + cn−1,

cn = −5an−1 + dn−1 − 3n,

dn = −4an−1 + en−1,

en = 4an−1.

(4.2)

The last equation implies that en−1 = 4an−2. We substitute this into
(4.2) and, omitting from now on the last equation, we find

an = an−1 + bn−1 + 2n,

bn = 5an−1 + cn−1,

cn = −5an−1 + dn−1 − 3n,

dn = −4an−1 + 4an−2.

The last equation shows that dn−1 = −4an−2 + 4an−3, and we substitute
again: 

an = an−1 + bn−1 + 2n,

bn = 5an−1 + cn−1,

cn = −5an−1 − 4an−2 + 4an−3 − 3n.

We obtain cn−1 = −5an−2 − 4an−3 + 4an−4 − 3n−1, whence{
an = an−1 + bn−1 + 2n,

bn = 5an−1 − 5an−2 − 4an−3 + 4an−4 − 3n−1.

Finally bn−1 = 5an−2 − 5an−3 − 4an−4 + 4an−5 − 3n−2, so that we are left
with

an = an−1 + 5an−2 − 5an−3 − 4an−4 + 4an−5 − 3n−2 + 2n.

The characteristic equation factors as (λ− 1)2(λ + 1)(λ− 2)(λ + 2) = 0, so
that this recurrence is easily solved with the technique described in Section 3.
Once a closed formula for an is found, it can be used to find the recurrences
satisfied by the other variables, until all the original equations are solved.
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This mechanical procedure shows quite clearly that we can eliminate one
variable at the cost of increasing the order of the other equations by 1.

Kelley & Peterson [14, §4.1] describe a different method. Given the set
of k linear recurrences with constant coefficients

x
(1)
n = a11x

(1)
n−1 + · · ·+ a1kx

(k)
n−1 + p1(n),

. . .

x
(k)
n = ak1x

(1)
n−1 + · · ·+ akkx

(k)
n−1 + pk(n),

we introduce the vector equation

xn = Axn−1 + p(n), (4.3)

where

xn
def=

 x
(1)
n

. . .

x
(k)
n

 , A
def=

 a11 . . . a1k

. . . . . . . . . . . . .
ak1 . . . akk

 , p(n) def=

 p1(n)
. . .

pk(n)

 . (4.4)

As above, we first study the homogeneous equation xn = Axn−1, whose
solution is, obviously,

xn = Anx0. (4.5)

We recall that, by definition, an eigenvector of A relative to the eigenvalue
λ is a non-zero vector v with the property that Av = λv. Hence it is
immediate that xn = λnv satisfies (4.5) with the initial condition x0 = v.
If A has k linearly independent eigenvectors (which certainly is the case
if it has k distinct eigenvalues) then there is an invertible matrix M such
that A = M−1BM , where B is diagonal, with the eigenvalues of A on
the main diagonal. Let’s denote by λ1, . . . , λk these eigenvalues, so that
Bij = λi if i = j and 0 otherwise. We remark that Bn is easily computed
since it is diagonal in its own turn, with the n-th powers of the λ’s on the
main diagonal. Since An = M−1BnM , we have that the solution of the
homogeneous equation is

xn = M−1BnMx0.

Actually, there is no need to find the matrix M explicitly: indeed, if A
has k linearly independent eigenvectors, they necessarily form a basis of Rk

(with some care if there are complex eigenvalues): since by definition the
eigenvector vj relative to the eigenvalue λj has the property Avj = λjvj ,
and every vector x ∈ Rk is a linear combination of eigenvectors, we can
write the solution of (4.5) in the form

xn = µ1λ
n
1v1 + · · ·+ µkλ

n
kvk,
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where x0 = µ1v1 + · · · + µkvk. Anyway, computing this decomposition
is equivalent to the inversion of the matrix M above. We remark that the
situation is quite similar to the case of a single recurrence of order k: indeed,
it can be proved that they are essentially equivalent.

Now we turn our attention to the complete equation (4.3). Formally, the
solution of (4.3) is given by the formula (3.7):

xn = Anx0 +
n∑

k=1

An−kp(k).

The point here is that, since A satisfies its own characteristic equation
det(A − λIk) = 0 (where Ik is the identity matrix of order k), An can
be written as a linear combination of A0 = Ik, A, . . . , Ak−1. For instance,
in the case of the system (4.2), we have

A =


1 1 0 0 0
5 0 1 0 0
−5 0 0 1 0
−4 0 0 0 1
4 0 0 0 0


whose characteristic equation is the same as above, namely

det(A− λIk) = −(λ− 1)2(λ + 1)(λ− 2)(λ + 2) = 0.

This means that we can avoid the explicit substitution, as we did above.

4.2 Systems of Recurrences of Higher Order

In the previous section we only considered systems of equations of order 1,
although the first method developed above entails the transformation of
the equations into higher-order ones. From a purely theoretical point of
view, it is quite interesting to know that it is possible to transform any
system of linear recurrences with constant coefficients of any finite order into
an equivalent system with a larger number of variables, with the property
that every equation has order exactly 1. From a computational point of
view, such a transformation is probably inefficient, so that the first method
explained above should usually be the preferred one.

The idea is quite simple: it is possible to reduce by 1 a suitable measure
of the complexity of an equation of order at least 2 (not necessarily the
order; we give precise definitions below), at the cost of introducing exactly
one more variable and one more equation of order 1: this is, essentially, the
inverse process of the first method above where we reduced the number of
variables by increasing the order of some equations. The total complexity of
the system, which is the sum of the complexities of the equations, does not
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change, while the complexity of an equation of order at least 2 decreases.
Iterating the process, it is possible to eliminate all equations of order 2 or
more, until we are left with a (larger) system with only order 1 equations.

In order to avoid exceedingly cumbersome notations, we stick to the
vector notation introduced in (4.4), with a slight generalization.

Notation 4.2 Let k and K be fixed, positive integers. For r = 1, . . . , K
let

A(r) def=

 a
(r)
11 . . . a

(r)
1k

. . . . . . . . . . . . . .

a
(r)
k1 . . . a

(r)
kk

 .

We are interested in the system

xn = A(1)xn−1 + · · ·+ A(K)xn−K + p(n), (4.6)

for fixed positive integers k (the number of variables) and K, where, in
complete analogy with the discussion of linear recurrences of finite order
with constant coefficients, we tacitly assume that A(K) is not the zero matrix.
Here it does not quite make sense to say that the order of the system is K,
and we give a more suitable definition.

Definition 4.3 (Weight.) For each s = 1, . . . , K let the weight ws of the
s-th equation of the system (4.6) be defined by

ws
def=

K∑
i=1

k∑
j=1

a
(i)
sj 6=0

i.

We let the weight of the system (4.6) be w1 + · · ·+ wK .

We are weighing each equation not only with the number of variables
that actually occur in it (so that a

(i)
sj 6= 0), but also taking into account the

order of each occurring variable. The weight, as defined here, is not the same
thing as the order, so the above is not necessarily coherent with the case
k = 1 (a single equation) nor with the case of k equations of order 1. We
only need the concept of weight to prove that the strategy outlined above
actually works.

