
Precise Widening Operators

for Convex Polyhedra?

Roberto Bagnara1, Patricia M. Hill2, Elisa Ricci1, and Enea Zaffanella1

1 Department of Mathematics, University of Parma, Italy
{bagnara,ericci,zaffanella}@cs.unipr.it

2 School of Computing, University of Leeds, UK
hill@comp.leeds.ac.uk

Abstract. Convex polyhedra constitute the most used abstract domain
among those capturing numerical relational information. Since the do-
main of convex polyhedra admits infinite ascending chains, it has to be
used in conjunction with appropriate mechanisms for enforcing and ac-
celerating convergence of the fixpoint computation. Widening operators
provide a simple and general characterization for such mechanisms. For
the domain of convex polyhedra, the original widening operator proposed
by Cousot and Halbwachs amply deserves the name of standard widening
since most analysis and verification tools that employ convex polyhedra
also employ that operator. Nonetheless, there is demand for more precise
widening operators that still has not been fulfilled. In this paper, after
a formal introduction to the standard widening where we clarify some
aspects that are often overlooked, we embark on the challenging task
of improving on it. We present a framework for the systematic defini-
tion of new and precise widening operators for convex polyhedra. The
framework is then instantiated so as to obtain a new widening operator
that combines several heuristics and uses the standard widening as a last
resort so that it is never less precise. A preliminary experimental evalu-
ation has yielded promising results. We also suggest an improvement to
the well-known widening delay technique that allows to gain precision
while preserving its overall simplicity.

1 Introduction

An ability to reason about numerical quantities is crucial for increasing numbers
of applications in the field of automated analysis and verification of complex
systems. Of particular interest are representations that capture relational infor-
mation, that is, information relating different quantities such as, for example,
the length of a buffer and the contents of a program variable, or the number of
agents in different states in the modeling of a distributed protocol.

? This work has been partly supported by MURST projects “Aggregate- and number-
reasoning for computing: from decision algorithms to constraint programming with
multisets, sets, and maps” and “Constraint Based Verification of Reactive Systems”.

Convex polyhedra, since the work of Cousot and Halbwachs [18], constitute
the most used abstract domain among those capturing numerical, relational in-
formation. They have been used to solve, by abstract interpretation [15], several
important data-flow analysis problems such as array bound checking, compile-
time overflow detection, loop invariant computations and loop induction vari-
ables. Convex polyhedra are also used, among many other applications, for the
analysis and verification of synchronous languages [6, 23] and of linear hybrid
automata (an extension of finite-state machines that models time requirements)
[24, 27], for the computer-aided formal verification of concurrent and reactive
systems based on temporal specifications [29], for inferring argument size rela-
tionships in logic languages [4, 5], for the automatic parallelization of imperative
programs [31], for detecting buffer overflows in C [21], and for the automatic
generation of the ranking functions needed to prove progress properties [10].

Since the domain of convex polyhedra admits infinite ascending chains, it
has to be used in conjunction with appropriate mechanisms for enforcing and
accelerating convergence of the fixpoint computation. Widening operators [14,
15, 17] provide a simple and general characterization for such mechanisms. In
its simplest form, a widening operator on a poset (L,v) is defined as a partial
function ∇ : L × L � L satisfying:

1. for each x, y ∈ L such that x∇y is defined, we have x v x∇y and y v x∇y;
2. for all increasing chains y0 v y1 v · · · , the increasing chain defined by

x0
def
= y0, . . . , xi+1

def
= xi ∇ yi+1, . . . is not strictly increasing.

It must be observed that a widening operator may serve different purposes, be-
sides forcing the stabilization of approximated iteration sequences after a finite
number of iterations: it may be used to speed up the convergence of iteration
sequences and to ensure the existence of the approximations of concrete ele-
ments when considering abstract domains that are algebraically weak [16]. Thus
a widening does not need to be a total function, the only requirement is that its
domain of definition be compatible with the intended application. The applica-
tion will also affect the required trade-off between precision and efficiency: when
speeding up convergence of an (perhaps intrinsically finite) iteration sequence,
precision is more willingly given away; in other cases, the objective is to ensure
termination without compromising precision too much. As a consequence, it is
meaningful to have two or more widening operators, each one tuned with a dif-
ferent compromise between precision and efficiency. The different widenings can
be used in different applications or even in the same application, with the system
dynamically switching from one to another [12].

For the domain of convex polyhedra, the first widening operator was proposed
by Cousot and Halbwachs in [18] and further refined in [22]. It amply deserves
the name of standard widening since most analysis and verification tools that
employ convex polyhedra also employ that operator.

There are a number of applications of convex polyhedra in the field of sys-
tems’ analysis and verification that are particularly sensitive to the precision
of the deduced numerical information. The importance of precision in the field

2

of automated verification has led to the use of extrapolation operators, that is,
binary operators satisfying condition 1 in the definition of widening but not con-
dition 2 (i.e., without convergence guarantees). For instance, in [26], Henzinger
and Ho propose a new extrapolation operator for use in the HyTech model
checker since “Halbwachs’s widening operator [...] is sometimes too coarse for
[their] purposes” (symbolic model checking of linear hybrid systems). A further
step toward more precision is proposed in [28], where the authors present another
extrapolation operator used in the HyTech system: “This operator is tighter
than (and therefore less aggressive than) both the widening operator of [23] and
the extrapolation operator of [26], which is not monotone in its second argu-
ment.” Other extrapolation operators based on similar approaches have been
sketched in [6]. Still in the field of automatic verification, the need for more
precision than warranted by the standard widening is remarked in both [9] and
[19]; and a new extrapolation operator on sets of convex polyhedra is defined in
each of these papers.

If giving up convergence guarantees is acceptable (though not desirable) for
semi-automatic, human-operated verifiers, this is certainly not the case for fully-
automatic program analyzers. In this field, the request for more precision has
traditionally been satisfied by the delayed application of the widening, a general
idea suggested in [12]. This amounts to delaying the application of the widen-
ing operator k times for some fixed parameter k ∈ N. A study of the effect of
alternative values for k in the automatic determination of linear size relations
between the arguments of logic programs has been conducted in [4, 5]. One appli-
cation of this idea is in termination inference [30]. In order to achieve reasonable
precision, the cTI analyzer runs with k = 3 as a default, but there are simple
programs (such as mergesort) whose termination can only be established with
k > 3. On the other hand, setting k = 4 as the default can have a sensible impact
on performance of cTI [F. Mesnard, personal communication, 2003].

In this paper, after a formal introduction to the standard widening where
we clarify some important aspects that are often overlooked, we embark on the
challenging task of improving on it. Elaborating on an idea originally proposed
in [6], we present a framework for the systematic definition of new and precise
widening operators for convex polyhedra, which is based on the definition of a
suitable relation on convex polyhedra satisfying the ascending chain condition.
The framework makes it particularly easy to combine several heuristics and prove
that the resulting operator is indeed a widening. Here we instantiate it with a
selection of extrapolation operators —some of which embody improvements of
heuristics already proposed in the literature— and the standard widening so
that the new widening operator is always at least as precise as the standard one
for a single application. An experimental evaluation of the new widening shows
that, for the analysis problem considered, it captures common growth patterns
and obtains precision improvements in as many as 33% of the benchmarks.

The paper is structured as follows: Section 2 recalls the required concepts and
notations; Section 3 introduces the standard widening, highlighting a few impor-
tant aspects of its formal definition that are often overlooked; Section 4 presents

3

a framework for the systematic definition of new widenings operators improving
upon the standard widening; Section 5 instantiates this framework by consider-
ing several variants of extrapolations techniques proposed in the literature, as
well as one that is new to this paper; Section 6 summarizes the results of our ex-
perimental evaluation of the new widening; Section 7 proposes an improvement
of the well-known widening delay technique. Section 8 concludes.

2 Preliminaries

The cardinality of a set S is denoted by # S. If M and N are finite multisets
over N, #(n, M) denotes the number of occurrences of n ∈ N in M and M � N
means that there exists j ∈ N such that #(j, M) > #(j, N) and, for each k ∈ N
with k > j, we have #(k, M) = #(k, N). The relation � is well-founded [20].
The set of non-negative reals is denoted by R+.

