
Data-Flow Analysis for Constraint
Logic-Based Languages

Roberto Bagnara

Dipartimento di Informatica
Università di Pisa
Corso Italia, 40

56125 Pisa

Dottorato di Ricerca in Informatica
Pisa – Genova – Udine

VIII ciclo

A Franco

I believe in things that are developed through hard work.
I always like people who have developed long and hard,
especially through introspection and a lot of dedication.

I think what they arrive at is usually a much deeper
and more beautiful thing

than the person who seems to have this ability and fluidity
from the beginning.

— BILL EVANS, from Contemporary Keyboard (1981)

Acknowledgments

Firstly I wish to thank my friend and advisor Giorgio Levi for his encourage-
ment and guidance. Giorgio supported me in all possible ways and helped
me to overcome the difficult periods.

Thanks (for various reasons) to my former colleagues at the Department
of Physics of the University of Bologna: Antonio Bassi, Dante Bollini, Luigi
degli Esposti, Pierluigi Frabetti, Mauro Lolli, Patrizia Nicoli, and Umberto
Placci.

Thanks to all my former colleagues at CERN for their friendship and for
providing an environment where I could learn so much: Tim Berners-Lee,
Andre Bogaerts, Roberto Divià, Philippe Gavillet, Giorgio Heiman, Hans
Müller, Chris Parkman, Antonio Pastore, Yves Perrin, Jørgen Petersen,
Achille Petrilli, Louis Tremblet, Bruce Wessels, and Pietro Zanarini.

Thanks to all my colleagues and friends at the Dipartimento di Infor-
matica of the University of Pisa. In particular, thanks to Bruno Bacci,
Piero Bonatti, Alessio Bragadini, Marco Comini, Simone Contiero, Marco
Danelutto, Pierpaolo Degano, Andrea Dell’Amico, Agostino Dovier, Moreno
Falaschi, Paolo Ferragina, Tito Flagella, Luca Francesconi, Maurizio Gab-
brielli, Roberto Giacobazzi, Francesca Levi, Paolo Mancarella, Andrea Masini,
Dino Pedreschi, Susanna Pelagatti, Corrado Priami, Paola Quaglia, Alessan-
dra Raffaetà, Francesca Rossi, Francesca Scozzari, Laura Semini, Alessandro
Sperduti, Stefano Suin, Franco Turini, Paolo Volpe, and Enea Zaffanella.
Special thanks are due to Enea for being a really nice person and a good
friend of mine, for all the work and the discussions done together, and for
helping me with some technical issues. Thanks to Maria Cristina Scudel-
lari for the work we have done together on the material that is included in
Chapter 7.

Thanks to Kim Marriott for inviting me to visit the Monash University
of Melbourne. The month I have spent there was of great inspiration.

I have been fortunate to meet some exceptionally good teachers: Dino
Pieri, Attilio Forino, Giorgio Levi, Fabrizio Luccio, Marco Vanneschi, and
Simone Martini. To them goes my deep gratitude.

I wish to thank Maurizio Gabbrielli, Roberto Giacobazzi, Patricia M. Hill,
Giorgio Levi, Catiuscia Palamidessi, Francesca Rossi, Vijay Saraswat, and
Enea Zaffanella for reading draft versions of this thesis and for providing

i

many useful comments. I am particularly grateful to the external review-
ers of this thesis, Andrew M. King and William H. Winsborough, for their
care and competence. Andy and Will gave me a lot of useful suggestions.
Thanks also to Tony Cohn and Pat Hill for allowing me to finish the thesis
with relative peace of mind.

Last but most important, I thank my parents for their support and
encouragement. I am especially grateful to my brother Abramo with whom
I have shared these eighteen years of computer science. In particular, the
help he gave me in the development of China is invaluable.

Thanks to Rossana for being with me, for her encouragement, and for
putting up with me during these last months when I was working day and
night on the thesis.

ii

Ringraziamenti1

Devo molto a molte persone, come tutti. Qui desidero ringraziare tutte
quelle persone che, in qualche modo, hanno contribuito a che questa tesi
fosse scritta. Farò questo in modo approssimativamente cronologico.

Innanzitutto voglio ringraziare mio padre, di un’infinità di cose, na-
turalmente, ma in particolare per avermi trasmesso il senso della qualità.
Ringrazio mia madre, per avermi sostenuto nei tanti momenti difficili.

Il mio rapporto con l’informatica è iniziato circa 18 anni fa ed è costellato
di persone che mi hanno aiutato e che ricordo con affetto. Dunque si torna
indietro all’ITIS di Cesena, anno 1979. Grazie a Pierluigi Mengolini che mi
ha introdotto all’uso delle calcolatrici programmabili e al microprocessore
Zilog Z80. Grazie a Roberto Giunchi che mi consent̀ı di costruire il mio
primo microcomputer invece di un televisore in bianco e nero come usava
a quei tempi in quella scuola; grazie a mio padre che finanziò il progetto e
grazie a mio fratello Abramo che partecipò con foga selvaggia.

Fuori dalla scuola, grazie a Franco Dapporto per avermi fatto usare la sua
TI58, per le innumerevoli discussioni sull’informatica, e per le ore passate
a “sbilinare” con un programma per gli scacchi scritto in Fortran. Grazie
a Valeriano Ballardini per tutto quello che mi ha insegnato da quando ci
siamo conosciuti.

Dipartimento di fisica dell’università di Bologna, 1984–1987. Grazie a
Dante Bollini per la libertà con cui mi consent̀ı di svolgere il mio lavoro,
il che mi permise di sperimentare nuove tecniche e di imparare moltissi-
me cose oltre a quelle che mi insegnò lui stesso (ivi incluso il “bootstrap
da pannello” dell’HP1000!). Grazie ai miei colleghi Antonio Bassi, Luigi
degli Esposti, Mauro Lolli, Patrizia Nicoli e Umberto Placci, per tutte le
discussioni istruttive che abbiamo avuto e, soprattutto, per la loro amicizia.
Grazie ad Antonio per il suo entusiasmo e per la sua disponibilità. Sono
particolarmente grato a Mauro per tutto quello che mi ha insegnato, per

1Questa sezione di ringraziamenti è insolitamente (per qualcuno, forse, intollerabilmen-
te) lunga. Ho ritenuto che, dopo tanto lavoro, mi fosse consentito esprimere con una certa
libertà la mia gratitudine alle persone che hanno avuto un influsso, talvolta determinante,
sulla mia “storia informatica” e dunque su questa tesi. Con questa nota desidero rassicu-
rare il lettore interessato ai soli contenuti scientifici sul fatto che egli può ignorare questa
sezione senza alcun pregiudizio per la comprensione del seguito.

iii

tutte le nostre discussioni sulla contraddizione tra qualità e “tempi di con-
segna”, e per non aver mai rinunciato al confronto. Grazie anche a Pierluigi
Frabetti per il suo incoraggiamento.

CERN, laboratorio europeo per la fisica delle particelle, 1985 e 1988–
1989. Grazie a Philippe Gavillet, che nel 1985 mi introdusse al problema
e alle tecniche di diagnosi remota e automatica dei guasti hardware e soft-
ware. Grazie ai miei colleghi Tim Berners-Lee, Andre Bogaerts, Roberto
Divià, Hans Müller, Chris Parkman, Antonio Pastore, Yves Perrin, Jørgen
Petersen, Louis Tremblet e Bruce Wessels per la loro amicizia e per aver
costituito un gruppo di lavoro che per me è stato una vera palestra. Grazie
a Louis, con il quale ho svolto la prima parte del mio lavoro al CERN, per
tutte le ore passate in discussioni interessanti ed istruttive. Grazie a Tim
per tutto quello che mi ha insegnato (protocolli di rete, sistemi di Remote
Procedure Call, compilatori, interfacce utente, eccetera) e per aver involon-
tariamente determinato la svolta che mi ha riportato all’università: come
studente di informatica, questa volta. Sempre al CERN, sebbene al di fuori
del lavoro ufficiale, ho avuto la fortuna di conoscere Giorgio Heiman, Achille
Petrilli e Pietro Zanarini: discutendo con loro ho avuto modo di apprendere
molte cose utili. Pietro, in particolare, mi ha insegnato che buona parte dei
problemi dell’informatica si risolve inventando un linguaggio al giusto livello
di astrazione e scrivendo un compilatore o un interprete per detto linguag-
gio. Prima di arrivare al CERN passai qualche mese studiando il sistema
MoniCa (MONItor CAmac), scritto in linguaggio macchina MC680x0 da
Horst Von Heicken, allora al CERN. Sono enormemente grato a Horst per
tutto quello che ho imparato in questo modo: mi è capitato raramente di
vedere codice di cos̀ı estrema pulizia e chiarezza.

Desidero ringraziare in modo particolare gli insegnanti (e vorrei dire i
maestri, ciascuno a modo suo) che ho avuto la fortuna di incontrare nel mio
cammino. In ordine di apparizione: Dino Pieri, Attilio Forino, Giorgio Levi,
Fabrizio Luccio, Marco Vanneschi e Simone Martini. Essi sono responsa-
bili in parte del grande desiderio che ho di insegnare, il che costituisce il
principale motivo per il quale mi sono imbarcato in questa avventura.

Grazie a tutti gli amici del dipartimento di informatica dell’università di
Pisa. In particolare, grazie (per vari motivi) a Bruno Bacci, Piero Bonat-
ti, Alessio Bragadini, Marco Comini, Simone Contiero, Marco Danelutto,
Pierpaolo Degano, Andrea Dell’Amico, Agostino Dovier, Moreno Falaschi,
Paolo Ferragina, Tito Flagella, Luca Francesconi, Maurizio Gabbrielli, Ro-
berto Giacobazzi, Francesca Levi, Paolo Mancarella, Andrea Masini, Dino
Pedreschi, Susanna Pelagatti, Corrado Priami, Paola Quaglia, Alessandra
Raffaetà, Francesca Rossi, Francesca Scozzari, Laura Semini, Alessandro
Sperduti, Stefano Suin, Franco Turini, e Paolo Volpe. Un ringraziamento
speciale va a Letizia Petrellese per l’ottimo lavoro che svolge al dipartimento,
e soprattutto per quell’attitudine preziosissima che consiste nel farsi carico
dei problemi in prima persona. Grazie anche a Rita Cantini per la cortesia

iv

e per la disponibilità.
Il ringraziamento al mio supervisore, Giorgio Levi, merita un discorso

a parte. Quando iniziai il dottorato di ricerca mi fu profetizzato che sarei
stato oggetto di sfruttamento e soprattutto da parte del mio supervisore,
chiunque fosse stato, per il motivo che cos̀ı è, cos̀ı è sempre stato e cos̀ı
sempre sarà. Al di là della profezia, le voci sullo sfruttamento più o meno
selvaggio dei dottorandi sono una costante della vita universitaria. Ebbene,
al termine di questi quattro anni desidero rendere testimonianza a Giorgio
del fatto che egli non mi ha mai, mai, mai una sola volta sfruttato in alcuna
maniera. Al contrario, egli mi ha sempre supportato, sostenuto ed aiutato
in ogni modo possibile. Non mi ha mai chiesto di fare nulla che non fosse nel
mio interesse ed è sempre stato, prima di tutto, un amico, sia nell’accordo
che nel disaccordo.2

Grazie a Kim Marriott per avermi invitato a passare un mese, che è stato
di grande ispirazione, in visita alla Monash University di Melbourne. Grazie
a Enea Zaffanella per il lavoro e le discussioni fatte insieme, e per l’aiuto
che mi ha dato in varie occasioni. Grazie a Maria Cristina Scudellari per il
lavoro fatto insieme sul materiale qui riportato al capitolo 7. Grazie a tutti
coloro che hanno letto parti di questa tesi per la loro attenzione e i loro
suggerimenti: Maurizio Gabbrielli, Roberto Giacobazzi, Patricia M. Hill,
Giorgio Levi, Catiuscia Palamidessi, Francesca Rossi, Vijay Saraswat ed
Enea Zaffanella. Grazie a Tony Cohn e Pat Hill per avermi consentito di
finire questo lavoro di tesi con tranquillità.

Grazie ai miei revisori esterni, Andrew M. King e William H. Winsbor-
ough, per la cura con cui hanno svolto il loro lavoro e per avermi letteral-
mente sommerso di commenti e consigli utili.

Un grazie particolare a mio fratello Abramo che mi è sempre stato vicino
in questi 18 anni di informatica: con lui e da lui ho imparato tanto. In
particolare, Abramo mi aiutato moltissimo nello sviluppo di China.

Grazie a Rossana per essermi stata vicina, per avermi incoraggiato, e
per aver sopportato, in questi ultimi mesi, i miei assurdi ritmi di lavoro ed
il mio umore altalenante.

Le mie scuse, infine, a tutti coloro che ho trascurato durante la stesura
di questa tesi.

Roberto Bagnara

2Dicendo questo non intendo assolutamente sostenere che lo sfruttamento dei dottoran-
di non esista, ma, semplicemente, che la mia esperienza personale è di segno totalmente
contrario.

v

Suvereto, 26 febbraio 1997

Si sopravvaluta facilmente
l’importanza del proprio dire e fare,

rispetto a ciò che uno è diventato
solo grazie agli altri.

— DIETRICH BONHOEFFER, da Resistenza e Resa: lettere e scritti dal
carcere (1943–1945)

vi

Contents

1 Introduction 1
1.1 The Objective . 1
1.2 The Contents . 9

1.2.1 How It All Started . 9
1.2.2 Plan of the Thesis . 11

1.3 The Approach . 14

2 Preliminaries 17
2.1 Sets . 17
2.2 Some Predefined Sets . 17
2.3 Multisets . 18
2.4 Cartesian Products and Sequences 19
2.5 Binary Relations . 19
2.6 Preorders, Partial and Total Orders 20
2.7 Lattices and Semilattices . 20
2.8 Closure and Kernel Operators 21
2.9 Monoids . 21

3 A Hierarchy of Constraint Systems 23
3.1 Introduction . 24
3.2 A Case Study: CLP . 26

3.2.1 CLP: the Syntax . 26
3.2.2 Non-Standard Semantics for CLP 28
3.2.3 Constraint Systems . 32
3.2.4 Generalized Semantics 37
3.2.5 Dealing with Non-Standard Semantics 40

3.3 Simple Constraint Systems 44
3.3.1 The Atomic Simple Constraint System 46
3.3.2 A Simple Constraint System for Simple Types 46
3.3.3 The Herbrand Simple Constraint System 47
3.3.4 Bounds and Relations Analysis 50

3.4 Determinate Constraint Systems 52
3.4.1 Definiteness Analysis: Con 54

vii

3.4.2 The Pattern Domain 54
3.5 Powerset Constraint Systems 55

3.5.1 A Collecting Semantics for Logic Programs 59
3.5.2 Structural Analysis: More than Pattern 59

3.6 Ask-and-Tell Constraint Systems 60
3.6.1 Merge Operators . 68
3.6.2 More Bounds and Relations Analysis for Numeric Do-

mains . 76
3.6.3 Definiteness Analysis: Def 76
3.6.4 Definiteness Analysis: More than Pos 77

3.7 Combination of Domains . 77
3.7.1 Product Constraint Systems 78
3.7.2 Approximating Built-ins Behavior 82

3.8 Conclusion and Future Work 82

4 Structural Information Analysis 85
4.1 Introduction . 85
4.2 Preliminaries . 89
4.3 Factoring Out Structural Information 91
4.4 Parametric Structural Analysis 94
4.5 Operations for the Analysis 96

4.5.1 Meet with Renaming Apart 97
4.5.2 Unification with Occur-Check 97
4.5.3 Projection . 100
4.5.4 Remapping . 101
4.5.5 Join and Widenings 102
4.5.6 Comparing Descriptions 104

4.6 What if the Occur-Check is Omitted? 105
4.6.1 Unification without Occur-Check 107

4.7 Conclusion . 109

5 Range and Relations Analysis 111
5.1 Introduction . 112
5.2 What Redundant Constraints Are For 115

5.2.1 Domain Reduction . 116
5.2.2 Extracting Determinacy 118
5.2.3 Static Call Graph Simplification 120
5.2.4 Future-Redundant Constraints 123
5.2.5 Improving any Other Analysis 123

5.3 Numbers as Leaves of Terms 125
5.4 A Sequence of Approximations 126
5.5 Approximations for Sets of Reals 129

5.5.1 Intervals . 131
5.6 Approximations for Cardinalities 134

viii

5.6.1 An Example . 134
5.7 Approximations for Numerical Relations 135

5.7.1 Ordering Relationships 136
5.7.2 Bounded Differences 138
5.7.3 Bounded Quotients . 139

5.8 Approximations are Constraints 140
5.9 Implicit Agents . 148

5.9.1 Transitive Closure . 148
5.9.2 Quantity Refinement 149
5.9.3 Numeric Constraint Propagation 150

5.10 Numeric Agents . 150
5.10.1 Cardinality Agents . 151
5.10.2 Constraint Agents . 152
5.10.3 Quantity Arithmetic Agents 154
5.10.4 Linear Refinement Agents 155
5.10.5 Relational Arithmetic Agents 155

5.11 Binding Agents . 156
5.12 Making It Practical . 159

5.12.1 Representing Basic Constraints and Implicit Agents . 160
5.12.2 Widenings . 163

5.13 Conclusion . 164

6 Definiteness Analysis 167
6.1 Introduction . 167
6.2 Boolean Functions for Groundness Analysis 169
6.3 Combination of Domains and Reactivity 170
6.4 Binary Decision Trees and Diagrams 173
6.5 Is x Ground? . 175
6.6 Extracting Sure Groundness from ROBDDs 176
6.7 A New, Hybrid Implementation for Pos 179
6.8 Experimental Evaluation . 184
6.9 Conclusion . 187

7 Precise Detection of Call-Patterns 189
7.1 Introduction . 189
7.2 The Magic-Templates Algorithm 194
7.3 Generalized Semantics . 195

7.3.1 Interpretation Domains 195
7.3.2 Functional Representations 199
7.3.3 Generalized CLP Programs 202
7.3.4 The Functional Semantics 202
7.3.5 Top-Down (Operational) Construction 203
7.3.6 Bottom-Up (Fixpoint) Construction 204

7.4 Abstract Interpretation . 209

ix

7.5 Conclusion . 211
7.6 Proof of the Main Result . 211

8 Conclusion 243

Bibliography 245

x

List of Figures

3.1 A lattice of simple types. 47
3.2 Reduction rules for finite cc agents. 63
3.3 The semantic normal form does not help deciding the entail-

ment. 67

4.1 List-length in CLP(H, N). 86
4.2 The fill_rectangle program. 87
4.3 A fragment of csg.clpr. 88
4.4 Upgrading a domain with structural information. 93
4.5 The rational tree that solves X = f(X,Y). 106

5.1 Sum of the first N naturals in CLP(N). 113
5.2 McCarthy’s 91-function in CLP(N). 117
5.3 Fibonacci’s sequence in CLP(N). 119
5.4 Fragment of WAM-like code for the 3rd clause of fib to be

executed when the 1st argument is not definite. 121
5.5 Standard mortgage relationship in CLP(R). 123
5.6 A bijection (̃ı, ̃) : Im →

{
1, . . . ,m(m− 1)/2

}
. 129

5.7 Hasse diagram of the cardinalities’ lattice. 135
5.8 Hasse diagram of the ordering relationships lattice. 137

6.1 OBDTs for (x ∧ y)↔ z (a) and (x↔ z) ∧ y (b). 173

7.1 Program showing some difficulties with the magic transfor-
mation. 192

7.2 The “magic version” of the program in Figure 7.1. 196
7.3 The “magic version” of the program in Figure 5.2 on page 117.196

xi

xii

List of Tables

5.1 The � operator on cardinalities. 137
5.2 The �2 operator on cardinalities: x� y is at the intersection

between the x-th row and the y-th column. 137
5.3 The � operator on ordering relationships. 138

6.1 Operations defined over Bo and G. 181
6.2 Experimental results obtained with the China analyzer. . . . 185

xiii

xiv

List of Algorithms

1 Unification for the parametric structural domain. 98
2 Revised unification for the structural domain. 108
3 Naive algorithm for transitive closure. 161
4 Naive algorithm for quantity refinement. 162
5 AC-3 algorithm for quantity refinement. 162
6 Algorithm for numeric-constraint-propagation. 163

xv

xvi

Chapter 1

Introduction

Contents

1.1 The Objective . 1
1.2 The Contents . 9

1.2.1 How It All Started 9
1.2.2 Plan of the Thesis 11

1.3 The Approach . 14

1.1 The Objective

This study is aimed at the development of precise, practical, and theoreti-
cally well-founded data-flow analyzers for constraint logic-based languages.
The emphasis on the above words is important for a full understanding of
what follows, since some of the author’s personal views and expectations are
hidden behind them. Thus, in order to make our aims clear from the very
beginning, we should start explaining the exact meaning of each word. This
can be better achieved by treating them in reverse order.

Constraint. Many problems can be conveniently expressed, reasoned about,
and solved by means of constraints. These problems range from temporal,
spatial, and physical reasoning, to image processing, automated diagnosis,
plus all the problems that are typical of the fields of operation research and
mathematical programming. As we will see, an important class of data-flow
analyses for constraint logic-based languages can also be easily understood
in terms of constraint manipulation.

The use of constraints as a description language and of techniques based
on constraints has a long history in the field of Artificial Intelligence. Many
constraint-based applications have been developed in the last 30 years in
order to explore and solve specific problems. These systems, however, were
often ad hoc systems with very little in common among them. Eventually,

1

2 Chapter 1. Introduction

researchers realized that constraints could allow for programming machines
in a novel way: constraint programming.1

Logic-Based Languages. Those programming paradigms that are “based
on logic” are the best suited for constraint programming. Indeed, viewing
basic constraints as atomic formulae in first-order predicate logic is a natu-
ral thing to do. Logic-based languages then provide logical and meta-logical
ways of composing and dealing with constraints.

A significant part of the material contained in the present thesis deals
with constraints and ways of approximating them by means of other con-
straints. Thus, several results are of interest independently from the con-
sidered programming paradigm. Nonetheless we focus our attention on the
“constraint logic programming” paradigm for reasons that will soon be ex-
plained.

Constraint logic programming (CLP) is a generalization of the pure logic
programming paradigm (LP), having very similar model-theoretic, fixpoint
and operational semantics [JL87, JM94]. It embodies a quite natural view
of “constraint computations” expressed by definite clauses. The CLP notion
of constraint solving in a given algebraic structure encompasses the one of
unification over some Herbrand universe. This gives CLP languages a great
advantage over LP in terms of expressivity and flexibility.

We believe that CLP languages have a future, and this is the first rea-
son for our particular interest. They provide elegant and simple linguistic
support for constraint programming. This makes them suitable for a num-
ber of applications. Several CLP languages and systems exist to date, both
in academic and industrial installations. Thus, CLP languages now have a
significant user community. As a consequence we have a rough idea as to
what a constraint logic program looks like: for a project that aims at some
experimental validation of the theoretical ideas, this is an important factor.

Another motivation for studying data-flow analysis of CLP languages is
that such languages can benefit from the analysis’ results more than other
paradigms. Both CLP compilers and programmers can do a much better
job if they are given information about the run-time behavior of programs.

In some cases CLP programs can be naturally more efficient than the
correspondent LP ones, because of the possibility of reasoning directly in the
“domain of discourse” (integer arithmetic, for instance), without requiring
complicated encodings of data objects as first-order terms. However, the
basic operational step in CLP program execution, a test for solvability of
constraints, is generally far more complex than unification. Ideally, a cor-

1An embryonic notion of constraint programming goes back to the Sketchpad system
of Sutherland: an interactive system where complex graphic objects could be specified by
imposing constraints on the various attributes of the objects themselves [Sut63]. One of
the first examples of true constraint programming languages is Constraints, by Sussman
and Steele [SS80].

1.1. The Objective 3

rect implementation of a CLP language needs a complete solver, that is a
full decision procedure for the satisfiability of constraints in the language’s
domain(s).2 The indiscriminate use of such complete solvers in their full
generality can lead to severe inefficiencies. For these reasons, the optimized
compilation of CLP programs can give rise to impressive performance im-
provements, even more impressive than the ones obtainable for the compi-
lation of Prolog.

The CLP paradigm inherits from LP the complete freedom that pro-
grammers have when writing their program. Usually there are no prescrip-
tive declarations (types, for instance) and any program that is syntactically
correct is a legal one. Even though this is a much debated point, absolute
freedom makes CLP languages attractive for the so called fast-prototyping
of applications. The back side of the coin is that there is not much the
compiler can do in order to help programmers and maintainers during the
various phases of the software life-cycle. This clearly poses serious soft-
ware engineering problems and, as a matter of fact, many prototypes do not
evolve into real applications. The good news is that (constraint) logic pro-
gramming, due to its unique semantic features, has a unique potential for
formal program development. This possibility can be turned into a reality
by providing a set of semantics-based tools (i.e., based on program analysis)
for writing, debugging, manipulating, and reasoning about programs.

In summary, data-flow analysis has a great potential for providing valu-
able information to both the compiler and the developer of CLP programs.
It promises to play a fundamental role in the achievement of the last point
in the following wish list for CLP: (1) retaining the declarativity and flexi-
bility of logic programming; (2) augmenting expressivity by allowing direct
programming in the intended computational domain; (3) gaining a competi-
tive advantage, in terms of efficiency, productivity, and maintainability, over
other programming paradigms.

Data-Flow Analyzers. A data-flow analyzer is a computer program: it
takes a program P as its input and, after a reasonable amount of time,
it delivers some partial information about the run-time behavior of P . As
such, a data-flow analyzer is quite different from that which is usually meant
by “a data-flow analysis”: a collection of techniques by which one can, in
principle, derive the desired information about the behavior of programs.
While it is undoubtedly true that a data-flow analyzer implements some
data-flow analyses, the standard connotations of the two terms allow for a
huge gap in the level of detail that one has to provide.

2Strictly speaking, this is not true, as the hypothesis of completeness of the constraint
solver can be relaxed, still obtaining useful systems [JM94, BCSZ96]. However, if the
system does not employ a complete solver the user must be prepared to receive “answer
constraints” that are inconsistent. Thus, a complete solver is required anyway, sooner or
later.

4 Chapter 1. Introduction

Designing a data-flow analysis requires a significant effort. The theory
of abstract interpretation [CC77, CC92b] is a blessing in this respect, as it
provides a variety of frameworks for ensuring the correctness of the analysis,
once you have defined a domain of approximate program properties. The
theory also provides standard ways of composing existing domains, reasoning
about them, and deriving approximate versions of the relevant operations of
the language at hand. However, the theory does not tell you how to invent an
abstract domain that represents a reasonable compromise between precision
and efficiency for the class of programs being analyzed. This is what makes
the design of data-flow analyses potentially hard, depending on the use one
has in mind for them.

If the purpose of the analysis is to write a paper, a number of shortcuts
are possible. Some of them are completely justified by the needs of the
presentation: cluttering the description with unnecessary details is counter-
productive. The author’s definition for “unnecessary detail” is: something
that can be easily filled in by the interested reader without breaking any
result in the paper. Other shortcuts are more questionable. Here is an
incomplete categorization of things that make life easier.

• Pretend that the language to be analyzed is not what it is. Assuming
that, in CLP languages, program variables and constraints are typed
is an example. If one takes CLP(R), for instance, a clause can contain
a variable X and absolutely no indication of whether X is a numerical
variable or not. There is no typing at all, indeed: in some execution
paths X can be a numerical variable whereas in some other paths
X is bound to an uninterpreted functor. The same thing happens
for constraints of the form X = Y and for implicit constraints that
are determined by repeated occurrences of variables in the head of
clauses, like p(X,X): sometimes X = Y denotes arithmetic equality,
sometimes it is an unification constraint.

Pretending that implemented logic-based languages perform unifica-
tion without omitting the occur-check is another notable example of
this kind of sin. In the literature on data-flow analysis this problem
is systematically swept under the carpet, even in papers dealing with
the analysis of Prolog (which, proverbially, omits the occur-check).

• Assume that it can easily be implemented. Excessive use of semantic
notions, for instance, can be the source of difficulties. The reduced
product, for example, is a nice conceptual device that is applicable in
many cases. However, it is defined in terms of the concretization func-
tion. As a consequence, representing and computing some canonical
form of the reduced elements may turn out to be impractical. There
are indeed cases where one must content oneself with an approximation
of the reduced product. Still on this subject, specifying an abstract

1.1. The Objective 5

domain as a space of (upper or lower) closure operators on some com-
plete lattice usually allows for elegant formalizations. It is important
not to forget that a closure operator is a Platonic object: sooner or
later it will have to be represented on the machine, and this can pose
serious problems.

• Disregard efficiency. This is not so bad, in general, as the situation
can be redressed by resorting to widening operators. The problem of
designing widening operators and of determining where and when to
apply them must not be underestimated.

• Compromise precision. The opposite mistake. A worse one, indeed:
too much anxiety about efficiency can lead to the selection of analysis
frameworks that lose too much information from the very beginning.
A state of things that has few chances of being fixed.

• Pretend that the programs to be analyzed are reasonable. For instance,
that no program clause contains more than, say, 64 variables. Or that
programs do not use “nasty constructs” such as assert/1. After all, if
a program turns out to be unreasonable the analysis can answer “don’t
know”: this is always a legitimate thing to do in data-flow analysis.

In the author’s experience, the researcher who engages in the task of
designing a data-flow analysis with reasonable chances of being successfully
implementable must be prepared to have a bad time. The mistakes that
have been outlined above can trap him at any stage. Furthermore, during
the pencil-and-paper development many questions arise naturally, and most
of them cannot be answered. One typical form of such questions is the
following: “am I sure that this is reasonably implementable?” Sometimes
the answer comes later in the actual implementation stage. If the answer is
negative some other solution has to be found. The implementor will have
to conduct his own research, and an analysis distinct from the one proposed
by the designer will have to be implemented.

Another class of questions is: “how much am I going to gain if I do
that, for the average program?” For relatively new programming paradigms
such as CLP the notion of average program makes little sense, which, again,
means that there can be no answer. Thus, the risk of spending much time
refining an analysis so as to make it implementable, and later discovering
that relatively few programs may benefit from the results, is high.

In an attempt to circumvent these difficulties, we started our work with
analyzers, not just analyses, in mind. In other words, our interest is in
“implementable data-flow analyses”, or, stated differently, “data-flow anal-
yses that are actually implemented by analyzers”. There is no free lunch,
of course: experience has shown that dealing with analyzers, while perhaps
saving you from overlooking important aspects of the problem, forebode a

6 Chapter 1. Introduction

plethora of other troubles. This, however, is another story. By the way, the
name of the author’s pet analyzer is China

3. China is a data-flow analyzer
for CLP languages based on the abstract compilation approach. It performs
bottom-up analysis deriving information on both call- and success-patterns
by means of program transformations and optimized fixpoint computation
techniques. It currently supports combined domains for: (parametric) struc-
tural information, simple types, definiteness, aliasing and freeness, numeri-
cal bounds and relations of and among numerical leaves, and polymorphic
types. China consists of about 40,000 lines of C++ code for the abstract
interpreter, and about 5,000 lines of Prolog code for the abstract compiler.

Theoretically Well-Founded. The approach of putting oneself in the
implementor’s shoes, of course, must not be to the detriment of a careful
study of the correctness issues. This requires, besides firm semantic bases,
formal methodologies to ensure the correctness of the analysis. Abstract
interpretation is the framework of choice for this purpose.

It is the author’s impression that too often the importance ascribed to
a result is directly proportional to the strength of its conclusion. The ratio
between the strength of the conclusion and the strength of the premises
should, instead, be considered as the right measure. A weak conclusion that
can be established starting from weak premises can be very valuable. This
is especially the case when one deals with real implementations where, in
order to tackle the various complexity precision trade-offs, one needs as much
freedom as possible. Often this implies that the strong premises cannot be
ensured, while weak conclusions would be enough. Scalable theories are
particularly precious in this respect. The author’s favorite reference for
abstract interpretation is Abstract Interpretation Frameworks, by Cousot
and Cousot [CC92b]. There, the authors start from very weak hypotheses
that only guarantee correctness and finiteness of the analysis. Only later
Galois connections and insertions are introduced in a blaze of glory, with all
their nice properties.

Practical. A “practical analyzer” is one that has a chance to be turned
into a useful tool. On one side this means that compromising assumptions
about the languages and the programs must be avoided as much as possi-
ble. On the other side, potential efficiency must be taken into consideration.
However, striving too much for efficiency should be avoided. In the litera-
ture there are papers reporting on the experimental evaluation of data-flow
analyzers. In some of them one can find analysis’ times well under the sec-
ond for non-trivial, lengthy programs. It is true that some of these papers
have, among their objectives, the praiseworthy one of convincing the reader
of the practicality of data-flow analysis. Nonetheless the author finds these

3
Clp(Herbrand Integrated-with Numeric-domains) Analyzer.

1.1. The Objective 7

results a bit disconcerting. What can one conclude from the fact that a
program of some hundreds lines can be analyzed in a couple of seconds?

Hypothesis 1: That the problem of data-flow analysis for logic programs
has been brilliantly solved once and for all?

Hypothesis 2: That special assumptions have been exploited so that the
results cannot be generalized?

Hypothesis 3: That much more precision is attainable?

The first hypothesis is hardly credible. In the case of Prolog, the effectiveness
of analysis has been demonstrated experimentally by Parma [Tay90] and
Aquarius Prolog [VD92]. Impressive speedups have been reported. And
today’s analyzers are far more precise and efficient than those employed in
Parma and Aquarius Prolog. Despite this fact, to the author’s knowledge no
known Prolog system to date, whether existing or being developed, includes
a global data-flow analysis stage to drive the optimization phase. Is this
an indication that at least somebody does not believe in Hypothesis 1?
Probably yes, and probably he is right.4

Hypothesis 2 has already been discussed. Whenever it applies we are
faced with the research problem of removing any limiting assumption.

The author favors the last hypothesis. A couple of seconds is a ridiculous
time for, say, optimized compilation. If one takes into account that

1. only production versions deserve to be compiled with the optimization
pass turned on, and

2. a production version is compiled once and used thousands, perhaps
millions of times,

then it is clear that analysis times remain totally acceptable even if mul-
tiplied by a factor of 50 or 100.5 Then the research problem is: how can
we make profitable use of the extra-time that users are willing to pay for?

4Since there are serious indications that the logic programming community is not fond
of itself, the answer cannot be: yes, definitely. Some explanations are in order. On the
vast majority of Prolog implementations (here included those who claim to have been
industrialized) the user has to wait for a run-time exception just to know that he has mis-
spelled a (non-dynamic) predicate name. A run-time error (or, if lucky, a mild warning) is
all one can hope for in cases of built-in misuse like p(ArgNo, Term, Arg) :- arg(Argno,

Term, Arg). By the way, normally run-time errors come without any indication about
which clause was executed when the erroneous situation occurred. Sometimes we really
wonder if this does not unveil some masochism on the part of the logic programming
community. The fact that we are Programming in Logic is no excuse for having less tools
at our disposal than those Programming in Assembly !

5Some people may disagree with this assertion. The author’s opinion is motivated
by the following (admittedly subjective) facts: the China system takes 30 minutes to
compile without optimization; with full optimization it takes around 3 hours; China has
been compiled in optimized mode perhaps 10 times during the last year, always overnight;

8 Chapter 1. Introduction

Performing other analyses is one answer, increasing the precision of existing
analyses is another possibility.

Precise. The author does not share the view that only fast analyses with
immediate, consistent payoffs in optimized compilation deserve to be stud-
ied. There are other applications of data-flow analysis, such as semantics-
based programming environments, where one probably needs very precise
information about programs’ behavior in order, say, to assist the program-
mer during the development. Ironically, in this field the efficiency concerns
are much more stringent, if one aims at interactive development tools.

So we should go for more precision. The problem is how to increase
precision yet avoiding the concrete effects of exponential complexity. Con-
sider groundness analysis, for instance. The cruder domains do not pose any
efficiency problem. In contrast, the more refined domains for groundness,
such as Pos, work perfectly until you bump into a program clause with more
than, say, fifty variables. At that time, Pos will blow-up your computer’s
memory. One would like to have a more linear, or stable behavior. The
right solution, as indicated by Cousot and Cousot [CC92c], is not to revert
to the simpler domains. We should use complex domains instead, together
with sophisticated widening/narrowing operators. With this technique we
can try to limit precision losses to those cases where we cannot afford the
complexity implied by the refined domains.

Ideally, it should be possible to endow data-flow analyzers with a knob.
The user could then “rotate the knob” in order to control the complex-
ity/precision ratio of the system. The widening/narrowing approach can
make this possibility a reality. Unfortunately, the design of widening opera-
tors tends somewhat to escape the realm of theoretical analysis, and thus, in
the author’s opinion, it has not be studied enough. Indeed, the development
of successful widening operators requires, perhaps more than other things,
extensive experimentation.

Development. This word is emphasized just to warn the reader that the
above description is about the ideas and aspirations that drove our work,
not about what we have already achieved. There, is where we want to go;
and it is far away from where we are now.

the author would be delighted to have a C++ compiler delivering a 10% speedup on
the execution of China in exchange for 12 hours (the entire night) of compilation time.
Last but not least, software houses can afford machines that are 20 times faster than the
author’s PC. And the duration of the night is the same for them, too!

1.2. The Contents 9

1.2 The Contents

In this thesis you can find an account of the author’s research from March
1993 to October 1996. The work included here is all centered around the
development of the China analyzer. By this we mean:

1. that almost any theoretical study we have undertaken was suggested
by difficulties in the design or implementation of China;

2. that China has been used to experimentally validate, as much as
possible, several ideas that appeared to be nice in theory.

The author believes that the thesis should be of interest to all those in-
volved in data-flow analysis and semantics-based program manipulation of
constraint programming languages. A considerable effort has been made in
making the presentation as readable as possible: the reader must judge to
what extent we succeeded.

1.2.1 How It All Started

Some history is required so as to put the subsequent material into context.
Also, since some chapters in this thesis, or their leading ideas, are based
on papers that have already been published, we take the occasion to report
here the relevant bibliographic sources.

We tackled the problem of data-flow analysis of CLP languages over fi-
nite numeric domains back in 1992. In [Bag92] we proposed an abstract
interpretation deriving spatial approximations of the success set of program
predicates. The concrete interpretation of a constraint, that is, a shape in
k-dimensional space, was abstracted by an enclosing, though not necessarily
minimal, bounding box. Bounding boxes are just rectangular regions with
sides parallel to the axes. Thus, a bounding box is univocally identified by
its projections (i.e., intervals) over the axis associated to the variables. Of
course, bounding boxes are very coarse approximations of general shapes.
Finer spatial approximations exist and are well-known, such as enclosing
convex polyhedra, grid and Z-order approximations [HMO91] and so on.
However, the coarseness of bounding boxes is well repaid by the relative fa-
cility with which they can be derived, manipulated and used to deduce infor-
mation relevant to static analysis. There are several techniques for deriving
bounding boxes from a given set of arithmetic constraints (especially if one
confines attention to linear constraints): variants of Fourier-Motzkin vari-
able elimination [DE73, Pug92], the sup-inf method [Ble74, Sho77, Sho81]
etc. In [Bag92] we considered a variant of the constraint propagation tech-
nique called label inference with interval labels [Dav87]. More precisely we
used the Waltz algorithm [Wal75, Mac77, MF85] applying label refinement,
in which the bounding box corresponding to a set of constraints is gradually
restricted.

10 Chapter 1. Introduction

Later, we turned our attention to the analysis and compilation issues of
languages such as CLP(R). In particular, we studied a notion of future re-
dundant constraint less restrictive than the one introduced by Jørgensen et
al. [JMM91]. An analysis for the detection of implicit numeric constraints,
future redundant ones in particular, was sketched by Giacobazzi, Levi and
the author in [BGL92], and the constraint propagation techniques used, col-
lectively known as constraint inference [Dav87], were presented in [BGL93].
Meanwhile, the development of China’s first prototype was started. The ap-
plications of implicit and redundant constraint analysis were first described
in [Bag94], together with some experimental results obtained with the pro-
totype analyzer.

The formalization of the (concrete and abstract) domains and of the
analysis was unsatisfactory. What characterizes a numeric constraint? A
possible answer is “the set of its solutions”. Some authors have formalized
concrete domains that way [GDL92]. But this does not work in general as,
in order to constructively define an abstraction function you must know the
solutions. Unfortunately this is unfeasible or even impossible, in general:
solving a set of equations of the form (xi − xj)2 + (yi − yj)2 = cij is NP-
hard [Yem79], whereas it is undecidable whether a transcendental expression
is equal to zero [Ric68]. As a final example, solving a set of linear integer
constraints with at most two variables per inequality is NP-complete [Lag85].

For these reasons we chose to define a constraint as “the set of its conse-
quences under some consequence relation”. This is a much more reasonable
definition as it allows to capture both the concrete domains really imple-
mented by CLP systems and the class of approximations we were consider-
ing. We were thus lead to the study of partial information systems [Sco82]
and constraint systems [SRP91]. Another theoretical difficulty was due to
the fact that our numerical domain was a combination of two other do-
mains: one for real intervals and the other for ordinal relationships. The
combination was something different from the reduced product: sometimes
less precise, sometimes more. More importantly, we wanted the combination
to be programmable in order to meet different balances between precision
and efficiency. As a solution we gave the dignity of constraints to a restricted
class of cc agents [SRP91, Sar93]. Some pieces of the theory were missing6

and we became deeply involved in the subject. The results appeared first in
[Bag95a] and refined in [Bag97].

Meanwhile, the development of the second prototype of China was initi-
ated. At some point we faced the problem of analyzing non-linear constraints
for CLP(R). As in CLP(R) non-linears are delayed until they become linear,
the analyzer is not allowed to derive anything from them unless the analysis

6For instance: what is the join of two finite cc agents? Is it representable by means of
a finite cc agents? If not (as it is the case), how can we design suitable approximations of
the join operation?