We now formally describe a strategy for transforming a system like (4.6)
with at least an equation of order 2 or more (if all equations have order 1
there is nothing to do) into an equivalent one with the same weight, one more
variable and one more equation, and such that the weight of one equation
has decreased by 1. We may assume that the first equation, say, has order
q > 1 and weight w1. The strategy is as follows:
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• let i be an index such that a
(q)
1i 6= 0;

• add the new equation x
(k+1)
n = x

(i)
n−1 to the system;

• replace the instance of x
(i)
n−q in the first equation by x

(k+1)
n−q+1, which is

equivalent by definition.

We have plainly added one equation of order 1 and one variable, and
also changed the first equation of the system: we have to prove that

• the weight of the new system is the same as the weight of the old one;

• the weight of the first equation has decreased by 1.

The first thing can be checked easily: in fact, the new equation in the
first row has weight w1−1 (we left every term untouched except for the i-th
in the q-th matrix, which has been replaced by one of order one unit less),
and the equation we have added has weight 1. Therefore the new system
has the same weight as the original one. The second item above has been
verified incidentally.

Example 4.4 Using the strategy above, rewrite the system{
xn = xn−2,

yn = xn−1 + yn−1.

Both equations have weight 2, and the system has weight 4. We add a new
variable zn satisfying zn = xn−1. The system becomes

xn = zn−1,

yn = xn−1 + yn−1,

zn = xn−1.

The equations have weight 1, 2, 1 respectively, and each equation now has
order 1, while the system has still weight 4. In terms of matrices, for the
initial system we have

A(1) =
[

0 0
1 1

]
, A(2) =

[
1 0
0 0

]
,

and for the transformed system we have

B(1) =

 0 0 1
1 1 0
1 0 0

 so that

 xn

yn

zn

 = B(1)

 xn−1

yn−1

zn−1

 .

Adding the new equation zn = xn−1 corresponds to adding a new row to
the matrix A(1) (with a zero entry in all columns, except for the first), and
a new column (again, with a zero entry in all rows, except for the first).
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Example 4.5 Using the strategy above, rewrite the system
xn = xn−2 + yn−3,

yn = xn−1 + yn−2,

zn = yn−1.

Here the weights of the single equations are 5, 3 and 1, for a total weight of
9. Setting tn = yn−1, we obtain the new system

xn = xn−2 + tn−2,

yn = xn−1 + yn−2,

zn = yn−1,

tn = yn−1,

where the equations have weights 4, 3, 1, 1 respectively, for a total weight of
9 again. It is plain that we can repeat the same procedure on the rewritten
system until all equations have order 1.

5 Related Work

In this section we briefly outline the differences and similarities between our
approach (and implementation) and the work by Lueker [18] and Cohen &
Katcoff [10]. We use the notation of (3.1), page 3: in particular, we always
denote the non-homogeneous part of the recurrence by p(n). Recall that we
denote by C(k) the k-th iterate of the operator C.

5.1 Lueker, 1980

Lueker [18] describes some useful techniques for solving a wide range of
recurrences, presumably intended for manual computation.

As far as linear, first-order recurrences (both with constant and variable
coefficients) are concerned, our approach is essentially the one of Lueker.
The main differences arise when we consider non-homogeneous recurrences:
we exploit the closed formula (3.7), (3.12) or (3.16) thereby transforming
the problem of “guessing” a particular solution of the non-homogeneous
recurrence into the problem of computing a finite sum, by means of the tools
explained in Appendix B. Lueker, instead, introduces the shift operator E
as we did in Section 3.2 and also (without saying it explicitly) the identity
operator I.

The analysis is quite similar to our Section 3.2. Indeed, the point here
is that for some forms of p(n) it is possible to find a suitable combination C
of the operators E and I that annihilates p, that is C(p) ≡ 0, the constant
sequence zero. In the customary language of linear algebra, p ∈ ker(C): see
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our Corollary 3.4. Then we apply the operator to both sides of the recurrence
(3.1), and we are left with a new, homogeneous recurrence, which can be
solved by means of the characteristic equation. We know that if p ∈ A, then
there is such an operator C by Lemma 3.2.

The main drawback, however, is that the order of the new recurrence is
higher than that of the original relation, since, for instance, the annihilator
of the function p(n) = n ·2n +1 is the operator (E−2I)(2)(E−I), so that the
order of the recurrence with p as a non-homogeneous part would increase
by 3. It is true that it is quite easy to detect the roots of the characteristic
polynomial introduced in this way, but one is left in the end with the prob-
lem of determining the unknown coefficients in formula (3.4) or (3.5), that
is, with a set of linear equations, whose number of variables is precisely the
order of the new recurrence relation. Actually, the determination of the op-
erator C that annihilates p is equivalent to the classification of the function
p (polynomial, exponential, a product of a polynomial and an exponential,
. . . ). Thus, there is no particular advantage in this method, since we show
in Appendix B how to find explicitly the particular solution in all of these
cases.

Even though no experimental comparison of our technique and that pro-
posed by Lueker was conducted (we are not aware of any available implemen-
tation of the latter), we believe our approach is more efficient, especially for
the case of recurrences of low order that most frequently arises in automatic
complexity analysis.

We now work out an example to illustrate the method described by
Lueker. The same recurrence is tackled in Example C.2 on page 42 using
the techniques of Section 3.

Example 5.1 Solve the recurrence

xn = 2xn−1 + 2n−1 + n + 1.

We start by rewriting it as

xn+1 − 2xn = 2n + n + 2,

and then in the equivalent form

(E− 2I)(xn) = 2n + n + 2.

We already know that the operator E − 2I annihilates the sequence 2n, so
that

(E− 2I)(E− 2I)(xn) = (E− 2I)(2n + n + 2)

= (2n+1 + n + 3)− 2(2n + n + 2)
= −n− 1.
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We are left with a polynomial of degree 1: we know that the operator E− I
reduces the degree of any polynomial by 1, and we need to apply it twice to
get

(E− I)(2)(E− 2I)(2)(xn) = (E− I)(2)(−n− 1)
= (E− I)

(
−(n + 1)− 1− (−n− 1)

)
= (E− I)(−1)
= 0.

We have therefore proved that the operator C def= (E − I)(2)(E − 2I)(2)

annihilates the sequence (xn). In other words, we just found an order 4
homogeneous recurrence satisfied by (xn), with the degree 4 characteristic
equation

(λ− 1)2(λ− 2)2 = 0.

Hence the general solution is

xn = (αn + β) · 2n + γn + δ,

where α, β, γ and δ are suitable real numbers that can be found by taking
into account the fact that x1 = 2x0 + 3, x2 = 4x0 + 11, x3 = 8x0 + 30.
These values can be computed directly from the recurrence we started with.
Finally, we solve the corresponding system of equations (in the parameter
x0), that is, we solve

β + δ = x0

2α + 2β + γ + δ = 2x0 + 3
8α + 4β + 2γ + δ = 4x0 + 11

24α + 8β + 3γ + δ = 8x0 + 30

and find the coefficients

α =
1
2
, β = x0 + 3, γ = −1, δ = −3.