Any vector v ∈ Rn is also regarded as a matrix in Rn×1 so that it can be
manipulated with the usual matrix operations of addition, multiplication (both
by a scalar and by another matrix), and transposition, which is denoted by vT.
For each i ∈ {1, . . . , n}, the i-th component of the vector v ∈ Rn is denoted
by vi. The scalar product of v, w ∈ Rn, denoted 〈v, w〉, is vTw =

∑n

i=1 viwi.
The vector of Rn having all components equal to zero is denoted by 0. We write
v = w to denote the conjunctive proposition

∧n

i=1(vi = wi). In contrast, v 6= w

will denote the proposition ¬(v = w).
Let V = {v1, . . . , vk} ⊆ Rn be a finite set of vectors. For all scalars λ1,

. . . , λk ∈ R, the vector v =
∑k

i=1 λivi is said to be a linear combination of the
vectors in V . Such a combination is said to be

– a positive (or conic) combination, if ∀i ∈ {1, . . . , k} : λi ∈ R+;

– an affine combination, if
∑k

i=1 λi = 1;
– a convex combination, if it is both positive and affine.

The vectors in V are said linearly independent if the only solution of the equation
∑k

i=1 λivi = 0 is λi = 0, for each i = 1, . . . , k; they are said affinely independent

if the only solution of the system of equations
{
∑k

i=1 λivi = 0,
∑k

i=1 λi = 0
}

is
λi = 0, for each i = 1, . . . , k.

Let V ⊆ Rn. The subspace of Rn defined by the set of all affine combinations
of finite subsets of V is called the affine hull of V and denoted by aff.hull(V);
the orthogonal of V is V ⊥ =

{

w ∈ Rn
∣

∣ ∀v ∈ V : 〈v, w〉 = 0
}

; the set
{−v ∈ Rn | v ∈ V } is denoted by −V .

For each vector a ∈ Rn and scalar b ∈ R, where a 6= 0, the linear inequality
constraint 〈a, x〉 ≥ b defines a topologically closed affine half-space of Rn. We
do not distinguish between syntactically different constraints defining the same
affine half-space so that, for example, x ≥ 2 and 2x ≥ 4 are the same constraint.
The set P ⊆ Rn is a (closed and convex) polyhedron if and only if either P can
be expressed as the intersection of a finite number of closed affine half-spaces
of Rn, or n = 0 and P = ∅. The set of all closed polyhedra on Rn is denoted
by CPn. In this paper, we only consider polyhedra in CPn when n > 0. The set

4

CPn, when partially ordered by subset inclusion, is a lattice where the binary
meet operation is set-intersection; the binary join operation, denoted], is called
convex polyhedral hull, poly-hull for short.

If k + 1 ≤ n + 1 is the maximum number of affinely independent points
of a polyhedron P ∈ CPn, then we write dim(P) = k and we say that P
has dimension k. If P 6= ∅, the characteristic cone of P is given by the set

char.cone(P)
def
= {w ∈ Rn | ∀v ∈ P : v + w ∈ P } whereas the lineality space of

P is lin.space(P)
def
= char.cone(P) ∩ − char.cone(P).

The linear equality constraint 〈a, x〉 = b defines an affine hyperplane of Rn

(i.e., the intersection of the affine half-spaces 〈a, x〉 ≥ b and 〈−a, x〉 ≥ −b). Each
polyhedron P ∈ CPn can therefore be represented by a finite set of linear equality
and inequality constraints C called a constraint system. We write P = con(C).
The subsets of equality and inequality constraints in system C are denoted by
eq(C) and ineq(C), respectively. When P = con(C) 6= ∅, we say that constraint
system C is in minimal form if # eq(C) = n − dim(P) and there does not exist
C′ ⊂ C such that con(C′) = P . All the constraint systems in minimal form
describing a given polyhedron have the same cardinality.

Let P ∈ CPn. A vector p ∈ P is called a point of P ; a vector r ∈ Rn, where
r 6= 0, is called a ray of P if P 6= ∅ and p + λr ∈ P , for all points p ∈ P and
all λ ∈ R+; a vector l ∈ Rn is called a line of P if both l and −l are rays of P .
We do not distinguish between rays (resp., lines) differing by a positive (resp.,
non-null) factor so that, for example, (1, 3)T and (2, 6)T are the same ray.

Given three finite sets of vectors L, R, P ⊆ Rn such that L = {l1, . . . , l`},
R = {r1, . . . , rr}, P = {p1, . . . , pp} and 0 /∈ L∪R, then the triple G = (L, R, P)
is called a generator system for the polyhedron

gen(G) =

{

∑̀

i=1

λili +
r

∑

i=1

ρiri +

p
∑

i=1

πipi

∣

∣

∣

∣

∣

λ ∈ R`, ρ ∈ Rr
+
, π ∈ Rp

+,
∑p

i=1 πi = 1

}

.

The polyhedron gen(G) is empty if and only if P = ∅. If P 6= ∅, the vectors in L,
R and P are lines, rays and points of gen(G), respectively. We define an ordering
‘�’ on generator systems such that, for any generator systems G1 = (L1, R1, P1)
and G2 = (L2, R2, P2), G1 � G2 if and only if L1 ⊆ L2, R1 ⊆ R2 and P1 ⊆ P2;
if, in addition, G1 6= G2, we write G1 ≺ G2. When gen(G) 6= ∅, the generator
system G = (L, R, P) is said to be in minimal form if # L = dim

(

lin.space(P)
)

and there does not exist a generator system G ′ ≺ G such that gen(G′) = gen(G).

Let c =
(

〈a, x〉 ./ b
)

be a linear constraint, where ./ ∈ {≥, =}. We say that
a point (resp., a ray or a line) v saturates constraint c if and only if 〈a, v〉 = b
(resp., 〈a, v〉 = 0). For each point p and constraint system C, we define the
constraint system

sat con(p, C)
def
= { c ∈ C | p saturates c };

5

for each constraint c and generator system G = (L, R, P), we define the generator
system sat gen(c,G) = (L′, R′, P ′), where

L′ def
= { l ∈ L | l saturates c },

R′ def
= { r ∈ R | r saturates c },

P ′ def
= {p ∈ P | p saturates c }.

A generator system G = (L, R, P) is in orthogonal form if it is in minimal form
and R ∪ P ⊆ L⊥. All generator systems in orthogonal form describing a given
polyhedron have identical sets of rays and points. A generator system in minimal
form can be tranformed into an equivalent system in orthogonal form by means
of the well-known Gram-Shmidt method. By duality, orthogonal forms can also
be defined for constraint systems. For each linear constraint c =

(

〈a, x〉 ./ b
)

, let
ca = a. A constraint system C is in orthogonal form if it is in minimal form and
I ⊆ E⊥, where I =

{

ca ∈ Rn
∣

∣ c ∈ ineq(C)
}

and E =
{

ca ∈ Rn
∣

∣ c ∈ eq(C)
}

.
All constraint systems in orthogonal form describing a given polyhedron have
identical sets of inequality constraints.

3 The Standard Widening

The first widening on polyhedra was introduced in [18]. Intuitively, if P1 is the
polyhedron obtained in the previous step of the upward iteration sequence and
the current step yields polyhedron P2, then the widening of P2 with respect to
P1 is the polyhedron defined by all the constraints of P1 that are satisfied by all
the points of P2. An improvement on the above idea was defined in [22]. This
operator, termed standard widening, has indeed been used almost universally.

The formal specification of the standard widening requires that each equality
constraint is split into the two corresponding linear inequalities; thus, for each
constraint system C, we define

repr≥(C)
def
=

{

〈−a, x〉 ≥ −b
∣

∣

∣

(

〈a, x〉 = b
)

∈ C
}

∪
{

〈a, x〉 ≥ b
∣

∣

∣

(

〈a, x〉 ./ b
)

∈ C, ./ ∈ {≥, =}
}

.

Definition 1. (Standard widening.) [22, Définition 5.3.3, p. 57] For i = 1,
2, let Pi ∈ CPn be such that Pi = con(Ci) [and let C1 be either inconsistent or
in minimal form]. Then, the polyhedron P1 ∇P2 ∈ CPn is defined as

P1 ∇ P2 =

{

P2, if P1 = ∅;

con(C′
1 ∪ C′

2), otherwise;

where

C′
1 =

{

β ∈ repr≥(C1)
∣

∣

∣
P2 ⊆ con

(

{β}
)

}

,

C′
2 =

{

γ ∈ repr≥(C2)
∣

∣

∣
∃β ∈ repr≥(C1) . P1 = con

(

(

repr≥(C1) \ {β}
)

∪ {γ}
) }

.