1.2. The Contents 11

has inferred that they have indeed become linear. Having solved the theo-
retical difficulties about the combination of domains, we implemented the
Pos groundness domain in the standard way, and we combined it with the
numerical component. The interaction could be implemented in different
ways: the numerical component could ask the definiteness component, un-
solicited definiteness information could be sent to the numerical component,
or a mixture of the two. In addition, some groundness information that is
synthesized in the numerical component should be notified to the definite-
ness component. However, no one had studied the problem of efficiently
detecting ground variables in the context of the standard implementation
of Pos. This motivated our interest in groundness analysis, a topic that we
believed was almost closed. The outcome of our studies on the subject was
briefly sketched in [Bag96c] and later presented in [Bag96b].

The China system is still evolving, and has never previously been de-
scribed, although a very short description of the first prototype of China is
given in [Bag94].

Recently, we have been working on the precise detection of call-patterns
by means of program transformation. In a joint work with Maria Cristina
Scudellari (a former student at the University of Pisa) we devised a solution.
However, this has not undergone experimental evaluation yet. It is presented
here for the first time in Chapter 7.

1.2.2 Plan of the Thesis

Chapter 2 introduces some of the necessary mathematical background.
It is mostly intended to define the terminology and notation that will be
used throughout the thesis.

Chapter 3 is motivated by the fact that many interesting analyses for
constraint logic-based languages are aimed at the detection of monotonic
properties, that is to say, properties which are preserved as the computation
progresses. Our basic claim is that most, if not all, of these analyses can be
described within a unified notion of constraint domains. We present a class
of constraint systems which allows for a smooth integration within an appro-
priate framework for the definition of non-standard semantics of constraint
logic-based languages. Such a framework is also presented and motivated.
We then show how such domains can be built, as well as construction tech-
niques which induce a hierarchy of domains with interesting properties. In
particular, we propose a general methodology for domain combination with
asynchronous interaction (i.e., the interaction is not necessarily synchro-
nized with the domains’ operations). Following this methodology, interest-
ing combinations of domains can be expressed with all the semantic elegance
of concurrent constraint programming languages.

12 Chapter 1. Introduction

Chapter 4 presents the rational construction of a generic domain for
structural analysis of CLP languages: Pattern(D]), where the parameter
D] is an abstract domain satisfying certain properties. Our domain builds
on the parameterized domain for the analysis of Prolog programs Pat(<),
which is due to Cortesi et al. [CLV93, CLV94]. However, the formalization
of our CLP abstract domain is independent from specific implementation
techniques: Pat(<) (slightly extended and corrected) is one of the possible
implementations. Reasoning at a higher level of abstraction we are able
to appeal to familiar notions of unification theory. One advantage is that
we can identify an important parameter (a common anti-instance function,
missing in [CLV93]) that gives some control over the precision and compu-
tational cost of the resulting generic structural domain. Moreover, we deal
—apparently for the first time— with the occur-check problem: while, to
our knowledge, all the analysis’ domains that have been proposed in the lit-
erature (Pat(<) included) assume that the analyzed language implements
complete unification, most real languages do omit the occur-check. This
fact has serious implications both in terms of correctness and precision of
the analysis.

Chapter 5 addresses the problem of compile-time detection of implicit
and redundant numeric constraints in CLP programs. We discuss how this
kind of constraints has several important applications in the general field of
semantics based program manipulation, and, specifically, optimized compi-
lation. In particular, we propose a novel optimization based on call-graph
simplification. We then describe a sequence of approximations for charac-
terizing, by means of ranges and relations, the values of the numerical leaves
that appear in Herbrand terms. This, among other things, brings to light the
need of information about how many numerical leaves a term has. For each
approximation needed for the analysis we offer different alternatives that al-
low for dealing with the complexity/precision tradeoff in several ways. The
overall numeric domain (or, better, a family of them) is obtained (among
other things) by means of the product and the ask-and-tell constructions of
Chapter 3. The ask-and-tell constraint system constitutes a very convenient
formalism for expressing both (1) efficient reasoning techniques originating
from the world of artificial intelligence, where approximate deduction holds
the spotlight since the origins; and (2) all the abstract operations needed
for the analysis. In practice, we define a family of concurrent languages that
serve as target-languages in an abstract compilation approach.

Chapter 6 deals with groundness analysis for (constraint) logic programs.
This subject has been widely studied, and interesting domains have been
proposed. Pos (a domain of Boolean functions) has been recognized as
the most suitable domain for capturing the kind of dependencies arising

1.2. The Contents 13

in groundness analysis. Its standard implementation is based on reduced
ordered binary-decision diagrams (ROBDDs), a well-known symbolic repre-
sentation for Boolean functions. Even though several authors have reported
positive experiences using ROBDDs for groundness analysis, in the litera-
ture there is no reference to the problem of the efficient detection of those
variables that are deemed to be ground in the context of a ROBDD. This is
not surprising, since most currently implemented analyzers need to derive
this information only at the end of the analysis and only for presentation
purposes. Things are much different when this information is required dur-
ing the analysis. This need arises when dealing with languages which employ
some sort of delay mechanism, which are typically based on groundness con-
ditions. In these cases, the näıf approaches are too inefficient, since the
abstract interpreter must quickly (and often) decide whether a constraint is
delayed or not. Fast access to ground variables is also necessary when alias-
ing analysis is performed using a domain that does not keep track of ground
dependencies. We introduce and study the problem, proposing two possible
solutions. The second one, besides making possible the quick detection of
ground variables, has also the effect of keeping the ROBDDs as small as
possible, improving the efficiency of groundness analysis in itself.

Chapter 7 presents some recent work about the analysis of call-patterns
for constraint logic programs. In principle, call-patterns can be recon-
structed, to a limited extent, from the success-patterns. This, however,
often implies significant precision losses. As the precision of call-patterns is
very important for many applications, their direct computation is desirable.
Top-down analysis methods are usually advocated for this purpose, since
the standard execution strategy of (constraint) logic programs is top-down.
Alternatively, bottom-up analysis methods based on the Magic Sets or sim-
ilar transformations can be used [Kan93, CDY94, Nil91]. This approach,
however, can result in a loss of precision because the connection between
call- and success-patterns is not preserved. In a recent work, Debray and
Ramakrishnan [DR94] introduced a bottom-up analysis technique for logic
programs based on program transformation. They showed, among other
things, that their bottom-up analysis is at least as precise (on both call and
success-patterns) as any top-down abstract interpretation using the same
abstract domain and abstract operators. The basic idea behind [DR94] is to
employ a variation of the Magic Templates algorithm [Ram88]. Moreover,
the (possibly approximated or abstract) “meaning” of a program clause
(or predicate) is a partial function mapping descriptions of tuples of terms
(the arguments at the moment of the invocation: call-patterns) into sets of
such descriptions (describing the possible arguments at the return point of
that invocation: success-patterns). The solution of [DR94], however, is not
generalizable to the entire class of CLP languages, since they exploit the pe-

14 Chapter 1. Introduction

culiar properties of the Herbrand constraint system, where a tuple of terms
is a strong normal form for constraints. This way, and by duplicating the
arguments, they are able to describe the partial functions which represent
the connection between call and success-patterns in the clauses heads. Of
course, this cannot be done for generic CLP languages. Our aim is thus
to generalize the overall result of [DR94] to the general case of constraint
logic programs: “the abstract interpretation of languages with a top-down
execution strategy need not itself be top-down”.

Chapter 8 draws some final conclusion about what we have done and
learned. More importantly, it traces some lines for further research describ-
ing what remains to be done in order to approach the objectives that have
been delineated in this introduction.

1.3 The Approach

As the reader will have already noticed, our approach is based on a mix-
ture of theory and experimentation. In the field of computer science these
two aspects of research are too often confined in distinct, separate worlds.
About this subject, the “Committee on Academic Careers for Experimental
Computer Scientists” of the U.S.A. National Research Council has words
that deserve a long quotation [NRC94].

[. . .] the crux of the problem is a critical difference in the
way the theoretical and experimental research methodologies ap-
proach research questions. The problem derives from the enor-
mous complexity that is fundamental to computational problems
[. . .] This complexity is confronted in the theoretical and exper-
imental research in different ways, as the following oversimplified
formulation exhibits.

When presented with a computational problem, a theoretician
tries to simplify it to a clean, core question that can be defined
with mathematical rigor and analyzed completely. In the sim-
plification, significant parts of the problem may be removed to
expose the core question, and simplifying assumptions may be
introduced. The goal is to reduce the complexity to a point
where it is analytically tractable. As anyone who has tried it
knows, theoretical analysis can be extremely difficult, even for
apparently straightforward questions.

When presented with a computational problem, an experimen-
talist tries to decompose it into subproblems, so that each can
be solved separately and reassembled for an overall solution. In
the decomposition, careful attention is paid to the partitioning

1.3. The Approach 15

so that clean interfaces with controlled interactions remain. The
goal is to contain the complexity, and limit the number and vari-
ety of mechanisms needed to solve the problem. As anyone who
has tried it knows, experimentation can be extremely difficult to
get right, requiring science, engineering, and occasionally, good
judgment and taste.

The distinction between these two methodologies naturally fos-
ters a point of view that looks with disdain the research of the
other. When experimentalists consider a problem that has been
attacked theoretically and study the related theorems that have
been produced, they may see the work as irrelevant. After all,
the aspects that were abstracted away embodied critical compli-
cating features of the original problem, and these have not been
addressed. The theoretician knows no analysis would have been
possible had they been retained, whereas the experimentalist sees
that “hard parts” of the problem have been left untouched.

Conversely, when theoreticians examine a problem attacked ex-
perimentally and spot subproblems for which they recognize the-
oretical solutions, they may see the work as uninformed and non-
scientific. After all, basic, known results of computing have not
been applied in this artifact, and so the experimentalist is not
doing research, just “hacking.” The experimentalist knows that
it is the other aspects of the system that represent the research
accomplishment, and the fact that it works by using a “wrong”
solution implies that the subproblem could not have been too
significant anyway.

So, as by the blind men encountering an elephant, impressions
are formed about the significance, integrity, and worth of com-
puting research by its practitioners. Although it is natural for
researchers to believe their own methodology is better, no claim
of superiority can be sustained by either. Fundamental advances
in Computer Science & Engineering have been achieved by both
experiment and theory. Recognizing that fact promotes toler-
ance and reduces tensions.

This excerpt does contain a faithful description of the incommunicability
that seems to be so frequent in our field. However, it takes for granted that
there are two kinds of computer science researcher: the theoretician and the
experimentalist.

The author has done five years of “real programming work” in envi-
ronments where the theoreticians were often laughed at (and these envi-
ronments were probably the most illuminated ones among those where real
programming takes place). And during the last four years he has done full-

16 Chapter 1. Introduction

time research work in a milieu where experimentalists “look strange”, so to
speak. These hostile feelings are sometimes justified. There are, indeed, ex-
perimentalists that seem unable to communicate their findings to the other
researchers; some even refuse to do it. On the other hand there are the-
oreticians that like filling the “applications” sections of their papers with
conjectures, even though these speculations are not explicitly presented as
such.

These observations have convinced the author that being a theoretician
and an experimentalist at the same time was something worth a try. The
risk of being mediocre in both these activities is high, of course, but we must
say that we are satisfied with this choice. Having tried, our impression is
that theoretical and experimental work do have synergetic effects. As it has
already been mentioned, most of our theoretical studies were suggested by
practical difficulties. Moreover, the author shamelessly admits that several
deficiencies in his theories have been discovered either at the time of writing
the actual code (do not know what to write: an under-specified theory), or
by observing the results obtained with the implementation (a wrong theory).

If you try to write for the novice
you will communicate with the experts;

otherwise you will communicate with nobody.

— DONALD E. KNUTH, lecturing on Mathematical Writing,
Stanford University (1987)

Chapter 2

Preliminaries

Contents

2.1 Sets . 17
2.2 Some Predefined Sets 17
2.3 Multisets . 18
2.4 Cartesian Products and Sequences 19
2.5 Binary Relations 19
2.6 Preorders, Partial and Total Orders 20
2.7 Lattices and Semilattices 20
2.8 Closure and Kernel Operators 21
2.9 Monoids . 21

In this chapter we introduce the mathematical concepts and notations
that will be used throughout the thesis. The intention is to setup a common
language with the reader, and not to explain these concepts in detail. Thus,
throughout the thesis we will assume familiarity with the basic notions of
lattice theory, semantics of logic programming languages, and abstract in-
terpretation.

2.1 Sets

Let U be a set. The set of all subsets of U will be denoted by ℘(U). The
set of all finite subsets of U will be denoted by ℘f(U). The notation S ⊆f T
stands for S ∈ ℘f(T). For S ⊆ U we will denote the complement U \S by S,
when U is clear from the context. For S, T ⊆ U the notation S] T denotes
disjoint union, emphasizing the fact that S ∩ T = ∅.

2.2 Some Predefined Sets

The sets of all natural, integer, rational, real, and ordinal numbers will
be denoted, respectively, by N, Z, Q, R, and O. The first limit ordinal

17

18 Chapter 2. Preliminaries

equipotent with the set of natural numbers is denoted by ω.

2.3 Multisets

A multiset is a mathematical entity that is like a set except for the fact
that it can contain identical elements a finite number of times [Knu80]. A
multiset can be specified by listing all the occurrences of its elements. In
order to distinguish multisets from sets, special parentheses are used for this
purpose. For instance,

Ha, a, b, c, c, cI

denotes the multiset containing two occurrences of a, one occurrence of b
and three occurrences of c. The fact that, say, a occurs more than once
in Ha, a, b, c, c, cI is denoted by a A Ha, a, b, c, c, cI. The order in which the
occurrences are listed is immaterial; thus, for instance,

Ha, a, a, b, b, c, cI and Hc, a, b, a, c, a, bI

denote the same multiset. However, the multiplicity of occurrences of each
element is relevant, so

Ha, a, b, c, c, cI and Ha, a, a, b, b, c, cI

are two different multisets. The empty multiset is denoted by ∅.
If A and B are multisets, so are A]B and ACB. An element occurring

n times in A and m times in B occurs exactly n + m times in A] B and
exactly min(n,m) times in ACB. It is straightforward to show that:] and
C are commutative and associative;] distributes over C; C is idempotent;
the absorption law A C (A] B) = A is satisfied; ∅ is an identity for],
whereas it is a zero for C.

The set of multisets whose elements are drawn from some set S will be
denoted by ℘+(S). Conversely, given a multiset M , the set of all elements
which occur in M is denoted by ζ(M). Formally, if M ∈ ℘+(S) then

ζ(M) def= {x ∈ S | x AM }.

The set of finite multisets built from the set S is denoted by ℘+

f (S). The
cardinality of a multiset M is the number of its elements’ occurrences and
is denoted by ‖M‖. Thus ∥∥Ha, a, b, c, c, cI∥∥ = 6.

Both ℘+(S) and ℘+

f (S) are partially ordered with respect to the ordering
defined by

A F B
def⇐⇒ A CB = A.

2.4. Cartesian Products and Sequences 19

2.4 Cartesian Products and Sequences

By U? we will denote the set of all finite sequences of elements drawn from
U . The empty sequence is denoted by ε. For x ∈ U?, the length of x will
be denoted by #x, and, for i = 1, . . . , #x, the notation x[i] stands for the
i-th element of x. The concatenation of sequences x1, x2 ∈ U? is denoted by
x1 :: x2.

Let S1, . . . , Sn be sets. We will denote elements of S1 × · · · × Sn by
(e1, . . . , en). The projection mappings πi : S1 × · · · × Sn → Si are defined,
for i = 1, . . . , n, by

πi
(
(e1, . . . , en)

) def= ei.

The liftings πi : ℘(S1 × · · · × Sn)→ ℘(Si) given by

πi(T) def= {πi(t) | t ∈ T }

will also be used.

2.5 Binary Relations

A set R ⊆ S × S, where S is any set, is called a binary relation (or, simply,
relation) over S. Then, for each A ⊆ S, the application of R to A is defined
as

R(A) def=
{
x2 ∈ S

∣∣ ∃x1 ∈ A . (x1, x2) ∈ R
}
.

The inverse of R, denoted R−1, is given by

R−1 def=
{

(x2, x1) ∈ S × S
∣∣ (x1, x2) ∈ R

}
,

whereas the composition of two relations R1, R2 ⊆ S × S is defined much
like function’s composition:

R2 ◦R1
def={
(x1, x3) ∈ S × S

∣∣ ∃x2 ∈ S . (x1, x2) ∈ R1, (x2, x3) ∈ R2

}
.

Finally, the negation (or complement) of a relation R is simply the corre-
sponding set-theoretic notion:

R
def= (S × S) \R.

20 Chapter 2. Preliminaries

2.6 Preorders, Partial and Total Orders

A preorder � over a set P is a binary relation which is reflexive and transi-
tive. For x ∈ P , the downward closure of x, written ↓x, is defined by

↓x def= { y ∈ P | y � x}.

If � is also antisymmetric, then it is called partial order. � is a total order
if, in addition, for each x, y ∈ P , either x � y or y � x. A set P equipped
with a partial (resp. total) order � is said to be partially ordered (resp.,
totally ordered), and sometimes written 〈P,�〉. Partially ordered sets are
also called posets. A subset S of a poset 〈P,�〉 is said to be a chain if it is
totally ordered with respect to �.

Given a poset 〈P,�〉 and S ⊆ P , y ∈ P is an upper bound for S if and
only if x � y for each x ∈ S. An upper bound y for S is the least upper
bound (or lub) of S if and only if for every upper bound y′ for S it is y � y′.
The lub, when it exists, is unique. In this case we write y = lubS. Lower
bounds and greatest lower bounds are defined dually. 〈P,�〉 is said bounded
if it has a minimum and a maximum element.

2.7 Lattices and Semilattices

A poset 〈L,�〉 such that, for each x, y ∈ L, both lub{x, y} and glb{x, y}
exist, is called a lattice. In this case, lub and glb are also called, respectively,
the join and the meet operations of the lattice. A poset where only the glb
operation is well-defined is called a meet-semilattice. A complete lattice is a
lattice 〈L,�〉 such that every subset of L has both a least upper bound and
a greatest lower bound.

An algebra 〈L,∧,∨〉 is also called a lattice if ∧ and ∨ are two binary
operations over L which are commutative, associative, idempotent, and sat-
isfy the following absorption laws, for each x, y ∈ L: x ∧ (x ∨ y) = x and
x∨(x∧y) = x. The two definitions of lattices are equivalent. This can be seen
by setting up the isomorphism given by: x � y def⇐⇒ x∧y = x

def⇐⇒ x∨y = y,
glb{x, y} def= x ∧ y, and lub{x, y} def= x ∨ y.

The notions of meet-semilattice and of bounded lattice are imported into
the algebraic definition in the natural way. For instance, a bounded lattice
[BS81] is an algebra 〈L,∧,∨,⊥,>〉 such that 〈L,∧,∨〉 is a lattice and the
following two annihilation laws are satisfied for each x ∈ L: x ∧⊥ = ⊥ and
x∨> = >. A lattice is said distributive if it satisfies, for each x, y, z ∈ L, the
distributive laws x∧(y∨z) = (x∧y)∨(x∧z) and x∨(y∧z) = (x∨y)∧(x∨z).
It is well-known that, for lattices, the distributive laws are equivalent.

2.8. Closure and Kernel Operators 21

2.8 Closure and Kernel Operators

A monotone and idempotent self-map ρ : P → P over a poset 〈P,�〉 is a
kernel operator (or lower closure operator) if it is reductive, that is to say

∀x ∈ P : ρ(x) � x.

If ρ is extensive, namely

∀x ∈ P : x � ρ(x),

then it is called closure operator (or upper closure operator). The reader
is referred to [GHK+80] for an extensive treatment of kernel and closure
operators.

2.9 Monoids

An algebra 〈M, ·, 1〉 is a monoid if and only if ‘·’ is an associative binary
operator over M , and 1 ∈ M satisfies the identity law : for each x ∈ M ,
x · 1 = 1 · x = x. The monoid 〈M, ·, 1〉 is said commutative or idempotent if
‘·’ is so.

22 Chapter 2. Preliminaries

Chapter 3

A Hierarchy of Constraint
Systems

Contents

3.1 Introduction . 24

3.2 A Case Study: CLP 26

3.2.1 CLP: the Syntax 26

3.2.2 Non-Standard Semantics for CLP 28

3.2.3 Constraint Systems 32

3.2.4 Generalized Semantics 37

3.2.5 Dealing with Non-Standard Semantics 40

3.3 Simple Constraint Systems 44

3.3.1 The Atomic Simple Constraint System 46

3.3.2 A Simple Constraint System for Simple Types . . 46

3.3.3 The Herbrand Simple Constraint System 47

3.3.4 Bounds and Relations Analysis 50

3.4 Determinate Constraint Systems 52

3.4.1 Definiteness Analysis: Con 54

3.4.2 The Pattern Domain 54

3.5 Powerset Constraint Systems 55

3.5.1 A Collecting Semantics for Logic Programs 59

3.5.2 Structural Analysis: More than Pattern 59

3.6 Ask-and-Tell Constraint Systems 60

3.6.1 Merge Operators 68

3.6.2 More Bounds and Relations Analysis for Numeric
Domains . 76

3.6.3 Definiteness Analysis: Def 76

3.6.4 Definiteness Analysis: More than Pos 77

23

24 Chapter 3. A Hierarchy of Constraint Systems

3.7 Combination of Domains 77

3.7.1 Product Constraint Systems 78

3.7.2 Approximating Built-ins Behavior 82

3.8 Conclusion and Future Work 82

3.1 Introduction

Many interesting and useful data-flow analyses for constraint logic-based
languages are aimed at the detection of monotonic properties, that is to say,
properties that are preserved as the computation progresses by accumulating
constraints along one computation path. Such analyses usually determine
the “shape” of the set of solutions of the constraint store at some program
points. Analyses that fall in this category include definiteness (groundness),
structural information, types closed by instantiation, numerical bounds and
relations, symbolic size-relations and so on. The typical examples of non-
monotonic properties are freeness and aliasing. Freeness is anti-monotonic:
as soon as a variable becomes non-free it will remain such in any stronger
constraint store. The aliasing property is subject to a more complex, oscil-
lating evolution: two variables X and Y may not share any other variable
at some point, later they can share a common variable Z, eventually Z be-
comes ground so that X and Y do not share anymore, but suddenly they
start sharing another variable W

A key observation is that monotonic properties can be conveniently ex-
pressed by constraints, which are then accumulated in the analysis process
much in the same way as during the “concrete” executions. Thus, frame-
works of constraint-based languages are, in principle, general enough to
encompass several of their own data-flow analyses. Intuitively, this is done
by replacing the standard constraint domain with one that is suitable for
expressing the desired information. This fundamental aspect was brought to
light, for the case of CLP, by Codognet and Filè [CF92] and elaborated by
Giacobazzi, Debray, and Levi [GDL92, GDL95]. Giacobazzi et al. presented
a generalized algebraic semantics for constraint logic programs, which is pa-
rameterized with respect to an underlying constraint domain. The main
advantages of this approach are that:

1. different instances of CLP can be used to define non-standard seman-
tics for constraint logic programs; and

2. several abstract interpretations of CLP programs can be thus formal-
ized inside the CLP paradigm.

In this setting, data-flow analysis is then performed (or at least justified)
through abstract interpretation [CC79, CC92a], that is, by “mimicking”

3.1. Introduction 25

the program run-time behavior by “executing” it, in a finite way, on an
approximated (abstract) constraint domain.1

By following a generalized semantic approach, the concrete and abstract
semantics are more easily related, being instances (over two different con-
straint systems) of the same generalized semantics, which is entirely para-
metric on a constraint domain. Thus, to ensure correctness, it will be suffi-
cient to exhibit an “abstraction function” α that is a semi-morphism between
the constraint domains [BM83, CC92b].

Starting from [GDL95] a more general notion of constraint domain is
provided. This allows one to adequately describe both the “logical part”
of concrete computations (i.e., answer constraints) and all the monotonic
abstract interpretations known to us. In particular our notion of constraint
system is able to accommodate approximate inference techniques whose im-
portance relies on very practical considerations, such as representing good
compromises between precision and computational efficiency. Some of these
techniques, besides being sketched in the examples of this chapter, will be
explained in Chapter 5. The new notion of constraint domain requires the
introduction of a new generalized semantics framework that is more liberal
than the one of [GDL95].

Moreover, and here comes the main point, we show that our constraint
domains admit interesting constructions. The most important one consists
in upgrading a domain so that it can represent and manipulate dependencies
among constraints. This is done by regarding a restricted class of cc agents
as constraints [Sar93, SRP91]. This construction, among other things, opens
up the possibility of combining domains in a novel and interesting way. By
following this methodology, the asynchronous interaction between domains
can be expressed with all the elegance that derives from the cc framework.

The plan of the chapter is as follows: Section 3.2 explains our gener-
alized semantics for CLP languages, as well as the abstract interpretation
framework we employ. Section 3.3 introduces simple constraint systems:
some important building blocks of the hierarchy. Section 3.4 builds on the
previous one presenting standard ways of representing and composing finite
constraints: determinate constraint systems. In Section 3.5 it is shown how
a constraint system is upgraded to incorporate a weak form of disjunction
(suitable to monotonic properties) by means of powerset constraint systems.
Section 3.6 presents a different kind of upgrade: the one needed in order
to have the notion of dependency built into the constraint system. This
is done considering ask-and-tell constraint systems. Section 3.7 deals with
the interesting problem of combining domains. A technique is shown that
consists in applying the ask-and-tell construction to a product constraint sys-

1Incidentally, here is the reason why we do not like the name ‘static analysis’. The
adjective ‘static’ means “without executing the program”, but we do execute it, though
in a non-standard way, over a non-standard domain.

26 Chapter 3. A Hierarchy of Constraint Systems

tem. We feel that, indeed, this is one of the more important contributions
of this work. Finally, Section 3.8 draws some conclusions and presents some
directions for further study.

3.2 A Case Study: CLP

The constraint domains that are the subject of this work are not bound to a
particular class of constraint logic-based languages. However, for the sake of
clarity and to help the intuition, we will focus on the class of CLP languages
[JL87, JM94], which is more and more influential and captures several exist-
ing, implemented languages. We will present a generalized approach to the
semantics of CLP programs of which abstract interpretation is an important
instance. This is necessary for a full understanding of how the domains of
later sections are employed in data-flow analysis of CLP languages.

3.2.1 CLP: the Syntax

Here we give a precise definition of what we will call a CLP(C) program.
Notice that here we are concerned with syntax only. In general, C (the
language of atomic constraints) is a subset of a first order language L (the
language of constraints). Let us start by defining L itself.

Definition 1 (Language of constraints.) Let V and Λ be two disjoint
denumerable sets of variable symbols. Let us also fix two particular isomor-
phisms between Λ and N, and between V and N. Let Vars def= V ∪ Λ. Let
Ω and ΠC be two finite sets of operation and predicate symbols, respectively,
each symbol being characterized with its arity. Let also Vars, Ω and ΠC

be mutually disjoint. L = L(Vars,Ω,ΠC , . . .) is a language of constraints
if and only if it is any first order language with equality built (by means of
standard constructions, possibly with connectives and quantifiers) over the
given sets of symbols.

(The extra-set of variables Λ allows us to simplify the following treatment.
We will stipulate that the heads of clauses can only contain variable symbols
drawn from Λ.)

Now, a CLP language can impose restrictions on the form of constraints
that may actually appear in programs. However these restrictions must not
destroy too much of the language’s expressivity.

Definition 2 (Atomic constraint.) Given a language of constraints L,
any subset C of L is a language of atomic constraints if and only if

1. it is closed under variable renaming; and

3.2. A Case Study: CLP 27

2. it contains all the equalities ‘X = t’, for each X ∈ Vars and each term
t built over Ω and Vars.

Before introducing the full syntax of CLP programs a few remarks about
notation are in order. We will denote program variables by means of capital
letters (X, Y , . . .). Tuples of distinct variable will be denoted by X̄, Ȳ ,
and so forth. Tuples are always assumed to be of the right cardinality, e.g.,
if p is a predicate symbol of arity n and we write p(X̄), then X̄ is an n-
tuple. Special tuples denoted by ~Λ, denoting initial finite segments of Λ,
will also be used (recall that we have fixed a total ordering on Λ). In the
above hypotheses, by writing p(~Λ) we understand that ~Λ denotes the n-
tuple consisting of the first n variable symbols in Λ. We will also abuse the
notation occasionally by treating a tuple as the set of its components.

We can now introduce the notion of CLP(C) program. Notice that, not
to exclude in advance any real CLP language, we carefully avoid making
any compromising assumption the could preclude the adoption of particular
computation and search rules.

Definition 3 (CLP program.) Let C be a language of atomic constraints
with distinguished variable symbols in Λ. Let ΠP be a finite set of predicate
symbols, disjoint from the symbols used in C. We will denote by AP the set
of atoms over ΠP , that is

AP
def=
{
q(X̄)

∣∣ q ∈ ΠP , X̄ ∈ Vars?
}
.

A CLP(C) program P over ΠP is a finite sequence of rules (or clauses) of
the form

p(~Λ) :− 〈b1, . . . , bk〉, with p ∈ ΠP and k ≥ 0,

where, for 1 ≤ i ≤ k, bi ∈ C ∪ AP and vars(bi) ∩ Λ ⊆ ~Λ. p(~Λ) is called the
head of the rule, whereas 〈b1, . . . , bk〉 is the body.

The syntax of any CLP language can be defined in such a way, by aug-
menting the first order language on which it is based with the set of distin-
guished variable symbols Λ and transforming each program along the lines
of Definition 3 by means of standard techniques. This transformation is al-
ways possible by virtue of Definition 2. This normalization of programs has
the property that predicate symbols are always applied to tuples of distinct
variables. Further, all the heads of the rules defining a program predicate
p/n have the same variables in the same positions. Observe that the body
B of a clause p(~Λ) :− B is a sequence, that is an element of (C ∪ AP)?. As
programs themselves are sequences, the semantic constructions will be free
to take into account the selection and search rules used in real languages. So
far for the syntax, we now examine the (possibly non-standard) semantics
of CLP languages.

28 Chapter 3. A Hierarchy of Constraint Systems

3.2.2 Non-Standard Semantics for CLP

Here we start from very basic facts. We recognize the existence of four
different activities in the execution, and thus in the analysis, of constraint
logic programs:

1. different execution paths are explored;

2. along any path, constraints are accumulated in the so-called constraint
store;

3. the constraint store is recursively subdivided into parts. The activity of
imposing restrictions in the way different parts can interact is usually
called hiding.

4. Pieces of information (parameters) are passed between program rules.

For different (non-standard) semantics, and at different levels of abstraction
the degree of correlation among these activities may vary considerably. For
instance, while in a “standard” semantic execution paths are explored de-
pending on the satisfiability of the accumulated constraints, in the case of
“non-standard” semantic constructions these activities can be somewhat un-
related. Perhaps because the satisfiability check does not make sense in the
non-standard interpretation (think about groundness analysis), or because
it can be safely moved outside the construction process.

The way we define domains of interpretation for CLP languages is clearly
highly dependent on the application we have in mind. Here we give a general
description of what are the characteristics of a quite wide class of domains
that covers many non-standard semantics for CLP. Then we will obtain our
specific class of domains by imposing restrictions on the general scheme.
This is important for a full understanding of the hypotheses that are behind
our approach.

Suppose we are interested in some properties of programs’ terminating
computations. To this minimal requirement corresponds the following class
of interpretation domains.

Definition 4 (Ordered domain.) An ordered domain of interpretation
for a CLP language is a structure:

D̄ def=
〈
D,v,�,⊗,⊕,⊥,1, {∃̄̄∃X̄}X̄∈Vars? , {dX̄Ȳ }X̄,Ȳ ∈Vars?

〉
,

where

• D is a set of (not better specified) properties,

• v ⊆ D ×D and � ⊆ D ×D are relations over D,

• ⊗ : D ×D → D and ⊕ : D ×D → D are binary operators,

3.2. A Case Study: CLP 29

• {∃̄̄∃X̄}X̄∈Vars? is a family of unary operators,

• ⊥, 1, and {dX̄Ȳ }X̄,Ȳ ∈Vars? are distinguished elements of D.

Furthermore

O1. 〈D,⊕,⊥〉 is a monoid;

O2. 〈D,⊗,1〉 is a monoid;

O3. ⊥ is an annihilator for ⊗, i.e., for each D ∈ D, ⊥⊗D = D ⊗⊥ = ⊥;

O4. 〈D,v〉 is a partial order with minimum element ⊥;

O5. 〈D,�〉 is a partial order with maximum element 1.

The ⊕ operator models the merging of information coming from different
execution paths. The monoidal structure ensures that the composition pro-
cess is “insensitive to grouping” and that the empty path (which intuitively
corresponds to ⊥) is ignored. Not requiring more than the monoidal struc-
ture (e.g., commutativity) means that we have not lost already the ability
of taking into account the order in which paths are tried.

The ⊗ operator models the constraint accumulation process. Similar
considerations apply here as in the case of ⊕, with the monoidal unit 1
standing, intuitively, for the empty constraint store: the one containing no
information at all.

The ∃̄̄∃X̄ operators represent the hiding process: any variable X /∈ X̄
appearing in the scope of ∃̄̄∃X̄ is isolated (hidden) from other occurrences of
X outside the scope. The “complement sign” that appears on top of ∃̄̄∃X̄
signifies that we formalize hiding in a dual way with respect to traditional
approaches [SRP91, GDL95]. Notice that the exact interpretation of the
∃̄̄∃X̄ operators remains relatively free. They might stand for projection onto
the “variables of interest” X̄ (this will be our case), or renaming to fresh
variables (e.g., to model what happens in meta-interpreters: any variable not
in X̄ that appears in the scope is given a fresh name), or for very low-level
operations (e.g., creation and disposal of environment-frames in machine-
level traces: one slot for each “local variable”, that is, each X in scope that
is not in X̄).

Similar considerations apply also to the distinguished elements repre-
senting parameter passing. In our present application the so-called diagonal
elements dX̄Ȳ will represent, roughly speaking, the fact that the tuples of
variables X̄ and Ȳ are tightly correlated with respect to the properties of
interest. When dealing with WAM traces, they could represent, for in-
stance, the multiple assignment of the registers X̄ to the argument registers
Ȳ [AK91].

30 Chapter 3. A Hierarchy of Constraint Systems

Thus far we have given a mathematical dress to the ingredients that, in
our intuition, constitute the computations of CLP programs. We now put
ourselves in an abstract interpretation setting.

The non-standard semantics we are interested in will, in general, be
captured by some property transformer ΦP : D → D, where P is the program
at hand. The purpose of the ΦP operator, at an intuitive level, is that of
exploring the (partial) computation paths of P . It will be designed in such
a way that iterated applications of ΦP to the “null path” ⊥ corresponds
to the iterative re-construction of all the computation paths of P . This
exploration process is usually monotonic, in that the “knowledge” about
the possible paths increases between successive iterates. This relationship
between successive iterates is captured (in a program independent way)
by the relation v, which is referred to as the computational order of the
interpretation domain. When this is the case, ΦP is conceived so that any
of its post-fixpoints (with respect to v) is a property taking into account all
the the computational possibilities of P and possibly more.

The relation �, instead, specifies the relative precision of program prop-
erties. D1 � D2 means that “D1 is more precise than D2”. In other words,
every set of computations that enjoys property D1 enjoys also property D2.
In the framework of abstract interpretation, � is referred to as the ap-
proximation ordering of the domain. Notice that the distinction between
approximation ordering and computational ordering is important: one has
to do with the precision of properties, the other holds between successive
iterates of the property transformers. In principle, they could be totally un-
related [CC92b]. (It might be observed that it is not sensible to talk about
a computational ordering of the domain without the explicit reference to a
particular class of properties’ transformers. However, since the domain of
interpretation and the transformers are usually chosen at the same time, we
found it more convenient to present the computational ordering as part of
the domain.)

The objective of the game is now to derive, for any program P , a prop-
erty that holds for all its computation paths. Generally, depending on the
feasibility of the goal and on various other considerations, this will be given
by either the least fixpoint or a post-fixpoint (with respect to v) of ΦP or by
some approximations (with respect to �) of them. Observe that the choice
of a fixpoint presentation for the non-standard semantics is not restrictive
in any way [CC95].

A treatment of abstract interpretation for CLP languages in these very
general terms is well outside the scope of this chapter. Thus we start impos-
ing restrictions on the notion of interpretation domain given in Definition 4
so as to obtain a specialized version that is suitable for our purposes. This
makes clear what is the class of properties that are captured by the hierarchy
of domains that will be presented later.

3.2. A Case Study: CLP 31

First of all, we are neither interested in the order in which computations
are taken, nor in their multiplicities.2 This amounts to

O′1. 〈D,⊕,⊥〉 is a commutative and idempotent monoid.

Since we are interested in characterizing only the (possibly) successful com-
putations, we disregard (finitely) failed computation paths. We thus postu-
late the existence in D of a property characterizing failed computations, the
fact that extending a failed computation yields a failed computation, and
the fact that such computations have to be ignored. More formally,

Os1 . 0 ∈ D,

Os2 . 0 is an annihilator for ⊗,

Os3 . 0 is a unit for ⊕.

Then, we focus on monotonic properties, that is, those that are preserved as
computation progresses. Since computations progress by adding constraints,
this means that

Om. for each D1, D2 ∈ D, D1 ⊗D2 � D1 and D1 ⊗D2 � D2, must hold.

Further, we restrict our interest to logical properties. This means that ⊗ is
interpreted as logical conjunction. Since, by the previous discussion, � is
always interpreted as logical implication, we must have that

O′2. 〈D,⊗,1〉 is a commutative and idempotent monoid.

Ol. for each D1, D2 ∈ D, if D1 � D2 then D1 � D1 ⊗D2.

Finally, since D1 ⊕D2 must hold for all the paths characterized by D1 and
all the ones characterized by D2, we enforce

Op. D1 � D1 ⊕D2 and D2 � D1 ⊕D2, for each D1, D2 ∈ D.

These assumptions bring us to interpretation domains that are much simpler
than those of Definition 4. By Om and Ol we have that D1 � D2 holds if
and only if D1 ⊗D2 = D1. Since ⊥ and 0 are both minimal elements with
respect to the ordering � they must coincide. Also, by Op and the previous
discussion, the computational ordering v must be included in �. In fact, in
the interpretation domains we will present later, they coincide.

Now the question is: how do we represent the properties of interest?
A simple, but far reaching answer was first given in [CF92]: we can rep-
resent properties by means of constraints. This opens up the possibility
of computing non-standard semantics of CLP, and, in particular, abstract

2We refer the reader to [LM95] for an understanding of why and how the ordering can
be taken into account in the interpretation domain.

32 Chapter 3. A Hierarchy of Constraint Systems

interpretations, within the CLP framework. The result of the abstract inter-
pretation of a CLP program P is obtained by “executing” (in a finite way)
another CLP program P ′, strongly related to P , over a non-standard do-
main. Intuitively, this is done by replacing the standard constraint domain
with one suitable for expressing the desired information. This possibility
led to the idea of a generalized semantics for CLP programs, proposed in
[GDL95]. A generalized semantics is parameterized over the (possibly non-
standard) constraint system that constitutes the domain of the computation.
The advantages of this approach are that:

1. different instances of CLP can be used to define non-standard seman-
tics for constraint logic programs;

2. the semantics of these instances are all captured within a unified alge-
braic framework; in particular,

3. many relevant abstract interpretations of CLP programs can be for-
malized inside the CLP paradigm; and

4. it is easier to correlate any two non-standard semantics, when they are
instances of the same parametric construction.

The next section is devoted to the class of ordered domains outlined above.

3.2.3 Constraint Systems

Since we aim at a pervasive treatment, we would like to avoid talking too
much about what a constraint is. However, we cannot overlook some basic
facts on the relationship between constraints and program variables. The
purpose of constraints is, roughly speaking, to restrict the range of values
variables can take. For our present objectives the following definition suf-
fices.

Definition 5 (Constraint.) Let L be any first-order language with vari-
able symbols in Vars. The class of constraints over L is inductively defined
as follows:

1. a well-formed formula of L is a constraint over L;

2. any set of constraints over L is a constraint over L;

3. any (meta-level) predicate µ/n applied to n constraints over L is a
constraint over L;

4. nothing is a constraint over L if not by virtue of points 1, 2, or 3.

3.2. A Case Study: CLP 33

For a constraint C, it is natural to ask which variables it talks about.
We denote this set of variables by FV (C). Notice that FV stands for free
variables: this is because there are domains where properties admit bounded
occurrences of variables (see Section 3.3.3 on page 47 for an example). An-
other natural thing is the following: having a constraint C which describes a
tuple of variables X̄, we would like to say that this same description applies
to a different tuple of variables, Ȳ . We thus introduce the notion of renam-
ing and the notation C[Ȳ /X̄]. More formally, on the relationship between
constraints and variables, we can reason inductively as follows.

Definition 6 (All variables, free variables, and renamings.) With
reference to Definition 5, if c is a constraint by virtue of point 1 then the
notions of variables of c and of free variables of c are assumed as primi-
tive. These sets of variables are denoted, respectively, by vars(c) and FV (c).
An invertible mapping from and to variable symbols that is the identity al-
most everywhere is called renaming. We will use the notation [Ȳ /X̄] for
renamings, where Ȳ and X̄ are disjoint tuples of distinct variables. The
renaming [Y/X] has no effect on c if X /∈ FV (c), whereas variables’ capture
is avoided by consistent renaming of bound variables. Besides that, for each
well-formed formula of L, the constraint c[Ȳ /X̄] is assumed as defined.

If C is a constraint because of point 2 then3

vars(C) def=
⋃
c∈C

vars(c) (3.1)

and

FV (C) def=
{
X ∈ Vars

∣∣ ∃c ∈ C . ∃Y ∈ Vars . c[Y/X] /∈ C
}
. (3.2)

Notice that the definition of FV (C) implicitly depends on FV (c) for c ∈ C.
In fact, if X /∈ FV (c) then c[Y/X] = c and the condition c[Y/X] /∈ C is not
satisfied in (3.2) for that particular choice of c and Y . With the definitions
given by (3.1) and (3.2) the notion of renaming for C is extended in the
expected way. The application of a renaming to C is defined element-wise.