5.2 Cohen & Katcoff, 1977

Cohen & Katcoff [10] describe an interactive computer program for solving
difference equations; in this respect, our focus is different as we target com-
pletely algorithmic solution techniques. They present two methods for solv-
ing recurrences, namely, (1) “guessing” the solution of the non-homogeneous
part,3 and (2) using the generating function. Since they “feel that neither
of the preceding methods is suitable for direct use in the automatic solution

3That is, using the result contained in our Corollary 3.4 that suggests the shape of the
solution.
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of difference equations”, they use a modified form of the generating func-
tion method for solving (systems of) linear recurrences. In contrast, in this
paper we describe several ways for “guessing” the particular solution of a
non-homogeneous linear recurrence with constant coefficients by means of a
simple formula, at least in the rather common cases where p belongs to the
class A defined in Section 3.2: see Appendix B on page 36 for the details.
In particular, there are at least 4 different ways to find the closed form for
the sum of values of a polynomial, which are described in Section B.3, each
probably with a different range of optimal performance. The main reason
for our choice is that we want to solve or approximate a wider set of recur-
rences: when solving divide-et-impera recurrences [3], for example, we often
need to compute symbolic sums, like the ones that appear in (3.16), that
do not necessarily arise as solutions of linear recurrences. Therefore, we felt
the need to tackle such problems directly.

The overall solution algorithm we use in the PURRS system is quite similar
to the one by Cohen & Katcoff, in that we first classify the recurrence (order,
variable or constant coefficients, system), but then we use rather more direct
ways for solving the simpler recurrences (that, as already noted, occur much
more frequently in automatic complexity analysis).

Cohen & Katcoff give several examples of the actual computations car-
ried out by their program [10, Table II]. PURRS easily solves their examples
1–7 (note that the last two contain symbolic coefficients) and should be
soon able to solve also the systems 11–13. The more difficult recurrences
8–10 have variable coefficients, and belong to the class considered in [5].
Notice that PURRS gives exact answers whenever possible (including exact
representation of rational numbers), whereas Cohen & Katcoff only give ap-
proximated coefficients rounded to the third decimal digit. We also point
out that the solution they give for their example 3 is incorrect.4

In their final remarks, Cohen & Katcoff discuss possible improvements
of their work: apart from the problem of factoring polynomials of degree
5 or more which we discuss in Appendix A (item 1 in their list), we share
their feelings about the simplification routines (item 4). We incorporated
into PURRS many routines that simplify expressions, in particular those that
contain irrational numbers that may arise when solving the characteristic
equation associated to a linear recurrence. Finally, we devote a future paper
of this series [4] to approximate solution, an interesting problem that they
suggest in item 8.

4PURRS computes it correctly as an = 4
9
· 2n + (−1)n

(
4
3
n − 4

9

)
+ (−1)n(1 − n)a0 +

(−1)n+1na1. The correct solution with the given initial conditions a0 = 1, a1 = 2 is
therefore an = 4

9
· 2n + (−1)n

(
5
9
− 5

3
n
)
.
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6 Conclusion

We have described some algorithmic techniques for the efficient solution of
a wide class of (systems of) linear recurrences of finite order with constant
coefficients. The basic theory has been exposed both from an abstract and a
more concrete point of view, so as to convey the general principles and to pro-
vide, at the same time, a rather precise specification for the implementation.
In fact, variants of these techniques, along with the associated overall solu-
tion methodology and the tools illustrated in the appendix, have been imple-
mented in PURRS, a system for the automatic solution and approximation of
a much wider class of recurrences (see http://www.cs.unipr.it/purrs/).

In this paper, we only tackled the problem of “elementary” summation in
closed form. In many interesting applications, though, the non-homogeneous
part of the LRFOCC does not belong to the classA, and therefore the results
described here can not be used. There is a wide class of non-homogeneous
parts (the simplest element of this class being the function p(n) = nα, where
α is not necessarily integral) that can be summed approximately, with rather
sharp upper and lower bounds for the solution, and we deal with this problem
in general in [4]. Another class (that contains for instance some, but not all,
rational functions) that admits closed-form solution will be introduced in
the paper on “transcendental” summation methods [5] that deals with the
recent holonomy theory of hypergeometric summation [20], and contains
results on recurrences with variable coefficients.
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[19] M. Mignotte and D. Ştefănescu. Polynomials. An Algorithmic Ap-
proach. Springer-Verlag, Berlin, 1999.
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A Solving Polynomial Equations

We recall that the general formula for the polynomial equation of degree 5
or more does not exist. A possibility is the following: first look for repeated
(multiple) roots (see Appendix A.1), for the simple root x = 0 and for ra-
tional roots with “small” numerator and denominator (see Appendix A.2).
Failing this, one can give control to an equation solver that detects poly-
nomials of a special shape (see Appendix A.3). As a last resort, one can
try to solve the general polynomial equation of degree up to 4. Polynomi-
als of degree 1 or 2 are easy to treat, whereas polynomials of degree 3 (see
Appendix A.4) and 4 (see Appendix A.5) need special care.

A.1 Detecting Multiple Roots

In order to detect multiple roots of a polynomial equation p(x) = 0 it is pos-
sible to use the square-free decomposition, which yields a partially factored
form of p, in the case that p has repeated factors. This can be accomplished
by computing gcd(p, p′), the greatest common divisor of the polynomial p
and its derivative, since the rule for the derivative of a product immediately
yields that if p(x) = g(x)kh(x), say, where g and h are polynomials and
k ≥ 2 is an integer, then p′(x) = kg′(x)g(x)k−1h(x) + g(x)kh′(x), so that
g(x)k−1 is a non-trivial factor of gcd(p, p′). We recall that it is extremely
important to detect repeated roots (if any) of the characteristic equation
(see Section 3) and their multiplicity, and we do so at a very early stage of
the computation. We now give precise definitions.

Definition A.1 (Square-free polynomial.) A polynomial p ∈ Q[x] is
square-free if it is not divisible by the square of any polynomial q ∈ Q[x]
of degree larger or equal to 1.

Definition A.2 (Square-free decomposition.) Let p ∈ Z[x] be a poly-
nomial. We say that the decomposition

p(x) = a
r∏

i=1

pi(x)αi

is a square-free decomposition of p if the following conditions hold:
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• a ∈ Z \ {0};

• αi ∈ N \ {0} for i = 1, . . . , r and 1 ≤ α1 < α2 < · · · < αr;

• pi ∈ Z[x] and deg(pi) ≥ 1 for i = 1, . . . , r;

• gcd(pi, pj) = 1 if i 6= j;

• pi is square-free for i = 1, . . . , r.

We might express the last two conditions more concisely by saying that
the polynomial

r∏
i=1

pi(x)

is square-free.

A.2 Detecting Rational Roots

It is also possible to detect rational roots (if any) of any polynomial with
integer coefficients. This depends on the following Theorem of Gauss (see
Hardy & Wright [12, Theorem 45] for a variant).

Theorem A.3 If a0, a1, . . . , an are integers without common factors larger
than 1, where a0 and an do not vanish, and x = p/q is a rational root of the
polynomial equation

anxn + · · ·+ a1x + a0 = 0

(where p and q 6= 0 are mutually prime integers) then p divides a0 and q
divides an.

Looking for all rational roots would involve factoring the integers a0 and
an, a notoriously difficult problem: in fact, at the moment, the best factor-
ing algorithms are non-polynomial. So one can be content with detecting
rational roots p/q, where |p| and |q| do not exceed some threshold M = m2,
with m ∈ N small. The first step is to consider the divisors of a0 and an. Let
x = a0 or x = an, |x| < M , be the integer whose divisors we are looking for.
With a loop we check if the integer i ∈ {1,. . . , m− 1} divides x, and in this
case we push onto a suitable structure both i and its “conjugate” divisor
|x|/i, if they are different, of course. The process stops when i exceeds the
square root of |x|. We remark that although most recurrence relations have
a characteristic equation whose leading coefficient is 1, we have to take into
account the fact that the coefficients may be rational numbers.