6

The constraints in C′
1 are those that would have been selected when using

the original proposal of [18], whereas the constraints in C ′
2 are added to ensure

that this widening is a well-defined operator on the domain of polyhedra (i.e., it
does not depend on the particular constraint representations).

The condition in square brackets that C1, when consistent, should be in min-
imal form, was implicit from the context of [22, Définition 5.3.3, p. 57], though
not explicitly present in the definition itself. Such a requirement has been some-
times neglected in later papers discussing the standard widening (and also in
some implementations), but it is actually needed in order to obtain a correct
definition. In fact, the following two examples show that if a redundant (i.e.,
not minimal) constraint description is taken into account, then not only is the
widening operator not well defined (see Example 1), but also the chain condition
may be violated (see Example 2).

Example 1. For i = 1, 2, let Pi = con(Ci) ∈ CP2, where

C1 = {x ≥ 0, y ≥ 0, x − y ≥ 2},

C2 = {x ≥ 2, y ≥ 0}.

Note that the constraint x ≥ 0 is redundant in C1. By applying [22, Définition
5.3.3, p. 57] verbatim, without enforcing minimization, we would obtain the
polyhedron

P = con
(

{x ≥ 0, y ≥ 0}
)

.

In contrast, by applying Definition 1, i.e., by enforcing minimization, we obtain
the polyhedron

P ′ = con
(

{y ≥ 0}
)

.

Example 2. Consider, for each k ∈ N, the polyhedron Pk
def
= con(Ck) ∈ CP1,

where

Ck
def
=

{

0 ≤ x, x ≤
k

k + 1

}

∪ {x ≤ 2},

and note that no Ck is minimal since the constraint x ≤ 2 is redundant in all
of them. Moreover, the infinite chain constituted by the Pk’s, that is, using an
interval notation,

P0 = [0, 0], P1 =

[

0,
1

2

]

, P2 =

[

0,
2

3

]

, P3 =

[

0,
3

4

]

, . . . ,

is strictly increasing. We will now show that for the infinite chain Q0 = P0,
. . . , Qk+1 = Qk ∇Pk+1, . . . we have Qn = Pn for each n ∈ N, so that the chain
condition is violated.

7

For each n ∈ N we have Qn = con(Dn), where D0
def
= C0 and

Dk+1
def
=

{

β ∈ Dk

∣

∣

∣
Pk+1 ⊆ con

(

{β}
)

}

∪
{

γ ∈ Ck+1

∣

∣

∣
∃β ∈ Dk . Qk = con

(

(

Dk \ {β}
)

∪ {γ}
) }

.

We will show by induction that Dn = Cn for each n ∈ N. First we note that
{0 ≤ x, x ≤ 2} ⊆ D0 = C0 and thus {0 ≤ x, x ≤ 2} ⊆ Dk for each k ∈ N, since
Pk+1 ⊆ con

(

{0 ≤ x}
)

and Pk+1 ⊆ con
(

{x ≤ 2}
)

. Now assume Dk = Ck and

note that, taking γ =
(

x ≤ k+1
k+2

)

∈ Ck+1 and β = (x ≤ 2) ∈ Dk = Ck, we have

con
(

(

Dk \ {β}
)

∪ {γ}
)

= con

({

0 ≤ x, x ≤
k

k + 1
, x ≤

k + 1

k + 2

})

= con

({

0 ≤ x, x ≤
k

k + 1

})

= con(Dk).

We thus have Dk+1 =
{

0 ≤ x, x ≤ k+1
k+2 , x ≤ 2

}

= Ck+1.

3.1 Implementation of the Standard Widening

The following proposition provides a formal justification for the correctness of
an algorithm implementing the standard widening when the inclusion hypothesis
P1 ⊆ P2 is satisfied. The main idea, which has been proposed in [22] and later
reported in [25], is to replace the expensive test in the specification of C ′

2 in Defi-
nition 1 with an appropriate saturation condition to be checked on any generator
system for P1. We provide an improved version of the above result showing that
neither the addition of the set of constraints C ′

1 as given in Definition 1 nor
the splitting of equality constraints into corresponding pairs of inequalities are
needed. A similar result, but without the use of saturation conditions, can be
found in [5, Chapter 6].

Proposition 1. Let P1 = con(C1) = gen(G1) ∈ CPn and P2 = con(C2) ∈ CPn,
where C1 is in minimal form and P1 ⊆ P2. Then P1 ∇P2 = con(Cs), where

Cs
def
=

{

γ ∈ C2

∣

∣ ∃β ∈ C1 . sat gen(γ,G1) = sat gen(β,G1)
}

.

Proof. In this proof, to simplify the notation, if C is any constraint system and
β and γ are constraints, we will write C[γ/β] to denote the constraint system
(

C \ {β}
)

∪ {γ}.
We prove that P1∇P2 = con(Cs) by considering the two inclusions separately.

First we show that P1 ∇ P2 ⊆ con(Cs). Suppose γ ∈ repr≥(Cs); then, by the
hypothesis, there exists β ∈ C1 such that sat gen(γ,G1) = sat gen(β,G1). If
β ∈ eq(C1), sat gen(γ,G1) = G1. Let γ= be the equality constraint with the
same coefficients as γ. Then sat gen(γ=,G1) = G1 and, as C1 is in minimal form,

8

for some β1 ∈ eq(C1), P1 = con
(

C1[γ
=/β1]

)

. Thus, for some β′
1 ∈ repr≥

(

{β1}
)

(so

that β′
1 ∈ repr≥(C1)), P1 = con

(

repr≥(C1)[γ/β′
1]

)

. On the other hand, as C1 is in

minimal form, if β ∈ ineq(C1), sat gen(β,G1) 6= G1 and, as P1 ⊆ P2 ⊆ con
(

{γ}
)

,

P1 = con
(

repr≥(C1)[γ/β]
)

.
We now prove that con(Cs) ⊆ P1 ∇ P2. Let C′

1, C
′
2 be as defined in Defi-

nition 1. First we will show that con(Cs) ⊆ con(C′
1). Suppose β ∈ C′

1. Then
β ∈ repr≥(C1) and P2 ⊆ con

(

{β}
)

. Let v ∈ gen
(

sat gen(β,G1)
)

. Suppose there
exists a closed ball B ⊆ Rn centered at v of radius λ > 0 that is contained in
P2. Then, as P2 ⊆ con

(

{β}
)

, B ⊆ con
(

{β}
)

contradicting the assumption that
v saturates β. Thus there exists a constraint in repr≥(C2) that is saturated by
v. As v ∈ gen

(

sat gen(β,G1)
)

was arbitrary, there exists γ ∈ repr≥(C2) that is

saturated by every point in gen
(

sat gen(β,G1)
)

so that gen
(

sat gen(β,G1)
)

⊆

gen
(

sat gen(γ,G1)
)

. Thus sat gen(β,G1) � sat gen(γ,G1). As C1 is in minimal
form, sat gen(β,G1) = sat gen(γ,G1) so that γ ∈ Cs. As this holds for all β ∈ C′

1,
we have con(Cs) ⊆ con(C′

1). Finally, we show that con(Cs) ⊆ con(C′
2). Suppose

γ ∈ C′
2. Then there exists β ∈ repr≥(C1) such that con

(

C1[γ/β]
)

= P1. Thus

sat gen(γ,G1) = sat gen(β,G1) and hence con(Cs) ⊆ con
(

{γ}
)

. As this holds for
all γ ∈ C′

2, we have con(Cs) ⊆ con(C′
2). Thus con(Cs) ⊆ con(C′

1) ∩ con(C′
2) and

hence, con(Cs) ⊆ con(C′
1 ∪ C′

2). By Definition 1, P1 ∇ P2 = con(C′
1 ∪ C′

2) so that
con(Cs) ⊆ P1 ∇P2, as required. ut

It is worth stressing that the correctness of the above proposition relies on
the inclusion hypothesis P1 ⊆ P2, which was only implicitly present in [22, 25].
The following example shows that, when P1 * P2, the result is not guaranteed
to be an upper approximation of the arguments. Note that this is independent
of the two improvements mentioned above.