If µ(C1, . . . , Cn) is a constraint by virtue of point 3 then the above no-
tions are extended as they would be in any first-order language, namely, by
treating µ as one of the usual logical connectives.

Renamings will always applied carefully so that, when we write C[Ȳ /X̄],
it is ensured that FV (C) ∩ Ȳ = ∅. We will emphasize this fact by saying
that [Ȳ /X̄] is a renaming for C.

All the members of our hierarchy of domains will turn out to be constraint
systems in the precise sense stated by the following definition.

3This definition of FV is an adaptation of the one of dependent variables given by
Saraswat [Sar92, Definition 2.3].

34 Chapter 3. A Hierarchy of Constraint Systems

Definition 7 (Constraint system.) Any algebra D̄ of the form〈
D,⊗,⊕,0,1, {∃̄̄∃X̄}X̄∈Vars? , {dX̄Ȳ }X̄,Ȳ ∈Vars?

〉
is a constraint system if and only if it satisfies the following conditions:

G0. D is a set of constraints;

G1. 〈D,⊗,1〉 is a commutative and idempotent monoid;

G2. 〈D,⊕,0〉 is a commutative and idempotent monoid;

G3. 0 is an annihilator for ⊗, i.e., for each C ∈ D, C ⊗ 0 = 0;

G4. for each C1, C2 ∈ D, the absorption law C1 ⊗ (C1 ⊕ C2) = C1 holds;

G5. for each X̄ ∈ Vars? and C ∈ D we have FV
(
∃̄̄∃X̄ C

)
⊆ X̄.

A constraint system induces the relation ` ⊆ D×D given, for each C1, C2 ∈
D, by

C1 ` C2
def⇐⇒ C1 ⊗ C2 = C1. (3.3)

The relation ` is referred to as the approximation ordering of the constraint
system. The notation C1 C2 is a convenient shorthand for (C1 ` C2) ∧
(C1 6= C2).

In what follows we will feel free to drop the quantifiers from the notation of
the families of projection operators and diagonal elements.

Condition G4 can be restated as

C1 ` C1 ⊕ C2 and C2 ` C1 ⊕ C2.

In this form it clearly stands for the correctness of the merge operation,
characterizing it as a (not necessarily least) upper bound operator with
respect to the approximation ordering.

Hypothesis 8 Constraint systems must satisfy some other (very technical)
conditions related to how they deal with variables. For instance, they do not
invent new free variables:

FV (C1 ⊗ C2) ⊆ FV (C1) ∪ FV (C2),

and similarly for the merge operator. The operators are also generic in
that they are insensible to variable names. This implies that, if [Ȳ /X̄] is a
renaming for both C1 and C2, then

(C1 ⊗ C2)[Ȳ /X̄] = C1[Ȳ /X̄]⊗ C2[Ȳ /X̄].

In particular, if we have also C1 ` C2, then C1[Ȳ /X̄] ` C2[Ȳ /X̄]. All these
overwhelmingly reasonable requirements will be taken for granted.

3.2. A Case Study: CLP 35

Constraint systems enjoy several properties.

Proposition 9 (Properties of c.s.) Any constraint system satisfies the
following properties, for each C,C1, C2 ∈ D:

1. 〈D,`,⊗,0,1〉 is a bounded meet-semilattice;

2. C ⊕ 1 = 1;

3. C1 ` C1 ⊕ (C1 ⊗ C2);

4. C1 ⊕ C2 = C2 =⇒ C1 ` C2.

Proof

1. First of all, axiom G1 implies that ` is a partial order. Reflexivity,
transitivity, and antisymmetry of ` come, respectively, from idempo-
tency, associativity, and commutativity of ⊗. The ordering definition
(3.3) ensures that ⊗ is the greatest lower bound operator with respect
to `. G3 and G1 imply that 0 and 1 are the minimum and maximum
elements with respect to `.

2. Notice that, for each C ∈ D, 1 ⊗ (1 ⊕ C) = 1 is an instance of G4,
which, by G1 becomes 1⊕ C = 1.

3. By G4 we have C1 ⊗
(
C1 ⊕ (C1 ⊗ C2)

)
= C1, whence the thesis.

4. Suppose C1 ⊕ C2 = C2. Then G4 implies

C1 ⊗ C2 = C1 ⊗ (C1 ⊕ C2) = C1,

thus C1 ` C2. 2

Observe that 〈D,⊗,⊕,0,1〉, in general, is not a lattice. Both ⊗ and ⊕
are associative, commutative, and idempotent, but, as stated above, while
one of the absorption laws holds (axiom G4 of Definition 7), only one direc-
tion of the dual law is generally valid (property (3) of Proposition 9). In
particular, ⊕ might be not component-wise monotone with respect to `: for
each C1, C2 ∈ D, from the obvious relations C1 ⊗ C2 ` C2 and C2 ` C2 we
would get (C1 ⊗C2)⊕C2 ` C2. Observe also that ⊕ does not distribute, in
general, over ⊗, as this would imply the equivalence of the two absorption
laws. It must be stressed that this flexibility of the ⊕ operator is necessary
in order to obtain a framework that is general enough to capture several
existing analysis domains.

So far for generic constraint systems, we consider now some strengthen-
ings of Definition 7.

36 Chapter 3. A Hierarchy of Constraint Systems

Definition 10 (Closed c.s.) A constraint system is said to be closed if
and only if

Gc. for each family {Ci ∈ D}i∈N, the element⊕
i∈N

Ci
def= C1 ⊕ C2 ⊕ · · ·

exists and is unique in D; moreover, associativity, commutativity, and
idempotence of ⊕ apply to denumerable as well as to finite families of
operands.

So, the operation of merging together the information coming from all the
computation paths always makes sense in a closed constraint system. Notice
however that property Gc is only necessary when the semantic construction
requires it. This will never happen when considering “abstract semantic
constructions” formalizing data-flow analyses (which are finite in nature).
In these cases the idea of merging infinitely many pieces of information is
nonsense in itself. Closedness will instead be required for the constraint
systems intended to capture “concrete” program semantics.

Another optional property of constraint systems that we will mention is
distributivity.

Definition 11 (Distributive c.s.) Consider the following conditions:

Gd. 〈D,⊗,⊕,0,1〉 is a distributive lattice;

GD. for each C ∈ D and each family {Ci ∈ D}i∈N such that the element⊕
i∈NCi exists,

C ⊗
(⊕
i∈N

Ci

)
=
⊕
i∈N

(C ⊗ Ci).

A constraint system is said to be distributive if it satisfies Gd. If it satisfies
the stronger condition GD then it is called completely distributive.

Distributivity is useful for proving the equivalence of different abstract se-
mantics constructions used for data-flow analysis. Complete distributivity
is required for proving that a concrete semantics corresponds to the opera-
tional model of the language [GDL95]. Observe that closed and completely
distributive constraint systems are instances of the closed semi-rings used
in [GDL95].

Definition 12 (Noetherian c.s.) A constraint system is called Noethe-
rian if it satisfies the ascending chain condition:

GN . in D every strictly ascending chain, C0 C1 C2 · · · , is finite.

3.2. A Case Study: CLP 37

For the abstract semantics constructions we will make use of another
class of operators over constraints. These operators were introduced in
[CC77] and called widenings.

Definition 13 (Widening.) [CC77] Given a constraint system D̄, a bi-
nary operator ∇ : D → D is called a widening for D̄ if

W1. for each C1, C2 ∈ D we have C1 ` C1 ∇ C2 and C2 ` C1 ∇ C2;

W2. for each increasing chain C0 ` C1 ` C2 ` · · · , the sequence given by
C ′0

def= C0 and, for n ≥ 1, C ′n
def= C ′n−1 ∇ Cn, is stationary after some

k ∈ N.

Widenings allow to define convergence acceleration methods that ensure ter-
mination of the “abstract interpreter”. However, even when termination
is granted anyway (e.g., when the constraint system is Noetherian), these
methods are often crucial for achieving rapid termination, that is, for obtain-
ing usable data-flow analyzers. More sophisticated methods for convergence
acceleration exist. They employ also narrowing operators and families of
widening operators (see [CC92c, CC92b]).

3.2.4 Generalized Semantics

In a generalized semantics setting, the first thing to do is to provide atomic
constraints with an interpretation on the chosen constraint system. Suppose
that we are interested in deriving information about just two kind of program
points: clause’s entries and clause’s successful exits. In a data-flow analysis
setting (where this is often the case) that is to say that we want to derive
call-patterns and success-patterns. In other words, for each clause we want
to derive properties of the constraint store that are valid

• whenever the clause is invoked (call-patterns), or

• whenever a computation starting with the invocation of the clause
terminates with success (success-patterns).

Observe that call-patterns depend on the ordering of atoms in the body of
clauses and on the selection rule employed. By means of program trans-
formations similar to the magic one [CD93, DR94] we can obtain the call-
patterns of the original program (with respect to the selection rule employed)
as success-patterns of the transformed one. These transformations, in fact,
besides modifying the clauses of the original program, introduce new clauses
that characterize the conditions under which the original clauses are invoked.
In the transformed program the ordering of atoms in the clause’s bodies is
no longer important. Notice that the technique proposed by Debray and
Ramakrishnan [DR94], while restricted to logic programs, is more sophisti-
cated than usual transformation approaches, and preserves the connection

38 Chapter 3. A Hierarchy of Constraint Systems

between call and success patterns. Our generalization of the work of Debray
and Ramakrishnan, which is general enough to accommodate the entire CLP
framework, will be presented in Chapter 7.

For these reasons we will consider only one kind of program points:
clause’s exits. Furthermore, in our domains the operation capturing con-
straint composition is associative, commutative, and idempotent. This means
that we can assume without prejudice that all the clauses are of the form

p(~Λ) :− {c1, . . . , cn} � {b1, . . . , bk},

where {c1, . . . , cn} is a set of atomic constraints, and {b1, . . . , bk} is a set
of atoms. All the other restrictions imposed by Definition 3 must continue
to hold. We now must associate a meaning to the finite sets of atomic
constraints that occur in clauses.

Definition 14 (Constraint interpretation.) Given a language C of atomic
constraints and a domain of interpretation D̄, any computable function
[[·]]D̄

C
: ℘f(C)→ D is a constraint interpretation of C in D̄.

Then usually one considers, instead of the syntactic program P , its semantic
version over the domain D̄, obtained by interpreting the atomic constraints
of clauses through [[·]]D̄

C
. Recall that we denote by P [r] the r-th clause of P .

for r = 1, . . . , #P .

Definition 15 (Generalized program.) When D̄ is a constraint system,
a CLP(D̄) program is a sequence of Horn-like formulas of the form

p(~Λ) :− C � {b1, . . . , bk},

where C ∈ D̄ is finitely representable. Given a CLP(C) program P and a
constraint interpretation [[·]]D̄

C
, the CLP(D̄) program [[P]]D̄

C
is given, for each

r = 1, . . . , #P , by

[[P]]D̄
C

[r] ≡ p(~Λ) :− [[C]]D̄
C
� B

def⇐⇒ P [r] ≡ p(~Λ) :− C � B.

An interpretation for a program P over a constraint system D̄ is a func-
tion from its program points (one for each clause) to D. Notice that we
deviate from standard approaches in that our interpretations associate a
meaning to each distinct program rule, and not to each distinct program
predicate.

Definition 16 (Interpretation.) Let D̄ be a constraint system, and P a
CLP(D̄) program. An interpretation for P over D̄ is any element of

ID̄P
def= {1, . . . ,#P} → D.

All the operations and relations over D̄ are extended pointwise to ID̄P . In
particular ID̄P is partially ordered by the lifting of `, i.e., for each I1, I2 ∈ ID̄P ,

I1 ` I2
def⇐⇒ ∀r ∈ {1, . . . ,#P} : I1(r) ` I2(r).

3.2. A Case Study: CLP 39

Interpretations will be represented by means of function graphs. It is straight-
forward to show that all the interesting properties of constraint systems lift
smoothly to interpretations.

We are left with the choice of the semantics construction, that is, of
the “interpretation transformer”. For the purpose of this work we choose a
bottom-up construction expressed by a variant of the usual immediate con-
sequence operator TP , taking an interpretation and returning a new inter-
pretation. More specifically, this transformer takes the information arising
from a set of computation paths and gives back the information relative to
those computation paths that can be obtained by composing in all possible
ways, as specified by the program P , the computation paths characterized
by the input.

Recall that our set of program variables is Vars = Λ ∪ V , where Λ and
V are totally ordered. For ~Λ ∈ Λ? and W ⊆f Vars, we denote by Ȳ �~Λ W
the fact that, with respect to the ordering of V , Ȳ is a tuple of distinct
consecutive variables in V such that # Ȳ = # ~Λ and the first element of Ȳ
immediately follows the greatest variable in W .

Definition 17 (Interpretation transformer.) Let D̄ be a constraint sys-
tem and P be a CLP(D̄) program. The operator induced by P over ID̄P ,
T D̄P : ID̄P → ID̄P , is

T D̄P (I) def=
{(
r, T D̄P (r, I)

) ∣∣∣ 1 ≤ r ≤ #P
}
,

where T D̄P : {1, . . . ,#P} × ID̄P → D is given by

T D̄P (r, I) def=
⊕

∃̄̄∃~Λ C̃

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P [r] ≡ p(~Λ) :− C
�
{
p1(X̄1), . . . , pn(X̄n)

}
for each i = 1, . . . , n:
P [ri] ≡ pi(~Λi) :− Ci � Bri
Ȳi �~Λi

FV
(
P [r]

)
∪
⋃i−1
k=1 Ȳk

C̃i = I(ri)[Ȳi/~Λi]
C ′i = dX̄iȲi ⊗ C̃i

C̃ = C ⊗ C ′1 ⊗ · · · ⊗ C ′n

.

Notice that, in this construction, the merge operator is applied only to finite
sets of operands. In summary, once we have fixed the constraint domain D̄
and the interpretation of atomic constraints [[·]]D̄

C
, the meaning of a CLP(C)

program P over D̄ is encoded into the T D̄P operator. Before rushing to require
that T D̄P must be continuous on the complete lattice D̄ we better have a closer
look to our real needs.

40 Chapter 3. A Hierarchy of Constraint Systems

3.2.5 Dealing with Non-Standard Semantics

Given our current focus on data-flow analysis of CLP programs, we consider
only the typical case in this field. On one hand we have a “concrete” con-
straint system D̄\: it must capture the properties of interest, it must ensure
the existence of the least fixpoint of T D̄\

P\
, that is, of the meaning of each pro-

gram P . And, of course, this meaning must correspond to the one obtained
by means of the top-down construction representing the operational model
of the language (namely, some kind of extended SLD-resolution). This last
requirement implies, as shown in [GDL95], that D̄\ must be closed and com-
pletely distributive, hence a complete lattice.

On the other hand, in data-flow analysis we have an “abstract” con-
straint system D̄]. Here we are much less demanding: we simply want to
compute in a finite way an approximation of a post-fixpoint of T D̄]

P]
(the

least fixpoint might not even exist, or it might be too expensive to com-
pute). And, of course, we need a guarantee that what we compute is a
correct approximation of the concrete meaning. Finite computability can
be ensured, in general, by using a widening operator.

Thus, in this setting, the concrete and abstract iteration sequences defin-
ing, respectively, the concrete meaning and approximations of the abstract
meaning of programs are quite different.

Definition 18 (Concrete and abstract iteration sequences.) Con-
sider a closed and completely distributive constraint system D̄\, and a CLP(D̄\)
program P \. The concrete iteration sequence for P \ is inductively defined
as follows, for all ordinals κ ∈ O:

T D̄
\

P\
↑ 0 def= 0\,

T D̄
\

P\
↑ (κ+ 1) def= T D̄

\

P\

(
T D̄

\

P\
↑ κ
)
,

T D̄
\

P\
↑ κ def=

⊕\
β<κ

(
T D̄

\

P\
↑ β
)
,

when κ > 0 is a limit ordinal.

(3.4)

Let D̄] be any constraint system, and let ∇] be a widening operator over
D̄]. For a CLP(D̄]) program P], the abstract iteration sequence for P] with
widening ∇] is inductively defined, for k ∈ N, by the recurrence{

T D̄
]

P]
⇑ 0 def= 0],

T D̄
]

P]
⇑ (k + 1) def=

(
T D̄

]

P]
⇑ k
)
∇] T D̄]

P]

(
T D̄

]

P]
⇑ k
)
.

(3.5)

Observe that, when D̄] is Noetherian or when termination can be ensured in
other ways, π2 (the second projection) can be substituted for ∇] in (3.5). In
these cases, indeed, the restriction of π2 to the iterates’ values is a widening
operator. In other words, for Noetherian domains, the iteration sequence
(eq:concrete-iteration) converges in a finite number of steps and thus can

3.2. A Case Study: CLP 41

be used for data-flow analysis (despite the fact that it has been termed as
“concrete”).

The proof of following result is standard [GDL95].

Theorem 19 If D̄\ is a closed and completely distributive constraint system
then, for each CLP(D̄\) program P \ the least fixpoint of T D̄\

P\
exists and is

given by lfp(T D̄\
P\

) = T D̄
\

P\
↑ ω.

This theorem is generalizable to the case where T D̄
\

P\
, which is naturally

partitioned into a sequence of operators (one for each clause), is evaluated
component by component à la Gauss-Seidel: at step n+1 the approximation
for one clause is updated by evaluating the corresponding component of T D̄\

P\

over the current approximations at step n. In the field of numerical analysis
very strong hypotheses are required for ensuring the convergence of Gauss-
Seidel iteration methods [Bag95b]. Here, instead, the continuity of T D̄\

P\

ensures that each chaotic iteration strategy (i.e., such that no component is
forgotten indefinitely) based on (3.4) converges to the least fixpoint [Cou78,
CC92a].

We now come to the problem of ensuring the correctness of the analysis.
We use an abstraction correspondence between the concrete and the abstract
constraint systems, which induces an abstraction correspondence between
the respective semantics [BM83, CC92b].

Definition 20 (Abstraction function.) Let D̄\ and D̄] be two constraint
systems as in Definition 18. A function α : D\ → D] is an abstraction
function of D̄\ into D̄] if and only if

A1. α is a semi-morphism, namely, for each C\, C\1, C
\
2 ∈ D\ and X̄, Ȳ ∈

Vars?:

α(C\1 ⊗
\ C\2) `] α(C\1)⊗] α(C\2),

α(C\1 ⊕
\ C\2) `] α(C\1)⊕] α(C\2),

α(0\) `] 0],

α
(
∃̄̄∃\X̄ C

\
)
`] ∃̄̄∃]X̄ α(C\),

α
(
d\
X̄Ȳ

)
`] d]

X̄Ȳ
;

A2. for each increasing chain {C\j ∈ D\}j∈N and each C] ∈ D],

∀j ∈ N : α(C\j) `
] C] =⇒ α

(⊕\

j∈N
C\j

)
`] C];

A3. for each C\ ∈ D\ and each renaming [Ȳ /X̄] for C\, it happens that

α(C\)[Ȳ /X̄] = α
(
C\[Ȳ /X̄]

)
.

42 Chapter 3. A Hierarchy of Constraint Systems

Any abstraction function α : D\ → D] is extended pointwise to α : ID̄\
P\
→

ID̄]
P]

, when #P \ = #P].

As anticipated above, one of the beautiful things of the generalized ap-
proach is that the abstract meaning of each CLP program can be encoded
into another CLP programs. We have thus an abstract compilation ap-
proach, where the soundness of the compilation function [[·]]D̄

]

C
is expressed,

for CLP(C) programs, by the requirement α ◦ [[·]]D̄
\

C
`] [[·]]D̄

]

C
. Here we lift

`] to functions with the meaning that `] applies pointwise throughout the
function domain.

The following result is crucial for proving the correctness of the method-
ology.

Lemma 21 Consider a CLP(C) program P , two constraint systems D̄\ and
D̄], the constraint interpretations [[·]]D̄

\

C
and [[·]]D̄

]

C
, the abstraction function

α : D\ → D] such that α ◦ [[·]]D̄
\

C
`] [[·]]D̄

]

C
, the concrete program P \ = [[P]]D̄

\

C
,

and the abstract program P] = [[P]]D̄
]

C
. Then

∀I\ ∈ ID̄\
P\

: ∀I] ∈ ID̄]
P]

: α(I\) `] I] =⇒ α
(
T D̄

\

P\
(I\)

)
`] T D̄]

P]
(I]).

Proof It is enough to show that, for each r = 1, . . . , #P we have

∀I\ ∈ ID̄\
P\

: ∀I] ∈ ID̄]
P]

:

α(I\) `] I] =⇒ α
(
T D̄

\

P\
(r, I\)

)
`] T D̄]

P]
(r, I]).

Suppose that I\ and I] satisfy the hypothesis, i.e., for each clause r′ such
that 1 ≤ r′ ≤ #P we have

α(I\(r′)) `] I](r′). (3.6)

Then, for

P \[r] ≡ p(~Λ) :− C\ �
{
p1(X̄1), . . . , pn(X̄n)

}
,

we have

T D̄
\

P\

(
r, I\

)
=
⊕\

j∈J
Ĉ\j

and

T D̄
]

P]

(
r, I]

)
=
⊕]

j∈J
Ĉ]j ,

for some finite set of indices J . Moreover, we can stipulate without prejudice
that, for each j ∈ J and each i = 1, . . . , n, the clause rij has been used to

3.2. A Case Study: CLP 43

“resolve” against the i-th atom in the body of r in order to produce both Ĉ\j
and Ĉ]j . Thus

Ĉ\j = ∃̄̄∃\~Λ

(
C\ ⊗\

n⊗\

i=1

(
d\
X̄iȲi
⊗\ C̃\ij

))
and

Ĉ]j = ∃̄̄∃]~Λ

(
C] ⊗]

n⊗]

i=1

(
d]
X̄iȲi
⊗] C̃]ij

))
,

where

C̃\ij = I\(rij)[Ȳi/~Λi]

and

C̃]ij = I](rij)[Ȳi/~Λi].

By the hypotheses we have α(C\) `] C], and, using Hypothesis 8, we have
also that for each i = 1, . . . , n and each j ∈ J it is

α
(
I\(rij)[Ȳi/~Λi]

)
= α

(
I\(rij)

)
[Ȳi/~Λi]

[by A3 of Definition 20]

`] I](rij)[Ȳi/~Λi],
[by (3.6) and Hypothesis 8]

thus α(C̃\ij) `] C̃
]
ij . Now we can easily conclude:

α
(
T D̄

\

P\

(
r, I\

))
= α

(⊕\

j∈J
Ĉ\j

)
`]
⊕]

j∈J
α
(
Ĉ\j
)

=
⊕]

j∈J
α

(
∃̄̄∃\~Λ

(
C\ ⊗\

n⊗\

i=1

(
d\
X̄iȲi
⊗\ C̃\ij

)))

`]
⊕]

j∈J
∃̄̄∃]~Λ α

(
C\ ⊗\

n⊗\

i=1

(
d\
X̄iȲi
⊗\ C̃\ij

))

`]
⊕]

j∈J
∃̄̄∃]~Λ

(
C] ⊗]

n⊗]

i=1

(
α
(
d\
X̄iȲi

)
⊗] α

(
C̃\ij
)))

`]
⊕]

j∈J
∃̄̄∃]~Λ

(
C] ⊗]

n⊗]

i=1

(
d]
X̄iȲi
⊗] C̃]ij

))
= T D̄

]

P]

(
r, I]

)
. 2

44 Chapter 3. A Hierarchy of Constraint Systems

Theorem 22 Given a CLP(C) program P , two constraint systems D̄\ and
D̄], the constraint interpretations [[·]]D̄

\

C
and [[·]]D̄

]

C
, the abstraction function

α : D\ → D] such that α ◦ [[·]]D̄
\

C
`] [[·]]D̄

]

C
, and the programs P \ = [[P]]D̄

\

C
and

P] = [[P]]D̄
]

C
, the abstract iteration with widening (3.5) is eventually stable

after ` ∈ N steps and

α
(
lfp(T D̄

\

P\
)
)

= α
(
T D̄

\

P\
↑ ω
)
`]
(
T D̄

]

P]
⇑ `
)
.

Proof A straightforward application of a theorem of Cousot and Cousot
[CC92b, Proposition 6.20]. Stability of the iteration (3.5) after ` ∈ N comes
from the properties of widenings. The rest of the proof is carried on using
transfinite induction: the base case is given by property A1 of abstraction
functions, non-limit ordinals are handled through Lemma 21, whereas for
limit ordinals property A2 is exploited. 2

Convergence to a post-fixpoint is still ensured when a chaotic iteration strat-
egy with widening is employed [Cou78].

We now describe a hierarchy of constraint systems that capture most of
the analysis domains used for deriving monotonic properties of programs,
as well as the “concrete” collecting semantics they abstract.

The basis is constituted by any constraint system that satisfies the con-
ditions of Definition 7. First we show a way (which, of course, is not the
only one) of defining such a constraint system. We start from a set of fi-
nite constraints, each expressing some partial information about a program
execution’s state (i.e., a constraint-store).

3.3 Simple Constraint Systems

A constraint system can be built starting from a set of finite constraints (or
tokens), each expressing some partial information. We now define a notion
of simple constraint systems (or s.c.s.), very similar to the one introduced
in [SRP91], but with a totally uninformative token (>) as in [Sco82].

Definition 23 (Simple constraint system.) A structure of the form
〈C,`,⊥,>〉 is a simple constraint system if C is a set of constraints, ⊥,> ∈
C, and ` ⊆ ℘f(C) × C is an entailment relation such that, for each C,C ′ ∈
℘f(C), each c, c′ ∈ C, and X,Y ∈ Vars:

E1. c ∈ C =⇒ C ` c;

E2. C ` >;

E3. (C ` c) ∧ (∀c′ ∈ C : C ′ ` c′) =⇒ C ′ ` c;

E4. {⊥} ` c;

3.3. Simple Constraint Systems 45

E5. C ` c =⇒ C[Y/X] ` c[Y/X].

The ‘`’ symbol is overloaded to denote also the extended relation ` ⊆ ℘(C)×
℘(C) such that, for each C,C ′ ∈ ℘(C),

C ` C ′ def⇐⇒ ∀c′ ∈ C ′ : ∃C ′′ ⊆f C . C ′′ ` c′.

It is clear that condition E1 implies reflexivity of `, while condition E3

amounts to transitivity. E2 qualifies > as the least informative token: it
will be needed just as a “marker” when the product of simple constraint
systems will be considered (see Section 3.7 and [Sco82]). E4 ensures that C
is a finitely generable element (see Definition 25). Condition E5, referred to
as genericity, states that the entailment is insensible to variables’ names.4

By axioms E1 and E3 of Definition 23 the entailment relation of a simple
constraint system is a preorder. Now, instead of considering the quotient
poset with respect to the induced equivalence relation, a particular choice
of the equivalence classes’ representatives is made: closed sets with respect
to entailment. This representation is a very convenient domain-independent
strong normal form for constraints.

Definition 24 (Elements.) [SRP91] The elements of an s.c.s. 〈C,`,⊥,>〉
are the entailment-closed subsets of C, namely those C ⊆ C such that, when-
ever ∃C ′ ⊆f C . C ′ ` c, then c ∈ C. The set of elements of 〈C,`,⊥,>〉 is
denoted by |C|.

The poset of elements is thus given by 〈|C|,⊇〉. Notice that we deviate
from [SRP91] in that we order our constraint systems in the dual way, as is
customary in abstract interpretation.

Definition 25 (Inference map, finite elements.) Given a simple con-
straint system 〈C,`,⊥,>〉, the inference map of 〈C,`,⊥,>〉 is ρ : ℘(C) →
℘(C) given, for each C ⊆ C, by

ρ(C) def= { c | ∃C ′ ⊆f C . C ′ ` c }.

It is well-known that ρ is a kernel operator, over the complete lattice 〈℘(C),⊇
〉, whose image is |C|. The image of the restriction of ρ onto ℘f(C) is denoted
by |C|0. Elements of |C|0 are called finitely generated constraints or simply
finite constraints.

4In [Sar92] a stronger notion of genericity is used, namely C[t/X] ` c[t/X] whenever
C ` c, for any term t. This is too strong for our purposes. For instance, it would force
us to treat non-linear numeric constraints in the same way as linear ones in CLP(R). See
Chapter 5 on this subject.

46 Chapter 3. A Hierarchy of Constraint Systems

From here on we will work only with finitely generated constraints, since we
are not concerned with infinite behavior of CLP programs.

In general, describing the “standard” semantics of a CLP(X) language
is done as follows. Let T be the theory that corresponds to the domain
X [JL87]. Let D be an appropriate set of formulas in the vocabulary of
T closed under conjunction and existential quantification. Define Γ ` c if
and only if Γ entails c in the logic, with non-logical axioms T . Then (D,`)
is the required simple constraint system. For CLP(H) (a.k.a. pure Prolog)
one takes the Clark’s theory of equality (see Section 3.3.3). For CLP(R) the
theory RCF of real closed fields would do the job.5 We see now some simple
constraint systems.

3.3.1 The Atomic Simple Constraint System

This is probably the simplest useful example of s.c.s. The tokens include
variable names. A variable name, when present in a constraint, expresses
the fact that the variable has some (unspecified) property. For instance,
being definitely bound to a ground value. In this case, X is just a shorthand
for ground(X). This s.c.s. is thus given by C def= Vars ∪ {⊥,>} and by the
smallest relation ` ⊆ ℘f(C)×C satisfying conditions E1–E5 of Definition 23.
We will refer to this structure as the atomic s.c.s.

A useful extension is to include tokens involving two variable names.
These tokens state that the two variables involved share the property of
interest: one enjoys it if and only if the other one does. More formally, we
have

C′ def= C ∪ {X � Y | X,Y ∈ Vars },

and the entailment relation is suitably extended to C′ requiring, for each
X,Y, Z ∈ Vars:

{X � Y } ` Y � X;
{X � Y, Y � Z} ` X � Z;

{X,X � Y } ` Y.

3.3.2 A Simple Constraint System for Simple Types

A slightly more interesting example is when we have more than one monadic
(constraint) predicate. This is the case of domains of simple types where
tokens like number(X) or atom(X) indicate that the variable X is bound to
take numerical values, or Herbrand constants, respectively. The reader can
easily figure out how to define such a simple constraint system. Figure 3.1

5Beware not to confuse CLP(R), the idealized language over the reals [JM94], with
CLP(R), the (far from ideal) implemented language and system [JMSY92b].

3.3. Simple Constraint Systems 47

�
�
�
�
�
�

Z
Z
Z
Z
Z
Z�

�
�
�
�
�

�
�
�
�
�
�Z
Z
Z
Z
Z
Z

>

number symbolic

integer atom compound

⊥

Figure 3.1: A lattice of simple types.

suggests, by means of a Hasse diagram, a possible set of tokens together
with its entailment relation.

3.3.3 The Herbrand Simple Constraint System

Since almost any constraint logic-based language is an extension of Prolog,
the Herbrand (or finite trees) constraint system plays a fundamental role in
the field. If taken seriously, this is a quite complicated constraint system.
This is due to the fact that Herbrand constraints in themselves are quantified
formulas, which is not the case for most other constraint languages. For
our purposes we need a clear separation between “real” program variables
(in unification theory called eliminable variables) from quantified variables
appearing only in the constraints (called parameters). We also wish to
avoid having to talk modulo renaming. For these reasons6 here we give a
quite detailed account of a simple constraint system capturing Herbrand
constraints.

Basically, the tokens are systems of equations in solved form (see [LMM88]).
Besides that, they are also minimal (i.e. they do not contain useless equa-
tions, and the scope of parameters is as tight as possible), and canonical
(i.e. the parameters’ names are selected in a unique way). Formally, the set
of tokens, E , contains the symbol ⊥ and all the syntactic objects of the form

λ〈Y1, . . . , Yp〉 � 〈X1 = t1, . . . , Xn = tn〉

such that
6And also because we were not able to find in the literature a precise description (in

terms of simple constraint systems) to refer the reader to.

48 Chapter 3. A Hierarchy of Constraint Systems

1. {X1 = t1, . . . , Xn = tn} is in solved form (i.e. X1, . . . , Xn are
all distinct and do not occur on right-hand sides) with parameters
{Y1, . . . , Yp} =

⋃n
i=1 vars(ti).

2. Equations of the form Xi = Yj where Yj does not occur elsewhere are
useless and thus forbidden: for each i ∈ {1, . . . , n}, if ti ≡ Yj , then
there exists k ∈ {1, . . . , n} with k 6= i such that Yj ∈ vars(tk).

3. The scope of each parameter cannot be restricted to a proper subset
of the equations at hand: the graph where {1, . . . , n} are the nodes
and the edges are{

(i, j)
∣∣ i, j = 1, . . . , n and vars(ti) ∩ vars(tj) 6= ∅

}
is strongly connected.

4. The parameters’ names are completely determined by the equations.
With respect to the total ordering of variables we have7:

a. X1 < X2 < · · · < Xn ≺ Y1 ≺ Y2 ≺ · · · ≺ Yp. This identifies the
variable symbols to be used.

b. They are assigned on a first-seen basis traversing the right sides
of the equations in some standard order: if 〈Yi1 , . . . , Yil〉 is the
sequence of variables encountered in a depth-first, left-to-right
traversal of 〈t1, . . . , tn〉, then8 for each h, k ∈ {1, . . . , l} with
h < k

∀h′ < h, h′ ≥ 1 : Yih′ 6= Yih
∀k′ < k, k′ ≥ 1 : Yik′ 6= Yik

}
=⇒ Yih < Yik .

Notice that, by selecting the parameter’s names in a unique way, we will
avoid all the burden of talking “modulo renaming”. Tokens of the form
λε � Ē can be simply denoted by Ē. The token λε � ε is denoted by >.

The entailment relation ` ⊆ ℘f(E)×E is defined by suitably augmenting
the conditions of Definition 23. First we must say how we combine tokens
to get other tokens:

{c1, c2} ` c, if c ∈ σ(c1, c2), (3.7)

where σ : E × E → ℘f(E) is computed as follows.

1. If c1 ≡ ⊥ or c2 ≡ ⊥ then return {⊥}. Otherwise, assume that c1 ≡
λȲ1 � Ē1 and c2 ≡ λȲ2 � Ē2.

2. Consistently rename the parameters Ȳ2 of c2 apart from Ē1. Let λȲ ′2 �
Ē′2 be the result.

7In this context, X ≺ Y means that Y immediately follows X in the order.
8Notice that we treat 〈t1, . . . , tn〉 as a special term (or tree) with a fictitious root added.

3.3. Simple Constraint Systems 49

3. Compute the solved form of Ē1 ∪ Ē′2 with parameters Ȳ1 ∪ Ȳ ′2 . If the
system is unsolvable return {⊥}. If it is solvable, let F̄ = {X1 =
t1, . . . , Xm = tm} be the solved form obtained.

4. Define the graph

G
def=
〈
F̄ ,
{

(ei, ej)
∣∣ ei, ej ∈ F̄ and vars(ei) ∩ vars(ej) 6= ∅

}〉
and let {F̄1, . . . , F̄s} be the nodes of the condensed graph G∗ (i.e., the
strongly connected components of G).

5. From each F̄i obtain the token λZ̄i � H̄i (by ordering the equations,
suitably renaming the parameters and so on).

6. Return {λZ̄i � H̄i | i = 1, . . . , s }.

Now the entailment must be closed by anti-instance, i.e.

{c′} ` c, if c′ ` c, (3.8)

where ` ⊆ E × E is such that

λȲ1 � 〈X1 = t1, . . . , Xn = tn〉 ` λȲ2 � 〈Z1 = s1, . . . , Zm = sm〉

if and only if {Z1, . . . , Zm} ⊆ {X1, . . . , Xn} and there exists a substitution
θ such that9

Z1 ≡ Xi1 , . . . , Zm ≡ Xim and 〈ti1 , . . . , tim〉 ≡ 〈s1, . . . , sm〉θ.

The effect of a renaming [W̄/V̄] onto a token λȲ � Ē is to substitute
the non-parameters in V̄ with the correspondent ones in W̄ (notice that, by
definition, (W̄ ∪ Ȳ)∩FV (λȲ � Ē) = ∅), and then to rename the parameters
Ȳ (there is a unique way to do that) so to ensure that the result is still a
token.

The definition is completed by saying that ` ⊆ ℘f(E)×E is the smallest
relation satisfying (3.7), (3.8), and conditions E1–E5 of Definition 23. All
these complications have the great advantage of being confined here. We will
see, in fact, that with this definition equivalence of constraints will amount
to the equality of the correspondent set of tokens. Similarly, extracting the
common information of two Herbrand constraints will be done by taking the
intersection of their sets of tokens.

9Again, we regard 〈 . . . 〉 as a special function symbol.

50 Chapter 3. A Hierarchy of Constraint Systems

3.3.4 Bounds and Relations Analysis

The analysis described in Chapter 5 is based on constraint inference, a vari-
ant of constraint propagation [Dav87]. This technique, developed in the field
of Artificial Intelligence, has been applied to temporal and spatial reasoning
[All83, Sim83, Sim86].

Let us focus our attention on arithmetic domains, where usually the con-
straints are binary relations over expressions. Let E be the set of arithmetic
expressions of interest. Consider also a family I of subsets of R closed under
intersection, that is, for each I1, I2 ∈ I we also have I1 ∩ I2 ∈ I. The set of
arithmetic relationships is

R
def= {=, 6=,≤<,≥, >}

and our constraints are given by

C def=
{
e1 ./ e2

∣∣ e1, e2 ∈ E, ./ ∈ R
}

∪ { e C I | e ∈ E, I ∈ I } ∪ {⊥,>}.

The meaning of the constraint e C I is the obvious one: any real value
the expression e can take is contained in I. Thus C provides a mixture of
qualitative (relationships between expressions) and quantitative knowledge
(bounds on the values of the expressions).

The approximate inference techniques we are interested in can be en-
coded into an entailment relation ‘`’ over C. First we need to specify how
we deal with intervals: we can intersect them, weaken them, and we detect
failure by recognizing the empty ones:

{e C I1, e C I2} ` e C I1 ∩ I2,
{e C I} ` e C I ′, if I ⊆ I ′,
{e C I} ` ⊥, if I = ∅.

Two techniques for exploiting pure qualitative information are symmetric
and transitive closure:

{e1 ./ e2} ` e2 ./
−1 e1,

{e1 ./ e2, e2 ./
′ e3} ` e1 ./

′′ e3, if ./′′ = tc(./, ./′),

where ./−1 is the inverse of ./ (e.g., < is the inverse of >, ≥ of ≤ and so
on), and tc : R×R� R is the partial function individuated by the following
table:

tc < ≤ > ≥ = 6=
< < < <

≤ < ≤ ≤
> > > >

≥ > ≥ ≥
= < ≤ > ≥ = 6=
6= 6=

3.3. Simple Constraint Systems 51

This technique allows the inference of A < C from A ≤ B and B < C.
Of course, qualitative information can be combined and can lead to the
detection of inconsistencies:

{e1 ./ e2, e1 ./
′ e2} ` e1 ./

′′ e2,

if ∀x, y ∈ R : (x ./ y ∧ x ./′ y)⇒ x ./′′ y, and

{e1 ./ e2, e1 ./
′ e2} ` ⊥,

whenever ∀x, y ∈ R : ¬(x ./ y ∧ x ./′ y).
A classical quantitative technique is interval arithmetic: it allows to

infer the variation interval of an expression from the intervals of its sub-
expressions. Let f(e1, . . . , ek) be any arithmetic expression having e1, . . . , ek
as subexpressions. Then{

f(e1, . . . , ek) C I, e1 C I1, . . . , ek C Ik
}
` f(e1, . . . , ek) C f̈(I1, . . . , Ik),

where f̈ : Ik → I is such that for each x1 ∈ I1, . . . , xk ∈ Ik, it happens that
f(x1, . . . , xk) ∈ f̈(I1, . . . , Ik). For example,

A C [3, 6) ∧B C [−1, 5] ` A+B C [2, 11).

Another technique is numeric constraint propagation, which consists in de-
termining the relationship between two expressions when their associated
intervals do not overlap, except possibly at their endpoints. The associated
family of axioms is

{e1 C I1, e2 C I2} ` e1 ./ e2, if ∀x1 ∈ I1, x2 ∈ I2 : x1 ./ x2.

For example, if A ∈ (−∞, 2], B ∈ [2,+∞), and C ∈ [5, 10], we can infer
that A ≤ B and A < C. It is also possible to go the other way around, i.e.,
knowing that U < V may allow to refine the intervals associated to U and
V so that they do not overlap. We call this weak interval refinement :

{e1 ./ e2, e1 C I1, e2 C I2} ` e1 C I
′
1,

where I ′1
def= {x1 ∈ I1 | ∃x2 ∈ I2 . x1 ./ x2 }. This is an example of local-

consistency technique [Mon74, Mac77, Fre78]. In summary, by considering
the transitive closure of ` and with some minor technical additions we end up
with a simple constraint system that characterizes precisely the combination
of the above techniques. Other techniques can be easily incorporated (see
Chapter 5).

What we have just presented is a watered-down version of the numerical
component (presented as a simple constraint system) employed in the China

analyzer (see Chapter 5 for the details). Now we are in position to
introduce an important class of members of the hierarchy.

52 Chapter 3. A Hierarchy of Constraint Systems

3.4 Determinate Constraint Systems

Determinate constraint systems are at the bottom of the hierarchy. Such a
construction is uniquely determined by a simple constraint system together
with appropriate merge operator and diagonal elements. Notice that, for
simplicity, we present only the finite fragment of the constraint system, that
is, the sub-structure consisting of the finite elements only.