Much more ingenuity would be needed if it were desired to have a general
routine for finding all rational roots. In this case, it would probably be better
to use a general algorithm for splitting polynomials with integer coefficients
such as the one described in Lenstra, Lenstra & Lovasz [15], rather than
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trying to factor completely the integers a0 and an. A simpler method is
described in Childs [9, Part II, Chapters 11 & 13] and another in Adelman
& Odlyzko [1]. Another feature we plan to add is an irreducibility test
for polynomials with integral coefficients over Q: see Childs [9, Part II,
Chapter 8] for some simple such tests.

A.3 Equations of Special Form

There is one last important remark: the previous computations might de-
stroy any “structure” of the equation: for example, if p(x) = x7 − 1, we
detect the rational root x = 1, but after this we are left with an equation of
degree 6 which we cannot solve (actually p is a cyclotomic polynomial and it
is known that it has exactly two irreducible factors over Q, one being x−1).
In this case, and more generally when q(x) = r(xn) for some r ∈ Q[x] and
integral n ≥ 2, probably an alternative approach would work better: be-
fore giving up, go back to the original equation, and check whether it has
any special shape. It is quite easy to recognize polynomials of this shape.
In particular, in our example above it is possible to transform the original
equation into another (actually y − 1 = 0) in the variable y = x7. After
solving this equation, we compute the complex 7-th roots of all the values y.
We perform this task by taking just one 7-th root, and then multiplying it
by the 7-th roots of unity, which are given by the Euler-de Moivre formula
cos
(

2kπ
7

)
+ i sin

(
2kπ
7

)
for k = 0,. . . , 6. It might even be more efficient to

check this at once, before embarking on any computations at all5.

A.4 Solving the General Polynomial Equation of Degree 3

Suppose that the polynomial p(x) = ax3 + bx2 + cx + d has no repeated
roots, and that it has neither the root 0 (in other words, d 6= 0) nor “small”
rational roots. The formula for solving the equation of degree 3 needs the
computation of the discriminant ∆ of the polynomial, and we take different
routes according to the sign of ∆. Notice that ∆ = 0 if and only if p has
repeated roots, which is not our case. It is well known that the roots are all
real if and only if ∆ ≤ 0, and that there is a pair of complex-conjugate roots
otherwise (see Appendix A.6 for the general definition of the discriminant).

In order to solve
x3 + a1x

2 + a2x + a3 = 0, (A.1)

we set
R

def=
1
54
(
9a1a2 − 27a3 − 2a3

1

)
, Q

def=
1
9
(
3a2 − a2

1

)
.

5The observation in this paragraph is in general valid, but we observe that, in the
context of the computation of roots of characteristic equations in order to solve recurrences,
this could become useless when the order reduction method is applied.
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The discriminant is ∆ def= Q3 + R2. The solutions of (A.1) are of the form

−1
3
a1 +

(
R + ∆1/2

)1/3
+
(
R−∆1/2

)1/3
.

This yields 9 values, 3 for each possible choice of the complex cube root, but
only three actually give roots of (A.1). Here and below we denote by x1/3

the set of all possible solutions of the equation z3 = x, that is all complex
cube roots of the complex number x, and the same applies to x1/2. On the
other hand, we denote by

√
x, 3
√

x the “arithmetical” square and cube roots,
that is roots of positive quantity that do not give rise to any ambiguities.

If ∆ < 0, then Q < 0 and a direct computation aided by some trigono-
metrical identities yields

x1
def= −1

3
a1 + 2

√
−Q cos

(1
3
θ
)
,

x2
def= −1

3
a1 + 2

√
−Q cos

(1
3
(θ + 2π)

)
,

x3
def= −1

3
a1 + 2

√
−Q cos

(1
3
(θ + 4π)

)
,

where θ
def= arccos

(
−R/(Q

√
−Q)

)
, so that all roots are real. If ∆ > 0 we set{

S
def= 3
√

R +
√

∆

T
def= 3
√

R−
√

∆
and

{
t1

def= −1
3a1 − 1

2(S + T )

t2
def= 1

2(S − T )i
√

3

(here we take the arithmetical cube root so that S and T are real numbers),
where i2 = −1. Finally, we compute the roots of equation (A.1) by means
of

x1
def= −1

3
a1 +

1
2
(S + T ),

x2
def= t1 + t2,

x3
def= t1 − t2.

Notice that x1 is real. Notice also that, in the procedure outlined above, we
only actually take arithmetical square and cube roots. For the details, we
refer to Weisstein [23], or Childs [9, Part II, Chapter 3].

A.5 Solving the General Polynomial Equation of Degree 4

We briefly sketch an algorithm in order to solve the equation x4 + a1x
3 +

a2x
2 + a3x+ a4 = 0, exposed in http://www.1728.com/quartic2.htm. We

set

f
def= a2 − (3a2

1/8),

g
def= a3 + (a3

1/8)− (a1a2/2),

h
def= a4 − (3a4

1/256) + (a2
1a2/16)− (a1a3/4).
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We first find the solutions y1, y2, y3 of the third-degree polynomial equation
y3 + (f/2)y2 +

(
(f2 − 4h)/16

)
y − g2/64 = 0 by means of the algorithm

described in the previous section. We observe that if g = 0 then 0 is a
root of the cubic equation and in this case we can obtain the solution more
efficiently calling the formula for equation of the second degree on y2 +
(f/2)y +

(
(f2 − 4h)/16

)
= 0.

Let p and q be two non-zero roots of the cubic equation; the solutions of
the original equation are

x1
def= p + q + r − s,

x2
def= p− q − r − s,

x3
def= −p + q − r − s,

x4
def= −p− q + r − s.

A.6 The Discriminant and the Resultant

We adapt some definitions from Childs [9, Part III, Chapter 15]. See also
Mignotte and Ştefănescu [19, §1.5.2].

Definition A.4 (Resultant.) Let f , g ∈ C[x] be polynomials of degrees m
and n respectively, and roots α1, . . . , αm, and β1, . . . , βn respectively (with
the convention that multiple roots are repeated according to multiplicities).
Let a and b be their leading coefficients. The resultant of f and g is defined
by

R(f, g) def= anbm
m∏

i=1

n∏
j=1

(αi − βj).

A few remarks: it can be proved that if f and g have integer coefficients,
then R(f, g) is an integer. It is also clear that R(f, g) = 0 if, and only if, f
and g have a common root. There are several ways to compute R(f, g) with-
out knowing the roots of the polynomials f and g. One of the possibilities
is to consider an algorithm based on the following properties:

• R(g, f) = (−1)deg(f) deg(g)R(f, g);

• R(f, g) = adeg(g)−deg(r)R(f, r) if g = fq + r for polynomials q and r.
Here a is the leading coefficient of the polynomial f ;

• R(f, b) = bdeg(f) if b is a scalar.

The second property shows that we can use Euclid’s algorithm to com-
pute the resultant. Another possibility is to compute the resultant as the
determinant of the Sylvester matrix (see Weisstein [23]): this is useful when
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we deal with parametric polynomials, since the method based on Euclid’s
algorithm needs the computation of division with quotient and remainder,
and therefore the partial results may be rational functions of the parameter.
We need parametric polynomials in the actual practice when using Gosper’s
algorithm (see [5] and Petkovšek, Wilf and Zeilberger [20, Chapter 5]).