Example 3. Let P1 = con(C1) ∈ CP2 and P2 = con(C2) ∈ CP2, where

C1 = {x = 0, 0 ≤ y ≤ 2},

C2 = {y ≥ 2}.

Then P1 = gen(G1), where G1 = (∅, ∅, P) and P =
{

(0, 0)T, (2, 0)T
}

. Note that
P1 * P2. By Definition 1, we obtain C ′

1 = C′
2 = ∅, so that P1 ∇ P2 = R2.

Considering the constraints β = (−y ≥ −2) ∈ C1 and γ = (y ≥ 2) ∈ C2, we have

sat gen(β,G1) =
(

∅, ∅,
{

(2, 0)T
}

)

= sat gen(γ,G1),

so that γ ∈ Cs. Thus, the result of the algorithm is P2, which is different from
P1 ∇P2 and it is not an upper approximation of P1.

To avoid problems such as the one above, in the following we adopt a minor
variant of the classical definition of widening operator given in Section 1 (see
the footnote in [17, p. 275]).

Definition 2. Let L(v,t) be a join-semi-lattice (i.e., the least upper bound xty
exists for all x, y ∈ L). The operator ∇ : L × L � L is a widening if

9

1. ∀x, y ∈ L : x v y =⇒ y v x ∇ y;
2. for all increasing chains y0 v y1 v · · · , the increasing chain defined by

x0
def
= y0, . . . , xi+1

def
= xi ∇ yi+1, . . . is not strictly increasing.

It can be proved [17] that, for any continuous operator F : L → L, the upward
iteration sequence with widenings starting from any element x0 ∈ L and defined
by

xi+1 =

{

xi, if F(xi) v xi;

xi ∇
(

xi t F(xi)
)

, otherwise;

converges after a finite number of iterations. Note that the widening is always
applied to arguments x = xi and y = xi t F(xi) satisfying x v y and x 6= y.
Thus, without loss of generality, in the following we will assume that the two
argument polyhedra satisfy the strict inclusion hypothesis P1 ⊂ P2.

As far as the implementation of the standard widening is concerned, it is
worth noting the following result, which provides the justification for an alter-
native algorithm based on the original proposal in [18]. A similar result has also
been proved in [5, Chapter 6].

Proposition 2. Let P1,P2 ∈ CPn, where P1 ⊆ P2 and dim(P1) = dim(P2).
Let also P1 = con(C1) 6= ∅, where the constraint system C1 is in minimal form.

Then P1 ∇P2 = con(C), where C
def
=

{

β ∈ C1

∣

∣ P2 ⊆ con
(

{β}
) }

.

Proof. Since, by hypothesis, dim(P1) = dim(P2) and P1 ⊆ P2, we also have
aff.hull(P1) = aff.hull(P2). As C1 is in minimal form, aff.hull(P1) = con

(

eq(C1)
)

.

Moreover, for all β ∈ eq(C1), aff.hull(P1) ⊆ con
(

{β}
)

so that P2 ⊆ con
(

{β}
)

.

Thus, by definition of C, aff.hull(P1) = aff.hull
(

con(C)
)

. As P1 ∇ P2 is well
defined and hence, does not depend on the constraint system used to represent
P2, we assume C2 is in minimal form and that eq(C1) = eq(C2).

Since repr≥(C) ⊆
{

β ∈ repr≥(C1)
∣

∣ P2 ⊆ con
(

{β}
) }

, it follows from Defini-
tion 1 that P1∇P2 ⊆ con(C). We show that con(C) ⊆ P1∇P2. Let P1 = gen(G1)
for some generator system G1 and

Cs
def
=

{

γ ∈ C2

∣

∣ ∃β ∈ C1 . sat gen(γ,G1) = sat gen(β,G1)
}

.

By Proposition 1, P1 ∇ P2 = con(Cs). Suppose γ ∈ Cs. Then γ ∈ C2 and there
exists β ∈ C1 such that sat gen(γ,G1) = sat gen(β,G1). Thus

con
(

{β}
)

∩ aff.hull(P1) = con
(

{γ}
)

∩ aff.hull(P1). (1)

Hence, as P2 ⊆ con
(

{γ}
)

and P2 ⊆ aff.hull(P1), P2 ⊆ con
(

{β}
)

so that β ∈ C.

As aff.hull
(

con(C)
)

= aff.hull(P1), it follows from (1) that con(C) ⊆ con
(

{γ}
)

.
As this holds for all γ ∈ Cs, we obtain con(C) ⊆ con(Cs) = P1 ∇P2. ut

The interesting fact about this alternative algorithm is that its implementa-
tion does not require the computation of a constraint system for the polyhedron
P2: any generator system for P2 can be used to check the hypothesis that the

10

two argument polyhedra have the same dimension and, if this is the case, to
select the constraints from C1; if the two polyhedra have different dimensions,
we fall back to the implementation based on Proposition 1. Note that it is almost
always the case that polyhedron P2 has been obtained as the result of a poly-hull
operation, so that in a “lazy” implementation the polyhedron will be described
by a generator system only (since the poly-hull is implemented by taking the
union of two generator system).

4 Defining More Precise Widenings

In this section, elaborating on an idea originally proposed in [6], we will present
a framework for the systematic definition of new and precise widening operators
for polyhedra. In particular, we will state the theoretical result that will be used
to ensure that all the instances of the framework are indeed widening operators.
In order to do that, we need the following definition.

Definition 3. (Number of non-null coordinates of a vector.) Let v ∈ Rn.
We write κ(v) to denote the number of non-null coordinates of v. For each finite
set V ⊆ Rn, we define κ(V) to be the multiset obtained by applying κ to each of
the vectors in V .

We now define the relation y ⊆ CPn × CPn incorporating a notion of, so
to speak, “limited growth” or “growth that cannot be indefinite” (graphically, a
descending parabola).

Definition 4. (y ⊆ CPn × CPn.) Let P1,P2 ∈ CPn be two polyhedra. Then
P1 y P2 if and only if P1 ⊂ P2 and either P1 = ∅ or at least one of the following
conditions holds, where, for i = 1, 2, Pi is given by means of a constraint system
Ci in minimal form and a generator system Gi = (Li, Ri, Pi) in orthogonal form:

dim(P1) < dim(P2); (2)

dim
(

lin.space(P1)
)

< dim
(

lin.space(P2)
)

; (3)

C1 > # C2; (4)

C1 = # C2 ∧ # P1 > # P2; (5)

C1 = # C2 ∧ # P1 = # P2 ∧ κ(R1) � κ(R2). (6)

Note that the relation y is well defined, since it does not depend on the partic-
ular constraint and generator representations chosen; in particular, the require-
ment that the Gi are in orthogonal form ensures that the computation of κ(Ri)
is not ambiguous (see Section 2).

The next result incorporates the basic idea behind the overall approach.

Theorem 1. Let P0 y P1 y · · · y Pi y · · · be a chain of polyhedra in CPn.
Then the chain is finite.

11

Proof. Let us consider the polyhedron Pj 6= ∅ for any j ≥ 0. Then both
the notions of constraint system Cj in minimal form and generator system
Gj = (Lj , Rj , Pj) in orthogonal form are well defined for Pj . Since dim(Pj) ≤ n
and dim

(

lin.space(Pj)
)

≤ n and the conditions (2) and (3) of Definition 4 pre-
scribe an increase in these values, respectively, the conditions can be regarded as
defining a strict decrease on the negations of these values with lower bound −n.
As Pj 6= ∅, we have # Cj ≥ 0, # Pj ≥ 1 and # Rj ≥ 0. If Pi y Pi+1 is a link
in the chain, conditions (4) and (5) prescribe # Ci > # Ci+1 and # Pi > # Pi+1,
respectively. If r is any ray in Rn, then we must have κ(r) < n. Moreover, ‘�’ is
well-founded [20] and, if Pi y Pi+1 is a link in the chain, condition (6) prescribes
κ(Ri) � κ(Ri+1).