Definition 26 (Determinate constraint system.) Consider a simple
constraint system, S def= 〈C,`,⊥,>〉. Let 0,1 ∈ |C|0 and ⊗ : |C|0×|C|0 → |C|0
be given, for each C1, C2 ∈ |C|0, by

0 def= C,

1 def= ρ(∅),

C1 ⊗ C2
def= ρ(C1 ∪ C2).

Let ⊕ : |C|0 × |C|0 → |C|0 be an operator satisfying conditions G2 and G4 of
Definition 7. The projection operators ∃̄̄∃X̄ : |C|0 → |C|0 are given, for each
X̄ ∈ Vars? and each C ∈ |C|0, by

∃̄̄∃X̄ C
def= ρ

({
c ∈ C

∣∣ FV (c) ⊆ X̄
})
.

Finally, let {dX̄Ȳ }X̄,Ȳ ∈Vars? be a family of elements of |C|0. We will call
the structure 〈|C|0,⊗,⊕,0,1, {∃̄̄∃X̄}, {dX̄Ȳ }〉 a determinate constraint sys-
tem over S and ‘⊕’.

The following is an adaptation to our more relaxed hypotheses of a result
in [Sar92, Proposition 2.3].

Lemma 27 Let 〈C,`,⊥,>〉 be a simple constraint system. For each C ⊆ C
we have FV (ρ(C)) ⊆ FV (C).

Proof Suppose X ∈ FV (ρ(C)). By Equation (3.2) of Definition 6 there
exist c ∈ ρ(C) and Z ∈ Vars such that c[Z/X] /∈ ρ(C). This implies that
there exists C ′ ⊆f C such that C ′ ` c (otherwise c /∈ ρ(C)). Now suppose,
towards a contradiction, that X /∈ FV (C). This means that for each c′ ∈ C ′
and each Y ∈ Vars we have c′[Y/X] ∈ C, and thus C ′[Y/X] ⊆f C. By the
genericity axiom E5 of Definition 23, this implies that for each Y ∈ Vars
we have C ′[Y/X] ` c[Y/X], and thus that c[Y/X] ∈ ρ(C), contradicting the
hypothesis X ∈ FV (ρ(C)). 2

Theorem 28 Each determinate constraint system is indeed a constraint
system. Moreover, for each C1, C2 ∈ |C|0, we have C1 ` C2 if and only if
C1 ⊇ C2.

3.4. Determinate Constraint Systems 53

Proof With reference to Definition 7, G0 is true because of point (2) in
Definition 5. G1 clearly holds by definition of ⊗ and ρ. G2 and G4 are
enforced by the choice of the merge operator. For G3, if C ∈ |C|0 then
C ⊗ 0 = ρ(C ∪ C) = ρ(C) = 0. Then, by definition of `, C1 ` C2 if
and only if ρ(C1 ∪ C2) = C1. Thus, if C1 ` C2 we have, by ρ extensivity,
C1 ∪ C2 ⊆ ρ(C1 ∪ C2) = C1, which implies C1 ⊇ C2. Conversely, assuming
C1 ⊇ C2, ρ idempotence gives ρ(C1 ∪ C2) = ρ(C1) = C1. Finally, G5 is an
immediate consequence of the definition of ∃̄̄∃X̄ and of Lemma 27. 2

The choice of a suitable merge operator, required in addition to an s.c.s.
to obtain a determinate constraint system, can be done with relative free-
dom. This freedom can often be conveniently exploited in order to get a
reasonable complexity/precision tradeoff. The same will apply to the ask-
and-tell constraint systems of Section 3.6.

Observe that, given C1, C2 ∈ |C|0, there is no a priori guarantee that
C = C1 ∩ C2 ∈ |C|0. In fact, there are simple constraint systems where
this is false10. However, since ρ is an algebraic closure operator by its very
definition, if it turns out that C ∈ |C|0, then there exists C0 ⊆f C such that
ρ(C0) = C [BS81]. That said, defining the merge operator as set intersection
works in many cases.

A trivial example of merge operator is the following, whose definition is
independent from the simple constraint system at hand:

C1 ⊕ C2
def=

C1, if C1 = C2 or C2 = 0;
C2, if C1 = 0;
1, otherwise.

(3.9)

For a less trivial example, suppose we are approximating subsets of Rn by
means of (closed) convex polyhedra. Of course they will be represented
by sets of linear disequations over x1, . . . , xn, but, for the purpose of the
present example, we will consider the polyhedra themselves. For any convex
polyhedra X,Y ⊆ Rn, define X ` Y if and only if X ⊆ Y and

X ⊕ Y def=

X, if X = Y or Y = ∅;
Y, if X = ∅;
bb(X ∪ Y), otherwise;

(3.10)

where bb(Z) is the smallest “bounding box” containing Z ⊆ Rn, that is,

bb(Z) def=

{
(x1, . . . , xn)

∣∣∣∣∣ ∀i = 1, . . . , n :
inf πi(Z) ≤ xi ≤ supπi(Z)

}
.

10For the interested reader: consider the set of tokens {⊥, a, b,>} ∪ {ti}i∈N. Choose
the least entailment relation such that: {ti} ` tj if and only if i ≥ j, {a} ` {ti}i∈N,
{b} ` {ti}i∈N, and {a, b} ` ⊥. It is easy to see that the intersection of the finite elements
generated by {a} and {b}, respectively, is {ti}i∈N, which is not finite.

54 Chapter 3. A Hierarchy of Constraint Systems

The most precise merge operator is, of course, given by the convex hull,
namely,

X ⊕ Y def= min
{
W ⊆ Rn

∣∣W ⊇ X ∪ Y and W is a c.p.
}
. (3.11)

Notice that (3.11) satisfies both the absorption laws (thus giving rise to a
lattice), (3.9) and (3.10) do not. None of them results in a distributive
constraint system. Furthermore, (3.9) and (3.10) are closed, while (3.11) is
not.

3.4.1 Definiteness Analysis: Con

Consider the extension of the atomic simple constraint system, C′, intro-
duced in Section 3.3.1, and apply to it the determinate constraint system
construction with

C1 ⊕ C2
def= C1 ∩ C2, for each C1, C2 ∈ |C′|.

Let also the diagonal elements be given, for each X̄, Ȳ ∈ Vars? of the same
cardinality, by

dX̄Ȳ
def= ρ

(
{πi(X̄)� πi(Ȳ) | 1 ≤ i ≤ # X̄ }

)
.

The resulting domain (a closed and Noetherian d.c.s.) is the simplest one
for definiteness analysis, and it was used in early groundness analyzers
[Mel85, JS87]. The name Con comes from the fact that elements of the
form {X1, . . . , Xn} are usually regarded as the conjunction X1 ∧ · · · ∧Xn,
meaning that X1, . . . , Xn are definitely bound to a unique value. In this
view, ⊗ clearly amounts to logical conjunction.

Con is a very weak domain for definiteness analysis. It cannot capture
either “aliasing” (apart from the special kind of aliasing arising from param-
eter passing) or more complex dependencies between variables such as those
implied by “concrete” constraints like A = f(B,C) and A + B + C = 0.
Moreover it cannot represent or exploit disjunctive information.

3.4.2 The Pattern Domain

Endowing the Herbrand simple constraint system of Section 3.3.3 with the
merge operator

C1 ⊕ C2
def= C1 ∩ C2, for each C1, C2 ∈ |E|0.

and the diagonals (we assume for simplicity that πi(X̄) ≤ πi(Ȳ), for i = 1,
. . . , n)

dX̄Ȳ
def= ρ

({
λ〈Zi〉 � 〈πi(X̄) = Zi, πi(Ȳ) = Zi〉

∣∣∣∣∣ 1 ≤ i ≤ # X̄

πi(Ȳ) ≺ Zi

})

3.5. Powerset Constraint Systems 55

yields a closed and Noetherian d.c.s. suitable for structural analysis. Observe
that all the finitely generable elements in |E|0 \ 0 are finite, since there is at
most one normalized greatest common instance for each finite set of terms
(axiom (3.7) of the entailment relation) and only a finite number of (nor-
malized) anti-instances for any given set of terms (axiom (3.8)) [LMM88].
As the ordering is reverse set inclusion, Noetherianity clearly follows.

Since the tokens are normalized and elements are closed by anti-instance,
merging two elements of |E|0 makes implicit the fact that to each eliminable
variable in the result will be assigned the least common anti-instance (lca)
of the terms assigned in the elements to be merged (and all its further
anti-instances). In a real implementation, where closure by anti-instance
is obviously not performed, this will correspond to the use of some anti-
unification algorithm to compute the lca of terms assigned to the same
eliminable variable.

The Pattern domain presented here, which is a reformulation of the ones
defined in [Mus90, LCVH92], deals only with pure structural information.
In [CLV94] a much more powerful domain is presented, Pat(<), parametric
with respect to any abstract domain < in their framework (which is not
restricted to monotonic properties). It is possible to modify the Pattern
domain presented in this section so to make it parametric with respect to
any constraint system D̄, still obtaining a constraint system. In this way one
can achieve the same results of the parametric domain of [CLV94], though
in the restricted context of monotonic properties. Of course, the back-side
of this restriction is a greater simplicity in the definition of the parametric
domain Pattern(D̄).

Now that we have seen how many constraint systems can be built, we
will show what the induced members of the hierarchy look like.

3.5 Powerset Constraint Systems

For the purpose of program analysis of monotonic properties it is not nec-
essary to represent the “real disjunction” of constraints collected through
different computation paths, since we are interested in the common infor-
mation only. To this end, a weaker notion of disjunction suffices.

We define powerset constraint systems, which are instances of a well-
known construction: disjunctive completion [CC92b]. For doing that we
need some notions from the theory of posets.

Given a poset 〈L,⊥,≤〉, the relation � ⊆ ℘(L) × ℘(L) induced by ≤ is
given, for each S1, S2 ∈ ℘(L) by

(S1 � S2) def⇐⇒ (∀x1 ∈ S1 : ∃x2 ∈ S2 . x1 ≤ x2). (3.12)

A subset S ∈ ℘(L) is called non-redundant if and only if ⊥ /∈ S and

∀x1, x2 ∈ S : x1 ≤ x2 =⇒ x1 = x2. (3.13)

56 Chapter 3. A Hierarchy of Constraint Systems

The set of non-redundant subsets of L with respect to ≤ is denoted by
℘n(L,≤). The function Ω≤L : ℘(L) → ℘n(L,≤), mapping each set into its
non-redundant counterpart is given, for each S ∈ ℘(L), by

Ω≤L(S) def= S \ {x ∈ S | x = ⊥ ∨ ∃x′ ∈ S . x < x′ }. (3.14)

Thus, for S ∈ ℘(L), Ω≤L(S) is the set of maximal elements of S. However,
there is no guarantee, in general, that such maximal elements exist: L could
be an infinite chain without an upper bound in L, and thus would be mapped
to ∅ by Ω≤L . We will denote by ℘c(L) the set of all those S ∈ ℘(L) such
that, if S contains an infinite chain C, then it also contains an upper bound
for C. Observe that ℘f(L) ⊆ ℘c(L) and that, if L satisfies the ascending
chain condition, then ℘(L) = ℘c(L).

Proposition 29 If 〈L,⊥,≤〉 is a poset the following hold:

1. 〈℘n(L,≤),�〉 is a poset;

2. for each S ∈ ℘c(L), we have both Ω≤L(S) � S and S � Ω≤L(S);

3. for each family {Si ∈ ℘(L)}i∈I we have

Ω≤L
(⋃
i∈I

Ω≤L(Si)
)

= Ω≤L(
⋃
i∈I

Si);

4. if 〈L,⊥,≤,∧〉 is a meet-semilattice then for each x ∈ L and each
S ∈ ℘c(L)

Ω≤L
(
{x ∧ y | y ∈ Ω≤L(S) }

)
= Ω≤L

(
{x ∧ y | y ∈ S }

)
.

Proof

1. � is easily seen to be preorder relation. For antisymmetry, consider
a pair S1, S2 ∈ ℘n(L,≤) such that S1 � S2 and S2 � S1. If x1 ∈ S1

then there exists x2 ∈ S2 with x1 ≤ x2. But then again there exists
x′1 ∈ S1 such that x1 ≤ x2 ≤ x′1. By non-redundancy we must have
x1 = x2 = x′1, so that x1 ∈ S2 and S1 ⊆ S2. A symmetric argument
proves that, indeed, S1 = S2.

2. Observe that Ω≤L(S) ⊆ S and that, if S ∈ ℘c(L) and x ∈ S, then either
x ∈ Ω≤L(S) or there exists y ∈ Ω≤L(S) such that x < y.

3. Straightforward.

3.5. Powerset Constraint Systems 57

4. We have that

Ω≤L
(
{x ∧ y | y ∈ Ω≤L(S) }

)
= Ω≤L

(
{x ∧ y | y ∈ Ω≤L(S) }

∪ {x ∧ y
∣∣ y ∈ S \ Ω≤L(S),∃y′ ∈ Ω≤L(S) . x ∧ y ≤ x ∧ y′ }

)
= Ω≤L

(
{x ∧ y | y ∈ Ω≤L(S) } ∪ {x ∧ y

∣∣ y ∈ S \ Ω≤L(S) }
)

= Ω≤L
(
{x ∧ y | y ∈ S }

)
,

since, for each x ∈ L, S ∈ ℘c(L) and y ∈ S \ Ω≤L(S), there is always a
y′ ∈ Ω≤L(S) such that y < y′. The condition ∃y′ ∈ Ω≤L(S) . x∧y ≤ x∧y′
above is thus always satisfied by ∧ monotonicity. 2

The powerset construction upgrades a domain by considering sets of
elements of the base-level domain that are non-redundant with respect to
the approximation ordering.

Definition 30 (Powerset constraint systems.) The powerset constraint
system over a Noetherian constraint system

D̄ = 〈D,⊗,⊕,0,1, {∃̄̄∃X̄}, {dX̄Ȳ }〉

is given by 〈
℘n(D,`),⊗P,⊕P,0P,1P, {∃̄̄∃

P

X̄}, {dP

X̄Ȳ }
〉
,

where

S1 ⊗P S2
def= Ω`D

(
{C1 ⊗ C2 | C1 ∈ S1, C2 ∈ S2 }

)
,

S1 ⊕P S2
def= Ω`D(S1 ∪ S2),

0P

def= ∅,

1P

def= {1},

∃̄̄∃P

X̄ S
def= Ω`D

(
{ ∃̄̄∃X̄ C | C ∈ S }

)
,

dP

X̄Ȳ

def= {dX̄Ȳ }.

If D̄ is any constraint system, the finite powerset constraint system over D̄
is 〈

℘n(D,`) ∩ ℘f(D),⊗P,⊕P,0P,1P, {∃̄̄∃
P

X̄}, {dP

X̄Ȳ }
〉
,

where all the operators are as above.

This double definition reflects the two possible uses of powerset constraint
systems. One is to define concrete domains in those cases where the base-
level constraint system is Noetherian. The other is when designing abstract

58 Chapter 3. A Hierarchy of Constraint Systems

domains, where clearly only the finite elements are of interest. In both
cases, point (2) of Proposition 29 tells us that, when we deal with monotonic
properties, we lose nothing if we restrict ourselves to non-redundant sets in
order to capture the non-determinism of CLP languages. Of course, when
the base-level c.s. is not Noetherian, one has to consider all the subsets in
the design of a concrete domain.

Observe that the powerset construction completely disregards the merge
operator of the base-level constraint system. Thus it can be applied to struc-
tures weaker than constraint systems, where the merge operator is missing.
Instead of devoting a definition to them we rely on the fact that it is always
possible to augment such structures with the trivial merge operator defined
in (3.9) so to obtain a constraint system in the sense of Definition 7. This
way, for example, any simple constraint system can indirectly constitute the
basis for a powerset construction.

Theorem 31 Any powerset constraint system built over a Noetherian c.s.
D̄, 〈

℘n(D,`),⊗P,⊕P,0P,1P, {∃̄̄∃
P

X̄}, {dP

X̄Ȳ }
〉
,

is a closed and completely distributive constraint system, where the ordering
is given, for each S1, S2 ∈ ℘n(D,`), by

S1 `P S2 ⇐⇒ ∀C1 ∈ S1 : ∃C2 ∈ S2 . C1 ` C2. (3.15)

For any c.s. D̄, the finite powerset c.s. built over D̄ is a distributive con-
straint system, where the ordering is given by (3.15), for S1, S2 ∈ ℘n(D,`
) ∩ ℘f(D).

Proof Let D̄ be a Noetherian c.s. We start by showing that S1 ⊗P S2

is the glb of S1 and S2 with respect to `P. Clearly S1 ⊗P S2 `P S1 and
S1 ⊗P S2 `P S2 since, for each C ∈ S1 ⊗P S2 there are some C1 ∈ S1

and C2 ∈ S2 such that C1 ⊗ C2 = C. This implies C ` C1 and C ` C2.
Suppose now to have S ∈ ℘n

(
D,`

)
such that S `P S1 and S `P S2. Then

S `P S1 ⊗P S2, since

∀C ∈ S : ∃C1 ∈ S1 . C ` C1 ∀C ∈ S : ∃C2 ∈ S2 . C ` C2

∀C ∈ S : ∃C1 ∈ S1, C2 ∈ S2 . C ` C1 ⊗ C2

and either C1 ⊗ C2 ∈ S1 ⊗P S2 or there exists C ′ ∈ S1 ⊗P S2 such that
C1⊗C2 ` C ′. In a similar way S1⊕P S2 is shown to be the lub of S1 and S2

with respect to `P. In fact it is clear that S1 `P S1⊕PS2 and S2 `P S1⊕PS2.
Furthermore, if S ∈ ℘n(D,`) is such that S1 `P S and S2 `P S, then, since

∀C1 ∈ S1 : ∃C ′1 ∈ S . C1 ` C ′1 ∀C2 ∈ S2 : ∃C ′2 ∈ S . C2 ` C ′2
∀C ∈ Ω`D(S1 ∪ S2) : ∃C ′ ∈ S . C ` C ′

3.5. Powerset Constraint Systems 59

we have S1⊕PS2 `P S. The minimum and maximum elements of the lattice
are clearly ∅ and {1}, respectively. We now show, using points (3) and (4)
of Proposition 29, that complete meet-distributivity holds:

S ⊗P

⊕
P

i∈I

Si = Ω`D
(
{C ⊗ C ′ | C ∈ S,C ′ ∈ Ω`D(

⋃
i∈I Si) }

)
= Ω`D

(
{C ⊗ C ′ | C ∈ S,C ′ ∈

⋃
i∈I Si }

)
= Ω`D

(⋃
i∈I{C ⊗ C

′ | C ∈ S,C ′ ∈ Si }
)

= Ω`D
(⋃

i∈I Ω`D
(
{C ⊗ C ′ | C ∈ S,C ′ ∈ Si }

))
=
⊕

P

i∈I

(S ⊗P Si).

In particular we have shown that 〈℘n(D,`),⊗P,⊕P,0P,1P〉 is a distributive
lattice so that G1–G4 of Definition 7 are satisfied. G0, G5, and closedness
are implicit in the definition. The above proof can be replayed substitut-
ing ℘n(D) with ℘n(D,`) ∩ ℘f(D), I with {1, 2}, and, of course, omitting
closedness. 2

3.5.1 A Collecting Semantics for Logic Programs

When interested in monotonic properties of logic programs, a suitable col-
lecting semantics can be defined over the domain resulting from the appli-
cation of the powerset construction to the Pattern d.c.s. of Section 3.4.2,
which is Noetherian.

3.5.2 Structural Analysis: More than Pattern

One possibility for obtaining more precise structural information than possi-
ble with Pattern, is to use the domain of the previous section together with a
suitable widening operator ∇ : ℘n(|E|0)2 → ℘n(|E|0) to ensure termination.

A very crude widening operator for any powerset c.s. can be defined in
terms of the base-level merge operator as follows:

S1 ∇ S2
def= Ω`D

({⊕
(S1 ⊕P S2)

})
.

Of course this destroys, as soon as it is applied, all the extra-precision gained
by passing to the powerset. Things can be improved by using derived oper-
ators like

S1 ∇′ S2
def=
{
S1 ∇ S2, if p(S1, S2);
S2, otherwise,

where the predicate p(S1, S2) is true if, on passing from S1 to S2 (usually S1

and S2 are the results of two adjacent iterates computed during the analysis)
“something has grown”.

60 Chapter 3. A Hierarchy of Constraint Systems

A better widening for the current example of structural analysis can
be defined along the following lines. Take S1, S2 ∈ ℘n(|E|0), and let S =
S1 ⊕P S2. From each C ∈ S take out all the tokens involving terms of
depth greater than some fixed k; call C ′ the result and S′ the set of all
the C ′ so obtained. Now S1∇S2 is obtained from S′ by removing all the
redundant elements. This widening roughly corresponds to the use of depth-
k approximations as in [ST84, MS88]. It is still not very accurate, as it “cuts”
also the structures that have not grown. A more precise widening can be
obtained on these lines by restricting the “depth-k cut” to those variables
such that the maximum depth of the associated patterns in S2 is greater
than the maximum depth of the associated patterns in S1.

3.6 Ask-and-Tell Constraint Systems

We now consider constraint systems having additional structure. This ad-
ditional structure allows to express, at the constraint system level, that
the imposition of certain constraints must be delayed until some other con-
straints are imposed. In [Sar93] similar constructions are called ask-and-tell
constraint systems. In our construction, ask-and-tell constraint systems are
built from constraint systems by regarding some kernel operators as con-
straints. We follow [Sar93] in considering cc as the language framework for
expressing and computing with kernel operators.11 For this reason we will
present kernel operators as cc agents. For our current purposes we need only
a very simple fragment of the determinate cc language: the one of finite cc
agents. This fragment is described in [SRP91] by means of a declarative se-
mantics. Here we give an operational characterization that is better suited
to our needs.

Definition 32 (Finite cc agents: syntax.) A finite cc agent over a
constraint system D̄ = 〈D,⊗,⊕,0,1, {∃̄̄∃X̄}, {dX̄Ȳ }〉 is any string generated
by the following grammar:

A ::= tell(C) | ask(C)→ A | A ‖A

where C ∈ D. We will denote by A(D̄) the language of such strings. The
following explicit definition is also given:

ask(C1; . . . ;Cn)→ A

≡
(

ask(C1)→ A
)
‖ · · · ‖

(
ask(Cn)→ A

)
. (3.16)

When this will not cause confusion we will freely drop the syntactic sugar,
writing C and C1 → C2 where tell(C) and ask(C1)→ tell(C2) are intended.

11At least for a relevant class of them. See Section 3.6.1 for more on this subject.

3.6. Ask-and-Tell Constraint Systems 61

One of the beautiful properties of kernel operators is that they can
be uniquely represented by their range, i.e., the set of their fixed points
[GHK+80]. The denotational semantics of finite cc agents over D̄ can thus
be expressed by a function [[·]] : A(D̄)→ ℘(D) defined following [SRP91].

Definition 33 (Semantics of finite cc agents.) The semantics of finite
cc agents over a constraint system is given by the following equations:

[[C]] def= ↓C, (3.17)

[[C → A]] def= ↓C ∪ [[A]], (3.18)

[[A ‖B]] def= [[A]] ∩ [[B]]. (3.19)

Observe that the actual kernel operator AK corresponding to a finite agent
A ∈ A(D̄) can be recovered from [[A]] as

AK
def= λC . sup

(
(↓C) ∩ [[A]]

)
. (3.20)

The introduction of a syntactic normal form for finite cc agents allows
to simplify the subsequent semantic treatment.

Definition 34 (Finite cc agents: syntactic normal form.) The trans-
formation η over A(D̄) is defined, by structural induction, as follows, for
each Ca, Ca1 , C

a
2 , C

t ∈ D and A,A1, A2 ∈ A(D̄):

η(Ca → Ct) def=
{

1→ 1, if Ca ` Ct;
Ca → (Ca ⊗ Ct), otherwise;

η(Ct) def= 1→ Ct;

η
(
Ca1 → (Ca2 → A)

) def= η
(
(Ca1 ⊗ Ca2)→ A

)
;

η
(
Ca → (A1 ‖A2)

) def= η
(
(Ca → A1) ‖ (Ca → A2)

)
;

η(A1 ‖A2) def= η(A1) ‖ η(A2).

The following fact is easily proved.

Proposition 35 The transformation η of Definition 34 is well defined.
Furthermore, if A ∈ A(D̄) then [[η(A)]] = [[A]] and η(A) is of the form

(Ca1 → Ct1) ‖ · · · ‖ (Can → Ctn).

where Cti C
a
i for each i = 1, . . . , n.

Proof Observe that each agent is in one and only one of the forms appearing
in the left-hand sides of the equations. Given an agent, define its complexity
as the number obtained by summing up the number 3 for each connective

62 Chapter 3. A Hierarchy of Constraint Systems

(i.e., ‘‖’ and ‘→’) occurring in a guarded context (i.e., in C → A the con-
nectives in A are worth 3), and the number 1 for all the other connectives.
It is immediate to verify that in the recursive equations of Definition 34 the
arguments of η in the right-hand sides have complexity strictly less than
the ones in the left-hand sides, while the right-hand sides of non-recursive
equation are of the form Ca → Ct. Thus η is indeed a function, and its
range is as stated. The fact that η is semantic-preserving can be shown by
total induction on the complexity of agents. The base cases are trivial. For
the induction step we have, for instance,

[[Ca → (A1 ‖A2)]] = ↓Ca ∪
(
[[A1]] ∩ [[A2]]

)
=
(
↓Ca ∪ [[A1]]

)
∩
(
↓Ca ∪ [[A2]]

)
=
[[

(Ca → A1) ‖ (Ca → A2)
]]

=
[[
η
(
(Ca → A1) ‖ (Ca → A2)

)]]
=
[[
η
(
Ca → (A1 ‖A2)

)]]
. 2

Thus, by considering only agents of the form ‖ni=1C
a
i → Cti we do not

lose any generality. We will call elementary agents of the kind Ca → Ct

ask-tell pairs.
Now we express the operational semantics of finite cc agents by means of

rewrite rules. An agent in syntactic normal form is rewritten by applying the
logical rules of the calculus modulo a structural congruence. This congruence
states, intuitively, that we can regard an agent as a set of (concurrent) ask-
tell pairs. The semantics of parallel composition stated in (3.19) clearly
allows that.

Definition 36 (A calculus of finite cc agents.) Consider the agent
1A

def= 1 → 1. The structural congruence of the calculus is the small-
est congruence relation ≡s such that 〈A(D̄), ‖,1A〉/≡s is a commutative and
idempotent monoid. The reduction rules of the calculus are given in Fig-
ure 3.2. The relation ρA ⊆ A(D̄)×A(D̄) is defined, for each A,A′ ∈ A(D̄),
as follows: A ρA A

′ if and only if

(A = A1) ∧ (An = A′) ∧A1 7→ A2 7→ · · · 7→ An 79

In the following we will systematically abuse the notation denoting the
quotient of A(D̄) with respect to ≡s simply by A(D̄). Consequently, every
assertion concerningA(D̄) is to be understood modulo structural congruence.
In particular, an agent will be regarded as the set of its ask-tell pairs.

Lemma 37 The term-rewriting system depicted in Figure 3.2 is terminat-
ing. Thus, for each A ∈ A(D̄) there is always an A′ ∈ A(D̄) such that
A ρA A

′.

3.6. Ask-and-Tell Constraint Systems 63

Structure

A1 ≡s A′1 A′1 7−→ A′2 A′2 ≡s A2

A1 7−→ A2

A1 7−→ A′1

A1 ‖A2 7−→ A′1 ‖A2

Reduction r(1, 2)

Ca1 ` Ca2 Ca1 ⊗ Ct2 ` Ct1
(Ca1 → Ct1) ‖ (Ca2 → Ct2) 7−→ (Ca2 → Ct2)

Deduction d(1, 2)

Ct1 ` Ca2 Ct1 0 C
t
2

(Ca1 → Ct1) ‖ (Ca2 → Ct2) 7−→
(
Ca1 → (Ct1 ⊗ Ct2)

)
‖ (Ca2 → Ct2)

Absorption a(1, 2)

Ca1 C
a
2 Ca1 0 C

t
2 Ct1 C

a
1 ⊗ Ct2

(Ca1 → Ct1) ‖ (Ca2 → Ct2) 7−→
(
(Ca1 ⊗ Ct2)→ Ct1

)
‖ (Ca2 → Ct2)

Figure 3.2: Reduction rules for finite cc agents.

Proof Consider an agent in syntactic normal form A = ‖ni=1Ai. Each
rewriting step results either in the removal of a pair (at most n−1 such steps
can be performed using the reduction rule), or in the strict strengthening of
the ask or tell constraint of a pair. An upper bound for the number of such
steps can be obtained by reasoning as follows. The tell constraint of each of
the n pairs can be strengthened at most n− 1 times. Thus at most n(n− 1)
applications of the deduction rule are possible. Similarly, the absorption rule
will be applied at most n(n− 1) times. Consequently, A will be maximally
rewritten in O(n2) steps. 2

We introduce now, following [SRP91], a normal form for finite cc agents.

Definition 38 (Semantic normal form.) [SRP91] The agent A ∈ A(D̄)
is in semantic normal form if and only if A = 1A or A = ‖ni=1C

a
i → Cti and,

for each i, j ∈ {1, . . . , n}:

N1. C
t
i C

a
i ;

N2. i 6= j =⇒ Cai 6= Caj ;

N3. C
a
i C

a
j =⇒ Cai C

t
j;

N4. C
t
i ` Caj =⇒ Cti ` Ctj.

64 Chapter 3. A Hierarchy of Constraint Systems

It turns out that this normal form is indeed very strong, whence its
name.

Theorem 39 [SRP91] Two agents A1, A2 ∈ A(D̄) have the same semantic
normal form if and only if [[A1]] = [[A2]].

The purpose of our rewriting system is to put finite cc agents into se-
mantic normal form, preserving their original semantics.

Lemma 40 For each agent A ∈ A(D̄) in syntactic normal form, if A ρA A
′

then [[A]] = [[A′]] and A′ is in semantic normal form.

Proof It is immediate to verify that the rules of the calculus preserve the
syntactic normal form, thus A′ satisfies condition N1.

Suppose N2 is not satisfied, that is, Cai = Caj and, consequently, Cti 6= Ctj ,
Cti Caj , and Ctj Cai . Either Cti 0 C

t
j or Ctj 0 C

t
i must hold, so we can

apply the deduction rule d(i, j) or the symmetric one d(j, i), respectively.
Suppose that N3 is not satisfied, namely Cai C

a
j and Cai 1 C

t
j (implying

Cti Caj). There are several cases. If Cai = Ctj then Cti Cai = Ctj , thus
Ctj ` Cai and Ctj 0 C

t
i , which means d(j, i) is applicable. The other possibility

is when Cai 0 C
t
j and either Ctj ` Cti or Ctj 0 C

t
i . In the former case we have

Ctj ` Cti Cai , whence Cai ⊗Ctj = Ctj ` Cti and r(i, j) can fire. The latter case
is further split as follows: if Cti 0 C

t
j then rule d(i, j) is applicable, otherwise

we have Cti Ctj , which implies Cti ` Cai ⊗ Ctj . If this last entailment is
strict the absorption rule a(i, j) can fire, if not (namely Cti = Cai ⊗Ctj), then
we can apply r(i, j).

Finally, negating N4 we obtain Cti ` Caj and Cti 0 C
t
j , which is exactly

the applicability condition for d(i, j).
Preservation of semantics is readily verified. For reduction, we show that

if Ca1 ` Ca2 and Ca1 ⊗ Ct2 ` Ct1 then

[[(Ca1 → Ct1) ‖ (Ca2 → Ct2)]] = [[Ca2 → Ct2]],

or, equivalently,

∀C ∈ D : [[Ca2 → Ct2]]K(C) ` [[Ca1 → Ct1]]K(C).

In fact, if C 0 Ca1 then [[Ca1 → Ct1]]K(C) = C and the thesis hold by exten-
sivity of [[Ca2 → Ct2]]K . If C ` Ca1 then C ` Ca2 and

[[Ca2 → Ct2]]K(C) = C ⊗ Ct2
= C ⊗ Ca1 ⊗ Ct2
` C ⊗ Ct1
= [[Ca1 → Ct1]]K(C).

The reader is also referred to [SRP91] where less constrained versions of de-
duction and absorption are reported as laws L12 and L11, respectively. 2

3.6. Ask-and-Tell Constraint Systems 65

Proposition 41 The term-rewriting system depicted in Figure 3.2 is strongly
normalizing. Thus the relation ρA is indeed a function ρA : A(D̄)→ A(D̄).

Proof Let A ∈ A(D̄) in syntactic normal form, and suppose A ρA A′ and
A ρA A

′′. By Lemma 40 both A′ and A′′ are in semantic normal form, and
[[A′]] = [[A]] = [[A′′]]. By Theorem 39 we can conclude that A′ = A′′.

The final result is now easily obtained.

Corollary 42 For A1, A2 ∈ A(D̄) we have ρA(A1) = ρA(A2) if and only if
[[A1]] = [[A2]].

Proof By Proposition 41 ρA(A1) and ρA(A2) are well defined while, by
Lemma 40, we have [[A1]] = [[ρA(A1)]] and [[A2]] = [[ρA(A2)]] and both ρA(A1)
and ρA(A2) are in semantic normal form. Thus ρA(A1) = ρA(A2) if and only
if A1 and A2 have the same normal form. By Theorem 39 this is equivalent
to [[A1]] = [[A2]]. 2

The situation here is almost identical to the one of Definition 25, in that
we have a domain-independent strong normal form also for the present class
of constraints (i.e., agents) incorporating the notion of dependency.

Definition 43 (Elements.) The elements of A(D̄) are the fixed points
of the inference map ρA. The set of elements of A(D̄) will be denoted by
|A(D̄)|. Thus

|A(D̄)| def=
{
A ∈ A(D̄)

∣∣ ρA(A) = A
}
.

We are now in position to introduce a new class in our hierarchy of con-
straint systems. Again we present only the finite fragment of the constraint
system. Here, the finite elements are precisely the finite cc agents in |A(D̄)|.

Definition 44 (Ask-and-tell constraint system.) Given a constraint
system D̄ = 〈D,⊗,⊕,0,1, {∃̄̄∃X̄}, {dX̄Ȳ }〉, let A = |A(D̄)|. Then let 0A,1A ∈
A, and ⊗A : A×A → A be given, for each A1, A2 ∈ A, by

0A

def= 1→ 0,

1A

def= 1→ 1,

A1 ⊗A A2
def= ρA(A1 ‖A2).

The projection operators ∃̄̄∃A

X̄ : A → A are given, for each X̄ ⊆f Vars and
A ∈ A, by

∃̄̄∃A

X̄ A
def= ρA

(
A | X̄

)
,

66 Chapter 3. A Hierarchy of Constraint Systems

where

A | X̄ def=

(∃̄̄∃X̄ Ca → ∃̄̄∃X̄ Ct)
∣∣∣∣∣∣∣
(Ca → Ct) ∈ A((

1→ ∃̄̄∃X̄ Ca
)
⊗A A

)
`A

(
1→ Ca

)
.

Finally, let ⊕A : A×A → A be an operator satisfying the conditions G2 and
G4 of Definition 7. For any indexed family {dA

X̄Ȳ
}X̄,Ȳ ∈Vars? of elements of

A, we will call 〈
A(D̄),⊗A,⊕A,0A,1A, {∃̄̄∃

A

X̄}, {dA

X̄Ȳ }
〉

an ask-and-tell constraint system over D̄ and ⊕A.

Notice that, as far as the diagonal elements are concerned, we have left
complete freedom. This is because, in an ask-and-tell construction, the
induced diagonals dA

X̄Ȳ
= 1 → dX̄Ȳ are not necessarily a good choice (see

Section 3.6.3 for a simple example).
The projection operators are indeed quite complicated. The problem

originates from the requirement N3 of the normal form of Definition 38. This
requirement enforces the need of the absorption rule in the calculus. The
rule, by strengthening the ask-constraint of pairs, introduces “false depen-
dencies”. Consider, for instance, a constraint system where elements include
the finite subsets of { p(X), q(X), r(X) | X ∈ Vars } and the operators ⊗
and ⊕ are set union and intersection, respectively. The non-normalized cc
agent over this constraint system

A = 1→ {q(Y)} ‖ {p(X)} → {r(X), q(Y)}

is normalized, by means of the absorption rule, to

A′ = 1→ {q(Y)} ‖ {p(X), q(Y)} → {r(X), q(Y)}.

The absorption rule has thus introduced the dependency of r(X) from q(Y),
which is indeed false in the context of A′ (as it was in the context of A).
A definition of the projection operators not taking into account this phe-
nomenon would cause the inaccurate result ∃̄̄∃A

X A
′ = 1A. The projection

operators given in Definition 44, instead, recognize the false dependency by
noting that

{p(X)} = ∃̄̄∃X{p(X), q(Y)}

is, in the context of A′, equivalent to {p(X), q(Y)}, that is

1→ {p(X)} ‖A′ `A 1→ {p(X), q(Y)}.