Definition A.5 (Discriminant.) Let f ∈ C[x] be a polynomial of degree
n. We define the discriminant of f by means of

D(f) def= (−1)n(n−1)/2R(f, f ′).

We remark that D(f) = 0 if, and only if, f and f ′ have a common factor,
and this happens if, and only if, f has a repeated root.

A.7 Parametric Equations

In the discussion in the last few sections we assumed that the coefficients of
the polynomial equations under consideration are integers or rational num-
bers, but it would be very interesting to allow these coefficients to contain
one or more unspecified parameters. Solving parametric polynomial equa-
tions of degree 2 or more, though, can be very difficult since we may have
to take into account many possible cases, as we now explain.

We saw in Section A.6 that we can associate to every polynomial equa-
tion the discriminant d, which is an integer (resp. real or complex number)
if the coefficients are integers (resp. real or complex). It can be proved that
a polynomial equation has a multiple root if and only if d = 0: the discus-
sion in Section 3 shows that we have to treat differently the case when the
characteristic equation has only simple roots from the case of multiple roots.
Not only this, we also want to handle possible complex roots with some care.
When the degree of the characteristic equation (that is, the order of the re-
currence) is 1, there can be no multiple roots; when it is 2, the sign of the
discriminant can be used to distinguish among the various cases, and when
the degree is 3 we can still meet both requirements (see Appendix A.4).

But when the degree exceeds 3, things become rapidly more difficult: if
we were to allow parametric coefficients, we should be able to identify all
possible situations for the multiplicities of the roots. As an example, if the
degree is 5 and we know that d = 0, the possible multiplicities for the roots
are:

5; 4, 1; 3, 2; 3, 1, 1; 2, 2, 1; 2, 1, 1, 1.

If the degree is k, the number is exactly p(k) − 1, where p(k) denotes the
number of the unrestricted partitions of the integer k. There is a clash of
notation with the remainder of this document, but the notation p for the
number of partitions is well-established, and will not occur elsewhere. It is
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known that p grows very rapidly: indeed

p(n) ∼ eK
√

n

4n
√

3
as n →∞,

where K = π
(
2/3
)1/2 (see Apostol [2, §14.6]). This means that we should

give conditions on the parameters for each one of these possible occurrences,
and that would be too difficult.

A.8 Solving a Set of Linear Equations

In order to compute the coefficients α in the general solution (3.5) is neces-
sary to solve systems with n linear equations and n unknowns. For this is
possible to use the well-known method of inverse matrix, which computes
the inverse of a square matrix, where the elements of the matrix are the
coefficients of the recurrence relation.

B Exact Summation of Some Special Functions

The aim of this section is the solution of this problem: given a polynomial p
with complex coefficients, and a complex number z, compute an elementary
closed formula for the expression

N∑
k=0

p(k)zk. (B.1)

In the last subsections, we also deal with a more general problem with the
elementary trigonometric functions, so that we essentially solve the problem
above for any element of the set A defined in Section 3.

B.1 Exponentials

This is by far the easiest case: it all depends on the well-known formula

N∑
k=0

zk =
1− zN+1

1− z
(B.2)

which is valid for any complex z 6= 1 and any integer N ≥ 0.

B.2 Products of a Polynomial and an Exponential

Here we show how to give a closed formula for (B.1) where p is a polynomial
and z 6= 1 is a complex number. It all hinges on the following important
result.
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Lemma B.1 Given a polynomial p ∈ C[n] of degree d, there exist complex
numbers b0, . . . , bd such that

p(n) =
d∑

k=0

bkn(k) (B.3)

where n(k) is the falling factorial function defined by

n(k)
def= k!

(
n

k

)
= n(n− 1) · · · (n− k + 1).

In the language of linear algebra, the set {n(k) | k ≥ 0 } is a basis of the ring
C[n]. If p ∈ R[n] (resp. Z[n]), then the coefficients bj belong to R (resp. Z).
Proof. We give the proof in the form of an algorithm for computing the
coefficients bk, and we show that it needs at most d iterations: in fact,
assume that

p(n) = adn
d + · · ·+ a0,

where ad 6= 0. Now set pd(n) def= p(n), bd
def= ad and define inductively the

polynomial pj and the complex number bj for j = d− 1, . . . , 0 by means of

pj(n) def= pj+1(n)− bj+1n(j+1),

bj
def= coeffj(pj),

where coeffj(q) denotes the coefficient of degree j of the polynomial q. This
gives the desired proof because by construction the polynomial pj has degree
at most j. �

Actually, we use a quite different method, which appears to be faster:
we note that the polynomial P (z) = z(k) vanishes for z = 0, 1, . . . , k − 1.
This implies that b0 = p(0), and that p(z) − b0 has the factor z. Iterating,
we find that b1 is

(
p(z)− b0

)
/z evaluated at z = 1, and so on. In practice,

we construct a sequence of polynomials qk(z) as follows: we set{
q0(z) = p(z),
b0 = p0(0),

and

qk+1(z) =
qk(z)− bk

z − k
,

bk+1 = qk+1(k + 1).

Once p has been written in the form (B.3), we see that (B.1) becomes

N∑
k=0

p(k)zk =
N∑

k=0

d∑
j=0

bjk(j)z
k =

d∑
j=0

bj

N∑
k=0

k(j)z
k. (B.4)

The only remaining problem is the summation in closed form of single sum-
mands in (B.4), far right. The following Lemma B.2, whose proof is a simple
verification and is therefore omitted, is the tool that can be used.
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Lemma B.2 For z ∈ C with z 6= 1 we have the identity

N∑
k=0

k(j)z
k =

N∑
k=0

k(k − 1) · · · (k − j + 1)zk = zj dj

dzj

N∑
k=0

zk = zj dj

dzj

1− zN+1

1− z
.

(B.5)

B.3 Polynomials

If z = 1 the above idea fails: we suggest several different solutions. The
first, more straightforward one, depends upon the following result.

Theorem B.3 For any k ∈ N there exists a polynomial pk ∈ Q[n] of degree
k + 1 such that for any N ∈ N

N∑
n=1

nk = pk(N).

This is Theorem 1 of Levy [16], and we give a sketch of the proof below.
See also the papers by Burrows & Talbot [6], and Edwards [11], for related
results, that also bear on the algorithms. The most familiar instances of this
fact are the formulæ

N∑
n=1

n =
1
2
N(N + 1),

N∑
n=1

n2 =
1
6
N(N + 1)(2N + 1), (B.6)

N∑
n=1

n3 =
(

1
2
N(N + 1)

)2

.

Once we know that it exists, the polynomial pk can be determined by im-
posing k + 2 conditions on its k + 2 unknown coefficients (actually, one can
prove that the leading coefficient is (k + 1)−1, the next one is 1

2 , and all
other coefficients of the monomials xj where j has the same parity as k, as
well as the constant term vanish), and solving the arising system of linear
equations. For more details see Levy [16]. A rather different method follows
from Appendix B.2, and it also yields a proof of Theorem B.3.
Proof of Theorem B.3. We first prove by induction on N that for any
k ∈ N we have

N∑
n=1

n(k) =
(N + 1) ·N · (N − 1) · · · (N − k + 1)

k + 1
. (B.7)
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This is basically a simple property of binomial coefficients: indeed, it is
equivalent to

N∑
n=1

(
n

k

)
=
(

N + 1
k + 1

)
.