Thus, each condition (2), (3), (4), (5), and (6) of Definition 4 requires a
strict decrease with respect to a well-founded ordering. Note that, by the hy-
pothesis, if Pi y Pi+1 is a link in the chain, then Pi ⊂ Pi+1. Thus, when
the conditions (2) and (3) are not met, we have both dim(Pi) = dim(Pi+1)
and dim

(

lin.space(Pi)
)

= dim
(

lin.space(Pi+1)
)

. Thus, as condition (5) requires
Ci = # Ci+1 and (6) requires # Ci = # Ci+1 and # Pi = # Pi+1, the relation
‘y’ is a lexicographic product of the inverses of well-founded orderings so that
‘y’ satisfies the ascending chain condition and hence, the chain is finite. ut

The ‘y’ relation is a variant of a similar notion of limited growth defined in [6,
Theorem 3]. These two proposals are not formally comparable since neither one of
the relations refines the other. On one hand, in Definition 4, there are convergence
criteria that were not considered in [6], namely conditions (4) and (6); on the
other hand, to ensure that the relation satisfies the ascending chain condition,
condition (5) also requires that the number of constraints is not increasing.

From a more practical point of view, the relation defined in [6] is unsat-
isfactory, since neither the standard widening ∇, nor the heuristics informally
sketched in [6] ensure that consecutive iterates satisfy the given notion of limited
growth. In summary, the overall approach does not define a widening operator in
the precise sense of Definition 2 [F. Besson, personal communication, 2002]. By
contrast, the introduction of condition (4) ensures that applications of ∇ always
yield polyhedra that are related to previous iterates by the ‘y’ relation.

Theorem 2. Let P1 ⊂ P2 ∈ CPn and P1∇P2 = P. Then P2 ⊆ P and P1 y P.

Proof. Let P1 = con(C1), where C1 is a constraint system in minimal form, and
P2 = con(C2). We have P = con(C ′

1 ∪ C′
2), where C′

1 and C′
2 are as specified

in Definition 1. Thus, for all β ∈ C ′
1, P2 ⊆ con

(

{β}
)

so that P2 ⊆ con(C′
1).

Also, for all γ ∈ C′
2, we have γ ∈ repr≥(C2) and hence P2 ⊆ con

(

{γ}
)

so that
P2 ⊆ con(C′

2). Therefore, P2 ⊆ P . Since by hypothesis we have P1 ⊂ P2, we
also obtain P1 ⊂ P , so that dim(P1) ≤ dim(P). If dim(P1) < dim(P), then, by
Definition 4, P1 y P . Suppose next that dim(P1) = dim(P).

Let P = con(C) where C is in minimal form. Then we show that # C < # C1.
Let

C∇ =
{

β ∈ C1

∣

∣

∣
P2 ⊆ con

(

{β}
)

}

.

12

Thus C∇ ⊆ C1. As P1 ⊂ P , C∇ ⊂ C1. Therefore # C∇ < # C1. By hypothesis
dim(P1) = dim(P) and P1 ⊂ P2, so that Proposition 2 applies and we obtain
P = con(C) = con(C∇). As C is in minimal form, # C ≤ # C∇ so that # C < # C1.
Hence, by Definition 4, P1 y P . ut

This simple result provides a secure foundation for the use of new widening
operators such as the ones proposed here. In fact, because of Theorems 1 and 2,
the following result shows how the definition of a widening operator that can
improve on the standard widening is greatly simplified.

Theorem 3. Let h : CP2
n → CPn be an upper bound operator and

P1 ∇̃ P2
def
=

{

h(P1,P2), if P1 y h(P1,P2) ⊂ P1 ∇P2;

P1 ∇P2, otherwise.

Then the ∇̃ operator is a widening at least as precise as ∇.

Proof. By hypothesis, h is an upper bound operator and, by Theorem 2, the
same holds for the standard widening. Thus, in all cases P2 ⊆ P1 ∇̃ P2. By
definition of ∇̃ and, in the case that P1 ∇̃ P2 = P1 ∇ P2, also by Theorem 2,
P1 y P1 ∇̃ P2 holds. By Theorem 1, any increasing chain of polyhedra with
respect to the ‘y’ relation is finite. Thus, by Definition 2, the ∇̃ operator is
a widening. Finally, the fact that the result of ∇̃ is at least as precise as the
standard widening holds trivially by construction. ut

The above scheme is easily extended to any finite set of such techniques, still
obtaining a widening operator. In the following section we will consider several
of these possible heuristics: the simplest one, also adopted in [6], was actually
suggested in [17]; the second one is based on an idea informally sketched in [6];
the third one is a minor variant of the extrapolation operator of [26]; the fourth
and last one is new to this paper.

5 Improving the Standard Widening by Heuristics

The simplest heuristics, already suggested in [17], is the one saying ‘do not
widen’: if we are along an iteration chain having finite length, there is no need
to provide further approximations, so that we can safely return the most pre-
cise upper bound P2 (remember that we assume P1 ⊂ P2). In our context,
this is the case whenever P1 y P2. As a consequence, all the other widening
techniques considered here including the standard widening, are only applied
to a pair of polyhedra such that P1 6y P2, so that dim(P1) ≥ dim(P2) and
dim

(

lin.space(P1)
)

≥ dim
(

lin.space(P2)
)

; by the inclusion hypothesis, these im-
ply aff.hull(P1) = aff.hull(P2) and lin.space(P1) = lin.space(P2), respectively.

When defining a widening operator on an abstract domain, a common tactic
is to split the current abstract description into several components and look at
each one in isolation so as to identify what has changed with respect to the

13

previous iteration. Intuitively, the information provided by stable components
should be propagated to the next iteration, whereas the information of com-
ponents that have changed should be extrapolated according to a hypothetical
“change pattern”. For instance, in the case of the widening in [18], each element
of a constraint system is regarded as a separate component and the extrapola-
tion just forgets about the constraints that have changed. The second heuristics,
which is a variant of a similar one sketched in [6], can be seen as an application
of the above approach, where instead of the constraints we consider the points in
the generator system describing the polyhedron of the previous iteration. When
using the standard widening it may happen that points that are common to the
boundaries3 of P1 and P2 (and, hence, likely to be an invariant feature along
the chain of polyhedra) will not lie on the boundary of the widened polyhedron.
This is the case, for instance, for the two points p and q in Figure 1. For each of
such points, the technique forces the presence of an inequality constraint that is
saturated by the point, so that they will lie on the boundary of the result.

Definition 5. (Combining constraints.) Let P1,P2 ∈ CPn be two polyhedra
such that P1 ⊂ P2, aff.hull(P1) = aff.hull(P2) and lin.space(P1) = lin.space(P2).
Let P1 = gen(G1), P2 = con(C2) and P1 ∇ P2 = con(C∇), where the constraint
systems C2, C∇ and the generator system G1 = (L1, R1, P1) are in orthogonal
form. Let also

C⊕
def
=

{

⊕(Cp)

∣

∣

∣

∣

∣

p ∈ P1, sat con
(

p, ineq(C∇)
)

= ∅,

Cp = sat con
(

p, ineq(C2)
)

6= ∅

}

,

where the operator ⊕ computes a convex combination of a non-empty set of linear
inequality constraints (i.e., of the corresponding coefficients), returning another

linear inequality constraint. Then hc(P1,P2)
def
= con(C∇ ∪ C⊕).

Since the operator hc is only defined for arguments having the same affine hull
and lineality space, by requiring orthogonal forms we ensure that the result does
not depend on the particular representations considered.

Note that the particular convex combination encoded by function ⊕ is de-
liberately left unspecified so as to allow for a very liberal definition of hc that
still possesses the required properties. For instance, in [6] it was argued that a
good heuristics could be obtained by letting ⊕ compute a normed linear com-
bination (i.e., a sort of average) of the chosen constraints. Another legitimate
choice would be to “bless” one of the constraints in Cp and forget all the others.
In both cases, by keeping just one constraint for each point p, we hopefully re-
duce the cardinality of the constraint system describing the result, so that it is
more likely that condition (4) of Definition 4 will be met. Actually, this attempt
at reducing the number of constraints is the main difference between the tech-
nique presented in Definition 5 and the extrapolation operator proposed in [28,

3 In this context, a “boundary point” is any point of P ∩ lin.space(P)⊥ which is not
a relatively interior point for P. Namely, we abstract from both the affine hull and
the lineality space of the polyhedron.

14

O

P1

P2p q

P1 ∇ P2

O

hc(P1,P2)

p q

P1

P2

P1 ∇ P2

Fig. 1. The heuristics hc improving on the standard widening.