3.6. Ask-and-Tell Constraint Systems 67

1

~~~~~~~~

@@@@@@@@

a1

}}}}}}}}

@@@@@@@@ a2

~~~~~~~~

AAAAAAAA

t1

@@@@@@@ a

��������

???????? t2

~~~~~~~

b1

??????? b2

�������

0

The agent
(
a1 → t1 ‖ a2 → t2

)
is normalized. However, even though(

a1 → t1 ‖ a2 → t2
)
`A (a→ 0),

we have

(a1 → t1) 0A (a→ 0)

and

(a2 → t2) 0A (a→ 0).

Figure 3.3: The semantic normal form does not help deciding the entailment.

We can thus obtain the expected result ∃̄̄∃A

X A
′ = {p(X)} → {r(X)}. We

will see in a moment other problems provoked by the absorption rule and,
in turn, by the normal form we employ for agents.

It is interesting to notice that the semantic normal form, while making
the task of recognizing equivalent agents trivial (they are equivalent if and
only if they have exactly the same pairs), is not so useful in order decide
when an agent entails another one. An intuitive explanation of this fact is
due to Enea Zaffanella, and it is given in Figure 3.3.

Theorem 45 If D̄ is a constraint system, so is〈
|A(D̄)|,⊗A,⊕A,0A,1A, {∃̄̄∃

A

X̄},dA

X̄Ȳ

〉
.

Proof An ask-tell pair is a constraint by virtue of point (3) in Definition 5,
viewing ‘→’ as a binary (meta-level) predicate. Thus condition G0 is true



68 Chapter 3. A Hierarchy of Constraint Systems

by point (2) of the same definition. 〈A(D̄),⊗A,1A〉 is immediately verified
being a commutative and idempotent monoid with zero element 0A, thus sat-
isfying axioms G1 and G3. The requirements G2, G4, and G5 are immediate
consequences of the definition of ask-and-tell c.s. 2

3.6.1 Merge Operators

Even though the ask-and-tell construction is parameterized with respect to
a merge operator, it is possible to induce such an operator from the one
of the base-level constraint system. Since this is a problematic point we
proceed with care.

Suppose that the base-level constraint system D̄ is a lattice. Thus kernel
operators over D̄ form again a lattice, where the lub is given, for k1 and k2

kernel operators and for each C ∈ D, by

(k1 t k2)(C) def= k1(C)⊕ k2(C), for C ∈ D, (3.21)

whose fixed points are

(k1 t k2)(D) =
{
C1 ⊕ C2

∣∣ C1, C2 ∈ k1(D) ∪ k2(D)
}
.

In terms of kernel operators, as pointed out in [Sar93], this can be thought
of as a kind of determinate disjunction: k1 t k2 gives, on any input C,
the strongest common information between k1 and k2. The computational
significance of this concept has been first recognized in [VSD92a], where de-
terminate disjunction allows for significant improvements in some constraint
propagation algorithms.

The problem is that, even when k1 and k2 are represented by finite cc
agents A1 and A2, namely k1 = AK1 and k2 = AK2 , we have no guarantees
whatsoever that k1tk2 is representable by a finite cc agent.12 In other words,
(syntactic) finite cc agents are not, in general, closed under the (semantic)
lub operation. As a consequence, we must content ourselves with upper
bounds (unless we are willing to enrich our representation language with
a construct like A1 + A2 expressing determinate disjunction, and we are
not). Observe that the very precise effect of (3.21) can be obtained (at a
consequently high cost) by applying a powerset construction (Section 3.5)
to the ask-and-tell constraint system considered. This way, when merging
two (non-redundant) agents we will keep both of them, thus realizing, in
practice, the ‘+’ construct mentioned above. If we do that, obviously, there
is no need at all to define a merge operator at the ask-and-tell level.

12For the interested reader: consider a constraint system with distinct elements {0,1}∪
{Ci}i∈N0 and such that Ci ` Cj if and only if 1 ≤ i ≤ j. The lub of 1→ C0 and 1→ C1 is
not expressible by a finite cc agent. The same happens if the ordering is such that Ci 0 Cj
for all i and j.



3.6. Ask-and-Tell Constraint Systems 69

In our general situation, the base-level constraint system D̄ might not
be a lattice, and (3.21) might not define a kernel operator. In these cases,
an upper bound on the poset of kernel operators over D̄ can be given as

(k1 t̃ k2)(C) def= C ⊗
(
k1(C)⊕ k2(C)

)
, for C ∈ D, (3.22)

which, still, is not guaranteed to correspond to any finite cc agent over D̄.
We stress again that our non-commitment to lattices in the general def-

inition of constraint systems (Section 3.2.3) is not merely dictated by the
desire of freely managing the complexity/precision tradeoff. In cases like the
one at hand we have no other sensible choice due to representation problems.

Our study of computable merge operators starts with a simple operation
merging two (not necessarily normalized) agents into one. This is done,
roughly speaking, by taking the meet of the ask constraints, and the merge
of the tell constraints.

Definition 46 (Merge operator over agents.) Consider a constraint
system D̄ = 〈D,⊗,⊕,0,1, {∃̄̄∃X̄}, {dX̄Ȳ }〉, and any two finite cc agents over
D̄ in syntactic normal form:

A1 = ‖ni=1C
a
i → Cti and A2 = ‖mj=1D

a
j → Dt

j .

Then

A1 ⊕̃A A2
def=

n

‖
i=1

m

‖
j=1

(Cai → Cti ) ⊕̃A (Da
j → Dt

j), (3.23)

where, if we define Caij
def= Cai ⊗Da

j and Ctij
def= Cti ⊕Dt

j, we have

(Cai → Cti ) ⊕̃A (Da
j → Dt

j)
def={

1A, if Caij ` Ctij;
Caij → (Caij ⊗ Ctij), otherwise.

(3.24)

It is easy to see that this syntactic operation corresponds, at the semantic
level, to an upper bound.

Proposition 47 If A1 and A2 are as stated in Definition 46, then A1 ⊕̃AA2

is in syntactic normal form. Furthermore, we have both [[A1]] ⊆ [[A1 ⊕̃A A2]]
and [[A2]] ⊆ [[A1 ⊕̃A A2]], that is, A1 `A A1 ⊕̃A A2 and A2 `A A1 ⊕̃A A2.

Proof Preservation of syntactic normal form is clearly guaranteed in (3.24).
Then, for each i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, we have Cai ⊗Da

j ` Cai ,
which implies ↓(Cai ⊗ Da

j ) ⊆ ↓Cai , that is ↓Cai ⊆ ↓(Cai ⊗Da
j ). Similarly,

from the correctness of the base-level merge operator, namely Cti ` Cti ⊕Dt
j ,



70 Chapter 3. A Hierarchy of Constraint Systems

we get ↓Cti ⊆ ↓(Cti ⊕ Dt
j). Combining these two relations we obtain, for

each i and j,

↓Cai ∪ ↓C
t
i ⊆ ↓(Cai ⊗Da

j ) ∪ ↓(Cti ⊕Dt
j),

and thus, for each i ∈ {1, . . . , n},

↓Cai ∪ ↓C
t
i ⊆

m⋂
j=1

(
↓(Cai ⊗Da

j ) ∪ ↓(Cti ⊕Dt
j)
)
,

whence

[[A1]] =
n⋂
i=1

[[Cai → Cti ]]

⊆
n⋂
i=1

[[
‖mj=1C

a
i ⊗Da

j → Cti ⊕Dt
j

]]
= [[A1 ⊕̃A A2]]

follows. A symmetric argument proves that [[A2]] ⊆ [[A1 ⊕̃A A2]]. 2

We now have an obvious merge operator that is completely determined
by the underlying, base-level constraint system.

Definition 48 (Canonical ask-and-tell merge operator.) Let us de-
fine A def= |A(D̄)|. The operator ⊕̂A : A×A → A given, for each A1, A2 ∈ A,
by

A1 ⊕̂A A2
def= ρA(A1 ⊕̃A A2)

is called the canonical merge operator over A induced by D̄.

Notice that canonical ask-and-tell constraint systems subsume their base-
level c.s., where only “tells” are considered. In fact we have η(C1)⊗A

η(C2) =
η(C1 ⊗ C2) and η(C1) ⊕̂A

η(C2) = η(C1 ⊕ C2).
Unfortunately, the canonical merge operator turns out to be inaccurate,

due to the normal form employed for agents. Consider the ask-and-tell
construction applied to the Con domain of Section 3.4.1, and the agents in
normal form13

A1
def= 1→ Z ‖XZ → XY Z and A2

def= X → XY.

It easy to see that the canonical merge operator gives

A1 ⊕̂A A2
def= ρA(A1 ⊕̃A A2) = XZ → XY Z.

13For simplicity we use juxtaposition instead of the usual set notation.



3.6. Ask-and-Tell Constraint Systems 71

If we consider the non-normalized agent A′1 = 1→ Z ‖X → XY Z, we have
[[A′1]] = [[A1]] but ρA(A′1 ⊕̃A A2) = X → XY , which is strictly stronger than
A1 ⊕̂A A2.

The problem can be tracked down, as in the case of the projection oper-
ators, to the introduction, by means of the absorption rule, of “unnecessary
dependencies” needed to satisfy condition N3 of the semantic normal form.
However, while for projection operators we had a standard solution, here
the situation is more difficult. Moreover, looking at the example above, one
is caught by the doubt that, perhaps, the choice of the normal form of Defi-
nition 38 was a poor one, since it is based on maximal strengthening of both
tell and ask constraints. We are thus lead to the following question:

Does there exist an alternative normal form for finite cc agents
that is based on maximal strengthening of tell constraints and
maximal weakening of ask constraints?

We might tentatively go as follows. Consider a Noetherian constraint sys-
tem D̄ and an agent A = ‖ni=1C

a
i → Cti over D̄ in semantic normal form

(Definition 38). For each j ∈ {1, . . . , n}, let the agent A−j be given by

A−j
def=

n

‖
i=1
i6=j

Cai → Cti ,

and define the set of constraints

Dj
def= Ω`D

({
C ∈ D

∣∣ [[C → Ctj ‖A−j
]]

= [[A]]
})
.

In words, for each ask-tell pair in the original agent A, we consider the
set of minimal constraints that can be substituted in the ask part without
changing the semantics of A. Observe that, for each j = 1, . . . , n, either
Dj = {Caj } or Dj contains only incomparable constraints strictly weaker
than Caj . Whenever the base-level constraint system D̄ is such to ensure
that all the Dj ’s so obtained will always be finite, then the answer to the
above question is positive, and the normal form of A (in this new sense) is
given by

n

‖
j=1

‖
C∈Dj

C → Ctj .

Such a normal form would give us, in the same spirit of Definition 48, a very
precise merge operator while allowing for a simplification of the projection
operators. However, even in the cases where this normal form exists, we
remain with the problem of computing it. This requires something very
different from the rewriting system of Figure 3.2, as we will need mechanisms
for



72 Chapter 3. A Hierarchy of Constraint Systems

1. weakening constraints (now we only strengthen them), and

2. splitting ask-tell pairs (now we only combine them).

Moreover, while our current rewriting system is local, in that each rewriting
depends on only two pairs, computing the new normal form requires looking
at all the agents being normalized. This, together with the fact that splitting
can give rise to an exponential number of new pairs, could push us beyond
polynomial complexity.

While this is certainly a subject for further study, we now give a general
way of defining merge and widening operators for the ask-and-tell construc-
tion that are more precise than the canonical merge operator. First of all,
let us deal with the problem of constraints’ weakening.

Definition 49 (Weakening.) An operation } : D → D on a constraint
system D̄ = 〈D,⊗,⊕,0,1, {∃̄̄∃X̄}, {dX̄Ȳ }〉 that satisfies for each C1, C2 ∈ D:

Q1. (C1 } C2)⊗ C1 = C1,

Q2. (C1 } C2)⊗ C2 = C1 ⊗ C2,

Q3. (C1 } C2)} C2 = C1 } C2,

is said a weakening operator for D̄.

The intuitive explanation of this axiomatization is as follows. Condition
Q1, which can be restated as C1 ` C1 } C2, means that the weakening
operation is correct (it does not add anything). Condition Q2 states that
weakenings are not too aggressive: a weakened constraint can be restored
by adding what was taken out. Q3 says that taking out twice the same
thing is pointless. Observe that these conditions are very weak, while being
sufficient for what follows.

A class of powerful weakening operators is defined next.

Definition 50 (Best weakening operator.) A weakening operator over
a constraint system D̄ is a best weakening if and only if, for each C1, C2 ∈ D,

Q4. ∀C ∈ D : C ⊗ C2 = C1 ⊗ C2 =⇒ C ` (C1 } C2).

Notice that conditions Q2 and Q4 are sufficient to define best weakenings,
as Q1 and Q3 necessarily follow. Best weakenings are also monotonic on the
first argument and anti-monotonic on the second one.14

14The connection between our weakenings and the class of weak relative pseudo-
complements over meet-semilattices, recently introduced in [GPR95], needs to be studied.



3.6. Ask-and-Tell Constraint Systems 73

Example 51 (Weakening over intervals.) Consider a domain for nu-
merical bounds analysis based on intervals. For instance, take the simple
constraint system of Section 3.3.4, restricted to the intervals component,
and apply to it the determinate c.s. construction. A weakening operator can
be defined along the following lines, considering, for simplicity, only closed
intervals:

[ l1, u1 ]} [ l2, u2 ] def= [ l, u ],

where

l
def=
{
−∞, if l1 ≤ l2;
l1, otherwise;

and u
def=
{

+∞, if u1 ≥ u2;
u1, otherwise.

Such an operator is easily verified being a weakening. It is also monotonic
on the first argument and anti-monotonic on the second one. All these extra-
properties, however, are not necessary for what follows.

The following lemma is useful for what follows.

Lemma 52 Let } be a weakening over a c.s. D̄. For each C1, C2 ∈ D, if
C ∈ D is such that C ` C2 and C 0 C1, then C 0 (C1 } C2).

Proof Suppose that C ` C2, C 0 C1, and C ` (C1 } C2). In other words,
we have C ⊗ C2 = C, C ⊗ C1 6= C, C ⊗ (C1 } C2) = C, and, by axiom Q2,
(C1 } C2)⊗ C2 = C1 ⊗ C2. So,

C ⊗ C2 =
(
C ⊗ (C1 } C2)

)
⊗ C2

= C ⊗
(
(C1 } C2)⊗ C2

)
= C ⊗ (C1 ⊗ C2)
= (C ⊗ C2)⊗ C1

= C ⊗ C1

6= C,

thus reaching the absurd conclusion C 0 C2. 2

We are now in position to define a class of procedures for weakening
the ask constraints of finite cc agents while preserving the semantics. As
this operation is somewhat opposite to the absorption rewrite rule of our
rewriting system, we call it de-absorption. This involves the possibility of
splitting ask-tell pairs.

Definition 53 (De-absorption step.) Let A = ‖ni=1C
a
i → Cti be an agent

in syntactic normal form over a c.s. D̄, and let } be a weakening over D̄.
Then A′ is obtained from A by means of a de-absorption step based on



74 Chapter 3. A Hierarchy of Constraint Systems

} if and only if h, k ∈ {1, . . . , n} are such that Cah ` Cak , the condition
Cah 6= (Cah } C

t
k)⊗ Cak holds, and

A′ =
(
(Cah } C

t
k)⊗ Cak → Cth

)
‖A.

Observe that any de-absorption step results in the strict weakening of an
ask constraint. In fact, we have Cah ` (Cah } C

t
k) by Q1, and Cah ` Cak by

hypothesis, thus Cah  (Cah } C
t
k)⊗ Cak .

Lemma 54 If an agent A′ is obtained by a de-absorption step from A, then
[[A′]] = [[A]].

Proof In the hypotheses of Definition 53, let Da
h

def= (Cah } C
t
k) ⊗ Cak . We

will prove that semantics is locally preserved, namely

[[Cah → Cth ‖ Cak → Ctk]] = [[Da
h → Cth ‖ Cak → Ctk]].

From the hypotheses we have Cth  Cah ` Cak and Cth  Da
h ` Cak . We can

thus derive the following facts:

• since Cth  C
a
k we have ↓Cth ⊂ ↓Cak and ↓Cth ∩ ↓Cak = ∅;

• since Cah ` Cak we have ↓Cak ⊆ ↓Cah and ↓Cah ∩ ↓Cak = ↓Cak ;

• similarly, from Da
h ` Cak we have ↓Da

h ∩ ↓Cak = ↓Cak ;

• since Cth  C
a
h we have ↓Cth ⊂ ↓Cah and ↓Cth ∩ ↓Cah = ∅;

• similarly, from Cth  D
a
h we have ↓Cth ∩ ↓Da

h = ∅;

• since Ctk  C
a
k we have ↓Ctk ⊂ ↓Cak and ↓Ctk ∩ ↓Cak = ∅.

These allow us to state that

[[Cah → Cth ‖ Cak → Ctk]] =
(
↓Cah ∪ ↓C

t
h

)
∩
(
↓Cak ∪ ↓C

t
k

)
=

(
↓Cah ∩ ↓Cak

)
∪
(
↓Cah ∩ ↓C

t
k

)
∪(

↓Cth ∩ ↓Cak
)
∪
(
↓Cth ∩ ↓Ctk

)
= ↓Cak ∪

(
↓Cah ∩ ↓C

t
k

)
∪
(
↓Cth ∩ ↓Ctk

)
= ↓Cak ]

(
↓Cah ∩ ↓C

t
k

)
]
(
↓Cth ∩ ↓Ctk

)
,

and, by the same reasoning,

[[Da
h → Cth ‖ Cak → Ctk]] = ↓Cak ]

(
↓Da

h ∩ ↓C
t
k

)
]
(
↓Cth ∩ ↓Ctk

)
,

where ] denotes disjoint union. Since Cah  D
a
h implies(

↓Cah ∩ ↓C
t
k

)
⊇
(
↓Da

h ∩ ↓C
t
k

)
,



3.6. Ask-and-Tell Constraint Systems 75

what we are left to show is that(
↓Cah ∩ ↓C

t
k

)
⊆
(
↓Da

h ∩ ↓C
t
k

)
,

that is to say ∀C ∈ D : (C ` Ctk ∧ C 0 Cah) =⇒ C 0 Da
h. Now Lemma 52

comes in handy, as from C ` Ctk and C 0 Cah we can derive C 0 (Cah } C
t
k)

and thus C 0 (Cah } C
t
k)⊗ Cak = Da

h. 2

We now define the promised class of procedures.

Definition 55 (De-absorption procedure.) A de-absorption procedure
is any algorithm transforming a finite cc agent in syntactic normal form,
such that it can be characterized as follows:

Phase 1. Transform the input agent A into A′ by performing any number
of de-absorption steps;

Phase 2. Transform A′ into the output agent A′′ by applying the rewriting
system of Figure 3.2 restricted to the structural and reduction rules.

A de-absorption procedure will be called maximal if it applies all the possible
de-absorption steps.

It is now possible to prove the following result.

Theorem 56 Any de-absorption procedure preserves the semantics of agents.

Proof Immediate from Lemma 54 and Lemma 40. 2

In all those cases where we have a de-absorption procedure that is a
function over |A(D̄)| we have an obvious way to define a merge operator:
by applying the syntactic merge operator of Definition 48 to de-absorbed
agents.

Definition 57 (Merge operator with de-absorption.) Let D̄ be a con-
straint system and δ} : |A(D̄)| → A(D̄) be a de-absorption procedure. The
merge operator based on δ} is given, for each A1, A2 ∈ |A(D̄)|, by

A1 ⊕̇A A2
def= ρA

(
δ}(A1) ⊕̃A δ}(A2)

)
.

Any such operator, by virtue of Theorem 56 and Proposition 47, is clearly a
merge operator in the sense of Definition 7. De-absorption procedures that
are not functions are still useful for designing widening operators.

We now quickly show some examples of ask-and-tell constraint systems.
For the more exciting things we have to wait until the next section, where
combination of constraint domains are introduced.



76 Chapter 3. A Hierarchy of Constraint Systems

3.6.2 More Bounds and Relations Analysis for Numeric Do-
mains

Ask-and-tell constraint systems are suitable for modeling approximate in-
ference techniques that are very useful in a practical setting. Following
Section 3.3.4, there is another technique that is used for the analysis de-
scribed in Chapter 5: relational arithmetic [Sim86]. This technique allows
to infer constraints on the qualitative relationship of an expression to its ar-
guments. Consider the simple constraint system of Section 3.3.4, and apply
to it the determinate construction of Section 3.4. Now apply the ask-and-
tell construction to the result. Relational arithmetic can be described by a
number of (concurrent) agents. Here are some of them, where x and y are
arithmetic expressions, and ./ ranges in R

def= {=, 6=,≤<,≥, >}:

ask(x ./ 0)→ tell
(
(x+ y) ./ y

)
ask(x > 0 ∧ y > 0 ∧ x ./ 1)→ tell

(
(x ∗ y) ./ y

)
ask(x > 0 ∧ y < 0 ∧ x ./ 1)→ tell

(
y ./ (x ∗ y)

)
ask(x > 0 ∧ y < 0 ∧ x ./ −y)→ tell

(
−1 ./ (x/y)

)
ask(x ./ y)→ tell(ex ./ ey)

An example of inference is deducing that X + 1 ≤ Y + 2X + 1 from the
hypotheses X ≥ 0 and Y ≥ 0. Notice that there is no restriction to linear
constraints.

3.6.3 Definiteness Analysis: Def

The prototypical example of data-flow analysis taking advantage of depen-
dency information is definiteness analysis. In our setting a domain for defi-
niteness can be obtained as follows. Take the atomic s.c.s. of Section 3.3.1.
Apply to it the determinate construction as outlined in Section 3.4.1. Now
apply the ask-and-tell construction to the result, with the merge operator
obtained along the lines of Definition 57 choosing:

1. diagonal elements like15

dA
XY

def= {X} → {X,Y } ‖ {Y } → {X,Y };

2. set-theoretic difference as weakening operator;

3. the maximal de-absorption procedure (i.e., the one that applies all the
possible de-absorption steps).

15Here only in the monadic case, for simplicity.



3.7. Combination of Domains 77

It can be shown that the domain so obtained is Def [Dar91, AMSS]. Its
elements can keep track of non-trivial dependencies like the ones induced
by symbolic and numeric constraints. For example, the dependencies of
A = f(B,C) and A+B + C = 0 are captured, respectively, by the agents

{A} → {B,C} ‖ {B,C} → {A},

and

{A,B} → {C} ‖ {A,C} → {B} ‖ {B,C} → {A}.

This example gives us the possibility of pointing out that the entire busi-
ness of weakenings and de-absorption procedures is not something we can
easily avoid. When using definite sentences to represent dependencies, as
in our case and in the representations for Def studied in [AMSS], obtain-
ing a maximal weakening of the antecedents is crucial for obtaining precise
merge operators, let alone for computing the join when it exists. Our present
requirement of employing maximal de-absorption corresponds to the require-
ment, in the representations studied in [AMSS], of the sentences being in
orthogonal form (which has its costs, since orthogonality must be obtained
and preserved by all the domain’s operations). In [AMSS] a merge operator
is also presented, for the representation RCNFDef, intended to trade preci-
sion for efficiency. It does that by not insisting on orthogonality, which in
our setting corresponds to the use of a partial de-absorption procedure.

3.6.4 Definiteness Analysis: More than Pos

Pos is (like Def ) a domain of boolean functions [CFW91, AMSS]. It consists
precisely of those functions assuming the true value under the everything-
is-true assignment. In [AMSS] it is shown that Pos is strictly more precise
than Def for groundness analysis. If we apply the powerset construction
of Section 3.5 to the ask-and-tell c.s. of the previous section we obtain a
very precise (and complex) domain for simple dependencies. In [GR96] it
is referred to as 0(Def) (where 0 denotes disjunctive completion) and is
shown to be equivalent to 0(Pos). On the other hand, in [FR94] it has
been shown that 0(Pos) is strictly more precise than Pos, even though this
extra-precision is not needed for definiteness analysis.

3.7 Combination of Domains

It is well-known that different data-flow analyses can be combined together.
In the framework of abstract interpretation this can be achieved by means
of standard constructions such as reduced product and down-set completion
[CC79, CC92a]. The key point is that the combined analysis can be more
precise than each of the component ones for they can mutually improve



78 Chapter 3. A Hierarchy of Constraint Systems

each other. However, the degree of cross-fertilization is highly dependent
on the degree and quality of interaction taking place among the component
domains.

We now propose a general methodology for domain combination with
asynchronous interaction. The interaction among domains is asynchronous
in that it can occur at any time, or, in other words, it is not synchronized
with the domain’s operations.

This is achieved by considering ask-and-tell constraint systems built over
product constraint systems. These constraint systems allow to express com-
munication among domains in a very simple way. They also inherit all the
semantic elegance of concurrent constraint programming languages, which
provide the basis for their construction. Recently, a methodology for the
combination of abstract domains has been proposed in [CLV94], which is
directly based on low-level actions such as tests and queries. While the ap-
proach in [CLV94] is immediately applicable to a wider range of analyses
(including the ones dealing with non-monotonic properties) the approach
we follow here for our restricted set of analyses has the merit of being much
more elegant.

We start with a finite set of constraint systems each expressing some
properties of interest, and we wish to combine them so to as:

1. perform all the analyses at the same time; and

2. have the domains cooperate to the intent of mutually improving each
other.

The first goal is achieved by considering the product of the given constraint
systems.

3.7.1 Product Constraint Systems

The product construction over constraint systems is absolutely standard.

Definition 58 (Direct product of constraint systems.) Given a finite
family of constraint systems

D̄i = 〈Di,⊗i,⊕i,0i,1i, {∃̄̄∃
i
X̄}, {diX̄Ȳ }〉, for i = 1, . . . , n,

the product constraint system of D̄1, . . . , D̄n is the algebraic direct product
of D̄1, . . . , D̄n, and is denoted by

n∏
i=1

D̄i = 〈D×,⊗×,⊕×,0×,1×, {∃̄̄∃
×
X̄}, {d

×
X̄Ȳ
}〉.

Thus all the operations of a product c.s. are defined coordinate-wise and, in
particular, we have

〈C ′1, . . . , C ′n〉 `× 〈C ′′1 , . . . , C ′′n〉 ⇐⇒ ∀i = 1, . . . , n : C ′i ` C ′′i .



3.7. Combination of Domains 79

An alternative way of obtaining a product constraint system is to start from
a collection of simple constraint systems and then to apply the determinate
construction.

Definition 59 (Product of simple constraint systems.) The product
of a finite family of simple constraint systems,

Si = 〈Ci,`i,⊥i,>i〉, for i = 1, . . . , n,

is the structure given by
n∏
i=1

Si
def= 〈C×,`×,⊥×,>×〉,

where the product tokens are

C×
def=
{

(c1,>2, . . . ,>n)
∣∣ c1 ∈ C1

}
∪
{

(>1, c2,>3, . . . ,>n)
∣∣ c2 ∈ C2

}
...
∪
{

(>1, . . . ,>n−1, cn)
∣∣ cn ∈ Cn }

∪ {⊥×}.

The product entailment is defined as the least relation satisfying conditions
E1–E5 of Definition 23 and the following ones, for each C ∈ ℘f(C×):

π1(C) `1 c1 =⇒ C `× (c1,>2, . . . ,>n),
...

...
...

πn(C) `n cn =⇒ C `× (>1, . . . ,>n−1, cn).

Finally, ⊥×
def= (⊥1, . . . ,⊥n) and >×

def= (>1, . . . ,>n).

The product simple constraint system so obtained is to be used, together
with a suitable merge operator, as the given s.c.s. in the construction of
Definition 26. This yields a product constraint system.

Taking the product of constraint systems, we have realized the simplest
form of domain combination. It corresponds to the direct product construc-
tion of [CC79], allowing for different analyses to be carried out at the same
time. Notice that there is no communication at all among the domains.

However, as soon as we consider the ask-and-tell constraint system built
over the product, we can express asynchronous communication among the
domains in complete freedom. At the very least we would like to have the
smash product among the component domains. This is realized by the agent

n

‖
i=1

0i → 0×. (3.25)



80 Chapter 3. A Hierarchy of Constraint Systems

To say it operationally, the smash agent globalizes the (local) failure on any
of the component domains. This is the only domain-independent agent we
have.

Things become much more interesting when instantiated over particu-
lar constraint domains. In the CLP(R) system [JMSY92b] non-linear con-
straints (like X = Y ∗ Z) are delayed (i.e., not treated by the constraint
solver) until they become linear (e.g., until either Y or Z is constrained to
take a single value). In standard semantic treatments this is modeled in the
operational semantics by carrying over, besides the sequence of goals yet
to be solved, a set of delayed constraints. Constraints are taken out from
this set (and incorporated into the constraint store) as soon as they become
linear.

We believe that this can be viewed in an alternative way that is more
elegant, as it easily allows for taking into account the delay mechanism also
in the bottom-up semantics, and makes sense from an implementation point
of view. The basic claim is the following: CLP(R) has three computation
domains: Herbrand, R (well, an approximation of it), and definiteness.

In other words, it also manipulates, besides the usual ones, constraints
of the kind ground\(X), which is interpreted as the variable X being defini-
tively bound to a unique value. We can express the semantics of CLP(R)
(at a certain level of abstraction) with delay of non-linear constraints by
considering the ask-and-tell constraint system over the product of the above
three domains. In this view, a constraint of the form X = Y ∗Z in a program
actually corresponds to the agent

ask
(
ground\(Y ); ground\(Z)

)
→ tell(X = Y ∗ Z).

In fact, any CLP(R) user must know that X = Y ∗Z is just a shorthand for
that agent! (A similar treatment could probably be done for logic programs
with delay declarations.)

Obviously, this cannot be forgotten in abstract constraint systems in-
tended to formalize correct data-flow analyses of CLP(R). Referring back
to Sections 3.3.4 and 3.6.2, when the abstract constraint system extracts
information from non-linear constraints, for example with the agent

A = ask(Y > 0 ∧ Z > 0 ∧ Y ./ 1)→ tell
(
(Y ∗ Z) ./ Z

)
of relational arithmetic, you cannot simply let X = Y ∗Z stand by itself. By
doing this you would incur the risk of overshooting the concrete constraint
system (thus loosing soundness), which is unable to deduce anything from
non-linear constraints. The right thing to do is to combine the numeric
abstract constraint system with one for definiteness (by the product and the
ask-and-tell constructions) and using, instead of A, the agent

A′ = ask
(
ground](Y ); ground](Z)

)
→ A.



3.7. Combination of Domains 81

Beware not to confuse ground\(X) with ground](X). The first is the con-
crete one: X is definite if and only if ground\(X) is entailed in the current
concrete store. In contrast, having ground](X) entailed in the abstract con-
straint store at some program point, and assuming a correct definiteness
analysis, means that X is certainly bound to a unique value in the con-
crete computation at that program point. The converse, of course, does not
necessarily hold.

Let us see another example. The analysis described in [Han93] aims at
the compile-time detection of those non-linear constraints that will become
linear at run time. This analysis is important for remedying the limitation
of CLP(R) to linear constraints by incorporating powerful (and computa-
tionally complex) methods from computer algebra as the ones employed in
the RISC-CLP(Real) system [Hon93]. With the results of the above analysis
this extension can be done in a smooth way: non-linear constraints that are
guaranteed to become linear will be simply delayed, while only the other
non-linear constraints will be treated with the special solving techniques.
Thus, programs not requiring the extra power of these techniques will be
hopefully recognized as such, and will not pay any penalties. The analysis
of [Han93] is a kind of definiteness. One of its difficulties shows up when
considering the simplest non-linear constraint: X = Y ∗ Z. Clearly X is
definite if Y and Z are such. But we cannot conclude that the definiteness
of Y follows from the definiteness of X and Z, as we also need the condition
Z 6= 0. Similarly, we would like to conclude that X is definite if Y or Z
has a zero value. Thus we need approximations of the concrete values of
variables (i.e., bounds analysis), something that is not captured by com-
mon definiteness analyses while being crucial when dealing with non-linear
constraints. If we take the ask-and-tell construction over the product of a
constraint system for definiteness with a numerical one, we can solve the
problem. The concrete constraint X = Y ∗ Z would be abstractly compiled
into the agent

ask
(
ground](Y ) ∧ ground](Z)

)
→ tell

(
ground](X)

)
‖ ask(Y = 0;Z = 0)→ tell

(
ground](X)

)
‖ ask

(
ground](X) ∧ ground](Z) ∧ Z 6= 0

)
→ tell

(
ground](Y )

)
‖ ask

(
ground](X) ∧ ground](Y ) ∧ Y 6= 0

)
→ tell

(
ground](Z)

)
.

Of course, this is significantly more precise than the Def formula X ← Y ∧Z.
We have thus reconciled the two running examples of this chapter (nu-

merical bounds/relations and definiteness) by showing two examples of com-
bination. In fact, when analyzing CLP(R) programs, there is a bidirectional
flow of information: definiteness information is required for a correct han-
dling of delayed constraints and thus for deriving more precise numerical
patterns that, in turn, are used to provide more precise definiteness in-
formation. There is another obvious way in which numerical bounds and



82 Chapter 3. A Hierarchy of Constraint Systems

relations improve definiteness (and any other analysis, indeed): by excluding
computation paths that are doomed to fail (this is modeled in a domain-
independent way by the smash agent seen above). We are thus requiring
a quite complicated interaction between domains. It is even more compli-
cated if you consider that the numerical component we have sketched is the
combination (in the sense of the present section) of a domain for intervals
with one for arithmetic relationships (even though, for simplicity, it was not
presented in that way).

3.7.2 Approximating Built-ins Behavior

The techniques we propose are suitable for approximating the behavior of
several common built-ins. Consider, for instance, the functor/3 built-in.
Consider a product constraint system with four components: one for simple
types (for instance, the one of Section 3.3.2), one for definiteness, one in-
corporating numerical information (including at least signs, e.g., tokens of
the kind X ≥ 0, X > 0 and X = 0), and one involving symbolic, structural
information (e.g., the one of Section 3.4.2). Then, the (success) semantics
of functor(T, F, N) can be approximated easily and quite precisely by
means of the following finite agent over the product:

tell
(
symbolic(T ), atom(F ), ground(F )

)
‖ tell

(
integer(N), N ≥ 0, ground(N)

)
‖ ask

(
atom(T );N = 0;T = F

)
→ tell

(
atom(T ), ground(T ), N = 0, T = F

)
‖ ask

(
compound(T );N > 0;T 6= F

)
→ tell

(
compound(T ), N > 0, T 6= F

)
.

3.8 Conclusion and Future Work

We have shown a notion of constraint system that is general enough to
encompass both the concrete domains of computation of actual constraint
logic-based languages, and several of their abstract interpretations useful
for data-flow analysis. We have also shown how these constraint systems
are integrated within an appropriate framework for the definition of non-
standard semantics of constraint logic-based languages. Some significant
members of the introduced class of constraint systems have been presented,
together with construction techniques that induce a hierarchy of domains.
These domains have several nice features, both from a theoretical and an
experimental viewpoint.

In particular, we have proposed a general methodology for domain com-
bination with asynchronous interaction. In this kind of combination the
communication among domains can be expressed in a very simple way. The



3.8. Conclusion and Future Work 83

methodology also inherits all the semantic elegance of concurrent constraint
programming languages.

Ask-and-tell constraint systems have been satisfactorily implemented in
the China analyzer. Of course, since we strive (but not too much) for ef-
ficient analyzers, we have not implemented them exactly as described here.
We have, however, a firm theoretical basis on which to base our implemen-
tation tricks. We have also implemented domain combinations along the
lines of Section 3.7. In China, following an abstract compilation approach,
CLP(R) constraints are compiled into finite cc agents over a product of do-
mains for simple types, definiteness, numerical bounds and relations, and
generic patterns.

Future work includes studying in depth the problem of the semantic
normal form for finite cc agents, both in general and in particular cases.
The aim is to find more satisfactory solutions to the problem of merging
finite cc agents. We also would like to answer the following question: are
there variations of these ideas that are applicable also to analysis oriented
towards non-monotonic or “non-logical” properties (like variable sharing and
freeness)?



84 Chapter 3. A Hierarchy of Constraint Systems



Chapter 4

Structural Information
Analysis

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . 85

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . 89

4.3 Factoring Out Structural Information . . . . . . 91

4.4 Parametric Structural Analysis . . . . . . . . . . 94

4.5 Operations for the Analysis . . . . . . . . . . . . 96

4.5.1 Meet with Renaming Apart . . . . . . . . . . . . . 97

4.5.2 Unification with Occur-Check . . . . . . . . . . . . 97

4.5.3 Projection . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.4 Remapping . . . . . . . . . . . . . . . . . . . . . . 101

4.5.5 Join and Widenings . . . . . . . . . . . . . . . . . 102

4.5.6 Comparing Descriptions . . . . . . . . . . . . . . . 104

4.6 What if the Occur-Check is Omitted? . . . . . . 105

4.6.1 Unification without Occur-Check . . . . . . . . . . 107

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . 109

4.1 Introduction

It is important to make a clear distinction between the language CLP(H,
X ), where the Herbrand component H is completely separated from the do-
main X , and the language CLP(HX ), where H and X are somewhat amal-
gamated. Of course, CLP(H, X ) languages are simpler and less expressive,
though still useful. The simplicity come from the fact that interpreted terms
(arithmetic expression, for instance) are not allowed to occur as leaves of

85



86 Chapter 4. Structural Information Analysis

length([], 0).
length([H|T], N) :-

length(T, N-1).

Figure 4.1: List-length in CLP(H, N ).

Herbrand terms. A simple example program that is expressible in a lan-
guage of the kind CLP(H, N ), with N any numeric domain supporting
linear equations, is a reversible version of the Prolog list-length program: it
is given in Figure 4.1.

When interpreted terms are allowed to occur in Herbrand structures
more complex programs can be built. For instance, one can express un-
bounded lists where interpreted terms occur. The program in Figure 4.2
makes use of this possibility. It is a variant of a program from a paper
of Alain Colmerauer [Col90]. It solves a rather difficult problem: in the
wording of the cited paper, the program is a “program for filling a rectangle
of unknown shape by n squares of unknown but different sizes” (op. cit.,
p. 82).1

Independently of the need for “unbounded containers”, it is a common
CLP idiom to embed interpreted terms into Herbrand terms. As a final
example we reproduce in Figure 4.3 a fragment of a program for solving
intersection problems involving two solids.

The above discussion is motivated by the fact that several analysis meth-
ods presented in the literature, either assume a CLP(X ) or CLP(H, X )
language, or tolerate severe precision penalties when interpreted functors
occur as leaves of uninterpreted functors, or are rather evasive about how
the analysis technique presented is extended from CLP(X ) to CLP(HX ).

From the experience gained with the first prototype version of China

[Bag94] it was clear that, in order to attain a significant precision in the
analysis of numerical constraints in CLP(HN ) languages, one must keep at
least part of the uninterpreted terms in concrete form. Note that almost any
analysis is more precise when this kind of structural information is retained
to some extent: in our case the precision loss was just particularly acute.

Cortesi et al. [CLV93, CLV94] have a nice proposal in this respect. Us-
ing their terminology, they defined a generic abstract domain Pat(<) that
automatically upgrades a domain < (which must support a certain set of ele-
mentary operations) with structural information. Their approach is limited
to the analysis of logic programs, but this restriction can be easily removed.
However, the presentation in [CLV93] has several drawbacks. First of all,
they define a specific implementation of the generic structural domain. The
implementation is forcedly cluttered with details that make the general prin-

1The version in Figure 4.2 is due to Niels Jørgensen.



4.1. Introduction 87

fill_rectangle(A,N,C) :-
A >= 1,
all_different(N,C),
fill([1,0,0,A,1],C,_,[]).

all_different(0,[]).
all_different(N + 1,[[_,_,B]|T]) :-

N >= 0,
all_different(N,T),
different(B,T).

different(_,[]).
different(B,[[_,_,C]|T]) :-

B <> C,
different(B,T).

fill([Y0,X1,Y1|L],C,[Y0,X1,Y1|L],C) :-
Y0 <= Y1.

fill([Y0,X1,Y1|L],[[X1,Y1,B]|C],L3,C3) :-
Y0 > Y1,
Y1 + B <= 1,
place_square([X1,Y1|L],[X1 + B|L1]),
fill([Y1 + B,X1 + B|L1],C,L2,C2),
fill([Y0,X1|L2],C2,L3,C3).

place_square([_,Y1,X2,Y2|L],L1) :-
Y1 = Y2,
place_square([X2,Y2|L],L1).

place_square([_,_|L],L).
place_square([X1,Y1,X2|L],[X1e,Y1,X2|L]) :-

X1 < X1e,
X1e < X2.

Figure 4.2: The fill_rectangle program.



88 Chapter 4. Structural Information Analysis

%% Tests d’inclusion pour le solide primitif "sphere".
dedans((X,Y,Z), solide(sphere(Cx,Cy,Cz,R))) :-

(X-Cx)*(X-Cx) + (Y-Cy)*(Y-Cy) + (Z-Cz)*(Z-Cz) <= R*R.

%% Tests d’inclusion pour le solide primitif "cylindre".
dedans((X,Y,Z), solide(cylindre((X0,Y0,Z0),(X1,Y1,Z1),R))) :-

% vecteur directeur de l’axe de symetrie
Vx = X1-X0, Vy = Y1-Y0, Vz = Z1-Z0,
% le point (Xp,Yp,Zp) est sur l’axe de symetrie,...
Xp = Vx*T + X0,
Yp = Vy*T + Y0,
Zp = Vz*T + Z0,
% ... a l’interieur du cylindre...
T >= 0, T <= 1,
% ... et sur le plan orthogonal a l’axe contenant (X,Y,Z)
Vx*(X-Xp) + Vy*(Y-Yp) + Vz*(Z-Zp) = 0,
% contraindre le cylindre
(X-Xp)*(X-Xp) + (Y-Yp)*(Y-Yp) + (Z-Zp)*(Z-Zp) <= R*R.

Figure 4.3: A fragment of csg.clpr.

ciples difficult to understand. Moreover, they describe an implementation
of the pattern component (taking care of representing the terms in concrete
form) that appears to be unnecessarily complicated. Their representation
of terms and subterms, while responsible for some of the intricacies in the
description, does not seem to have any advantage, from the implementa-
tion point of view, with respect to more standard representations of terms
(such as those employed in the Warren’s Abstract Machine and its variants
[AK91]). As a consequence, standard notions from unification theory, such
as instance, anti-instance, and (least) common anti-instance [LMM88], are
never mentioned in [CLV93], while being implicitly present.

On the more technical side, Cortesi et al. assume explicitly that, during
the analysis, no cyclic pattern (term) will be generated. This assumption,
which is indeed standard, makes sense only if we pretend that the analyzed
language does not omit the occur-check in the unification procedure. Un-
fortunately, it is well-known that many implemented CLP(HX ) languages
(in particular, almost all Prolog systems) do omit the occur-check. The
real solution to this problem would be to consider the real concrete domain
implemented by the vast majority of systems: some kind of rational trees
[Col84], and not finite trees. This, however, is not guaranteed to preserve the
existing analysis frameworks and domains: everything ought to be recasted
and justified in terms of the “new” concrete domain.

In this chapter we present, for the first time, the rational construc-
tion of a generic domain for structural analysis of CLP(HX ) languages:
Pattern(D]HX ), where the parameter D]HX is an abstract domain satisfying



4.2. Preliminaries 89

certain properties. The formalization of the structural domain is indepen-