Hence the decomposition of the polynomial p provided by (B.3) yields the
desired result, since we can write the polynomial p(n) = nk as a linear
combination with integral coefficients of the polynomials n(d) for d = 0, . . . ,
k, and compute

∑N
n=1 n(d) by means of (B.7), which gives a polynomial in

N of degree d + 1. �

We now describe two more approaches to this problem: the first one de-
pends on the computation of the Bernoulli numbers (see for example Apos-
tol [2, §12.12] or Hardy & Wright [12, §7.9]), and the second is an iterative
method described in Levy [16].

Definition B.4 (Bernoulli numbers.) The Bernoulli numbers, denoted
by Bn for n ∈ N, are the coefficients in the Taylor series development

z

ez − 1
= 1− 1

2
z +

B1

2!
z2 − B2

4!
z4 +

B3

6!
z6 − · · ·+ (−1)k−1 Bk

(2k)!
z2k + · · ·

which is valid in the circle
{

z ∈ C | |z| < 2π
}
. In particular, B1 = 1

6 ,
B2 = 1

30 , B3 = 1
42 .

Theorem B.5 Setting β0
def= 1, β1

def= −1
2 , β2k

def= (−1)k−1Bk, β2k+1
def= 0

for k ∈ N \ {0}, where the Bk are the Bernoulli numbers, we have

N−1∑
n=1

nk =
k∑

r=0

1
k + 1− r

(
k

r

)
Nk+1−rβr. (B.8)

This is formula (7.9.1) of Hardy & Wright [12]. The proof is given
comparing coefficients of suitable Taylor series expansions. We remark that
the left hand side of (B.8) contains N − 1 summands, while the right hand
side is a polynomial in N of degree k + 1 and therefore contains at most
k+2 summands. The number βn can be computed by means of the following
iterative formula: for n ≥ 2

βn =
n∑

k=0

(
n

k

)
βk.

This is Apostol [2, Theorem 12.15]. We remark that there is no established
notation for the Bernoulli numbers: in particular, Apostol calls Bn the
quantities that we call βn. We also remark that it is quite important, for
our purposes, that the βn are rational numbers.

The iterative method referred to above depends on another result in
Levy [16, Theorem 2].
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Theorem B.6 For each k ∈ N \ {0} there is a rational number Ck such
that, in the notation of Theorem B.3, we have

pk(N) =
N∑

n=1

nk = k

∫ N

0
pk−1(t) dt + CkN.

The value of Ck can be computed putting N = 1, and it is known that
Ck = 0 whenever k > 1 is odd (see Levy [16, Corollary 3]). We remark
that the integral can be easily computed using a Computer Algebra System,
since we are only dealing with polynomials.

B.4 Some More Exact Formulæ

For completeness’s sake, we insert some more closed formulæ, which can be
useful to a general recurrence relation solver. Their theoretical interest is
increased by the fact that they can be used to avoid dealing with complex
numbers when studying recurrences whose characteristic equation has a pair
of complex conjugate roots. The first couple of formulæ is relevant in the
theory of Fourier series. For θ /∈ 2πZ we have

n∑
k=0

sin(kθ) =
cos((n + 1/2)θ)− cos(θ/2)

2 sin(θ/2)
,

n∑
k=0

cos(kθ) =
1
2

+
sin((n + 1/2)θ)

2 sin(θ/2)
.

The proof by induction is straightforward. Another (trickier) proof can be
given by separating the real and imaginary parts of

n∑
k=0

eikθ =
1− ei(n+1)θ

1− eiθ
=

ei(n+1)θ/2

eiθ/2
· ei(n+1)θ/2 − e−i(n+1)θ/2

eiθ/2 − e−iθ/2

= einθ/2 ·
sin
(
(n + 1)θ/2

)
sin
(
θ/2
) ,

where the first equality is just a special case of (B.2). These formulæ imply
that both sums are, in absolute value,

≤ min
(
n + 1, | sin(θ/2)|−1

)
= O

(
min(n + 1, ‖θ/π‖−1)

)
where ‖x‖ denotes the distance of the real number x from the nearest integer,
so that ‖x‖ def= min({x}, 1 − {x}). We remark that a similar trick enables
one to find the closed formula for sums of the type

∑n
k=0 λk cos(kθ), where

λ is any real number. For brevity, we simply state the results: For θ /∈ 2πZ
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and real λ 6= 0 we have

n∑
k=0

λk sin(kθ) =
λn+2 sin(nθ)− λn+1 sin((n + 1)θ)− λ sin θ

λ2 − 2λ cos θ + 1
,

n∑
k=0

λk cos(kθ) =
λn+2 cos(nθ)− λn+1 cos((n + 1)θ) + 1− λ cos θ

λ2 − 2λ cos θ + 1
.

Combining these identities with the technique developed in Appendix B.2,
one can obtain exact formulæ for sums of the type

∑
p(k)λk cos(kθ), where p

is the product of a polynomial and an exponential. We remark that, because
of the decomposition (B.3), we need only consider polynomials of the form
p(k) = k(j) for some fixed non negative integer j. Next, we note that an
identity similar to (B.5) with x replaced by λeiθ, implies that

n∑
k=0

k(j)λ
keikθ = λj ∂j

∂λj

n∑
k=0

λkeikθ.

Separating the real and imaginary parts by means of the above formulæ, we
obtain

n∑
k=0

k(j)λ
k sin(kθ) = λj ∂j

∂λj

λn+2 sin(nθ)− λn+1 sin((n + 1)θ)− λ sin θ

λ2 − 2λ cos θ + 1
,

(B.9)
n∑

k=0

k(j)λ
k cos(kθ) = λj ∂j

∂λj

λn+2 cos(nθ)− λn+1 cos((n + 1)θ) + 1− λ cos θ

λ2 − 2λ cos θ + 1
.

(B.10)

B.5 How To Avoid the Use of Complex Numbers

Here we describe how to use the results of the previous section to avoid the
use of complex numbers altogether in some interesting cases. In particular,
we refer to (3.13) when λ1 and λ2 are a pair of complex conjugate numbers,
with =(λ1) > 0. In this case we write ρ

def= |λ1| = |λ2| and choose θ ∈ (0, π)
such that λ1 = ρeiθ; since λ2 = λ1, we also have λ2 = ρe−iθ. We remark
that if λ1 = α + iβ, say, then ρ =

√
α2 + β2 and cos θ = αρ−1, so that both

ρ and θ can be computed staying safely within the set of real numbers. Our

41



definitions imply that
n∑

k=0

λn+1−k
1 − λn+1−k

2

λ1 − λ2
p(k) =

n∑
k=0

ρn+1−k ei(n+1−k)θ − e−i(n+1−k)θ

ρeiθ − ρe−iθ
p(k)

=
n∑

k=0

ρn−k 2i sin((n + 1− k)θ)
2i sin θ

p(k)

=
ρn

sin θ

n∑
k=0

ρ−k sin((n + 1− k)θ) p(k).

If p is the product of a polynomial and an exponential, the trigonometrical
identity for sin(α−β) transforms the above formula into a linear combination
of (B.9) and (B.10), for a suitable value of λ.

C Examples

Here we discuss some concrete examples: we assume familiarity with the
topics in Appendix B.2. In particular, here we omit details pertaining to
the computation of a closed formula for expressions of the form (B.1). We
omit the initial conditions, unless we need them explicitly.