Section 3.3], which could itself be included in the current framework as a more
refined widening heuristics.

Our third heuristic technique is a variant of the extrapolation operator ‘∝’
defined in [26]. The technique examines each new point p2 of the polyhedron P2

as if it was obtained from each old point p1 of the polyhedron P1: we say that p2

is an evolution of p1. The extrapolation is defined as continuing this evolution
towards infinity, therefore generating the ray having direction p2 − p1. The new
ray will subsume point p2, so that it is likely that the convergence condition (5)
of Definition 4 will be met. Notice that any ray that violates a constraint of the
standard widening is dropped.

Definition 6. (Evolving points.) Let P1,P2 ∈ CPn be such that P1 ⊂ P2 and
lin.space(P1) = lin.space(P2). For each i = 1, 2, consider a generator system
Gi = (Li, Ri, Pi) in orthogonal form such that Pi = gen(Gi) and let

R
def
=

{

p2 − p1

∣

∣ p1 ∈ P1, p2 ∈ P2 \ P1

}

.

Then we define hp(P1,P2) = gen
(

(L2, R2 ∪ R, P2)
)

∩ (P1 ∇ P2).

Since the operator hp is only defined for arguments having the same lineality
space, by requiring orthogonal forms we ensure that the result does not depend
on the particular generator system representations considered.

The difference with respect to the extrapolation operator ‘∝’ is that we do
not require the two points to lie on the same 1-dimensional face of P2; moreover,
the result of ‘∝’ may be less precise than the standard widening. Note that, as
in the “combining constraints” technique, it is possible to add just a single ray
which is a convex combination of the rays in R instead of the complete set R;
yielding a more precise widening technique. However, this technique and the one
defined by the hp operator are incomparable with respect to the ‘y’ relation
and one can fail the ‘y’ convergence criteria when the other succeeds.

We now introduce a fourth widening heuristics that tries to extrapolate the
way rays have evolved since the last iteration. The technique examines each new
ray r2 of the polyhedron P2 as if it was generated by rotation of each old ray r1

of the polyhedron P1: we say that r2 is an evolution of r1. The extrapolation is

15

defined as continuing this evolution until one or more of the non-null coordinates
of ray r2 become zero. This way, it is likely that the convergence condition (6) of
Definition 4 will be met. Intuitively, the new ray will reach one of the boundaries
of the orthant where r2 lies, without trespassing it.

Definition 7. (evolve.) The function evolve : Rn×Rn → Rn is defined, for each

v, w ∈ Rn, as evolve(v, w)
def
= v′, where

v′i
def
=

{

0, if ∃j ∈ {1, . . . , n} . (vi · wj − vj · wi) · vi · vj < 0;

vi, otherwise.

To understand this definition consider a pair of coordinates i and j and
suppose that the vectors v and w are projected onto the two-dimensional plane
defined by i (for the first coordinate) and j (for the second coordinate). Then,
we identify the direction of the rotation of the vector (vi, vj)

T with respect to
the vector (wi, wj)

T by using the well-known cross-product test [11, Chapter 35];
the direction is clockwise if cw = vi · wj − vj · wi > 0 and anti-clockwise when
cw < 0. Moreover, vector (vi, vj)

T lies inside the first or third quadrant when
q = vi ·vj > 0 and it lies inside the second or fourth quadrant when q < 0. Then,
the condition cw · q < 0 states that the evolution is clockwise and (vi, vj)

T is in
the second or fourth quadrant or the evolution is anti-clockwise and (vi, vj)

T is
in the first or third quadrant: in all these cases, the evolution is towards the j
axis. Thus, for a fixed i, if there exists j such that the evolution is towards the
j axis, then we define v′

i = 0. Otherwise, we let v′
i = vi. We are now ready to

define our last widening heuristics.

Definition 8. (Evolving rays.) Let P1,P2 ∈ CPn be such that P1 ⊂ P2 and
lin.space(P1) = lin.space(P2). For each i = 1, 2, consider a generator system
Gi = (Li, Ri, Pi) in orthogonal form such that Pi = gen(Gi) and let

R
def
=

{

evolve(r2, r1)
∣

∣ r1 ∈ R1, r2 ∈ R2 \ R1

}

.

Then we define hr(P1,P2)
def
= gen

(

(L2, R2 ∪ R, P2)
)

∩ (P1 ∇P2).

Figure 2 shows an example where the evolving rays technique is able to im-
prove on the standard widening. It should be noted that the boundary of P1∇P2

contains the intersection of the boundaries of P1 and P2, so that the “combining
constraints” technique is not applicable. Neither the “evolving points” technique
can be applied, since P1 and P2 have the same set of irredundant points. Besides
having the same affine hull and lineality space, polyhedra P1, P2 and hr(P1,P2),
are defined by the same number of irredundant constraints and points, so that
P1 y hr(P1,P2) holds by condition (6) of Definition 4.

To use these heuristics techniques in the general framework we have defined
in the previous section, each of them needs to be an upper bound operator. This
is trivial for the first technique. The same result holds, by construction, for the
other three heuristics.

16

O
P1

P2

P1 ∇ P2

O
P1

P2

hr(P1,P2)

P1 ∇ P2

Fig. 2. The heuristics hr improving on the standard widening.

Proposition 3. Let P1,P2 ∈ CPn, where P1 ⊂ P2, aff.hull(P1) = aff.hull(P2)
and lin.space(P1) = lin.space(P2). Then, for each technique h ∈ {hc, hp, hr},
P2 ⊆ h(P1,P2) ⊆ P1 ∇ P2.

Proof. Let Pt = h(P1,P2). Consider first the case when h = hc and assume the
notation introduced in Definition 5. The proof for Pt ⊆ P1 ∇ P2 is immediate,
since Pt is defined by a constraint system C∇∪C⊕ including all of the constraints
defining P1 ∇P2. To prove that P2 ⊆ Pt we show that P2 ⊆ con

(

{β}
)

, for each
constraint β ∈ C∇ ∪ C⊕ defining Pt. Clearly, if β ∈ C∇ then the inclusion holds
by the fact that the standard widening is an upper bound operator, i.e., by
Theorem 2. If otherwise β ∈ C⊕, then, for some Cp ⊆ ineq(C2), β = ⊕(Cp), so
that P2 ⊆ con(Cp) ⊆ con

(

{β}
)

.
Next, consider the cases when h ∈ {hp, hr} and assume the notation intro-

duced in Definitions 6 and 8. Let G ′ = (L2, R2 ∪ R, P2) and P ′ = gen(G′); then
Pt = P ′ ∩ (P1 ∇P2). Thus Pt ⊆ P1 ∇P2. As G2 � G′, we obtain P2 ⊆ P ′. More-
over, by Theorem 2, we also have P2 ⊆ P1 ∇P2. Therefore, by the monotonicity
of set intersection, we conclude P2 ⊆ Pt. ut

The new widening operator is obtained by instantiating the framework of the
previous section using the four heuristic techniques presented above.

Definition 9. (The ∇̂ widening.) Let P1,P2 ∈ CPn, where P1 ⊂ P2. Then

P1 ∇̂ P2
def
=

P2, if P1 y P2;

hc(P1,P2), if P1 y hc(P1,P2) ⊂ P1 ∇ P2;

hp(P1,P2), if P1 y hp(P1,P2) ⊂ P1 ∇ P2;

hr(P1,P2), if P1 y hr(P1,P2) ⊂ P1 ∇ P2;

P1 ∇P2, otherwise.

It can be seen that ∇̂ is an instance of the framework proposed in the previous
section: in particular, when applying the first heuristics, the omission of the ap-
plicability condition P2 ⊂ P1 ∇P2 is a simple and inconsequential optimization.
Thus the following result is a direct consequence of Theorem 3 and Proposition 3.

Proposition 4. The ∇̂ operator is a widening at least as precise as ∇.

17

Proof. Suppose that P1,P2 ∈ CPn, where P1 ⊂ P2, so that Definition 9 applies.
If P2 = P1 ∇ P2, then P1 ∇̂ P2 = P1 ∇ P2. Therefore, in order to apply The-
orem 3, we have to show that when P2 ⊂ P1 ∇ P2, all the heuristic techniques
used in Definition 9 are upper bound operators. This trivially holds for the first
technique, which returns the least upper bound P2; for the other techniques, it
is a consequence of Proposition 3. ut

Proposition 4 is not strong enough to ensure that the final results of upward
iteration sequences using the new widening are uniformly more precise than those
obtained by using the standard widening. For this to hold for any widening that
is an instance of our framework, the standard widening needs to be monotonic
on both its arguments. In fact, as shown in the next proposition, the standard
widening is monotonic on its second argument.