dent from specific implementation techniques: Pat(<) (slightly extended
and corrected) is a possible implementation of the domain. Reasoning at a
higher level of abstraction we are able to appeal to familiar notions of unifi-
cation theory. One advantage is that we can identify an important parame-
ter (a common anti-instance function, missing in [CLV93]) that gives some
control over the precision and computational cost of the resulting generic
structural domain. As far as the occur-check problem is concerned, we have
not been able, so far, to find a general solution that preserves the existing
analysis framework. More research is required on this subject. Nonetheless,
we will discuss some observations and partial solutions.

It must be stressed that the merit of Pat(<) is to define a generic im-
plementation that works on any domain < providing a certain set of ele-
mentary, low-level operations. It is particularly easy to extend an existing
domain in order to support the simple operations required. However, this
simplicity has a high cost in terms of efficiency: the execution of many iso-
lated small operations over the underlying domain is much more expensive
than performing few macro-operations where global effects can be taken into
account. The operations that the underlying domain must provide are thus
more complicated in our approach. This is not a limitation, if one considers
that in the actual implementation even more complex operations are used.
For instance, all the abstract bindings arising from a bunch of unifications
are executed in one shot, instead of one-at-a-time. See near the end of
Section 6.7 for more on this subject.

4.2 Preliminaries

We assume that our pervasive set of variable symbols, Vars, contains (among
others) two infinite, disjoint subsets: z and z′. Since Vars is totally ordered,
z and z′ are as well:

z def=
(
Z1, Z2, Z3, . . . (4.1)

z′ def=
(
Z ′1, Z

′
2, Z

′
3, . . . (4.2)

For any syntactic object o (a term or a tuple of terms) we will denote
by vseq(o) the sequence of first occurrences of variables that are found in a
depth-first, left-to-right traversal2 of o. For instance,

vseq
((
f(g(X), Y ), h(X)

))
= (X,Y ).

In order to avoid the burden of talking “modulo renaming” we will make
use of two strong normal forms for tuples of terms. Specifically, the set of

2Any other fixed ordering would be as good for our purposes.



90 Chapter 4. Structural Information Analysis

n-tuples in z-form is given by

Tn
z

def=
{
t̄ ∈ T nVars

∣∣∣ vseq(t̄ ) =
(
Z1, Z2, . . . , Z|vars(t̄ )|

)}
. (4.3)

All the tuples in z-form are contained in

T?
z

def=
⋃
n∈N

Tn
z . (4.4)

By replacing z with z′ and Zi with Z ′i in (4.3) and (4.4), we obtain similar
definitions for Tn

z′ and T?
z′ .

There is a useful device for toggling between z- and z′-forms. Let t̄ ∈
Tn

z ∪Tn
z′ and

∣∣vars(t̄ )
∣∣ = m. Then

t̄′
def=
{
t̄[Z ′1/Z1, . . . , Z

′
m/Zm], if t̄ ∈ Tn

z ;
t̄[Z1/Z

′
1, . . . , Zm/Z

′
m], if t̄ ∈ Tn

z′ .
(4.5)

Notice that t̄′′ def=
(
t̄′
)′ = t̄.

We will make use of a normalization function η : T ?Vars → T?
z such that,

for each t̄ ∈ T ?Vars , the resulting tuple η(t̄ ) ∈ T?
z is a variant of t̄.

Another renaming we will use is the following: for each s̄ ∈ T ?Vars and
each other syntactic object o such that FV (o) ⊂ z, we write %s̄(o) to denote

o[Zn+i1/Zi1 , . . . , Zn+im/Zim ],

where n =
∣∣vars(s̄)

∣∣ and {Zi1 , . . . , Zim} = vars(o). This device will be useful
for concatenating normalized term-tuples, still obtaining a normalized term-
tuple. In fact, for each s̄1, s̄2 ∈ T?

z we have

s̄1 :: %s̄1(s̄2) ∈ T?
z. (4.6)

When V̄ ∈ Varsm and t̄ ∈ T mVars we use
[
t̄/V̄

]
as a shorthand for the

substitution [
π1(t̄ )/π1(V̄ ), . . . , πm(t̄ )/πm(V̄ )

]
.

A couple of observations are useful for what follows. If s̄ ∈ T?
z and ū ∈

T|vars(s̄)|
z then

s̄′
[
ū/ vseq(s̄′)

]
∈ T?

z. (4.7)

Moreover

vseq
(
s̄′
[
ū/ vseq(s̄′)

])
= vseq(ū). (4.8)



4.3. Factoring Out Structural Information 91

4.3 Factoring Out Structural Information

A quite general picture for the analysis of a CLP(HX ) language is as follows.
We want to describe a (possibly infinite) set of constraint stores over a tuple
of variables of interest V1, . . . , Vk. These variables represent the arguments
of some program predicate. Each constraint store σ can be represented (at
some level of abstraction) by a formula of the kind

∃∆ .
(
{V1 = t1, . . . , Vk = tk} ∧ C

)
, (4.9)

such that

{V1 = t1, . . . , Vk = tk}, with t1, . . . , tk ∈ TVars , (4.10)

is a system of Herbrand equations in solved form, C ∈ D[X is a constraint
on the concrete domain of X , and

∆ def= vars(C) ∪ vars(t1) ∪ · · · ∪ vars(tk)

is such that ∆ ∩ {V1, . . . , Vk} = ∅. Roughly speaking, the purpose of C is
to limit the values that the (quantified) variables occurring in t1, . . . , tk can
take.

It must be stressed that the concrete semantics we are outlining, while
providing an adequate basis for many abstract interpretations, is “too ab-
stract” when the properties of interest concern the internal workings of
the Herbrand constraint solver. An example is structure-sharing analysis
[WW96], whose aim is to determine those structure cells (elementary ob-
jects used to represent terms) that are possibly shared by more than one
term representation. For example, the system

{V1 = f(a), V2 = f(a)} (4.11)

does not say anything about structure sharing: we might have a shared f/1
cell, or two distinct ones. In the latter case we might have a shared a/0
cell, or two distinct ones. Thus, there are a total of 3 cases that cannot
be distinguished by looking at (4.11), the obvious consequence being that
we cannot base structure-sharing analysis on a concrete domain made up of
representations like (4.9). Similar considerations apply to the choice of D[X .

Let us assume that we are dealing with analyses where the internal rep-
resentation of terms is irrelevant. Once variables V1, . . . , Vk have been
fixed, the Herbrand part of the constraint store (4.9), the system of equa-
tions (4.10), can be represented as a k-tuple of terms. Since we want to
characterize any set of constraint stores, our concrete domain is

D[HX
def=
⋃
n∈N

℘
(
Tn

z ×D[X
)
. (4.12)



92 Chapter 4. Structural Information Analysis

An abstract interpretation of D[HX can be specified by choosing an abstract
domain D]HX and a suitable abstraction function

α : D[HX → D
]
HX . (4.13)

If D]HX is able to encode enough structural (Herbrand) information from
D[HX so as to achieve the desired precision, fine. If this is not the case, it
is possible to improve the situation by keeping some structural information
explicit.

One way of doing that is to perform a change of representation for D[HX ,
which is the basis for further abstractions. The new representation is ob-
tained by factoring out some common Herbrand information. The meaning
of ‘some’ is encoded by a function.



4.3. Factoring Out Structural Information 93

℘
(
T?

z ×D[X
) α //

Φφ

��

D]HX

T?
z × ℘

(
T?

z ×D[X
)

(id,α)
// T?

z ×D
]
HX

α′

OO

Figure 4.4: Upgrading a domain with structural information.

Definition 60 (Common anti-instance function.) Any function

φ :
⋃
n∈N

℘(Tn
z )→ T?

z′

is called a common anti-instance function if it satisfies, for each n ∈ N and
each T̂ ∈ ℘(Tn

z ):

1. φ(T̂ ) ∈ Tn
z′;

2. if φ(T̂ ) = r̄ and
∣∣vars(r̄)

∣∣ = m with m ≥ 0, then

∀t̄ ∈ T̂ : ∃ū ∈ Tm
z . r̄

[
ū/ vseq(r̄)

]
= t̄.

In words, φ(T̂ ) is an anti-instance, in z′-form, of each t̄ ∈ T̂ .
Any choice of φ induces a function

Φφ : D[HX → T?
z × ℘

(
T?

z ×D[X
)
, (4.14)

which is given, for each Ê[ ∈ D[HX by

Φφ(Ê[) def=
(
s̄′,
{

(ū, D[)
∣∣∣ (t̄, D[) ∈ Ê[, s̄

[
ū/vseq(s̄)

]
= t̄
})

, (4.15)

where s̄ def= φ
(
π1(Ê[)

)
. The corestriction to the image of Φφ, that is Φφ : D[HX →

Φφ

(
D[HX

)
, is an isomorphism, the inverse being

Φ−1
φ

(
(s̄, F̂ [)

) def=
{(

s̄′
[
ū/vseq(s̄′)

]
, D[

) ∣∣∣ (ū, D[) ∈ F̂ [
}
. (4.16)

So far, we have just chosen a different representation for D[HX , that is
Φφ

(
D[HX

)
. The idea behind structural information analysis is to leave the

first component (also called the pattern component) of the new representa-
tion untouched, while abstracting the second component by means of α, as
illustrated in Figure 4.4. The dotted arrow indicates a residual abstraction
function α′. As we will see in Section 4.5.4, such a function is implicitly



94 Chapter 4. Structural Information Analysis

required in order to define an important operation over the new abstract
domain T?

z × D
]
HX . Notice that α′ may or may not make the diagram of

Figure 4.4 commute (although often α′ turns out to have this property).
This approach has several advantages. First of all, factoring out com-

mon structural information improves the analysis precision, since part of the
approximated k-tuples of terms is recorded, in concrete form, into the first
component of T?

z ×D
]
HX . Secondly, the above construction is adjustable by

means of the parameter φ. The most precise choice consists in taking φ to
be a least common anti-instance function. For example, the set

Ŝ
def=
{〈(

s(0), c(Z1, nil)
)
, C1

〉
,
〈(
s(s(0)), c(Z1, c(Z2, nil))

)
, C2

〉}
,

where C1, C2 ∈ D[X , is mapped by the Φlca function onto

Φlca(Ŝ) =
((
s(Z1), c(Z2, Z3)

)
,{〈

(0, Z1, nil), C1

〉
,
〈(
s(0), Z1, c(Z2, nil)

)
, C2

〉})
.

At the other side of the spectrum is the possibility of choosing φ so that
it returns a k-tuples of distinct, new variables for each set of k-tuples of
terms. This correspond to a framework where structural information is just
discarded. With this choice, Ŝ would be mapped onto(

(Z1, Z2), Ŝ
)
.

In-between these two extremes there are a number of possibilities that help
managing the complexity/precision tradeoff. The k-tuples returned by φ can
be limited in depth [ST84, MS88], for instance. More useful is to limit them
in width, that is, limiting the number of symbols’ occurrences. This flexibil-
ity allows to design the analysis’ domains without caring about structural
information: the problem is always to approximate elements of ℘

(
Ta

z×D[X
)
.

Whether a is fixed by the arity of a predicate or a is the number of variables
occurring in some pattern does not really matter.

4.4 Parametric Structural Analysis

In order to specify the abstract domain for the analysis, we need some
assumptions on the concrete X domain D[X , which represents the X -part of
consistent constraint stores. One can think about D[X as made up of first-
order sentences: the techniques described in Chapter 3 come in handy for
this purpose. In this view, the operator ⊗ : D[X × D[X → D[X corresponds
to logical conjunction. Moreover, we assume that it makes sense to talk
about the free variables of D[ ∈ D[X , denoted by FV (D[). Let s̄, t̄, ū ∈ T?

z



4.4. Parametric Structural Analysis 95

and D[, E[ ∈ D[X such that FV (D[) ⊆ vars(t̄ ). When we write (ū, E[) =
%s̄
(
(t̄, D[)

)
, we mean that ū = %s̄(t̄ ) and that E[ has been obtained from D[

by applying the same renaming applied to t̄ in order to obtain ū.
Another natural thing to do is projecting a satisfiable store: thus ∃V̄D[,

where V̄ is a tuple (or set) of variables, is assumed to be as defined.
The last thing we need is the ability of adding an equality constraint to a

constraint store. Thus D[[t1 = t2] is the store obtained from D[ by injecting
the equation t1 = t2, provided that the resulting store is consistent, otherwise
the operation is undefined. Notice that we assume D[X and its operations
encode both the proper X -solver and the so called interface between the
Herbrand engine and the X -solver [JM94]. In particular, the interface is
responsible for type-checking of the equations it receives. For example, in
CLP(R) the interface is responsible for the fact that X = a cannot be
consistently added to a constraint store where X was previously classified
as numeric.

We now turn our attention to the abstract domain that is the parameter
of the generic structural domain. We will denote it simply by D], instead of
D]HX . Thus, assuming that X has been fixed, D[X is indicated just by D[.

Since the aim here is maximum generality, we refer to a very weak ab-
stract interpretation framework.

Definition 61 (Abstract domain.) An abstract domain for HX is any
set D] equipped with a preorder relation v, an order preserving function

γ : D] → D[,

an upper-bound operator

⊕ : D] ×D] → D],

and a least element ⊥] such that γ(⊥]) = ∅.

Thus, for each D]
1, D

]
2 ∈ D], we have both

D]
1 v D

]
2 =⇒ γ(D]

1) ⊆ γ(D]
2), (4.17)

and

γ(D]
1 ⊕D

]
2) ⊇ γ(D]

1) ∪ γ(D]
2). (4.18)

The structural information construction upgrades any given abstract do-
main D] as follows.

Definition 62 (The Pattern(·) construction.) Let D] be an abstract do-
main. Then

Pattern(D]) def=
{

(s̄, D]) ∈ T?
z ×D]

∣∣∣ γ(D]) ⊆ T|vars(s̄)|
z ×D[

}
.



96 Chapter 4. Structural Information Analysis

The meaning of each element (s̄, D) ∈ Pattern(D]) is given by γ : Pattern(D])→
℘(T?

z ×D[):

γ
(
(s̄, D])

) def=
{(

s̄′
[
ū/ vseq(s̄′)

]
, D[

) ∣∣∣ (ū, D[) ∈ γ(D])
}
.

The following result is needed for what follows. It is a straight conse-
quence of Definition 62.

Proposition 63 Whenever (s̄, D]
1), (s̄, D]

2) ∈ Pattern(D])

γ(D]
1) ⊆ γ(D]

2) =⇒ γ
(
(s̄, D]

1)
)
⊆ γ

(
(s̄, D]

2)
)
.

4.5 Operations for the Analysis

In this section we define the operations over Pattern(D]) that are needed
for the analysis in a bottom-up framework. In order of appearance into the
analysis process:

• we need an operation that takes two descriptions and, roughly speak-
ing, juxtaposes them. This operation, which we call meet with renam-
ing apart, is needed when “solving” a clause body with respect to the
current interpretation.

• Unification, that realizes “parameter passing”. The descriptions that
were simply juxtaposed are thus made to communicate with each
other.

• When all the goals in a clause body have been solved, projection is
used to restrict the abstract description to the tuple of arguments of
the clause’s head.

• The operation of remapping is used to adapt a description to a dif-
ferent, less precise, pattern component. It is used in order to realize
various join and widening operations.

• The join operation is parameterized with respect to a common anti-
instance function. It is used to merge descriptions arising from the
different sets of computation paths explored during the analysis.

• The comparison operation is employed by the analyzer in order to
check whether a local (to a program clause or predicate) fixpoint has
been reached.

The above operations over Pattern(D]) induce the need for other oper-
ations on the underlying domain D]. The latter are specified in the next
sections so that the correctness of the analysis can be ensured.



4.5. Operations for the Analysis 97

4.5.1 Meet with Renaming Apart

This operation is very simple.

Definition 64 (The rmeet operation.) Let . : D] × D] → D] be such
that, for each D]

1, D
]
2 ∈ D],

γ(D]
1 . D

]
2) =  (r̄1 :: w̄2, D

[
1 ⊗ E[2)

∣∣∣∣∣∣∣
(r̄1, D

[
1) ∈ γ(D]

1)
(r̄2, D

[
2) ∈ γ(D]

2)
(w̄2, E

[
2) = %r̄1

(
(r̄2, D

[
2)
)
.

Then, for each (s̄1, D
]
1), (s̄2, D

]
2) ∈ Pattern(D]).

rmeet
(
(s̄1, D

]
1), (s̄2, D

]
2)
) def=

(
s̄1 :: %s̄1(s̄2), D]

1 . D
]
2

)
.

The following result is a direct consequence of the definition: there is no
precision loss in rmeet.

Theorem 65 For each (s̄1, D
]
1), (s̄2, D

]
2) ∈ Pattern(D]).

γ
(

rmeet
(
(s̄1, D

]
1), (s̄2, D

]
2)
))

=

 (t̄1 :: ū2, D
[
1 ⊗ E[2)

∣∣∣∣∣∣∣
(t̄1, D[

1) ∈ γ
(
(s̄1, D

]
1)
)

(t̄2, D[
2) ∈ γ

(
(s̄2, D

]
2)
)

(ū2, E
[
2) = %t̄1

(
(t̄2, D[

2)
)
.

4.5.2 Unification with Occur-Check

In this section we assume that the execution mechanism of the language be-
ing analyzed performs unifications without omitting the occur-check. With
this hypothesis (which, unfortunately, is seldom verified) we can easily com-
plete the unification algorithm given in [CLV93]. When the occur-check
fails in the abstract unification we know that the computation path be-
ing analyzed can be safely pruned, because the concrete unification would
have failed at that point, if not before. Notice that, for the purpose of the
present discussion, the occur-check need not be implemented explicitly, that
is by making the unification fail in the logic programming sense. Since our
data-flow analyses provide information of the kind

if control gets to this point, then that will hold there,

a more drastic handling of the occur-check is acceptable. If we are guar-
anteed that the concrete system enters either an error state or an infinite
loop whenever a cyclic binding is attempted, then the abstract unification



98 Chapter 4. Structural Information Analysis

procedure unify(s̄, D], t, u)
1: if t 6= u then
2: if t = f(t1, . . . , tn) and u = f(u1, . . . , un) then
3: for all i = 1, . . . , n do
4: unify(s̄, D], ti, ui)
5: else if t = Zh then
6: if Zh does not occur in u then
7: D] := bind(s̄, D], u, Zh) {invokes underlying domain}
8: Zh := u {instantiates all the occurrences of Zh}
9: s̄ := η(s̄) {normalization}

10: else
11: D] := ⊥]
12: else if u = Zk then
13: unify(s̄, D], u, t)
14: else
15: D] := ⊥]

Algorithm 1: Unification for the parametric structural domain.

procedure presented in this section can safely be used. We will discuss later
what can be done for those systems where the occur-check is, by any means,
omitted.

We start with a description (s̄, D]) ∈ Pattern(D]) and two terms to be
unified, t and u, such that

vars
(
(t, u)

)
⊆ vars(s̄).

We then apply the procedure unify, given as Algorithm 1, to s̄, D], t and u.

In the macro-operation bind(s̄, D], u, Zh), s̄ is passed only in order to
maintain the connection between the variables in (u, Zh) and the description
D]. We assume, without loss of generality, that whenever bind(s̄, D], u, Zh)
is invoked we have

∣∣vars(s̄)
∣∣ = m, with m ≥ 0.

The result of the operation will be a description D]
1 such that γ(D]

1) ⊆
Tm−1

z × D[. This is because, after the binding, Zh will not be referenced
anymore. What remains to be described is the operation of reflecting the
binding of Zh to u into D] so to obtain D]

1. We will denote this operation
by D][u/Zh], and present its variants (depending on whether u is a constant
or a number or a variable or a compound term) in the next sections.



4.5. Operations for the Analysis 99

Binding to a Constant or a Number

The result of D][k/Zh], where k is a symbolic constant or a number and
h ∈ {1, . . . ,m} is any D]

1 ∈ D] such that

γ(D]
1) ⊇

{(
(t1, . . . , th−1, th+1, . . . , tm), D[[th = k]

)∣∣∣ ((t1, . . . , tm), D[
)
∈ γ(D])

}
.

Notice that

vseq
(
s̄[k/Zh]

)
= (Z1, . . . , Zh−1, Zh+1, . . . , Zm).

Similar comments apply also to what follows.

Binding to an Alias

Here we must specify an admissible result, D]
1, for the operation D][Zi/Zh]

with i, h ∈ {1, . . . ,m} and i 6= h. In order to reduce the complexity of the
definition we need some special notation for sequences.

Let U be a set. We define the operation · \ · : U? × ℘f(U) → U? as
follows. For each sequence L ∈ U? and each set S ∈ ℘f(U), the sequence
L \ U is obtained by removing from L all the elements that appear in U .
Formally,

ε \ S def= ε;(
(x) :: L

)
\ S def=

{
L \ S, if x ∈ S;
(x) :: (L \ S), if x /∈ S.

Let us define τ(k) : {1, . . . ,m− 1} → {1, . . . ,m} as

τ(k) def= πk

(
(1, . . . , h− 1) ::

(
(i) \ {1, . . . , h− 1}

)
::
(
(h+ 1, . . . ,m) \ {i}

))
.

The transformation τ is such that, for each k = 1, . . . , m− 1,

πk

(
vseq

(
s̄[Zi/Zh]

))
= Zτ(k).

Now, D]
1 must satisfy

γ(D]
1) ⊇

{((
πτ(1)(t̄ ), . . . , πτ(m−1)(t̄ )

)
, D[

[
πh(t̄ ) = πi(t̄ )

])
∣∣∣∣ (t̄, D[) ∈ γ(D])

}
.



100 Chapter 4. Structural Information Analysis

Binding to a Compound

Specifying the result of the operation D][u/Zh] is only slightly more com-
plicated. Suppose that

vseq(u) =
(
Zj1 , . . . , Zjl

)
,

so that Zh /∈
{
Zj1 , . . . , Zjl

}
and the transformation τ is given by

τ(k) def= πk

(
(1, . . . , h− 1)

::
(
(j1, . . . , jl) \ {1, . . . , h− 1}

)
::
(
(h+ 1, . . . ,m) \ {j1, . . . , jl}

))
. (4.19)

Then D][u/Zh] is allowed to return any D]
1 such that

γ(D]
1) ⊇


((
πτ(k)(t̄ )

)m−1

k=1
, D[

1

)
∣∣∣∣∣∣∣∣∣∣∣∣

(t̄, D[) ∈ γ(D])
θ =

[
uj1/Zj1 , . . . , ujl/Zjl

]
πh(t̄ ) = uθ

D[
1 = D[

[
πj1(t̄ ) = uj1 ,

. . . , πjl(t̄ ) = ujl
]


.

The proof of the overall correctness of Algorithm 1 is rather tedious and
thus omitted. As observed in [CLV93] it can be obtained by systematic
generalization of the proof given in Musumbu’s PhD thesis [Mus90].

4.5.3 Projection

This operation consists simply in dropping a suffix of the pattern component,
with the consequent projection on the underlying domain.

Definition 66 (The project operation.) Let{
∃̄̄∃i : D] → D]

}
i∈N

be a family of operations such that, for each m ∈ N, each D] ∈ D] with
γ(D]) ⊆ Tm

z ×D[, and for each j < m,

γ
(
∃̄̄∃j D]

)
⊇

 (r̄, E[)

∣∣∣∣∣∣∣∣∣∣
(ū, D[) ∈ γ(D])
r̄ =

(
π1(ū), . . . , πj(ū)

)
∆ = vars(r̄)
E[ = ∃∆D

[

.
Then, for each (s̄, D]) ∈ Pattern(D]) such that s̄ ∈ Tn

z and for each k < n,

projectk
(
(s̄, D])

) def=
((
π1(s̄), . . . , πk(s̄)

)︸ ︷︷ ︸
t̄

, ∃̄̄∃j D]
)
,



4.5. Operations for the Analysis 101

where j def=
∣∣vars(t̄ )

∣∣.
It is easy to show that project is indeed correct with respect to the

obvious concrete operation.

4.5.4 Remapping

Consider a description (s̄, D]
s̄) ∈ Pattern(D]) and a pattern r̄ ∈ T?

z′ such
that r̄ is an anti-instance of s̄. We want to obtain D]

r̄ ∈ D] such that

γ
(
(r̄′, D]

r̄)
)
⊇ γ

(
(s̄, D]

s̄)
)
. (4.20)

This is what we call remapping (s̄, D]
s̄) to r̄.

Definition 67 (The remap operation.) Let (s̄, D]
s̄) be a description with

s̄ ∈ Tk
z and let r̄ ∈ Tk

z′ be an anti-instance of s̄. Assume
∣∣vars(r̄)

∣∣ = m and
let ū ∈ Tm

z be the unique tuple such that

r̄
[
ū/ vseq(r̄)

]
= s̄. (4.21)

Then the operation remap(s̄, D]
s̄, r̄) yields D]

r̄ such that

γ(D]
r̄) ⊇

{(
ū′
[
t̄/ vseq(ū′)

]
, D[

) ∣∣∣ (t̄, D[) ∈ γ(D]
s̄)
}
. (4.22)

Observe that the remap function is closely related to the residual ab-
straction function α′ of Figure 4.4. We now prove that the specification of
remap meets our original requirement.

Theorem 68 Let (s̄, D]
s̄) be a description with s̄ ∈ Tk

z. Let also r̄ ∈ Tk
z′ be

an anti-instance of s̄. If

D]
r̄ = remap(s̄, D]

s̄, r̄)

then

γ
(
(r̄′, D]

r̄)
)
⊇ γ

(
(s̄, D]

s̄)
)
.

Proof Let us assume the hypotheses of Definition 67. By Definition 62,
γ
(
(r̄, D]

r̄)
)

is given by{(
r̄
[
w̄/ vseq(r̄)

]
, D[

) ∣∣∣ (w̄,D[) ∈ γ(D]
r̄)
}
. (4.23)

Let us define

A
def=
{(

ū′
[
t̄/ vseq(ū′)

]
, D[

) ∣∣∣ (t̄, D[) ∈ γ(D]
s̄)
}
.



102 Chapter 4. Structural Information Analysis

By (4.22) we have γ(D]
r̄) ⊇ A. Thus, by Proposition 63, the set (4.23)

contains {(
r̄
[
w̄/ vseq(r̄)

]
, D[

) ∣∣∣ (w̄,D[) ∈ A
}
.

This can be rewritten as{(
r̄
[
ū/ vseq(r̄)

])′[
t̄/ vseq(ū′)

]
, D[

) ∣∣∣∣ (t̄, D[) ∈ γ(D]
s̄)
}
,

which, by (4.21), is equivalent to{
s̄′
[
t̄/ vseq(s̄′)

]
, D[

) ∣∣∣∣ (t̄, D[) ∈ γ(D]
s̄)
}
,

since vseq(ū) = vseq(s̄). What we have just written is the definition of
γ
(
(s̄, D]

s̄)
)
. 2

4.5.5 Join and Widenings

The operation of merging two descriptions turns out to be an easy one, once
remapping has been defined. Let (s̄1, D

]
1) and (s̄2, D

]
2) be two descriptions

with s̄1, s̄2 ∈ Tk
z. The resulting description is

(
r̄′, E]1 ⊕ E

]
2

)
, where r̄ ∈ Tk

z′

is an anti-instance of both s̄1 and s̄2 and

E]i = remap(s̄i, D
]
i , r̄), for i = 1, 2.

We note again that r̄ might be the least common anti-instance of s̄1 and s̄2,
or it can be a further approximation of lca{s̄1, s̄2}: this is one of the degrees
of freedom of the framework.

Definition 69 (The joinφ operations.) Let φ be any common anti-instance
function. The operation (partial function)

joinφ : ℘f

(
Pattern(D])

)
� Pattern(D])

is defined as follows. For each k ∈ N and each finite family

F
def=
{

(s̄i, D
]
i)
}
i∈I

of elements of Pattern(D]) such that s̄i ∈ Tk
z for each i ∈ I,

joinφ(F ) def=
(
r̄′,
⊕
i∈I

remap(s̄i, D
]
i , r̄)

)
,

where

r̄
def= φ

(
{s̄i}i∈I

)
.



4.5. Operations for the Analysis 103

Theorem 70 Let F be as in Definition 69. For each common anti-instance
function φ and each (s̄j , D

]
j) ∈ F ,

γ
(
joinφ(F )

)
⊇ γ

(
(s̄j , D

]
j)
)
.

Proof Let j ∈ I and r̄
def= φ

(
{s̄i}i∈I

)
. Then r̄ is an anti-instance of s̄j .

Thus

γ

((
r̄,
⊕
i∈I

remap(s̄i, D
]
i , r̄)

))
⊇ γ

(
(r̄, remap(s̄j , D

]
j , r̄)

)
[by Def. 61 and Prop. 63]

⊇ γ
(
(s̄j , D

]
j)
)

[by Thm. 68]

2

As far as widening operators are concerned, there are several possibilities.
First of all, we might want to distinguish between widening in the pattern
component and widening on the underlying domain. The former can be
defined as any join operation joinφ with φ different from lca. The latter
consists in propagating the widening to the underlying domain. For instance,
the following widening operator is the default one applied by China:

widen
(
(s̄1, D

]
1), (s̄2, D

]
2)
) def=

{
(s̄2, D

]
2), if s̄1 6= s̄2;

(s̄2, D
]
1 ∇D

]
2), if s̄1 = s̄2.

(4.24)

This operator refrains from widening unless the pattern component is sta-
bilized (see the next section to see why it works).

More drastic widenings can be defined. For example, we can exploit the
fact that widenings need to be evaluated over (s̄1, D

]
1) and (s̄2, D

]
2) only

when s̄′2 is an anti-instance of s̄1. This happens because (s̄1, D
]
1) is the

result of the previous iteration, whereas (s̄2, D
]
2) has been obtained at the

current iteration from a join operation that included (s̄1, D
]
1). Thus another

possibility is given by

widen′φ
(
(s̄1, D

]
1), (s̄2, D

]
2)
) def=

(
s̄2, remap(s̄1, D

]
1, s̄
′
2)∇D]

2

)
. (4.25)

It is straightforward to show that (4.24) and (4.25) are correct. Other oper-
ators can be defined by using joins and remappings (and don’t forget that
the underlying domain may have a variety of widening operators to choose
from).



104 Chapter 4. Structural Information Analysis

4.5.6 Comparing Descriptions

The last operation that is needed in order to put Pattern(D]) at work is for
comparing descriptions.

Definition 71 (Approximation ordering.) The approximation order-
ing over Pattern(D]), denoted by v, is defined as follows, for each (s̄1, D

]
1), (s̄2, D

]
2) ∈

Pattern(D]):

(s̄1, D
]
1) v (s̄2, D

]
2) def⇐⇒ s̄1 = s̄2 ∧D]

1 v D
]
2.

It must be stressed that the above approximation ordering is also “approx-
imate”, since it does not take into account the peculiarities of D]. More
refined orderings can be obtained in a domain-dependent way, namely, when
D] has been fixed.

The following result is a trivial consequence of Definition 61 and Propo-
sition 63.

Theorem 72 If (s̄1, D
]
1) v (s̄2, D

]
2) then γ

(
(s̄1, D

]
1)
)
⊆
(
(s̄2, D

]
2)
)
. More-

over, v is a preorder over Pattern(D]).

Observe that the ability of comparing descriptions only when they have
the same pattern is not restrictive in a data-flow analysis setting. The
analyzer, in fact, will only need to compare the descriptions arising from
the iteration sequence at two consecutive steps. Moreover, if we denote by
(s̄n, D

]
n) the description at step n, we have

(s̄i+1, D
]
i+1) = widen

(
(s̄i, D

]
i), joinφ

({
(s̄i, D

]
i), . . .

}))
, (4.26)

where the widening is possibly omitted. Whether or not the widening has
been applied, this implies that s̄′i+1 is an anti-instance of s̄i and

γ
(
(s̄i, D

]
i)
)
⊆ γ

(
(s̄i+1, D

]
i+1)

)
. (4.27)

If also the reverse inclusion holds in (4.27) then we have reached a local
fixpoint. The analyzer uses the approximate ordering in order to check for
this possibility. Namely, it asks whether

(s̄i+1, D
]
i+1) v (s̄i, D

]
i). (4.28)

The approximate test, of course, can fail even when equality does hold in
(4.27). But this will be a fault of the pattern component only a finite number
of times, since s̄i+1 is an anti-instance of s̄i and Tk

z, ordered by the anti-
instance relation, has finite height. Thus, there exists ` ∈ N such that, for
each i ≥ `, s̄i = s̄`. After the `-th step the accuracy of the approximate
ordering is in the hands of D].



4.6. What if the Occur-Check is Omitted? 105

4.6 What if the Occur-Check is Omitted?

Suppose that the analyzed language omits the occur-check, as it is often the
case. It has been known since [Col84] that terminating unification proce-
dures without the occur-check solve term equations on the domain of rational
trees. The first question is: are the abstract domains and techniques we all
know and use still correct for such languages?

For a precise answer we ought to consider each such domain and the
corresponding abstract operations, and prove their correctness with respect
to the “new” concrete domain. To our surprise, we were not able to find in
the literature any reference to this issue, not even in papers dealing with the
analysis of Prolog (which, proverbially, omits the occur-check). However, we
still hope that this (potentially devastating) problem has not escaped the
attention of researchers.

A partial, tentative answer, is that it should not be difficult to prove the
correctness, over rational trees and rational unification, of those domains
that depend only on the set of variables occurring in terms: the typical
domains for groundness and sharing without linearity, for instance. If you
only observe the set of variables’ occurrences, then a finite term cannot
be distinguished from a rational one. The infinite term f(f(f(· · · ))), the
rational solution of the equation X = f(X), does not contain any variable
and thus is ground. In the rational solution of X = f(X,Y ), instead, only
the variable Y occurs. If X denotes a ground rational tree then also Y
denotes a ground rational tree, and the converse holds too. So, as long
as you abstract a concrete equation of the form X = t with the ground
dependency

X ↔
∧(

vars(t) \ {X}
)
,

the usual domains for groundness should remain correct also when the occur-
check is omitted in the analyzed language. (See Chapter 6 on the subject of
groundness analysis.) This implicit pattern of ignoring the variables’ occur-
rences that are responsible for the introduction of a cycle works whenever
only the set of variables occurring in (infinite) terms is relevant. This is
because, if t̃ is the most general rational unifier of X = t, with X occurring
in t, we can write

vars(t̃ ) =
(
vars(t) \ {X}

)
∪ vars(t̃ ). (4.29)

The least solution of (4.29) is clearly vars(t̃ ) = vars(t) \ {X}. Notice that
this pattern does not work when the multiplicity of occurrences is relevant,
as we will now see.

For a finite term t we say that t is linear if and only if t does not contain
multiple occurrences of any variable. The linearity property is not very
interesting in itself, but it allows us to improve sharing analyses. When two



106 Chapter 4. Structural Information Analysis

f

��������

>>>>>>>>

f

>>>>>>>> Y

Y

Figure 4.5: The rational tree that solves X = f(X,Y ).

terms t and u are unified, knowing that t is linear allows one to conclude
that any two variables in u that did not share before the unification, will not
share after the unification. The notion of linearity can easily be extended
to rational trees, but care must be taken. When abstracting the constraint
X = f(X,Y ), for instance, we cannot ignore the occurrence of X in the
right-hand side. For a very good reason: this occurrence is responsible for
the fact that the result of the unification is a non-linear term. Indeed, the
resulting rational tree has an infinite number of occurrences of Y , as shown
in Figure 4.5. Failure to recognize this fact leads to an unsound sharing
analysis: if t̃ is the most general rational unifier of X and f(X,Y ), unifying
f(f( , A), B) with t̃ makes A and B share, as expected.

This is not the place for reconsidering all the domains that have been
studied for the analysis of (constraint) logic programs. We do believe that
most of them can be easily fixed in order to obtain safe approximations of
the concrete domains based on rational trees. So, let us simply assume we
have some domain D] that is a correct abstraction of a domain of extended
rational trees. Can we extend the parametric structural construction so that
we can apply it to D] and still obtain a correct analysis?

When the analyzed language does not perform the occur-check we can
no longer fail when a cyclic binding is attempted in the pattern component:
something else has to be done. Notice that this problem cannot be escaped
easily. Even the unreasonable hypothesis that one deals only with occur-
check free programs3 does not prevent an analyzer employing Pat(<) or
Pattern(D]) from trying to build a cyclic pattern (because the analysis was
not strong enough to detect an impossible computation path).

The obvious way to go is to have a tuple of rational trees, instead of finite
terms, in the pattern component with all the consequent modifications. This,
however, might be undesirable because

1. it is more expensive: all the tree visits must employ some marking
technique in order to avoid infinite loops; computing common anti-

3Note that occur-check freedom is an undecidable program property.



4.6. What if the Occur-Check is Omitted? 107

instances is more difficult than in the finite case; the same holds for
detecting when two rational trees are variant of each other; garbage
collection is more complicated and so on;

2. cyclic bindings arise in the analysis of very few programs.4

The unlikeliness of the phenomenon, while irrelevant as far as the soundness
issues are concerned, seems to discourage the adoption in practice of rational
trees for the pattern component: very few programs can benefit from the
little extra precision so gained, at a comparatively high cost. We thus prefer
leaving the pattern component as it is now: a tuple of finite terms. But,
what do we do in the case of cyclic bindings?

If we restrict ourselves to domains expressing monotonic properties5,
then ignoring the bindings that would cause the introduction of a cycle is a
safe (though imprecise) way out: throwing away information is always cor-
rect for these domains. In this particular case, lines 9 and 10 of Algorithm 1
on page 98 could simply be removed. This is not true for non-monotonic
properties: the cyclic bindings cannot be ignored altogether. As previously
noted, omitting communication of the cyclic bindings to the underlying do-
main D] implies, in general, loosing soundness. Let us consider the following
simple program:

p(X, Y) :-
Z = f(Z, X, Y),
Z = f(_, A, A).

Most Prolog and CLP systems give the answer X = Y to the query ?- p(X,
Y). Consequently, any non-trivial sharing analysis that ignores the cyclic
binding is going to obtain wrong results.

4.6.1 Unification without Occur-Check

The above discussion motivates the introduction of a revised unification
algorithm, given as Algorithm 2, where we take into account the cyclic
bindings both in the pattern component and the underlying domain. Notice
how the cyclic binding is avoided in the pattern component: by substituting
the dangerous occurrences of Zh with a new variable. This, of course, is
more precise than omitting the binding in the pattern component.

4Only one out of more than a hundred third-party programs in the test-suite of China

used to provoke a cyclic binding during the analysis. This happened with an early version
that did not take some built-ins into account. With the current version this does not
happen anymore.

5Properties that are preserved as concrete computations progress.



108 Chapter 4. Structural Information Analysis

procedure unify(s̄, D], t, u)
if t 6= u then

if t = f(t1, . . . , tn) and u = f(u1, . . . , un) then
for all i = 1, . . . , n do

unify(s̄, D], ti, ui)
else if t = Zh then

if Zh does not occur in u then
D] := bind(s̄, D], u, Zh) {invokes underlying domain}
Zh := u {instantiates all the occurrences of Zh}

else
D] := cyclic(s̄, D], u, Zh) {underlying domain}
Zh := u[Zm+1/Zh] {cycle is broken: m = |vars(s̄)|}

s̄ := η(s̄) {normalization}
else if u = Zk then

unify(s̄, D], u, t)
else
D] := ⊥]

Algorithm 2: Revised unification for the structural domain.

Cyclic Binding to a Compound

The operation cyclic(s̄, D], u, Zh) must now be specified. We assume again
that

∣∣vars(s̄)
∣∣ = m, with m ≥ 0. The result of the operation will be a

description D]
1 such that

γ̃(D]
1) ⊆ T̃m

z ×D[,

where T̃z denotes the set of all normalized rational trees and γ̃ is the new
concretization function. Notice that D]

1 denotes an m-tuple of rational trees:
Zh will not be referenced anymore, but a new variable Zm+1 has been in-
troduced.

The following definition is reproduced from [Kei94].

Definition 73 (Rational solved form.) [Col82, Col84] A set of equation
is circular if it has the form



X1 = X2,
X2 = X3,

...
Xn−1 = Xn,
Xn = X1


.



4.7. Conclusion 109

A rational solved form is a conjunction of equations of the form
X1 = t1,
X2 = t2,

...
Xn = tn


not containing any circular subset.

Each rational solved form corresponds to a tuple of rational trees. Con-
versely, each rational tree can be associated to rational solved form in which
“the root” has been identified. Let t̃ be a rational tree, and let u be a fixed,
infinite set of special variables, disjoint from any other set of variables we
have mentioned so far. When U is a variable not occurring in t̃, we will
denote by eqU (t̃ ) a rational solved form R such that

1. if lhs(R) and rhs(R) denote the set of variables on the left-hand sides
of the equations in R and the set of terms occurring in the right-hand
sides, respectively, then

lhs(R) ∩ vars
(
rhs(R)

)
⊂ u;

2. U describes t̃ in R.

For instance, if t̃ is the rational tree depicted in Figure 4.5 then eqU (t̃ ) ={
U = f(U, Y )

}
.

Let us define τ(k) : {1, . . . ,m} → {1, . . . ,m} exactly as we did in (4.19)
on page 100 (but note that the domain has changed). Then D]

1 must satisfy

γ(D]
1) ⊇


((
πτ(k)(t̄ )

)m
k=1

, D[
1

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(t̄, D[) ∈ γ̃(D])
{Zj1 = uj1 , . . . , Zjl = ujl , . . . }

is a r.s.f. (if any) of
eqU

(
(πh(t̄ )

)
∪ {U = u}

D[
1 = D[

[
πj1(t̄ ) = uj1 ,

. . . , πjl(t̄ ) = ujl
]


,

where U ∈ u.

4.7 Conclusion

We have presented the rational construction of a generic domain for struc-
tural analysis of CLP(HX ) languages: Pattern(D]HX ), where the parameter
D]HX is an abstract domain satisfying certain properties, We build on the



110 Chapter 4. Structural Information Analysis

parameterized Pat(<) domain of Cortesi et al. [CLV93, CLV94], which is re-
stricted to logic programs. However, while Pat(<) is presented as a specific
implementation of a generic structural domain, our formalization is indepen-
dent from specific implementation techniques. Reasoning at a higher level
of abstraction we are able to fully justify the ideas behind the structural
domain. In particular, appealing to familiar notions of unification theory,
we can identify an important parameter (a common anti-instance function,
missing in [CLV93]) that gives some control over the precision and compu-
tational cost of the resulting generic structural domain.

In addition, we have corrected an oversight in the work of Cortesi et
al.While they assume explicitly that no cyclic binding will be attempted
during the analysis, this cannot be granted in any way. It is indeed easy to
fix their unification algorithm if one sticks to the standard assumption that
the analyzed language does not omit the occur-check in the unification pro-
cedure. Unfortunately, it is well-known that many implemented CLP(HX )
languages (in particular, almost all Prolog systems) do omit the occur-check.
We have discussed, apparently for the first time, the impact of this prob-
lem on data-flow analysis and how some commonly-used abstract domains
can be modified in order to ensure precision and correctness. We have also
shown how to modify our generic domain for structural information in order
to deal with the majority of languages that employ unification without the
occur-check.

For future work, the more urgent thing to do is to reconsider all the
domains that have been proposed for the analysis of (constraint) logic pro-
grams and prove that they (or suitable modification of them) are correct
with respect to rational trees and rational unification. This might be a non-
trivial task, if one considers that there seems to be no published proof of
the correctness of the Sharing domain [JL89], not even in the case of finite
trees [Zaf95]6.

6Enea Zaffanella in a desperate search for the proof, got in touch, in the fall of 1995,
with three of the major authors on the subject of aliasing analysis. The result was dis-
heartening: nobody knew where the proof could be found.



Chapter 5

Range and Relations
Analysis

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . 112

5.2 What Redundant Constraints Are For . . . . . . 115

5.2.1 Domain Reduction . . . . . . . . . . . . . . . . . . 116
5.2.2 Extracting Determinacy . . . . . . . . . . . . . . . 118
5.2.3 Static Call Graph Simplification . . . . . . . . . . 120
5.2.4 Future-Redundant Constraints . . . . . . . . . . . 123
5.2.5 Improving any Other Analysis . . . . . . . . . . . 123

5.3 Numbers as Leaves of Terms . . . . . . . . . . . 125

5.4 A Sequence of Approximations . . . . . . . . . . 126

5.5 Approximations for Sets of Reals . . . . . . . . . 129

5.5.1 Intervals . . . . . . . . . . . . . . . . . . . . . . . . 131
5.6 Approximations for Cardinalities . . . . . . . . . 134

5.6.1 An Example . . . . . . . . . . . . . . . . . . . . . 134
5.7 Approximations for Numerical Relations . . . . 135

5.7.1 Ordering Relationships . . . . . . . . . . . . . . . . 136
5.7.2 Bounded Differences . . . . . . . . . . . . . . . . . 138
5.7.3 Bounded Quotients . . . . . . . . . . . . . . . . . . 139

5.8 Approximations are Constraints . . . . . . . . . 140

5.9 Implicit Agents . . . . . . . . . . . . . . . . . . . . 148

5.9.1 Transitive Closure . . . . . . . . . . . . . . . . . . 148
5.9.2 Quantity Refinement . . . . . . . . . . . . . . . . . 149
5.9.3 Numeric Constraint Propagation . . . . . . . . . . 150

5.10 Numeric Agents . . . . . . . . . . . . . . . . . . . 150