C.1 Recurrences of Order 1

Example C.1 Solve
xn = xn−1 + p(n). (C.1)

The procedure outlined in Section 3 yields gn = α1 · 1n = α1, since the
characteristic equation is λ = 1. We remark that the general solution of
(C.1) is indeed

xn = x0 + p(1) + p(2) + · · ·+ p(n) = x0 +
n∑

k=1

p(k).

With the notation of (3.4), gn = α1 corresponds to the constant x0. The
possibility of finding an exact, closed formula for the right hand side depends
heavily on the function p. If p belongs to the set A defined in Section 3.2, we
can find this closed expression (see Appendix B for details). In most cases,
though, even if p is a rather “simple” function such as p(n) = 1/n, p(n) =

√
n

or p(n) = log n, this is not possible and we can only find approximate
solutions by means of suitable summation formulæ. We will devote a future
paper of this series to the problem of approximate summation: see [4].

Example C.2 Solve the first-order recurrence6

xn = 2xn−1 + 2n−1 + n + 1. (C.2)
6This is taken from the complexity analysis of a computer program.
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Here we have α
def= 2 and p(n) def= 2n−1+n+1, which we split as p1(n) def= 2n−1

and p2(n) def= n+1. We call the resulting recurrences yn and zn respectively.
We compute the solution for p1 by means of (3.8), which yields

yn =
n∑

k=1

2n−k · 2k−1 =
n∑

k=1

2n−1 = n2n−1. (C.3)

The trick explained in Appendix B.2 shows that it is convenient to write

zn =
n∑

k=1

2n−k(k + 1) = 2n
n∑

k=1

k2−k + 2n
n∑

k=1

2−k

and we find (simplifying somewhat and omitting details)

zn = 2n

(
−n
(1

2

)n
− 2
(1

2

)n
+ 2
)

+ 2n

(
2
(
1−

(1
2

)n+1)
− 1
)

=
(
−n− 2 + 2n+1

)
+
(
2n − 1

)
= 3 · 2n − n− 3.

Summing the three solutions, we finally get

xn = x02n + n2n−1 + 3 · 2n − n− 3.

An easy induction shows that this is, indeed, the solution of our problem.

Example C.3 The same procedure solves the simpler recurrence7

xn = 2xn−1 + 2n.

We just sketch the argument: the above discussion shows that the solution
has the form xn = x02n +yn, where yn is the solution of the same recurrence
with y0 = 0. A computation similar to that in (C.3) gives yn = n2n, so that
xn = (x0 + n)2n, as an induction proves immediately.

Example C.4 Solve
xn = αxn−1 + n2.

Corollary 3.4 implies that the case α = 1 is rather special. By (3.8) we need
to find a closed formula for

n∑
k=1

αn−kk2 = αn
n∑

k=1

α−kk2.

If α = 1, a direct application of (B.6) from Appendix B.3 yields the answer

xn = x0 +
1
6
n(n + 1)(2n + 1).

7This is also taken from the complexity analysis of a computer program.
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If α 6= 1, the technique described in Appendix B.2 suggests to write

n∑
k=1

α−kk2 =
n∑

k=1

k(k − 1)α−k +
n∑

k=1

kα−k,

so that the answer is
n∑

k=1

α−kk2 =
[
z2 d2

dz2

1− zn+1

1− z

]
z=1/α

+
[
z

d
dz

1− zn+1

1− z

]
z=1/α

=
[
z + z2 − (n + 1)2zn+1 + (2n2 + 2n− 1)zn+2 − n2zn+3

(1− z)3

]
z=1/α

=
α2 + α + α−n

(
−n2 + (2n2 + 2n− 1)α− (n + 1)2α2

)
(α− 1)3

.

The closed formula follows at once:

xn = x0 · αn +

(
αn+2 + αn+1 − n2 + (2n2 + 2n− 1)α− (n + 1)2α2

)
(α− 1)3

.

C.2 Recurrences of Order 2

Example C.5 Another interesting case is the famous sequence of the Fi-
bonacci numbers: here and henceforward we write fn for the solution of the
second order recurrence

fn = fn−1 + fn−2, for n ≥ 2;
f0 = 0,

f1 = 1.

The characteristic equation for this recurrence is

λ2 = λ + 1

with roots λ1 = 1
2

(
1 +

√
5
)

and λ2 = 1
2

(
1 −

√
5
)

= −λ−1
1 . The general

solution of any such recurrence is thus

αλn
1 + βλn

2 ,

but, since f0 = 0 and f1 = 1, we have{
α + β = 0,

αλ1 + βλ2 = 1,
whence

{
α = 5−1/2

β = −5−1/2

and the n-th Fibonacci number is

fn =
1√
5

((1 +
√

5
2

)n
−
(1−

√
5

2

)n
)
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(this is known as Binet’s formula). We observe a rather general phenomenon:
here |λ1| > |λ2| and hence the value of fn is quite close to

1√
5

(1 +
√

5
2

)n
.

Indeed, but this is rather special, since |λ2| < 1, fn is the integer nearest the
above expression. More generally, we remark that even if we can not find
all roots of the characteristic equation, for the asymptotic analysis of the
behavior of the solution of the recurrence it is sufficient to find the ones with
the largest modulus. We will develop this topic in a future paper dealing
with approximate solutions: see [4].

It is convenient to note another general phenomenon: if xn satisfies
xn = xn−1 + xn−2, then xn = fnx1 + fn−1x0, as can be seen by induction.
In other words, the solution with x0 = 0 and x1 = 1 is quite important, and
indeed it is closely allied to the fundamental one as defined in (3.11), which
is gn = fn+1.

We want to see how things change if the characteristic equation has a
double root.

Example C.6 Solve
xn = αxn−1 + βxn−2, for n ≥ 2;
x0 = 0,

x1 = 1,

where α2 + 4β = 0, with β 6= 0.

We now look for a solution of the form

xn = (a + bn)λn,

where λ satisfies λ2 = αλ+β = αλ− 1
4α2. Since x0 = 0 and x1 = 1 we have{

a = 0,

(a + b)λ = 1,
whence

{
a = 0,

b = λ−1.

Thus the solution is
xn = nλn−1 = n

(α

2

)n−1
,

as can be checked easily.

Example C.7 Solve
xn = 2xn−1 − 2xn−2, for n ≥ 2;
x0 = 0,

x1 = 1.
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This is a nice example of a recurrence of order 2 whose characteristic equa-
tion has complex roots. Its first few values are 0, 1, 2, 2, 0, −4, −8, −8, 0,
16, 32, 32, 0, . . . The procedure described in Section 3 yields

xn =
1
2i

(
(1 + i)n − (1− i)n

)
.

Since 1 + i =
√

2 · eiπ/4, and 1− i =
√

2 · e−iπ/4, we can also write

xn = 2n/2 einπ/4 − e−inπ/4

2i
= 2n/2 sin

nπ

4
.

Both solution are correct, though the latter can probably be considered
easier to understand, as it conveys more readily the relevant informations
about xn and avoids complex numbers. The oscillations in absolute value
are due to the presence of two complex conjugate roots.

Example C.8 This recurrence arises from a simple combinatorial problem.

xn = xn−1 + xn−2 + 1. (C.4)

Here gn = fn+1 is the (n + 1)-st Fibonacci number.

xn = x1fn +x0fn−1 +(f0 +f1 +f2 + · · ·+fn−1) = x1fn +x0fn−1 +fn+1−1.

The last equality follows from a well-known property of the Fibonacci num-
bers.