Proposition 5. Let P1,P2,P
′
2 ∈ CPn be such that P1 ⊆ P2 ⊆ P ′

2. Then we
have P1 ∇P2 ⊆ P1 ∇ P ′

2.

Proof. Let P1 = con(C1) = gen(G1) where C1 is in minimal form, P2 = con(C2)
and P ′

2 = con(C′
2). By hypothesis, P2 ⊆ P ′

2 so that P2 = con(C2 ∪ C′
2). Since, by

hypothesis, P1 ⊆ P2 and P1 ⊆ P ′
2, we can apply Proposition 1. Thus we have

P1 ∇P2 = con(C′′
s) and P1 ∇P ′

2 = con(C′
s), where

C′
s =

{

γ ∈ C′
2

∣

∣ ∃β ∈ C1 . sat gen(γ,G1) = sat gen(β,G1)
}

,

C′′
s =

{

γ ∈ C2 ∪ C′
2

∣

∣ ∃β ∈ C1 . sat gen(γ,G1) = sat gen(β,G1)
}

= C′
s ∪

{

γ ∈ C2

∣

∣ ∃β ∈ C1 . sat gen(γ,G1) = sat gen(β,G1)
}

.

Hence C′′
s ⊇ C′

s. Therefore we have the thesis P1 ∇P2 ⊆ P1 ∇ P ′
2. ut

On the other hand, as illustrated in the following example, the standard
widening (and thus also the new widening) is not monotonic on its first argu-
ment [18].

Example 4. Consider the polyhedral domain CP2 and let

P1 = con
(

{1 ≤ x ≤ 2, 0 ≤ y ≤ 2}
)

,

P ′
1 = con

(

{0 ≤ x ≤ 2, 0 ≤ y ≤ 2}
)

,

P2 = con
(

{x ≥ 0}
)

,

so that P1 ⊆ P ′
1 ⊆ P2. By Definition 1 we have

P1 ∇P2 = con(∅) = R2,

P ′
1 ∇P2 = P2.

Thus, we obtain P1 ∇P2 * P ′
1 ∇ P2.

Note that in spite of this lack of monotonicity the experimental evaluation of
the next section shows that precision degradations are very rare in practice.

18

6 Experimental Evaluation

We have extended the Parma Polyhedra Library (PPL) [2, 3], a modern C++

library for the manipulation of convex polyhedra, with a prototype implemen-
tation of the widening of Definition 9. The PPL has been integrated with the
China analyzer [1] for the purpose of detecting linear argument size relations
[4]. Our benchmark suite consists of 361 Prolog programs, ranging from small
synthetic benchmarks to real-world applications. They define 23279 predicates
whose analysis with China requires the direct use of a widening and about as
many predicates for which no widening is used. In this respect, it must be noted
that China employs a sophisticate chaotic iteration strategy proposed in [7, 8]
that, among other benefits, allows to greatly reduce the number of widenings’
applications.4 This is an important point, since it would be quite easy to improve
on an iteration strategy applying widenings “everywhere or improperly” [7]. The
results of this experimental evaluation are summarized in Table 1, where each
row corresponds to a different choice for the value of the extrapolation threshold
k, controlling the delay before the applications of both the standard and the new
widening operators.

Precision Time

programs # predicates std ∇k new ∇̂k

k (delay) improve degr incomp improve degr incomp all top 20 all top 20

0 121 0 2 1340 3 2 1.00 0.72 1.05 0.77

1 34 0 0 273 0 0 1.09 0.79 1.11 0.80

2 29 0 0 222 0 0 1.16 0.83 1.18 0.84

3 28 0 0 160 0 0 1.23 0.88 1.25 0.89

4 25 0 2 126 2 0 1.32 0.95 1.34 0.95

10 25 0 0 124 0 0 1.82 1.23 1.85 1.24

Table 1. Precision and time comparisons.

The part of the table headed ‘Precision’ shows the obtained precision im-
provements and degradations, both in terms of the number of programs and the
number of predicates affected; in the columns labeled ‘incomp’ we report those
cases where incomparable results have been obtained. For k = 0, we observe
a precision improvement on one third of the considered programs; not surpris-
ingly, fewer improvements are obtained for higher values of k, but we still have
an improvement on 7% of the benchmarks when considering k = 10. While con-
firming, as informally argued in [4], that for this particular analysis there is little
incentive in using values of k greater than 4, our experiments show that the new
widening captures growth patterns that do happen in practice and that for the

4
China uses the recursive fixpoint iteration strategy on the weak topological ordering
defined by partitioning of the call graph into strongly-connected subcomponents [8].

19

standard widening (no matter how delayed) are out of reach. This is important
since the results obtained in practice are, besides correctness, what really mat-
ters when evaluating widening operators. The experimentation also shows that
the idea of delaying the widening [12] maintains its validity: even though the new
widening is less sensitive to the amount of delay applied, delaying still improves
some of the results.

The part of the table headed ‘Time’ shows the sum, over all the benchmarks,
of the fixpoint computation times. This is expressed as a proportion of the time
spent when using the standard widening with k = 0. Since smaller benchmarks
may affect the outcome of this summarization, in the columns labeled ‘top 20’
we also show the same values but restricted to the 20 benchmarks whose anal-
ysis takes more time. It can be seen that the new widening has a negative, but
relatively modest impact on efficiency, which anyway is smaller than the cost of
increasing the value of k. When looking at these time results, it should be con-
sidered that we are comparing a prototype implementation of the new widening
with respect to a rather optimized implementation of the standard widening. It
is also important to remark that the good performance degradation observed for
both widenings when increasing the value of k is essentially due to the iteration
strategy employed by China and should not be expected to automatically carry
over to systems using other fixpoint computation techniques.

7 An Improved Delay Technique

The technique of employing an extrapolation threshold k has been traditionally
implemented (and our experimental evaluation makes no exception) in a “simple
way” [17], as a blind delay in the application of the widening. Namely, for each
widening operator ∇̃, the widening operator ∇̃k is formalized as follows, where
each abstract value is a pair recording, in its second component, the iteration in
which it has been computed:

〈x, i〉 ∇̃k 〈y, i + 1〉
def
=

〈x, i + 1〉, if y v x;

〈x t y, i + 1〉, if i < k;

〈x ∇̃ y, i + 1〉, otherwise.

Thus, no matter what abstract value would have been computed by the widening,
the widening is never applied in the first k iteration steps and it is always applied
in all the following iteration steps.

In our opinion, a better approximation strategy can be obtained by interpret-
ing the value k as the maximum number of iterations for which the computation
of the widening can be safely avoided. Thus, an abstract value is a pair carry-
ing a number of “tokens” t, each of them allowing for the replacement of one
widening application by the least upper bound. Aiming at an improvement in
the final result, each widening operator should be left free to choose when to use
the available tokens. For instance, tokens should not be wasted when the widen-
ing is able to compute the least upper bound of its arguments. The following

20

definition of ∇̃T (widening with tokens) formalizes this idea:

〈x, t〉 ∇̃T 〈y, ·〉
def
=

〈x, t〉, if y v x;

〈x ∇̃ y, t〉, if x ∇̃ y = x t y;

〈x t y, t − 1〉, if t > 0;

〈x ∇̃ y, 0〉, otherwise.

The iteration sequence will begin with abstract values of the form 〈x0, k〉, that
is, with k tokens where k is a parameter of the analysis; the number of to-
kens will decrease along the iteration chain and, when there are no tokens left,
the underlying widening operator ∇̃ will always be applied. Notice that, when
instantiating the above construction with our new widening operator ∇̂ (and
assuming the inclusion hypothesis), the conditional guard for the second case of
the definition of ∇̃T becomes P1 ∇̂ P2 = P2, which can be easily implemented
by performing the test P1 y P2.