5.10.1 Cardinality Agents . . . . . . . . . . . . . . . . . . 151

111



112 Chapter 5. Range and Relations Analysis

5.10.2 Constraint Agents . . . . . . . . . . . . . . . . . . 152

5.10.3 Quantity Arithmetic Agents . . . . . . . . . . . . . 154

5.10.4 Linear Refinement Agents . . . . . . . . . . . . . . 155

5.10.5 Relational Arithmetic Agents . . . . . . . . . . . . 155

5.11 Binding Agents . . . . . . . . . . . . . . . . . . . . 156

5.12 Making It Practical . . . . . . . . . . . . . . . . . 159

5.12.1 Representing Basic Constraints and Implicit Agents160

5.12.2 Widenings . . . . . . . . . . . . . . . . . . . . . . . 163

5.13 Conclusion . . . . . . . . . . . . . . . . . . . . . . 164

5.1 Introduction

There are several CLP and cc languages that incorporate some kind of nu-
meric domain. Here is a (certainly incomplete) list including the particular
numeric domain(s) employed:

CHIP: numeric constraints over finite domains, linear rational constraints
[DVS+88];

CLP(R): real linear arithmetic (so to speak1), delay mechanism for non-
linear constraints [JM87, JMSY92b];

QUAD-CLP(R): extends CLP(R) with the handling of quadratic constraints,
rewriting them so that they can actually be decided upon or generat-
ing a conservative approximation for them (while still delaying them)
[PB94];

CIAL: linear arithmetic on real intervals; it employs a linear constraint
solver (based on preconditioned interval Gauss-Seidel method) in ad-
dition to the interval narrowing solver [CL94, LL94];

clp(Q, R): real2 and rational linear arithmetic, linear disequations included,
delay mechanism for non-linear constraints [Hol95];

Prolog-III: linear rational arithmetic [Col90];

Prolog-IV: an ISO-compliant replacement for Prolog-III;

Trilogy: linear arithmetic both over the integers and over the reals [Vod88a,
Vod88b];

1The CLP(R) system implements a domain based on floating-point numbers where
rounding errors are simply disregarded. While the relevant literature unanimously regards
CLP(R) as a CLP language, we follow this usage with embarrassment. Indeed, the ‘L’ in
CLP(R) has no meaning whatsoever.

2The same comments as for CLP(R) apply.



5.1. Introduction 113

sumto(0, 0). % clause 1
sumto(N, S) :- % clause 2

integer(N),
N >= 1,
N = N1 + 1,
S = N + S1,
sumto(N1, S1).

?- integer(N), sumto(N, S).

Figure 5.1: Sum of the first N naturals in CLP(N ).

CAL: (Contrainte Avec Logique) non-linear constraints over complex num-
bers [ASS+88, SA89]. A parallel version exists and is called GDCC
[AH92];

RISC-CLP(Real): non-linear constraints over (algebraic) real numbers [Hon92,
Hon93, Cap93];

CLP(BNR): non-linear arithmetic on real intervals plus equations over the
integers [OV93];

CLP(F): domains include integers, reals, real-valued functions of one vari-
able, and vectors of domain elements; function variables are con-
strained by functional equations and by putting interval constraints
on the values of their derivatives at points and intervals [Hic94];

Newton: non-linear interval arithmetic with equations and inequalities, pro-
vides both constrained and unconstrained optimization primitives [BMV94];

clp(FD): finite domains à la CHIP [DC93];

Echidna: finite domains and real intervals arithmetic [HSS+92];

cc(FD): finite domains [VSD92a, VSD92b];

AKL(FD): finite domains [CJH94, Jan94].

Roughly speaking, the target of the data-flow analysis we present is
the derivation of numeric constraints that, at some program point p, are
redundant. This means that they are guaranteed to hold whenever control
reaches p. Consider, for instance, the self-contained program and query in
Figure 5.1. On exit from clause 2 the following constraints (and infinitely



114 Chapter 5. Range and Relations Analysis

many others) are redundant:

N ∈ N, N ≥ 1, (5.1)
S ∈ N, S ≥ 1, (5.2)
N ≤ S, (5.3)

S ≤ N2, S = N2 + N. (5.4)

Redundant constraints can be further classified as follows:

• truly redundant constraints: they are in the program’s text, but they
are either implied by the constraints accumulated before reaching p
(in this case they could be ignored) or they will be implied by the
other constraints collected through any successful computation from
p (in which case they can be subject to simplified treatment). We call
these constraints past redundant and future redundant, respectively3.
On entry to clause 2 the constraint integer(N) is past redundant:
any invocation of clause 2 happens in the context of a constraint store
that entails it. The constraints integer(N) and N >= 1 are future
redundant: any successful computation starting from clause 2 ends up
with a constraint store entailing them. These facts can be established
by means of a simple inductive argument.

• implicit constraints: they are not present in the program’s text, but
they are guaranteed to hold if the computation arrives at p: thus the
constraints (5.2)–(5.4) are implicit on exit from clause 2.

Notice that adding to a clause a constraint c that is implicit on exit from
that clause would result in c being future redundant. As a last remark,
the analysis which is the subject of this chapter is able to infer that the
constraints (5.1)–(5.3) belong to the above categories.

Since in this work we restrict ourselves to considering only clause entry
and clause (successful) exit as program points, the expressions numeric call-
patterns and numeric success-patterns can also be used to denote redundant
constraints at those points. However, the implicit/redundant terminology
helps in understanding the applications.

Our interest in automated detection of implicit and redundant numeric
constraints is motivated by the wide range of applications they have in
semantics-based program manipulation. Moreover, while analysis techniques
devoted to the discovery of implicit constraints over some Herbrand uni-
verse are well-known (e.g., depth-k abstractions [ST84, MS88], types [JB92,
VCL94] and so on), in the field of numeric domains very little has been
done. After our original proposal about employing constraint propagation
techniques [BGL92, BGL93], Marriott and Stuckey envisaged the use of two

3Jørgensen et al. use a more restrictive notion of future redundancy [JMM91].



5.2. What Redundant Constraints Are For 115

domains: a simple one for sign analysis, Sign, and a (much) more complex
domain, CHull, based on convex polyhedra. Following [BGL92, BGL93],
Janssens et al. presented three interval-based approximations for the nu-
merical leaves of (extended) Herbrand terms [JBE94]. The main merit of
[JBE94] is that it contains the first published proposal on how to approx-
imate the propagation of numerical information through unification con-
straints. Janssens et al. have also implemented their first approximations
giving an indication that useful approximations of numerical values are fea-
sible. These indications were reinforced, using a more complex numeric
domain, in [Bag94]. Very recently, what probably is the first implementa-
tion of CHull, the Stan system, has been briefly described [Han96]. Stan,
however, is limited to purely-numerical CLP languages.

We present a general methodology for the detection of redundant nu-
meric constraints. The techniques we use for reasoning about arithmetic
constraints come from the world of Artificial Intelligence, and are known
under the generic name of constraint propagation [Dav87]. Notice that we
do not commit ourselves to any specific CLP language, even though all the
languages mentioned above can be profitably analyzed with the techniques
we propose. In particular, we allow and reason about linear and non-linear
constraints, integer, rational, and real numbers as well as domains based on
intervals.

5.2 What Redundant Constraints Are For

In this section we show a number of applications for redundant constraints.
Some of them are domain-independent, but we concentrate on redundant
constraints over numeric domains. We will see that the range of situations
where they prove to be useful is quite wide. It should then be clear that
their automatic detection is very important for the whole field of semantics-
based manipulation of CLP programs. The first four subsections are devoted
to applications related to the compilation of CLP programs. Traditionally,
this is one of the major interest areas for data-flow analysis. The remain-
ing two subsections describe applications of redundant constraints to the
improvement of other data-flow analyses.

It must be observed that here we are dealing with some kind of informa-
tion that might be useful in the compilation process by allowing for the pro-
duction of faster code. In this work the focus is on techniques for automatic
deduction of run-time program properties. Deciding in which cases and to
what extent this information gives rise to actual speedups is a completely
different and complicated issue. While some compile-time transformation
(e.g., domain reduction, determinacy exploitation, and call-graph simplifi-
cation) can be definitely recognized as optimizations, others (like constraint
anticipation or refinement [MS93]) require careful consideration as their use-



116 Chapter 5. Range and Relations Analysis

fulness depends on several factors. Deep knowledge of the constraint solver
and extensive experimentation might be necessary for this purpose. One
must also be aware of the interplay between different optimizations, as the
combination of two transformations is not guaranteed to be an optimiza-
tion, even though the original ones were such, when applied in isolation.
Another point to be taken into account is that a transformation applied in
one point of the program might prevent the application of another trans-
formation at another program point. When one of these situations occur a
tradeoff is faced and some kind of compromise must be found with the aim
of maximizing benefits. Sometimes knowledge about the particular system
at hand can be enough to definitely conclude that a particular (combination
of) optimization(s) is worthwhile. In other cases the decisions about what
transformations to apply, and where, are more complex and must be dealt
with more flexibly by the compiler and/or the user. Techniques devoted to
the solution of these problems include:

• performing complexity/cost analysis and using the results as a base
for compilation decisions;

• two-phase compilation, e.g., compiling first an instrumented version of
the program, profiling it with some “representative” input, and using
the profile data to drive the final compilation step;

• simple heuristics, e.g., by analyzing the program’s call graph, and de-
serving more work/optimization to code which is more deeply nested;

• user intervention by means of program annotations; in this task the
user can be assisted by providing him with information originating
from the above techniques.

5.2.1 Domain Reduction

In CLP systems supporting finite domains, like CHIP, clp(FD), and Echidna,
variables can range over finite sets of integer numbers. These sets must be
specified by the programmer. There are combinatorial problems, such as
n-queens, where this operation is trivial: variables denoting row or col-
umn indexes range over {1, . . . , n}. For other problems, like scheduling, the
ranges of variables are not so obvious. Leaving the user alone in the (tedious)
task of specifying the lower and upper bounds for any variable involved in
the problem is inadvisable. On one hand the user can give bounds that
are too tight, thus loosing solutions. On the other hand he can exceed in
being conservative by specifying bounds that are too loose. In that case he
will incur inefficiency, as finite domains constraint solvers work by gradually
eliminating values from variable’s ranges.

A solution to this problem is either to assist the user during program
development or to provide him with a compiler able to tighten the bounds



5.2. What Redundant Constraints Are For 117

mc(N, N-10) :- % clause 1
N > 100.

mc(N, M) :- % clause 2
N <= 100,
mc(N+11, U),
mc(U, M).

Figure 5.2: McCarthy’s 91-function in CLP(N ).

he has specified. In this case the programmer can take the relaxing habit of
being conservative, relying on the compiler’s ability of achieving domain re-
duction. Whatever the programmer’s habit is, domain reduction at compile-
time can be an important optimization as possibly many inconsistent values
can be removed once and for all from the variable’s domains. This has to be
contrasted with the situation where these inconsistent values are removed
over and over again during the computation.

The following example is somewhat unnatural, but it shows how it can
be difficult for an unassisted human to provide good variable’s bounds. In
contrast, it shows how relatively tight bounds can be “hidden” in a program
and how they can be “discovered” by means of data-flow analysis. The
program in Figure 5.2 is a CLP(N ) version of the McCarthy’s 91-function.
If the program is complemented with the domain declaration

domain mc([0 .. 200], [0 .. 200]).

the China analyzer is able to derive the following success-patterns for mc(A, B):

101 ≤ A ≤ 200, 91 ≤ B ≤ 190, for clause 1;
0 ≤ A ≤ 100, 91 = B, for clause 2.

Notice how the analyzer correctly infers that any successful derivation from
the second clause must end up with an answer constraint entailing A = 91.
The same pattern is derived with the more liberal declaration4

domain mc([0 .. 200], _).

With no domain declaration at all the inferred patterns are

A ≥ 101, B ≥ 91, for clause 1;
A ≤ 100, B = 91, for clause 2.

4The underscore sign ‘_’ stands, in this context, for the set of all the integer numbers.



118 Chapter 5. Range and Relations Analysis

5.2.2 Extracting Determinacy

In the history of efficient Prolog execution a major role has been played
by the avoidance of unnecessary backtracking, since this is the principal
source of inefficiency. These efforts go back to the WAM [War83] with the
indexing mechanism used to reduce shallow backtracking. A more general
way of avoiding backtracking is to use global analysis for detecting conditions
under which clauses may succeed in a program (determinacy analysis). Run-
time tests to check this conditions may allow for the elimination of choice
points or, at least, for the reduction of backtracking search (determinacy
exploitation).

Notice that backtracking in CLP can be significantly more complex than
in Prolog. The reason is that in CLP languages it is not enough to store
a reference to variables that have become bound since the last choice point
creation, and to unbind them on backtracking. In CLP it is generally neces-
sary to record changes to constraints, as expressions appearing in them can
assume different forms while the computation proceeds [JM94].

We show here, more or less following the exposition in [DRRS93], how re-
dundant constraints can be used for determinacy discovery and exploitation.
Consider a CLP program P and a clause R in P of the form

R : p(X̄) :− c � q1(X̄1), . . . , qn(X̄n). (5.5)

Suppose now that data-flow analysis of P computes the success-pattern φ
for clause R. Substituting the clause

R′ : p(X̄) :− φ ∧ c � q1(X̄1), . . . , qn(X̄n). (5.6)

for R yields a program that is logically equivalent to P . Suppose also the
analysis derives that ψ is a correct call-pattern for the atom p(X̄). This
means that, whenever p(X̄) is selected in a successful computation path, ψ
holds.5 Dawson et al. define the clause condition of R as Φ = ψ ∧ φ. The
clause condition Φ is a necessary condition for R to succeed when p(X̄) is
invoked from a successful context. Every successful computation calling R
is such that, on successful exit from R, the accumulated constraints entail
Φ. In other words, if the concrete constraint store on entry to clause R is
incompatible with Φ, then the current computation branch can safely be
abandoned. This fact can be captured by rewriting clause R into

R′′ : p(X̄) :− Φ ∧ c � q1(X̄1), . . . , qn(X̄n). (5.7)

Let now P ′′ be the program obtained by transforming each clause of the
form (5.5) into the form (5.7) as explained. It turns out that P and P ′′ are
logically equivalent, and that the exposed clause conditions can be used for



5.2. What Redundant Constraints Are For 119

fib(N, F) :- % clause 1
N = 0, F = 1.

fib(N, F) :- % clause 2
N = 1, F = 1.

fib(N, F) :- % clause 3
N > 1,
F = F1 + F2,
fib(N-1, F1),
fib(N-2, F2).

Figure 5.3: Fibonacci’s sequence in CLP(N ).

detecting and exploiting determinacy in the compilation of P .6

Suppose the predicate p is defined in P by clauses R1, . . . , Rm with
respective success-patterns φ1, . . . , φm and clause conditions Φ1, . . . ,Φm.
What can happen is that, for each i, j = 1, . . . , n with i 6= j, the constraint
φi∧φj is unsatisfiable. In this case p is deterministic, namely, for each actual
call-pattern that is strong enough we can select the unique clause that might
bring the computation to success. When the above condition fails, we may
still have that Φi ∧Φj is unsatisfiable whenever i 6= j. Thus p might not be
deterministic in itself, but we are guaranteed that in P it is always used in
a determinate way.

In both cases, when the conditions are simple enough to be checked, it
is possible to avoid the creation of a choice point jumping directly to the
unique clause that has a chance of success. Weaker assumptions still allow to
exclude clauses from search by partitioning the set of clauses into “mutually
incompatible” subsets. Of course, determinacy exploitation requires the
existence of an adequate indexing mechanism [HM89, RRW90, CRR92]. As
an example consider the famous CLP program, reproduced in Figure 5.3,
expressing the Fibonacci sequence. China derives the following success-
patterns for the fib program:

N = 0, F = 1, for clause 1;
N = 1, F = 1, for clause 2;
N ∈ {2, 3, . . . }, F ∈ {2, 3, . . . }, for clause 3.

(The same patterns would have been derived even if N > 1 did not appear in
clause 3. China can also derive N <= F for clause 3.) Notice that, when fib

6Notice that correct call-patterns are, in general, stronger than “plain” call-patterns.
This is because only successful computation paths are considered for correct call-patterns.
As a consequence, the present discussion remains valid even if plain call-patterns are
considered.



120 Chapter 5. Range and Relations Analysis

is called with the a definite (or ground) first argument, a simple test allows
to select the appropriate clause without creating a choice point. When fib
is called with its second argument instantiated then a similar test allows
at least to discriminate between clause 3, if F ≥ 2 (no choice point), and
clauses 1 and 2, if F = 1 (a choice point is necessary). In both cases some
calls can be made to hit an immediate failure instead of proceeding deeper
before failing or looping forever, e.g., fib(1.5, X), fib(X, -1).

5.2.3 Static Call Graph Simplification

Suppose we are given a methodology for approximate deduction of implicit
constraints. Then, if the approximate constraint system has a non-trivial
notion of consistency7, we also have a methodology for approximate consis-
tency checking which we can use for control-flow analysis of CLP programs.
By soundness, when false is derived as an implicit constraint we can safely
conclude that the original set of constraints was unsatisfiable, and that the
computation branch responsible for this state of affairs cannot possibly lead
to any success.

This information can be employed at compile-time to generate a simpli-
fied call graph for the program at hand. Let

R : p(X̄) :− c � q1(Ȳ1), . . . , qn(Ȳn).

be a program clause, and let the predicate qi be defined by clauses Ri1 ,
. . . , Rimi , for i = 1, . . . , n. While performing the analysis we may discover
that whenever we use clause Rij , with 1 ≤ j ≤ mi, to resolve with qi(Ȳi),
we end up with an unsatisfiable constraint. In this case we can drop the
edge from the qi(Ȳi) call in the above clause to Rij from the syntactic call
graph of the program. This simplification can be used for generating faster
code.8 We illustrate this point by means of an example. China, when
presented with the fib program of Figure 5.3, produces the following call
graph representation:

3 :−
〈
{2, 3}, {1, 2, 3}

〉
. (5.8)

The above notation can be read as follows:

if a call to clause 3 has to succeed, then only clauses 2 and 3 can
successfully used to resolve with the first recursive call, while the

7This is not the case for, say, groundness analysis, where abstract constraints are
always satisfiable. A non-trivial approximation of inconsistency can be obtained with
the domains that will presented later in this chapter, with the domain for simple types
of Section 3.3.2 on page 46, with structural information analysis as in Chapter 4, with
depth-k abstractions, types and so forth.

8We do not want to make a strong claim, but we have not found any published proposal
for this optimization besides [Bag94].



5.2. What Redundant Constraints Are For 121

fib/3_1: try_me_else fib/3_2
< code for clause 1 >

fib/3_2: retry_me_else fib/3_3
fib/3_2a: < code for clause 2 >
fib/3_3: trust_me
fib/3_3a: ...

call fib/3_2_3
call fib/3_1
...

fib/3_2_3: try fib/3_2a
trust fib/3_3a

Figure 5.4: Fragment of WAM-like code for the 3rd clause of fib to be
executed when the 1st argument is not definite.

second recursive call is unrestricted, i.e., all the clauses for fib
can lead to success.

In other words, when treating the first recursive call of clause 3, clause 1 can
be forgotten. This information allows for search space reduction without any
overhead, in the case where the third clause of fib is called with the first
argument uninstantiated, that is, when search is not avoidable. Figure 5.4
shows how this can be achieved by means of a simple compilation scheme in
the setting of the WAM and its extensions [JMSY92a].

Notice how this simple transformation reduces the amount of backtrack-
ing. In fact, every time clause 3 is invoked a pointless call to clause 1
is avoided, with the consequent saving of one backtracking. It is easy to
think about more involved examples where the pruned computation branch
would have proceeded deeper before failing, thus wasting more work. When
the number of applicable clauses is found to be one, a choice point can be
avoided, thus achieving greater savings. In these cases determinacy is ex-
ploited without any run-time effort. The optimization is always achieved
without any time overhead at the price of at most a small, constant increase
of space usage for additional code. An example where choice point creations
are avoided is the following:

square(0, 0). % clause 1
square(X+1, Y+2*X+1) :- % clause 2

square(X, Y).

pythagoras(X, Y, Z) :- % clause 3
X < Y,
Y < Z,



122 Chapter 5. Range and Relations Analysis

SX + SY = SZ,
square(X, SX),
square(Y, SY),
square(Z, SZ).

The detected call graph in this case is

2 :− {1, 2},
3 :− {1, 2}, {2}, {2},

showing that the second and third procedure calls of clause 3 can be compiled
as direct jumps to the code for clause 2.

The strong points of call graph simplification are the following:

• only a small space overhead is incurred by the optimized program;

• no time overhead: the optimized program will never be slower than
the unoptimized one;

• almost no additional cost for the analysis: China simply records which
clauses have been successfully used to resolve with each atom in the
clauses’ bodies.

As a final remark, notice that the simplified call graph for fib given
in (5.8) is actually obtained by abstracting away the relational information
from

3 :−
{
〈2, 1〉, 〈3, 2〉, 〈3, 3〉

}
. (5.9)

In addition to the fact that clause 1 can be disregarded when dealing with the
first recursive call in clause 3, (5.9) specifies that, when clause 2 is selected to
resolve with the first recursive call, then only clause 1 is a sensible choice for
the second recursive call. Similarly, when clause 3 is recursively called first,
the subsequent call should ignore clause 1. In summary, while the static call
graph of fib contains 9 edges, the simplified call graph represented by (5.9)
specifies that only 3 of them can lead to a successful computation. This
additional information, which, again, is cheaply obtained as a byproduct of
the analysis, can also be useful. Its direct exploitation at run-time requires
a mechanism whereby the choice of one clause to resolve with a body atom
influences the choices of the clauses for subsequent atoms. Another applica-
tion concerns guiding program transformations such as unfolding: a partial
evaluator would immediately know that clause 3 can be unfolded in at most
three different, sensible ways.9 Finally, the simplified call graph can be used
in order to simplify subsequent analyses of the same program.

9A small experiment with the CLP(R) system: the queries fib(19, F) and
fib(N, 6765) took 1.16 and 3.65 seconds, respectively. By unfolding clause 3 a tenfold
speedup is obtained: 0.1 and 0.38 seconds, respectively.



5.2. What Redundant Constraints Are For 123

mortgage(P, T, I, B, MP) :- % clause 1
T = 1,
B = P*(I + 1) - MP.

mortgage(P, T, I, B, MP) :- % clause 2
T > 1,
P >= 0,
mortgage(P*(I + 1) - MP, T - 1, I, B, MP).

Figure 5.5: Standard mortgage relationship in CLP(R).

5.2.4 Future-Redundant Constraints

As mentioned in the introduction, we say that a constraint is future re-
dundant if, after the satisfiability check, adding or not adding it to the
current constraint (i.e., the constraint accumulated so far in the computa-
tion), will not affect any answer constraints. Consider the mortgage pro-
gram in Figure 5.5. In any derivation from the second clause the constraint
T′ = T − 1 ∧ T′ > 1 or T′ = T − 1 ∧ T′ = 1 will be encountered, and both
imply T > 1. Thus T > 1 in the second clause is future redundant. If T
is uninstantiated, not adding the future redundant constraint reduces the
“size” of the current constraint, thus reducing the complexity of any subse-
quent satisfiability check. A dramatic speed-up is obtainable thanks to this
optimization [JMM91]. Notice that the definition of future redundant con-
straint given in [JMM91] is more restrictive than ours and, while allowing
a stronger result for the equivalence of the optimized program with respect
to the original one, it fails to capture situations which can be important
not only for compilation purposes (see Section 5.2.5 below). As an example,
consider a version of the fib program in Figure 5.3 on page 119, where the
constraint F >= 2 has been added in the recursive clause. This is future
redundant for our definition (and is recognized as such by the analyzer),
while it is not for the definition in [JMM91].

5.2.5 Improving any Other Analysis

Detecting redundant constraints improves the precision (and sometimes also
the efficiency) of any other analysis. This is due to the ability, described
in Section 5.2.3, of discovering computation branches which are dead. The
obvious implication is that these branches can be safely excluded from analy-
sis: the result is better precision, because the merge-over-all-paths operation
needed for ensuring soundness [CC77] has potentially a less dramatic effect,
and possibly improved efficiency, because less branches need to be analyzed.

We illustrate the first point by means of an example. Consider the
following predicate definition:



124 Chapter 5. Range and Relations Analysis

r(X, Y, Z) :-
Y < X,
Z = 0.

r(X, Y, Z) :-
Y >= X,
Z = Y - X.

This defines the so called ramp function, and is one of the linear piecewise
functions which are used to build simple mathematical models of valuing
options and other financial instruments such as stocks and bonds [LMY87].
Suppose we are interested in groundness analysis of a program containing
the above clauses. A standard groundness analyzer cannot derive any useful
success-pattern for a call to r(X, Y, Z) where nothing is known about the
groundness of variables, even though the “real” call-pattern implied Y < X.
In contrast, in the same situation a definiteness analyzer employing also a
numerical domain (or supplemented with the simplified call graph described
in Section 5.2.3) can deduce the success-pattern ground(Z). This is due
to the ability of recognizing that, in the mentioned context, only the first
clause is applicable. Indeed, this is what happens in the analysis of the
option program distributed with the CLP(R) system.

Improving the Results of Some Other Analyses

The previous section showed how our analysis can generally improve the
others. There are, however, more specific situations where its results may
be of help. For example, the freeness analysis proposed in [DJBC93] can
be greatly improved by the detection of future redundant constraints. In
fact, their abstraction is such that constraints like N ≥ 0 “destroy” (often
unnecessarily) the freeness of N . This kind of constraints are very commonly
used as clause guards, and many of them can be recognized as being future
redundant. This information imply that they do not need to be abstracted,
with the corresponding precision gain.

The analysis described in [Han93] aims at the compile-time detection of
those non-linear constraints, which are delayed in the CLP(R) implemen-
tation, that will become linear at run time. This analysis is important for
remedying the limitation of CLP(R) to linear constraints by incorporating
powerful (and computationally complex) methods from computer algebra
as the ones employed in RISC-CLP(Real). With the results of the above
analysis this extension can be done in a smooth way: non-linear constraints
which are guaranteed to become linear will be simply delayed, while only
the other non-linear constraints will be treated with the special solving tech-
niques. Thus, programs not requiring the extra power of these techniques
will be hopefully recognized as such, and will not pay any penalties. The
analysis of [Han93] is a kind of definiteness. One of its difficulties shows up
when considering the simplest non-linear constraint: X = Y ∗Z. Clearly X



5.3. Numbers as Leaves of Terms 125

is definite if Y and Z are such. But we cannot conclude that the definiteness
of Y follows from the one of X and Z, as we need also the condition Z 6= 0.
Similarly, we would like to conclude that X is definite if Y or Z have a
zero value. It should then be clear how the results of the analysis we pro-
pose can be of help: by providing approximations of the concrete values of
variables, something which is not captured by common definiteness analyses
while being crucial when dealing with non-linear constraints.

5.3 Numbers as Leaves of Terms

For the purpose of bounds and relation analysis of CLP(HN ) languages we
need ways to approximate both numbers and multisets of numbers. The need
for numbers is obvious: we want to represent and compute approximations of
the values which numeric variables can take. While this would be enough for
simple CLP(N ) and CLP(H, N ) languages, this is not the case for CLP(HN )
languages, where numerical values can occur as leaves of extended Herbrand
terms.

An important observation is that the numerical properties we are about
to introduce are monotonic. If, at some program point, the numerical leaves
of terms that can be bound to a variable X are constrained to be, say,
greater than 1, they will continue to do so as the computation progresses. An
important consequence is that we can formalize concrete constraint stores as
possibly infinite sets of tuples of ground terms. For example, the constraint
store containing

A = c(X,Y, Z),
B = k(s(Cx,Cy,Cz,R)),

R ∗R ≥ (X − Cx) ∗ (X − Cx) + (Y − Cy) ∗ (Y − Cy)
+ (Z − Cz) ∗ (Z − Cz),

and projected onto the pair of variables (A,B) is represented by the following
infinite set of pairs of ground terms:(c(x, y, z), k(s(cx, cy, cz, r))

) ∣∣∣∣∣∣∣
x, y, z, cx, cy, cz, r ∈ R
r2 ≥ (x− cx)2 + (y − cy)2

+(z − cz)2

.
The overall analysis domain that is the subject of this chapter is of the

kind Pattern(something), where Pattern(·) is the generic structural domain
of Chapter 4. Describing that ‘something’ is the purpose of the following
sections.



126 Chapter 5. Range and Relations Analysis

5.4 A Sequence of Approximations

We will now start describing how we abstract a set of tuples of terms for
the purpose of range and relations analysis. This is done by setting up
chain of subsequent approximations starting from the very concrete domain
constituted by the complete lattice

D[[ def= ℘
(
T m
)

(5.10)

ordered by set inclusion.
First of all, we abstract each ground term with the multiset of its nu-

merical leaves.10

Definition 74 (Numerical leaves.) The multiset of numerical leaves of
a term is given by the function nl+ : T → ℘+

f (R) defined as follows, for each
t ∈ T :

nl+(t) def=


HtI, if t is a number;⊎a
i=1 nl+(ti), if t = f(t1, . . . , ta);

∅, otherwise.

This brings us consider the intermediate domain

D[ def= ℘
(
℘+

f (R)m
)
, (5.11)

still ordered by set inclusion, which is connected to D[[ by means of the
abstraction function

λT̂ ∈ ℘
(
T m
)
.
{(

nl+(t1), . . . , nl+(tm)
) ∣∣∣ (t1, . . . , tm) ∈ T̂

}
. (5.12)

The function (5.12) is a complete join-morphism by its very definition. Con-
sequently, we have just defined a Galois connection between D[[ and D[.

We now face the problem of representing sets of m-tuples of finite mul-
tisets of real numbers. The first approximation which comes to mind con-
sists in flattening the multisets and getting rid of the outermost powerset
construction (an approximation often employed in abstract interpretation).
This would lead to consider the domain

D\q
def= ℘(R)m, (5.13)

which is an abstraction of D[ through the abstraction function αq : D[ → D\q
given by

λM̂ ∈ D[ .

( ⋃
M̄∈M̂

ζ
(
π1(M̄)

)
, . . . ,

⋃
M̄∈M̂

ζ
(
πm(M̄)

))
. (5.14)

10The reader who has skipped the chapter on mathematical background might want to
go back to Section 2.3 on page 18 where multiset notation is explained.



5.4. A Sequence of Approximations 127

Of course, if we aim at a practical data-flow analysis, we would need to
approximate ℘(R)m further: by using m-tuples of intervals, for instance.
However, even the abstraction (5.14) alone implies an excessive loss of pre-
cision. For example, the set

Ê
def=
{(
H1I, H2I, H3I

)
,
(
H4I, H5I, H6I

)}
(5.15)

is abstracted by (5.14) into

αq(Ê) =
(
{1, 4}, {2, 5}, {3, 6}

)
, (5.16)

which is also the abstraction of, say,{(
∅, H5I, H3, 6I

)
,
(
H1, 4I, H2I,∅

)}
.

We have thus lost information on the cardinalities of the multisets which
form the tuples of Ê, as well as relational information on these multisets.
While it is true that each m-tuple Ē ∈ Ê satisfies

∀x A π1(Ē) : ∀y A π2(Ē) : ∀z A π3(Ē) : x < y < z,

this cannot be concluded by looking at αq(Ê) only.
The above discussion is fairly obvious, of course, since information loss

is the very essence of proper abstraction. The point is that we do not want
to lose too much precision neither on the cardinalities of the multisets nor
on the relationships which exist between the elements of each multiset. The
reasons why these kinds of information are important for our application will
become more clear later. However, they can be appreciated immediately by
means of a couple of observations. First of all, qualitative constraints of
the kind X < Y arise frequently in constraint programming. They can be
combined with quantitative constraints like, say, X ≥ 2 in order to obtain
new qualitative information: Y > 2 in the present example. So, relational
information is important.

Then, suppose we have three sets of terms: T1, T2, and T3. Suppose also
we know that all the numerical leaves that occur in T1 are numerically less
than those of T2, which, in turn, are less than those of T3. Can we conclude
that all the numerical leaves of T1 are less than those of T3? The answer is

“yes, provided that T2 has at least one numerical leaf ”.

There are other possible inferences which are based on some non-emptiness
condition. However, in order to capture the property of non-emptiness for
multisets, non-emptiness alone is not strong enough. Suppose you have an
unknown term

t
def= f(t1, t2),



128 Chapter 5. Range and Relations Analysis

where t1 and t2 are two further unknown terms. If you only know that t has
a non-empty multiset of numerical leaves then all you can say is that t1 or
t2 have at least one numerical leave. Stated differently, if you can reason in
terms of non-emptiness only, nothing can be concluded: t1 might not have
any numerical leave, and the same can happen for t2, though not at the
same time. If cardinalities of the multisets can be expressed a more refined
reasoning is possible, since the number of numerical leaves of t, u1, and u2

are tied by the formula∥∥nl+(t)
∥∥ =

∥∥nl+(t1)
∥∥+

∥∥nl+(t2)
∥∥.

Similar situations occur frequently in abstract interpretation. For instance,
if the groundness of variables has to inferred precisely one must use a strictly
more powerful domain capturing groundness dependencies.

Stated that cardinalities and binary relations are important to us, we
supplement D\q with two further domains,

D\c
def= ℘

(
N

)m (5.17)

and

D\r
def= ℘

(
R

2
)m(m−1)/2

. (5.18)

The abstraction αc : D[ → D\c keeps track of cardinalities. It is given by

λM̂ ∈ D[ .
({∥∥π1(M̄)

∥∥ ∣∣∣ M̄ ∈ M̂ }
, . . . ,

{∥∥πm(M̄)
∥∥ ∣∣∣ M̄ ∈ M̂ })

. (5.19)

The additional domain D\r, instead, records the Cartesian product (a binary
relation) between the values occurring in the i-th and the j-th multiset, for
i < j. This restriction to the set of indexes

Im
def=
{

(i, j)
∣∣ i, j = 1, . . . ,m, i < j

}
(5.20)

is in order to avoid redundancies. Clearly, Si × Si does not convey more
information that Si itself, and for any two sets Si and Sj we have Sj ×Si =
(Si × Sj)−1. Observe that excluding useless redundancies allows us, among
other things, to avoid the trouble of specifying consistency conditions among
the redundant pieces. Once one has specified a bijection

(̃ı, ̃) : Im →
{

1, . . . ,m(m− 1)/2
}
, (5.21)

such as the one given in Figure 5.6, the abstraction αr : D[ → D\r can be
expressed as

λM̂ ∈ D[ .
(
R
(
1, M̂

)
, . . . , R

(
m(m− 1)/2, M̂

))
, (5.22)



5.5. Approximations for Sets of Reals 129

̃(k) def=
⌊√

8k − 7 + 1
2

⌋
+ 1, for k = 1, . . . ,

m(m− 1)
2

;

ı̃(k) def= k −
(
̃(k)− 1

)(
̃(k)− 2

)
2

, for k = 1, . . . ,
m(m− 1)

2
;

(̃ı, ̃)−1(i, j) def= i+
(j − 1)(j − 2)

2
, for (i, j) ∈ Im.

Figure 5.6: A bijection (̃ı, ̃) : Im →
{

1, . . . ,m(m− 1)/2
}

.

where, for each k = 1, . . . , m(m− 1)/2,

R(k, M̂) def=
⋃

M̄∈M̂

ζ
(
πı̃(k)(M̄)

)
× ζ
(
π̃(k)(M̄)

)
, (5.23)

Now, our first approximation of D[ is given by the product of D\c, D\q,
and D\r, namely

D\ def= D\c ×D\q ×D\r. (5.24)

This is clearly more precise than D\q alone. The domain D\ includes some
redundancy, since many of its elements represent the same element of D[.
This situation could be rectified by considering, instead of the straight prod-
uct, the reduced product of D\c, D\q, and D\r [CC79, CC92a]. We will not do
that, however, since we proceed by performing a further approximation step
on D\.

Actually, we consider a family of such approximations. Each member
of the family is obtained by providing separate approximations for D\c, D\q,
and D\r. The considered family of abstract domains is thus given by any

D](AR,AN,AR2) def= Am
N
× Am

R
× A

m(m−1)/2
R2 , (5.25)

where AR, AN, and A
R2 are approximations of ℘(N), ℘(R), and ℘(R2), re-

spectively. We will show later how we can approximate the reduction of the
product (5.25), thus obtaining an approximation of the reduced product of
D\c, D\q, and D\r.

The next three sections are devoted to the introduction of the classes
of approximations we consider for the representation of sets of cardinali-
ties, sets of real numbers, and binary relations between such sets. We will
give the properties they must satisfy for our purposes together with some
representative examples.

5.5 Approximations for Sets of Reals

This first kind of approximation conveys quantitative information on the
values that numerical leaves can take. Here is a definition that, adopting



130 Chapter 5. Range and Relations Analysis

the closure operator approach to abstract interpretation, spells out precisely
what we require for this purpose.

Definition 75 (R-approximation.) A R-approximation is any algebra of
the form11

ȦR
def= 〈AR,�,�1,�2,�,�, sin , . . . 〉,

where

1. AR ⊆ ℘(R) is an abstraction of ℘(R), namely, there exists an op-
erator12 AR ∈ uco

(
℘(R),⊆

)
such that AR = AR

(
℘(R)

)
. Moreover,

∅ ∈ AR.

2. �, �1, �2, �, �, sin , . . . are functions in Ak
R
→ AR, for some m ∈

N, approximating the linear extensions of their obvious (non-boxed)
counterparts in Rk → R. For instance, � : A2

R
→ AR is such that, for

each A1, A2 ∈ AR,

{x1 + x2 | x1 ∈ A1, x2 ∈ A2 } ⊆ A1 �A2.

We will use the symbols ⊗ and ⊕ to denote the glb (set intersection) and
the lub operators, respectively, of the complete lattice (AR,⊆).

The reader who wonders why we have not defined, for instance,

A1 �A2
def= AR

(
{x1 + x2 | x1 ∈ A1, x2 ∈ A2 }

)
,

is referred to the next section, where we will briefly review a well-known
R-approximation.

Sometimes one needs approximations for subsets of the extended reals
R∞

def= R ∪ {−∞,+∞}, instead of just the reals. This can happen because
the language to be analyzed employs IEEE-754 and/or IEEE-854 extended
arithmetic13. Some extra complications arise (especially in the implementa-
tion) when dealing with the extended reals.

Another reason for dealing with the extended reals is when one of the
results which are sought from the analysis is possible overflow information.
In this case the values +∞ and −∞ indicate a potential arithmetic overflow
in the computation.

Actually, we are about to introduce R∞-approximations because we need
them in order to define an R2-approximation called bounded quotients (see
Section 5.7.3 on page 139).

11The subscripts of �1 and �2 denote the arity: they are the approximations of unary
and binary minus, respectively.

12Notice how we overload AR to denote both the approximation’s domain and the upper
closure operator that maps each subset of the reals into the least element of the domain