Example C.9 Solve
xn = 1

2xn−1 + 1
2xn−2 + 1, for n ≥ 2;

x0 = 0,

x1 = 0.

In this case the characteristic equation has a simple root λ = 1. Here
g(n) = 2

3

(
1− (−1

2 )n+1
)

(the initial conditions are g0 = 1 and g(1) = 1
2) and

the solution is

xn =
2
3
n− 4

9

(
1−

(
−1
2

)n)
.

Example C.10 Solve
xn = 2xn−1 − xn−2 + 1, for n ≥ 2;
x0 = 0,

x1 = 0.
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In this case the characteristic equation has the double root λ = 1. According
to (3.11) we set 

gn = 2gn−1 − gn−2, for n ≥ 2;
g0 = 1,

g1 = 2.

Since λ = 1 is a double root, we look for a solution of the type g(n) = an+b
for suitable a, b ∈ R. The initial conditions imply a = b = 1 so that
g(n) = n + 1. The presence of the root λ = 1 forces the general solution to
a polynomial of degree 2 (see Corollary 3.4), and actually

xn =
1
2
n(n− 1).

In the next few examples we show how to use the “guessing” procedure
described in Section 3.4.1 in several cases. We recall that fn denotes the
n-th Fibonacci number.

Example C.11 We start with a linear polynomial. Solve the recurrence
xn = xn−1 + xn−2 + n, for n ≥ 2;
x0 = 0,

x1 = 0.

Solving (3.15) for q we find q(n) = n + 3 so that we have

xn = q(1)fn + q(0)fn−1 − q(n) = 4fn + 3fn−1 − n− 3.

Example C.12 Next, a quadratic polynomial. Solve
xn = xn−1 + xn−2 + n2, for n ≥ 2;
x0 = 0,

x1 = 0.

Here we find that the solution of (3.15) is q(n) = n2 + 6n + 13 and we have

xn = q(1)fn + q(0)fn−1 − q(n) = 20fn + 13fn−1 − n2 − 6n− 13.

Example C.13 Finally, a cubic polynomial
xn = xn−1 + xn−2 + n3, for n ≥ 2;
x0 = 0,

x1 = 0.

In this case q(n) = n3 + 9n2 + 30n + 54 so that

xn = q(1)fn + q(0)fn−1 − q(n) = 94fn + 54fn−1 − n3 − 9n2 − 30n− 54.
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Example C.14 More generally, solve

xn = αxn−1 + βxn−2 + 2n.

We look for a function of the type q(n) = γ · 2n that satisfies the functional
equation (3.15). It is quite easy to see that we need

2n = αγ · 2n−1 + βγ · 2n−2 − γ · 2n,

and this implies

γ =
4

2α + β − 4
.

Note that this fails if 2α+β = 4 (that is, if 2 is a solution of the characteristic
equation), and in this case we look for a solution of the form q(n) = γn · 2n.
Indeed, if 2α + β = 4 we have

2n = αγ(n− 1) · 2n−1 + βγ(n− 2) · 2n−2 − γn · 2n,

so that
γ = − 2

α + β
.

Again, this fails if we also have α + β = 0, but the two conditions together
imply that α = −β = 4 so that 2 is a double root of the characteristic
equation, and in this case we look for a solution of the type q(n) = γn2 · 2n.
We remark that now the recurrence is indeed

xn = 4xn−1 − 4xn−2 + 2n.

We want to find γ ∈ R so that

2n = 4γ(n− 1)2 · 2n−1 − 4γ(n− 2)2 · 2n−2 − γn2 · 2n.

Simplifying, we find γ = −1
2 , and the general solution is xn = (1 − n)x0 ·

2n + nx1 · 2n−1 − n · 2n−2 + 1
2n2.

C.3 Recurrences of Higher Order

Example C.15 Solve

xn = 2xn−1 − xn−2 + 2xn−3.

This is more difficult example than the previous ones, since the recurrence
has order 3. The characteristic equation has the roots λ1 = 2, λ2 = i,
λ3 = −i, and the general solution is therefore

xn = α · 2n + β · in + γ · (−i)n,
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for suitable complex numbers α, β, γ. The computation of these coefficients
reveals that the solution has the form

xn =
1
5
(x0 + x2) · 2n +


1
5(4x0 − x2) if n ≡ 0 mod 4,
−1

5(2x0 − 5x1 + 2x2) if n ≡ 1 mod 4,
−1

5(4x0 − x2) if n ≡ 2 mod 4,
1
5(2x0 − 5x1 + 2x2) if n ≡ 3 mod 4,

(C.5)

where, clearly, the rightmost expression is periodic with period 4 and is
therefore Ox0,x1,x2(1). As above in Example C.7 we can also transform i and
−i into eiπ/2 and e−iπ/2 respectively, so that in = cos

(
nπ/2

)
+ i sin

(
nπ/2

)
and (−i)n = cos

(
nπ/2

)
− i sin

(
nπ/2

)
. This implies the following alternative

formula for xn:

xn =
1
5
(x0 + x2) · 2n +

1
5
(4x0 − x2) cos

(nπ

2

)
+

1
5
(5x1 − 2x0 − 2x2) sin

(nπ

2

)
,

which, of course, is the same as (C.5). We remark that it is possible to
avoid any computations with complex numbers (see Appendix B.5), since
we consider only real recurrences, and therefore the characteristic equation
has pairs of complex conjugate roots, if any. Here we do not have oscilla-
tions in absolute value as in Example C.7, since there is only one root of
maximal modulus, and it is real and positive: therefore the term containing
2n dominates the solution, unless x0 + x2 = 0. If this is the case, the solu-
tion is xn = x0 cos

(
nπ/2

)
+x1 sin

(
nπ/2

)
, and is periodic with period 4, and

therefore bounded.

C.4 Order Reduction

Example C.16 Solve
xn = 2xn−2 + 1.

Applying the traditional method exposed in Section 3.4, the solution is

xn = 2
n
2
−1
(
1 + (−1)n

)
x0 + 2

n
2
− 3

2
(
1− (−1)n

)
x1

+
√

2
n
(

1
2

+
1
4

√
2
)

+ (−
√

2)n

(
1
2
− 1

4

√
2
)
− 1.

Applying the order reduction method in Section 3.6, instead, the solution
has the following shape

xn = xr 2−
1
2
r+ 1

2
n + 2−

1
2
r+ 1

2
n − 1,

where r = n mod 2 ∈ {0, 1}, more readable and concise than the previous
one.
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Example C.17 Solve

xn = 2xn−2 − xn−4 + n.

The traditional method yields the solution

xn =
1
4
(
2 + 2(−1)n − (−1)nn− n

)
x0 +

1
4
(
3− 3(−1)n + (−1)nn− n

)
x1

+
1
4
(
(−1)nn + n

)
x2 +

1
4
(
−1 + (−1)n − (−1)nn + n

)
x3

+
5
8
− 5

8
(−1)n +

1
24

n3 +
1
4
n2 +

7
16

(−1)nn− 53
48

n.

Applying the order reduction method we obtain the equivalent solution

xn =
(

1− 1
2
n +

1
2
r

)
xr +

(
1
2
n− 1

2
r

)
xr+2

+
1
12

r3 +
1
2
r2 +

1
24

n3 +
1
4
n2 − 1

8
r2n− 3

4
rn +

2
3
r − 2

3
n,

where r = n mod 2 ∈ {0, 1}, which is again much simpler.
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