Also note that more general definitions for ∇̃T are possible: for instance,
when x ∇̃ y 6= x t y and t > 0 (i.e., the widening does not compute the exact
upper bound and there still are tokens available), we may nonetheless choose
to apply the widening operator, provided the corresponding approximation is
good enough. This way, we may preserve the tokens and use them to avoid some
later approximations, which could be much coarser than the current one. Clearly,
such an approach depends on the particular formalization of the notion of “good
enough”, which is, along with the value of k, intrinsically application-dependent.

8 Conclusion

For the domain of convex polyhedra, the convergence of the fixpoint computation
sequence has been typically obtained thanks to the widening operator proposed
by Cousot and Halbwachs. Though remarkably precise, this operator does not
fulfill the requirements of a number of applications in the fields of analysis and
verification that are particularly sensitive to the precision of the deduced numer-
ical information. In this paper, elaborating on an idea proposed in [6], we have
defined a framework for the systematic specification of new widening operators
improving on the precision of the standard widening. The framework allows any
upper bound operator on the domain of convex polyhedra to be transformed
into a proper widening operator, therefore ensuring the termination of the com-
putation. We have instantiated the framework with a selection of extrapolation
operators, some of which embody improvements of heuristics already proposed
in the literature. A first experimental evaluation has yielded promising results.
The experimental work has also suggested that the well-known widening delay
technique can be improved, yet retaining its overall simplicity. Our proposal is
to delay the widening application only when this prevents actual (as opposed
to potential) precision losses. The resulting widening would thus adapt, to some
extent, to the abstract description chain being traversed.

21

Acknowledgments. We would like to thank Frédéric Besson for his useful com-
ments and observations on the ideas sketched in [6]. Thanks also to Fred Mesnard
for the information and discussions about the impact of precision on termination
inference for Prolog programs.

References

1. R. Bagnara. Data-Flow Analysis for Constraint Logic-Based Languages. PhD
thesis, Dipartimento di Informatica, Università di Pisa, Pisa, Italy, March 1997.
Printed as Report TD-1/97.

2. R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. The Parma Polyhedra Library
User’s Manual. Department of Mathematics, University of Parma, Parma, Italy,
release 0.4 edition, July 2002. Available at http://www.cs.unipr.it/ppl/.

3. R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex poly-
hedra and the Parma Polyhedra Library. In M. V. Hermenegildo and G. Puebla,
editors, Static Analysis: Proceedings of the 9th International Symposium, volume
2477 of Lecture Notes in Computer Science, pages 213–229, Madrid, Spain, 2002.
Springer-Verlag, Berlin.

4. F. Benoy and A. King. Inferring argument size relationships with CLP(R). In J. P.
Gallagher, editor, Logic Program Synthesis and Transformation: Proceedings of the
6th International Workshop, volume 1207 of Lecture Notes in Computer Science,
pages 204–223, Stockholm, Sweden, 1997. Springer-Verlag, Berlin.

5. P. M. Benoy. Polyhedral Domains for Abstract Interpretation in Logic Program-
ming. PhD thesis, Computing Laboratory, University of Kent, Canterbury, Kent,
UK, January 2002.

6. F. Besson, T. P. Jensen, and J.-P. Talpin. Polyhedral analysis for synchronous
languages. In A. Cortesi and G. Filé, editors, Static Analysis: Proceedings of the
6th International Symposium, volume 1694 of Lecture Notes in Computer Science,
pages 51–68, Venice, Italy, 1999. Springer-Verlag, Berlin.

7. F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In D. Bjørner,
M. Broy, and I. V. Pottosin, editors, Proceedings of the International Conference on
“Formal Methods in Programming and Their Applications”, volume 735 of Lecture
Notes in Computer Science, pages 128–141, Academgorodok, Novosibirsk, Russia,
1993. Springer-Verlag, Berlin.

8. F. Bourdoncle. Sémantiques des langages impératifs d’ordre supérieur et in-
terprétation abstraite. PRL Research Report 22, DEC Paris Research Laboratory,
1993.

9. T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with
unbounded integer variables: Symbolic representations, approximations, and ex-
perimental results. ACM Transactions on Programming Languages and Systems,
21(4):747–789, 1999.

10. M. A. Colón and H. B. Sipma. Synthesis of linear ranking functions. In T. Margaria
and W. Yi, editors, Proceedings of the 7th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2001), volume
2031 of Lecture Notes in Computer Science, pages 67–81, Genova, Italy, 2001.
Springer-Verlag, Berlin.

11. T. H. Cormen, T. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The
MIT Press, Cambridge, Mass., 1990.

22

12. P. Cousot. Semantic foundations of program analysis. In S. S. Muchnick and N. D.
Jones, editors, Program Flow Analysis: Theory and Applications, chapter 10, pages
303–342. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981.

13. P. Cousot, editor. Static Analysis: 8th International Symposium, SAS 2001, volume
2126 of Lecture Notes in Computer Science, Paris, France, 2001. Springer-Verlag,
Berlin.

14. P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In B. Robinet, editor, Proceedings of the Second International Symposium on Pro-
gramming, pages 106–130. Dunod, Paris, France, 1976.

15. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the Fourth Annual ACM Symposium on Principles of Programming Languages,
pages 238–252, New York, 1977. ACM Press.

16. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511–547, 1992.

17. P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In M. Bruynooghe and
M. Wirsing, editors, Proceedings of the 4th International Symposium on Program-
ming Language Implementation and Logic Programming, volume 631 of Lecture
Notes in Computer Science, pages 269–295, Leuven, Belgium, 1992. Springer-
Verlag, Berlin.

18. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Conference Record of the Fifth Annual ACM Symposium
on Principles of Programming Languages, pages 84–96, Tucson, Arizona, 1978.
ACM Press.

19. G. Delzanno and A. Podelski. Model checking in CLP. In R. Cleaveland, editor,
Tools and Algorithms for Construction and Analysis of Systems, Proceedings of the
5th International Conference, volume 1579 of Lecture Notes in Computer Science,
pages 223–239, Amsterdam, The Netherlands, 1999. Springer-Verlag, Berlin.

20. N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Com-
munications of the ACM, 22(8):465–476, 1979.

21. N. Dor, M. Rodeh, and S. Sagiv. Cleanness checking of string manipulations in C
programs via integer analysis. In Cousot [13], pages 194–212.

22. N. Halbwachs. Détermination Automatique de Relations Linéaires Vérifiées par
les Variables d’un Programme. Thèse de 3ème cycle d’informatique, Université
scientifique et médicale de Grenoble, Grenoble, France, March 1979.

23. N. Halbwachs. Delay analysis in synchronous programs. In C. Courcoubetis, editor,
Computer Aided Verification: Proceedings of the 5th International Conference, vol-
ume 697 of Lecture Notes in Computer Science, pages 333–346, Elounda, Greece,
1993. Springer-Verlag, Berlin.

24. N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems
by means of convex approximations. In B. Le Charlier, editor, Static Analysis:
Proceedings of the 1st International Symposium, volume 864 of Lecture Notes in
Computer Science, pages 223–237, Namur, Belgium, 1994. Springer-Verlag, Berlin.

25. N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design, 11(2):157–185,
1997.

26. T. A. Henzinger and P.-H. Ho. A note on abstract interpretation strategies for
hybrid automata. In P. J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors,
Hybrid Systems II, volume 999 of Lecture Notes in Computer Science, pages 252–
264. Springer-Verlag, Berlin, 1995.

23

27. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid
systems. Software Tools for Technology Transfer, 1(1+2):110–122, 1997.

28. T. A. Henzinger, J. Preussig, and H. Wong-Toi. Some lessons from the hytech

experience. In Proceedings of the 40th Annual Conference on Decision and Control,
pages 2887–2892. IEEE Computer Society Press, 2001.

29. Z. Manna, N. S. Bjørner, A. Browne, M. Colón, B. Finkbeiner, M. Pichora, H. B.
Sipma, and T. E. Uribe. An update on STeP: Deductive-algorithmic verification
of reactive systems. In R. Berghammer and Y. Lakhnech, editors, Tool Support
for System Specification, Development and Verification, Advances in Computing
Sciences. Springer-Verlag, Berlin, 1999.

30. F. Mesnard and U. Neumerkel. Applying static analysis techniques for inferring
termination conditions of logic programs. In Cousot [13], pages 93–110.

31. W. Pugh. A practical algorithm for exact array dependence analysis. Communi-
cations of the ACM, 35(8):102–114, 1992.

24