that contains it. Thus, AR : R→ AR is a sort of constructor for AR ⊆ ℘(R). We will adopt
the same convention for all the approximations that follow.

13SICStus Prolog implements such a language [SIC95].



5.5. Approximations for Sets of Reals 131

Definition 76 (R∞-approximation.) A R∞-approximation is an algebra
of the form

ȦR∞
def= 〈AR∞ ,�,�1,�2,�,�, sin , . . . 〉,

where

1. AR∞ ⊆ ℘(R∞), with ∅ ∈ AR∞, is an abstraction of ℘(R∞) through the
operator AR∞ ∈ uco

(
℘(R∞),⊆

)
.

2. �, �1, �2, �, �, sin , . . . are functions in Ak
R∞
→ AR∞ approximating

the linear extensions of their non-boxed counterparts in Rk∞ → R∞.

3. Moreover, all the above functions satisfy the following property: for
each op : Ak

R∞
→ AR∞ and each A1, . . . , Ak ∈ AR∞, if it happens that

+∞ ∈ op (A1, . . . , Ak) then there must exist x1 ∈ A1, . . . , xk ∈ Ak
such that op(x1, . . . , xk) = +∞. Likewise for −∞.

The same notational conventions introduced for R-approximations will be
used.

Note that condition 3 above imposes a limit on the crudeness of the ap-
proximate operators. In words, the extra-symbols +∞ and −∞ cannot be
thrown in the results without reasons, but only when the linear extension
of the approximated operation would have produced them. As we will see,
this requirement imposes some extra care in the actual definition and im-
plementation of a R∞-approximation.

5.5.1 Intervals

One commonly used R-approximation is constituted by intervals. They have
several advantages [AH83, Cle87, Moo66, Dav87]:

1. they have a compact representation. Usually two numbers drawn from
some subset of R∪{−∞,+∞} are enough, plus possibly two booleans
to indicate closedness or openness at each end.

2. Intervals are closed under intersection; and

3. the image of an interval under a continuous function is itself an inter-
val.

Definition 77 (Open/closed intervals.) Let B ⊆ R be any set of real
numbers. The set B∞ of boundaries over B is given by

B∞
def= B ∪ {−∞,+∞},



132 Chapter 5. Range and Relations Analysis

and is totally ordered by the natural extension of < over B∞. Consider the
set

IB
def=
{
{x ∈ R | l ./l x ./u u }

∣∣ l, r ∈ B∞, ./l, ./r ∈ {<,≤}
}
.

The ⊗ operator over IB is set intersection, while ⊕ is given by the convex
hull, that is, for each I1, I2 ∈ IB,

I1 ⊕ I2
def=
{
x ∈ R

∣∣ ∃l, u ∈ I1 ∪ I2 . l ≤ x ≤ u
}
.

By endowing IB with a family of arithmetic operators as required by Defini-
tion 75 we obtain a R-approximation. We will denote it by İB and call it an
interval approximation over B.

Suppose that {0, 1} ⊆ B and that −x ∈ B whenever x ∈ B. Then it
is possible to define the � and � operations so that IB is a commutative
ringoid with identity. Namely [KM81], for each I, I1, I2 ∈ IB:

I1 � I2 = I2 � I1, I � {0} = I,

I1 � I2 = I2 � I1, I � {1} = I,

I � {0} = {0},

{−1} is the unique interval which is the additive inverse of {1}, the multi-
plicative inverse of itself, and distributes with respect to � and �. In case
B is unbounded, � and � can be made to be associative. Distributivity,
however, does not hold, even in the extreme case where B is R itself.

In practice, one chooses B to be a computable set of numbers, e.g., some
family of rational or floating point numbers. Rational numbers would allow
exact arithmetic computations to be performed, assuming the availability
of arbitrarily large integers. Exact computations, however, have the dis-
advantage that the gcd operations, while taking time, cannot prevent the
formation of huge numerators and denumerators in the boundaries’ repre-
sentations. As usual, one can trade precision for efficiency by considering
only interval boundaries with acceptably compact ratios [EF92].

Of course, one can consider open intervals only or closed intervals only.
Some authors advocate this last possibility for the following reasons [Dav87]:

1. any bounded set of values admits a unique minimal closed interval
which contains it;

2. numbers are a special case of closed interval;

3. the image of a closed bounded interval under a continuous function is
a bounded closed interval.



5.5. Approximations for Sets of Reals 133

These considerations, unfortunately, have little value in practice. The reason
is that our boundary values must be machine representable. For instance, if
we employ single-precision IEEE floating point numbers, we can represent
the bounded set of values {2} as [2, 2], but the best representation we can
get for

{√
2
}

, the image of [2, 2] under the continuous function
√
· : R+ →

R
+, is something like (1.414213538 · · · , 1.414213657 · · · ). Moreover, the set

of strictly positive real numbers is not representable by means of a closed
interval. In summary, we believe that considering a mixture of open, closed,
and half-open intervals is generally a good idea.

A useful variation on the theme, which we will exploit later, is to consider
a mixture of real and integer-valued intervals.

Definition 78 (Real/integer intervals.) Let İB be an interval approxi-
mation over B. The real/integer interval approximation over IB is given by
the carrier

INB
def= IB ∪ { I ∩ N | I ∈ IB }

augmented with all the operators of IB, suitably extended to INB so to satisfy
the requirements of Definition 75. We will use the notation [l .. u], with
l, u ∈ B∩N for the finite sets in INB. The remaining elements of { I ∩N | I ∈
IB } will be denoted by (−∞ .. u], [l ..+∞), and (−∞ ..+∞).

The mathematically inclined might be surprised (or upset) by the fact that
we use the word “interval” to denote also non-convex subsets of the reals:
we simply find this terminology convenient.

We would now like to give an example explaining why, in Definition 75,
we allow for some crudeness on the part of the arithmetic operators. Con-
sider division in İNB. Defining � in the most precise way, namely as INB ◦(·/·),
we would be able to obtain

[6 .. 6]� [1 .. 3] def= INB

({
x/y

∣∣ x ∈ [6 .. 6], y ∈ [1 .. 3]
})

= [2 .. 6]. (5.26)

However, one normally uses a more efficient division operator, which avoids
the divisibility checks at the price of a small precision penalty. Such an
operator would yield the cruder result [6 .. 6] � [1 .. 3] = [2, 6], for instance.
So we do not want to make any a priori commitment to maximum preci-
sion. Nonetheless, we might do wish to be precise. This point gives us an
opportunity for a brief digression.

The abstract interpretation practitioner might have protested because we
did not present the real/integer interval approximation as a reduced product.
Indeed, the carrier of İNB can be obtained as the reduced product between an
interval domain and a domain for integrality with two elements: ‘integer ’
and ‘don’t know ’. But what about the arithmetic operations? Following the
reduced product approach, the division operator cannot obtain the same



134 Chapter 5. Range and Relations Analysis

result of (5.26). In fact, [6, 6] divided by [1, 3] gives [2, 6], integer divided
by integer yields don’t know, and there is no way for [2, 6] and don’t know
to be reduced to [2 .. 6]. This limitation is undesirable, since one might
well want to implement (5.26). In summary, our choices (both here and
in general) are justified by the desire of retaining maximum freedom in
the actual implementations. In this respect, we condemn both excessive
commitment to precision and to sloppiness equally.

Of course, the examples of R-approximations we have shown are not
exhaustive. One can consider some family of sets of intervals, also called
multi-intervals, for instance. The theory of abstract interpretation offers a
great variety of possibilities for designing the carrier of the approximations,
starting from some base domains, through standard constructions like re-
duced product, down-set completion, auto-dependencies and so forth. This
remark clearly applies also to the approximations for cardinalities and binary
relations we are about to present.

5.6 Approximations for Cardinalities

For the purpose of representing multiset cardinalities any approximation of
℘(N) satisfying some minimal requisites would do.

Definition 79 (N-approximation.) A N-approximation is any algebra of
the form

ǍN
def= 〈AN,�,�2〉,

where

1. AN ⊆ ℘(N) is an abstraction of ℘(N), the corresponding upper closure
operator being AN ∈ uco

(
℘(N),⊆

)
. Moreover, AN contains ∅, {0},

and N \ {0}.

2. � and �2 are correct approximations of the linear extensions of +,− : N2 →
N.

Again, we will use the symbols ⊗ and ⊕ to denote the glb (set intersection)
and the lub operators, respectively, of the complete lattice AN.

5.6.1 An Example

As an example of N-approximation we introduce now a simple domain of
intermediate precision between signs and integer intervals. In lack of a
better name, we will refer to this trivial exercise in abstract interpretation
as the cardinalities approximation.



5.7. Approximations for Numerical Relations 135

��

��
⊥c

��

��
0

��

��
1

��

��
01

��

��
1+

��

��
0+

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

Figure 5.7: Hasse diagram of the cardinalities’ lattice.

Definition 80 (Cardinalities.) The cardinality approximation is given
by
〈
{⊥c, 0, 1, 01, 1+, 0+},�,�2

〉
, where

⊥c
def= ∅, 0

def= {0}, 1
def= {1},

01
def= {0, 1}, 1+

def= N \ {0}, 0+ def= N.

The complete lattice which arises from this definition is depicted in Fig-
ure 5.7, whereas the � and �2 operators are summarized in Tables 5.1
and 5.2 on page 137.

5.7 Approximations for Numerical Relations

The approximations of relations carry qualitative information on numerical
values. Since there is an interplay between qualitative and quantitative
information, our approximations of relations are parametric with respect to
a R-approximation. Besides that the following definition is quite similar
to the ones we have already seen, the key principle (sound approximation)
being exactly the same.

The operations we need to approximate here are for composing, building,
and restricting (or applying) binary relations.

Definition 81 (R2-approximation.) Let AR be any a set approximation.
A R

2-approximation is any algebra of the form

Ä
R2

def= 〈A
R2 ,AR,�,�,�〉,



136 Chapter 5. Range and Relations Analysis

where

1. A
R2 ⊆ ℘(R2) is an abstraction of ℘(R2) such that ∅ ∈ A

R2. Moreover,
R−1 ∈ A

R2 whenever R ∈ A
R2. The associated upper closure operator

will be denoted by A
R2.

2. � : AR × AR → A
R2 is such that, for each A1, A2 ∈ AR,

A1 �A2 ⊇ A1 ×A2.

3. � : A
R2 × A

R2 → A
R2 is such that, for each R1, R2 ∈ A

R2,

R1 �R2 ⊇ R1 ◦R2.

4. � : A
R2 × AR → AR is such that, for each R ∈ A

R2 and each A ∈ AR,

R�A ⊇ R(A).

The � operation is called refinement. Again, we will use the symbols ⊗ and
⊕ to denote the glb (set intersection) and the lub operators, respectively, of
the complete lattice A

R2.

We now show three representative classes of R2-approximation. As usual,
many other alternatives exist.

5.7.1 Ordering Relationships

One of the simplest form of R2-approximation is constituted by ordering
relationships.

Definition 82 (Ordering relationships.) The set

O
def=
{
∅,=,<,>,≤,≥, 6=,R2

}
,

where

= def=
{

(x, y) ∈ R2
∣∣ x = y

}
, 6= def=

{
(x, y) ∈ R2

∣∣ x 6= y
}
,

<
def=
{

(x, y) ∈ R2
∣∣ x < y

}
, ≤ def=

{
(x, y) ∈ R2

∣∣ x ≤ y },
>

def=
{

(x, y) ∈ R2
∣∣ x > y

}
, ≥ def=

{
(x, y) ∈ R2

∣∣ x ≥ y },
is the carrier of a family of R2-approximations which we will collectively
refer to as ordering relationships. The ⊗ and ⊕ operators are given by set-
theoretic intersection and union, respectively. Thus, O has the simple lattice
structure depicted in Figure 5.8. Let ȦR be any R-approximation. The �
and � operators (which depend on ȦR) are chosen freely, as long as the re-
quirements of Definition 81 are satisfied. The most precise composition op-
erator, namely O ◦(· ◦ ·), is so simple that it constitutes a compulsory choice.
The resulting � operator is shown in Table 5.3. Any R2-approximation so
obtained will be denoted by Ö(ȦR) and called ordering relationships over ȦR.



5.7. Approximations for Numerical Relations 137

� ⊥c 0 1 01 1+ 0+

⊥c ⊥c ⊥c ⊥c ⊥c ⊥c ⊥c

0 ⊥c 0 1 01 1+ 0+

1 ⊥c 1 1+ 1+ 1+ 1+

01 ⊥c 01 1+ 0+ 1+ 0+

1+ ⊥c 1+ 1+ 1+ 1+ 1+

0+ ⊥c 0+ 1+ 0+ 1+ 0+

Table 5.1: The � operator on cardinalities.

�2 ⊥c 0 1 01 1+ 0+

⊥c ⊥c ⊥c ⊥c ⊥c ⊥c ⊥c

0 ⊥c 0 ⊥c 0 ⊥c 0
1 ⊥c 1 0 01 0 01
01 ⊥c 01 0 01 0 01
1+ ⊥c 1+ 0+ 0+ 0+ 0+

0+ ⊥c 0+ 0+ 0+ 0+ 0+

Table 5.2: The �2 operator on cardinalities: x � y is at the intersection
between the x-th row and the y-th column.

��

��
∅

��

��
<

��

��
=

��

��
>

��

��
≤

��

��
6=

��

��
≥

��

��
R

2

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Figure 5.8: Hasse diagram of the ordering relationships lattice.



138 Chapter 5. Range and Relations Analysis

� < ≤ > ≥ = 6=
< < < R

2
R

2 < R
2

≤ < ≤ R
2

R
2 ≤ R

2

> R
2

R
2 > > > R

2

≥ R
2

R
2 > ≥ ≥ R

2

= < ≤ > ≥ = 6=
6= R

2
R

2
R

2
R

2 6= R
2

Table 5.3: The � operator on ordering relationships.

5.7.2 Bounded Differences

The next R2-approximation we consider comes (as it is the case for many
other things in this chapter) from the field of Artificial Intelligence. It allows
to express the relative values of two quantities by means of constraints of
the form x − y ∈ S, with S ⊆ R, whence the name bounded differences
[Dav87]. In AI these approximations proved to be particularly useful for
systems which need to place events on a time-line, such as TMM [Dea85]
and other planning programs [Ver83]. In our particular formal treatment,
any R-approximation induces a system of bounded differences.

Definition 83 (Bounded differences.) Let ȦR be an R-approximation.
Consider, for each A ∈ AR, the set

d(A) def=
{

(x, y) ∈ R2
∣∣ (x− y) ∈ A

}
,

and then

D(AR) def=
{

d(A)
∣∣ A ∈ AR

}
.

By construction, AR is isomorphic to D(AR), the isomorphism being given by
d : AR → D(AR). In particular, d(∅) = ∅ and d(R) = R

2. Moreover, several
operations over bounded differences are defined in terms of the operations of
ȦR. Thus, for each A1, A2 ∈ AR:

d(A1)⊗ d(A2) def= d(A1 ⊗A2),

d(A1)⊕ d(A2) def= d(A1 ⊕A2),

d(A1)� d(A2) def= d(A1 �A2),

A1 �A2
def= d(A1 �2 A2),

If � is a refinement operator satisfying Definition 81, it can be shown that

D̈(ȦR) def=
〈
D(AR),AR,�,�,�

〉



5.7. Approximations for Numerical Relations 139

is indeed an R2-approximation. We will call such an approximation bounded
differences over ȦR.

Observe that a plausible definitions of the refinement operator, in terms of
AR operators, is the following:

d(A1)�A2
def= A2 �2 A1,

where A1, A2 ∈ AR. However, generally speaking, this does not automat-
ically define neither the most precise refinement operator, nor an efficient
one. Of course, the more precise is the R-approximation which is used as
the basis, the more precise is the resulting system of bounded differences.
Observe also that Definition 83 is somewhat unnecessarily restrictive, in that
it assumes that one uses the same R-approximation both per se (namely, as
a way for approximating sets of values) and as the basis for the bounded
differences construction. Of course, one can make a different choice: for
example using intervals for bounded differences together with, say, some
family of multi-intervals.

As a final remark, notice that any conventional interval approxima-
tion, such as the one introduced in Definition 77, is not strong enough
in order to obtain, through the bounded-differences construction, an R2-
approximation capturing all the ordering relationships of Ö. In fact, while
any decent interval approximation İB is such that D(İB) can represent =,
<, >, ≤, and ≥ (by means of [0, 0], (−∞, 0), (0,+∞), (−∞, 0], and
[0,+∞), respectively), it cannot represent 6=. Indeed, 6= would correspond
to (−∞, 0) ∪ (0,+∞), which usually does not belong to IB. The solution
is to adopt an R-approximation which is able to capture constraints of the
kind x 6= 0. A suitable variation on the intervals theme is given by

I6=0

B
def= IB ∪

{
I \ {0}

∣∣ I ∈ IB
}
, (5.27)

which, if endowed with reasonable � and �2 operators, is such that D̈
(
İ6=0

B

)
is strictly more precise than Ö, that is, O ⊂ D

(
I6=0

B

)
.

5.7.3 Bounded Quotients

Consider the extended reals R∞
def= R ∪ {−∞,+∞}, with the arithmetic

operations extended in such a way that, for each b ∈ R with b > 1,

0
0

def= 1,
x

0
def= +∞, for each x > 0,

logb 0 def= −∞, logb(+∞) def= +∞,

(+∞)− (+∞) def= 0, (−∞)− (−∞) def= 0.



140 Chapter 5. Range and Relations Analysis

This is what is needed to ensure that, for each x, y ∈ R∞,

logb

∣∣∣∣xy
∣∣∣∣ = logb|x| − logb|y|.

Once one has fixed a base b > 1, a system of bounded quotients captures
relations of the form logb|x| − logb|y| ∈ S. As such, it is quite similar to a
system of bounded differences. In the field of Artificial Intelligence, systems
of bounded differences, restricted to positive quantities, have been used for
temporal reasoning [AK85]. In our case quantities can be negative, whence
the need for taking the absolute value, or can be zero, which is why we need
to consider the extended structure of the reals.

Definition 84 (Bounded quotients.) Let us fix b ∈ R such that b >
1, and let ȦR∞ and ȦR be an R∞-approximation and an R-approximation,
respectively. Consider the function q : AR∞ → R

2 given, for each A ∈ AR∞,
by

q(A) def=
{

(x, y) ∈ R2
∣∣ logb|x| − logb|y| ∈ A

}
.

Then, on the set Q(AR∞) def=
{

q(A)
∣∣ A ∈ AR∞

}
, we consider the following

operations, for each A1, A2 ∈ AR∞:

q(A1)⊗ q(A2) def= q(A1 ⊗A2),

q(A1)⊕ q(A2) def= q(A1 ⊕A2),

q(A1)� q(A2) def= q(A1 �A2).

If we are also given two functions � : AR×AR → Q(AR∞) and � : Q(AR∞)×
AR → AR such that

A1 �A2 ⊇ A1 ×A2,

q(A1)�A2 ⊇
{
y ∈ R

∣∣ ∃x ∈ A2 . ∃z ∈ A1 . y = ±b−z|x|
}
,

then Q̈(ȦR∞ , ȦR) def=
〈
Q(AR∞),AR,�,�,�

〉
, called bounded quotients over

ȦR∞ and ȦR, is an R2-approximation.

5.8 Approximations are Constraints

As we have seen, our family of domains for range and relations analysis has,
by now, three degrees of freedom. Once we have chosen an R-approximation,
AR, an N-approximation, AN, and an R2-approximation, A

R2 , our base do-
main is the complete lattice

D]n
def= D]n(AR,AN,AR2) def= An

R
× An

N
× A

n(n−1)/2
R2 (5.28)



5.8. Approximations are Constraints 141

The AN component carries information on multiset cardinality, AR conveys
quantitative information on the values of multisets’ elements, whereas A

R2

is for qualitative information on that values.
One way to obtain a description in D]n for a predicate p in a program

P , would be to execute all the possible computation paths of P , collecting
all the tuples of ground terms that represent the possible successes of p. If
the set of all tuples is T̂ and we take a common anti-instance s of T̂ with n
variables, we know how, by means of the sequence of abstractions above, to
obtain the desired element of D]n. This, of course, is impossible, in general.

Something else must be done, and the domain D]n turns out to be too
weak for our purposes. Before discussing this topic, we better equip ourselves
with a language that will make easier talking about the elements of D]n.

We can think about each element of D]n as a safe description of an n-
tuple of multisets that is, in general, unknown. Let us call this tuple that
we have in mind X̂. It is important to understand that the tuple X̂ is
defined elsewhere: here X̂ is just a variable symbol standing for a particular,
unspecified tuple of multisets of numbers. When our approximations will be
put at work each X̂ will be given a precise definition, like the following:

X̂
def=
(

nl+(t1), . . . , nl+(tn)
)

for some (t1, . . . , tn) belonging to an unknown set T̂ . The set T̂ , though
entirely defined14, is unknown, so is (t1, . . . , tn), and so will be X̂. After all,
the objective of the game is to derive some information about what T̂ looks
like.

So, X̂ is a variable ranging over n-tuples of multisets. What we will do
is to put constraints on X̂ in order to restrict the set of n-tuples of multisets
in its range. By doing this we will indirectly constrain the tuple (t1, . . . , tn)
and thus T̂ itself.

What is needed is a language for constraining X̂ based on our approxi-
mations for cardinalities, sets, and relations. For instance, we could write

ζ
(
π1(X̂)

)
⊆ [1, 3] (5.29)

meaning that X can stand for any n-tuple of multisets of the reals such that
the elements of the first multiset are all included in [1, 3]. We can use any
element of a chosen R-approximation instead of [1, 3]. If we write also∥∥π1(X̂)

∥∥ ∈ {1, 5} (5.30)

we further specify that the first multiset must have cardinality 1 or 5. Once
we have fixed an N-approximation we have a language for expressing sets of

14For instance, “T̂ is the set of n-tuples of terms to which a certain n-tuple of variables
can be bound when the computation reaches a particular control point following one of
some set of computation paths assuming that the resulting constraint store is consistent.”



142 Chapter 5. Range and Relations Analysis

cardinalities. Finally, we might also specify that

ζ
(
π1(X̂)

)
× ζ
(
π2(X̂)

)
⊆
{

(x, y) ∈ R2
∣∣ x < y

}
, (5.31)

thus saying that the elements of the first multiset are less than those (if any)
of the second multiset. Any R2-approximation provides us with a language
for specifying binary relations.

The notation used in (5.29)–(5.31) is quite cumbersome. We will use the
following equivalent formulation instead:

X̂q
1 ⊆ [1, 3], instead of (5.29);

X̂c
1 ⊆ {1, 5}, instead of (5.30);

X̂r
1,2 ⊆

{
(x, y) ∈ R2

∣∣ x < y
}
, instead of (5.31).

What we have done can be thought as if we had “exploded” the variable
symbol X̂ into several variable symbols. These are, for each i, j ∈ {1, . . . , n},

X̂c
i , X̂

q
i , X̂

r
ij .

Suppose X̂ stands for the tuple

(M1, . . . ,Mn),

then

• X̂c
i stands for the singleton set of natural numbers containing the

cardinality of Mi, that is
{
‖Mi‖

}
;

• X̂q
i stands for the set of values occurring in Mi, namely ζ(Mi);

• X̂r
ij stands for ζ(Mi)× ζ(Mj).

It is easy to associate each element of D]n to a set of constraints of the
form

v ⊆ K,

where v is any of X̂c
i , X̂

q
i , or X̂r

ij , and K is an element of the corresponding
N-, R-, or R2-approximation. On the other hand, to each set of constraints
of this form corresponds an element of D]n. However, with our syntax we
can express more than this. We can say, for instance,

X̂q
i ⊆ X̂

q
j ,

meaning that the i-th multiset does not contain more numeric values than
those occurring in the j-th multiset. As we will see, we are moving to an
abstract domain that is much more powerful than D]n: a space of kernel
operators over D]n. For this purpose, we will do the following:



5.8. Approximations are Constraints 143

1. define a class of expressions over our special variable symbols and
approximations;

2. define a class of basic constraints (or tokens) based on these expres-
sions;

3. define a class of entailment relations between the basic constraints;

4. define a class of determinate constraint systems: as seen in Chapter 3,
these are induced by the simple constraint system constituted by a set
of basic constraints together with a suitable entailment relation and
merge operator;

5. define ask-and-tell constraint systems over these d.c.s.;

6. use finite cc agents over the above ask-and-tell c.s. in order to capture
the relevant aspects of concrete computations.

Let us start with expressions. The punctilious reader will forgive us if
we do not use different symbols for the syntactic operators and the corre-
sponding semantic operations.

Definition 85 (Abstract expressions.) The set of cardinality expres-
sions, Ec, is the language generated by the following grammar:

c ::= N with N ⊆ AN

| X̂c
i with i ∈ {1, . . . , n}

| c1 ⊗ c2 with c1, c2 ∈ Ec

| c1 ⊕ c2

| c1 � c2

| c1 �2 c2

Similarly, the sets of quantity expressions, Eq 3 q, and relationship expres-



144 Chapter 5. Range and Relations Analysis

sions, Er 3 r, are given by

q ::= S with S ⊆ AR

| X̂q
i with i ∈ {1, . . . , n}

| q1 ⊗ q2 with q1, q2 ∈ Eq

| q1 ⊕ q2

| r � q with r ∈ Er

| q1 � q2

| �1 q

| q1 �2 q2

| q1 � q2

| q1 � q2

| sin q

... (all the other operators)

and

r ::= R with R ⊆ A
R2

| X̂r
ij with i, j ∈ {1, . . . , n} and i 6= j

| r−1

| r1 ⊗ r2 with r1, r2 ∈ Er

| r1 ⊕ r2

| r1 � r2

| q1 � q2 with q1, q2 ∈ Eq

The set of all such expressions is denoted by

E
def= Ec ∪ Eq ∪ Er. (5.32)

We will denote by E0 the set of constant expressions, namely, the subset of
E containing all the expressions where no variable symbols occur.

In what follows we will always assume that everything is “well-typed”. Thus,
when we write e1 ⊗ e2 and e1 ∈ Eq we are implicitly stating that e2 ∈ Eq.
In order to simplify the exposition we also introduce the set

A
def= AN ∪ AR ∪ A

R2 (5.33)

that will be used freely under the assumption of well-typedness. So, for
K1,K2 ∈ A, writing K1 ⊆ K2 implies that K1 and K2 belong to the same
set, among the three that are united in (5.33).

Needless to say, constant expressions can be evaluated in the obvious
way.



5.8. Approximations are Constraints 145

Definition 86 (Evaluation of expressions.) The function

eval : E0 → A

is defined, by structural induction, in the obvious way. For instance, for
each e1, e2 ∈ E0,

eval(K) def= K, if K ∈ A;

eval(e1 ⊗ e2) def= eval(e1)⊗ eval(e2),

eval(e1 ⊕ e2) def= eval(e1)⊕ eval(e2),

eval(e−1
1 ) def= eval(e1)−1

eval(e1 � e2) def= eval(e1)� eval(e2),
. . .

Expressions need also to be manipulated syntactically. The (usually
limited) algebraic capabilities of the system are encoded by a relation.

Definition 87 (Safe approximation.) A relation 2 ⊆ E × E is a safe
approximation relation if

K1 2 K2, for each K1,K2 ∈ A such that K1 ⊆ K2;
e1 2 e1 ⊕ e2, for each e1, e2 ∈ E.

Moreover, whenever

e1 2 e2

if vars
(
(e1, e2)

)
= {v1, . . . , vk} and Ki ∈ A is a constant of the same type

of vi, with i = 1, . . . , k, then

eval
(
e1[K1/v1, . . . ,Kk/vk]

)
⊆ eval

(
e2[K1/v1, . . . ,Kk/vk]

)
.

By the first condition the system is able to relate constants: a very minimal
requirement. The second condition will be needed to define a sensible merge
operator. The last condition, instead, is a guarantee of soundness: if e1 2 e2

the functions fe1 , fe2 : Ak → A, encoded by e1 and e2 through eval and
substitution, are such that fe1 ⊆ fe2 .

Definition 88 (Abstract constraints.) An abstract numeric constraint
is any formula taking one of the following forms:

X̂c
i ⊆ ec, with ec ∈ Ec;

X̂q
i ⊆ eq, with eq ∈ Eq;

X̂r
ij ⊆ ec, with er ∈ Er.



146 Chapter 5. Range and Relations Analysis

Constraints not containing any variable symbol on their left-hand side are
called basic constraints. We assume that the left-hand sides of basic con-
straints consist of a single constant (namely, we assume that constant fold-
ing is always performed). The set of all the abstract constraints is denoted
by C.

The entailment relation is parametric with respect to a safe approxima-
tion relation.

Definition 89 (Abstract entailment.) Let 2 be a safe approximation
relation. The entailment relation over 2, ` ⊆ ℘f(C) × C is the minimal
relation satisfying all the conditions of Definition 23 on page 44, plus the
the following axiom schemata, where v (possibly subscripted) is any of X̂c

i ,
X̂q
i , or X̂r

ij, for i and j in {1, . . . , n} with i 6= j.
Constraints can be wakened:

{v ⊆ e1} ` v ⊆ e2, if e1 2 e2. (5.34)

Constraints can be combined: by “conjuncting” expressions,

{v ⊆ e1, v ⊆ e2} ` v ⊆ e1 ⊗ e2, (5.35)

and by substituting expressions for some variables:
v ⊆ e
v1 ⊆ e1

...
vs ⊆ es

 ` v ⊆ e[e1/v1, . . . , ek/vk]. (5.36)

Here the expression ei has the same type of vi, for each i = 1, . . . , s.
Information is propagated from cardinalities to quantities,{

X̂c
i ⊆ {0}

}
` X̂q

i ⊆ ∅, (5.37)

and back, {
X̂q
i ⊆ ∅

}
` X̂c

i ⊆ {0}. (5.38)

Unsatisfiability is detected and globalized: for cardinalities,{
X̂c
i ⊆ ∅

}
` ⊥, (5.39)

and for relations,
X̂r
ij ⊆ ∅
X̂c
i ⊆ N \ {0}

X̂c
j ⊆ N \ {0}

 ` ⊥. (5.40)



5.8. Approximations are Constraints 147

The justification behind (5.39) is that a multiset must have a cardinality.
Thus X̂c

i ⊆ ∅ indicates an inconsistency. For (5.40), two sets of number are
in the empty relation if and only if one or the other is empty. Thus, if both
are non-empty the overall system is inconsistent.

By Definition 89 the structure (C,`) is a simple constraint system. It
is thus natural to apply the determinate constraint system construction
described in Definition 26 on page 52.

Definition 90 The constraint system J is the determinate constraint system
built over (C,`) with set intersection as the merge operator.

An important observation is that the role of set intersection as a merge
operator is controlled by the safe approximation relation 2 that has been
chosen. Suppose we have two abstract constraints C ′, C ′′ ∈ J such that

C ′ ⊃
{
X̂q

1 ⊆ e
′, X̂q

2 ⊆ X̂
q
3 � X̂

q
4

}
,

C ′′ ⊃
{
X̂q

1 ⊆ e
′′, X̂q

2 ⊆ X̂
q
4 � X̂

q
3

}
.

Given the minimal requirements we have imposed on 2, we know, since C ′

and C ′′ are closed under entailment, that

C ′ ∩ C ′′ ⊃
{
X̂q

1 ⊆ e
′ ⊕ e′′, X̂q

2 ⊆ (X̂q
3 � X̂

q
4 )⊕ (X̂q

4 � X̂
q
3 )
}
.

Even if � is commutative, without the 2 relation being such that

X̂q
i � X̂

q
j 2 X̂

q
j � X̂

q
i

we cannot have

C ′ ∩ C ′′ ⊃ {X̂q
2 ⊆ X̂

q
3 � X̂

q
4}.

This is how the algebraic capabilities of the system are reflected into the
merge operation.

As we will see, the J constraint system is still not strong enough for our
purposes. We thus define finite cc agents over J as in Section 3.6 on page 60,
and move to an ask-and-tell constraint system,

Definition 91 The constraint system K is the ask-and-tell constraint sys-
tem built over J together with a suitable ask-and-tell merge operator, as in
Definition 44 on page 65.

For the choice of the merge operator some possibilities are described in
Section 3.6.1 on page 68.

The ask-and-tell abstract domain K is quite expressive. Now the question
is how do we use it? Or, in other words, where do the agents come from?
The answer is that there are a variety of agents that come from different
sources and serve different purposes:



148 Chapter 5. Range and Relations Analysis

implicit agents: agents expressing consistency conditions on X̂;

numeric agents: agents that arise from concrete numeric expressions or are
abstractions of concrete numeric constraints:

binding agents: agents that express parameter passing;

remapping agents: agents that arise in remapping;

The next few sections are devoted to describing them.

5.9 Implicit Agents

As the name says it, implicit agents do not arise as abstraction of concrete
constraints or operations. Rather, they encode consistency conditions on the
various pieces of information that are carried by abstract constraints. These
conditions, which are based on quantitative and qualitative arithmetic rea-
soning, allow to approximate the reduced product of the three components
we started with: AN, AR, and A

R2 .

5.9.1 Transitive Closure

A purely qualitative inference technique is known under the historical name
of transitive closure [All83, Sim86]. It performs the approximate composi-
tion of known relationships in order to infer new relationships. Formally
speaking, transitive closure is justified by the following inference rule, where
A,B,C ∈ ℘+(R) and R1, R2 ∈ R2:

∀x A A : ∀y A B : x R1 y

∀y A B : ∀z A C : y R2 z

B 6= ∅

∀x A A : ∀z A C : x (R1 ◦R2) z

(5.41)

Observe that the premise B 6= ∅, ensuring the existence of at least one
“pivot element”, is essential for the soundness of the inference. Rule (5.41)
is approximated by the agents

ask
(
X̂c
j ⊆ N \ {0}

)
→ tell

(
X̂r
ik ⊆ X̂r

jk � X̂r
ij

)
, (5.42)

for each {i, j, k} ⊆ {1, . . . , n}.
Examples of inferences are the following, assuming that B is non-empty):

• A < C from A ≤ B and B < C, if ordering relationships are adopted;



5.9. Implicit Agents 149

• A − C ∈ [0, 1] from A − B = −1 and B − C ∈ [1, 2], when A
R2 is a

system of bounded differences15;

• |A/C| ∈ [1, e] from |A/B| = e−1 and |B/C| ∈ [e, e2], employing
bounded quotients16.

5.9.2 Quantity Refinement

The technique we call quantity refinement allows for the inference of quanti-
tative information from qualitative information. Quantity refinement applies
an approximation of the inference rule

∀x A A : ∀y A B : x R y A 6= ∅

ζ(B) ⊆ R
(
ζ(A)

) (5.43)

Again, the premise about non-emptiness is crucial. In fact, whenever A = ∅,
the first premise of (5.43) holds vacuously for any relation R ⊆ R2. This,
clearly, does not allow to conclude that B = ∅, since R(∅) = ∅.

The repeated application of the inference rule (5.43) is an instance of
network consistency technique [Mon74, Mac77, Fre78]. Such techniques
consist in removing from the domains of network nodes (quantity labels,
in our case) values that cannot appear in a solution, or, differently stated,
that do not satisfy the global constraint represented by the network. More
precisely, (5.43) expresses an arc-consistency step. All the arc-consistency
techniques are based on an observation, due to Fikes [Fik70, Mac77], that
can be rephrased as follows:

Let u and v be two variables whose domains are Du and Dv,
respectively, and suppose we know that a certain relation R holds
between u and v: formally we have the constraints u ∈ Du,
v ∈ Dv, and u R v. If x ∈ Du and there is no y ∈ Dv such that
(x, y) ∈ R, then we can replace Du with D′u = Du \ {x} in the
above set of constraints without changing its semantics. When
we have gone through this process for each x ∈ Du, ending up
with

D∗u
def= Du \

{
x ∈ Du

∣∣ @y ∈ Dv . (x, y) ∈ R
}
,

then the arc (u, v) (or, better, the relation R between u and v)
is consistent with D∗u and Dv. Consistency of the arc (v, u) is
enforced in the same way, swapping u for v and considering R−1

instead of R.
15For instance, take AR2 to be D(IB) where the boundaries on which IB is based include
−1, 0, 1, and 2.

16For instance, Q(IB) where IB is as in the previous example and assuming natural
logarithms.



150 Chapter 5. Range and Relations Analysis

In our setting, the approximation of rule (5.43) is given by the agents

ask
(
X̂c
i ⊆ N \ {0}

)
→ tell

(
X̂q
j ⊆ X̂

r
ij � X̂c

i

)
, (5.44)

for each i, j = 1, . . . , n with i 6= j.
As an example of inference, let us assume that D]n is based on INB and

O. Then, from A > B, B non-empty, A ∈ [1 .. 6], and B ∈ [4, 9], quantity
refinement yields both A ∈ [5 .. 6] and B ∈ [4, 6). In general, when using
intervals and ordering relationships, knowing the relation between A and
B may allow to refine the intervals associated to A and B. It must be
clear that (5.44) is only an approximation of an arc-consistency step. In
fact, there is no a priori guarantee that the R-approximation employed is
expressive enough to effectively remove all the “impossible values”, given
a particular choice of R2-approximation. In the setting of intervals with
ordering relationships this phenomenon can be appreciated by considering
that the approximate refinement rule (5.44) cannot deduce anything, in any
case, from A ∈ [2 .. 2], B ∈ [1, 3], and A 6= B.

5.9.3 Numeric Constraint Propagation

As quantity refinement exploit qualitative knowledge in order to obtain
quantitative information, it is also possible to go the other way around. In
[Sim86] an instance of this this process was named numeric constraint prop-
agation. This technique consists in determining the relationship between
two quantities when enough qualitative information is available. Formally,
it is as simple as

∀x A A : ∀y A B : x
(
ζ(A)× ζ(B)

)
y (5.45)

which is then approximated by the agents

tell
(
X̂r
ij ⊆ X̂

q
i � X̂

q
j

)
, (5.46)

for each i, j = 1, . . . , n with i 6= j.
When using intervals and ordering relationships, numeric constraint prop-

agation consists in determining the relationship between two quantities when
their associated intervals do not overlap, except possibly at their endpoints.
For example, if A ∈ (−∞, 2], B ∈ [2,+∞), and C ∈ [5, 10], we can infer
that A ≤ B and A < C.

5.10 Numeric Agents

Numeric agents result from the abstract compilation of concrete clauses.
For a rough description of the essence of this process, we help ourselves with
the following two clauses, excerpted from the fill_rectangle program of
Figure 4.2 on page 87.



5.10. Numeric Agents 151

fill([Y0,X1,Y1|L],[[X1,Y1,B]|C],L3,C3) :- % clause 1
Y0 > Y1,
Y1 + B <= 1,
place_square([X1,Y1|L],[X1 + B|L1]),
fill([Y1 + B,X1 + B|L1],C,L2,C2),
fill([Y0,X1|L2],C2,L3,C3).

place_square([_,Y1,X2,Y2|L],L1) :- % clause 2
Y1 = Y2,
place_square([X2,Y2|L],L1).

The first thing to do is to assign to each non-anonymous program vari-
able and to each numeric expression a quantity. A quantity is characterized
by its formula and its index : a position within the tuple of multisets X̂.
We will denote by 〈f〉i the quantity corresponding to the formula f , which
has been assigned the index i. Thus, the first step of the compilation is to
assign the quantities{
〈Y0〉1, 〈X1〉2, 〈Y1〉3, 〈L〉4, 〈B〉5, 〈C〉6, 〈L3〉7, 〈C3〉8,

〈Y1 + B〉9, 〈X1 + B〉10, 〈L1〉11, 〈L2〉12, 〈C2〉13

}
(5.47)

to clause 1, and the quantities{
〈Y1〉1, 〈X2〉2, 〈Y2〉3, 〈L〉4, 〈L1〉5

}
(5.48)

to clause 2. It is important to remark that, as far as the compilation process
is concerned, clauses are considered in isolation, one at a time, and no
information is propagated from one clause to another.

Clause 1 is thus associated to a 13-tuple of multisets of numbers, one for
each of its quantities. So, when dealing with clause 1, X̂c

1 is the cardinality
of the multiset of numbers that might appear in the term bound to Y0 just
before clause 1 terminates its execution with success, having followed one
particular computation path. Similarly, X̂q

4 is the set of numbers that might
occur in the term bound to L etc.

5.10.1 Cardinality Agents

The next step in the compilation process is to examine the constraints ap-
pearing in the clause and the quantities’ formulas in order to identify numeric
variables. Variables appearing either on a numeric constraints, or in a nu-
meric expression are certainly numeric. In other words, no computation of
the clause can succeed if they are bound to a non-numeric term. Notice that
also variables appearing in aliasing constraints, like X = Y, can be classified
as numeric, if X or Y has been recognized as such. Thus, this local analysis
requires a small fixpoint computation, or, if you prefer, the computation of



152 Chapter 5. Range and Relations Analysis

a transitive closure. Quantities whose formula contains a numeric variable
are classified as numeric.

For instance, in clause 1 of our small example, the quantities

〈Y0〉1, 〈X1〉2, 〈Y1〉3, 〈B〉5, 〈Y1 + B〉9, 〈X1 + B〉10,

are recognized as numeric, whereas no numeric quantities can be detected in
clause 2. Now, for each numeric quantity we produce an agent of the form

X̂c
i ⊆ AN

(
{1}
)
, (5.49)

where i corresponds to the index of that quantity. This says, with the
precision allowed by AN, that the cardinality of our i-th multiset is 1, or, at
the very least, that the i-th multiset is not empty.

As far as clause 2 is concerned, notice that the aliasing constraint Y1 = Y2
does not say anything about the “type” of Y1 and Y2. The fact that in any
computation starting from the main program predicate (fill_rectangle/3,
see Figure 4.2 on page 87) the constraint Y1 = Y2 will play the role of a
numeric equation is, of course, irrelevant.17 Nonetheless, the constraint
Y1 = Y2 does give rise to a couple of cardinality agents. With reference to
the set of quantities given in (5.48), they are

X̂c
1 ⊆ X̂c

3 and (5.50)

X̂c
3 ⊆ X̂c

1. (5.51)

Whatever term Y1 stands for, Y2 stands for the same thing: this fact propa-
gates to the cardinalities of the multisets of numbers that might be present
in this term.

5.10.2 Constraint Agents

Constraint agents arise from a straightforward analysis of the constraints
appearing in program clauses. With reference to the set of quantities (5.47),
for clause 1 we get

X̂r
1,3 ⊆ A

R2

({
(x, y) ∈ R2

∣∣ x > y
})
, (5.52)

from Y0 > Y1, and

X̂q
9 ⊆ AR

(
(−∞, 1]

)
, (5.53)

from Y1 + B <= 1. For clause 2, instead, we have the constraint agent

X̂r
1,3 ⊆ A

R2

({
(x, x) ∈ R2

})
. (5.54)

17There are, however, CLP languages providing “typed” equations.



5.10. Numeric Agents 153

This shows us that it is always a good idea to employ an R2-approximation
at least as strong as ordering relationships. This implies that bounded quo-
tients approximation should not be used alone, but, for instance, in some
kind of product with ordering relationships themselves.

When A
R2 does contain ordering relationships,18 the constraint agents

for clause 1

X̂q
1 ⊆ (>)� X̂q

3 and (5.55)

X̂q
3 ⊆ (<)� X̂q

1 , (5.56)

that constitute a sound approximation of Y0 > Y1, are superfluous. In fact,
they are subsumed by the combination of the quantity refinement agents

ask
(
X̂c

3 ⊆ N \ {0}
)
→ tell

(
X̂q

1 ⊆ X̂
r
3,1 � X̂c

3

)
and

ask
(
X̂c

1 ⊆ N \ {0}
)
→ tell

(
X̂q

3 ⊆ X̂
r
1,3 � X̂c

1

)
,

the cardinality agents

X̂c
1 ⊆ AN

(
{1}
)

and

X̂c
3 ⊆ AN

(
{1}
)
,

and the constraint agent (5.52). Indeed, the above combination is stronger
than (5.55) and (5.56). In the latter the relationships are given by constant
relation expressions, and thus they cannot be strengthened. In the combi-
nation, instead, the relation expression X̂r

1,3 can be strengthened by effect
of other agents (think about using bounded differences, or using ordering
relationships supposing we had Y0 >= Y1 instead of Y0 > Y1).

A similar argument holds for clause 2 too, where one might be tempted
to produce the agents

X̂q
1 ⊆ X̂

q
3 and (5.57)

X̂q
3 ⊆ X̂

q
1 (5.58)

from the concrete constraint Y1 = Y2. Such agents will never be needed
when using ordering relationships: an assumption that, from now on, we
will take for granted.

The above discussion raises another point: if good “abstract code” has to
be produced, the compilation process needs to be careful about the interplay
among different inference techniques and to take into account the family of
approximations employed. We will see other applications of this general
principle.

18As stated in Definition 82 on page 136, <
def
=
{

(x, y) ∈ R2
∣∣ x < y

}
and likewise for

the other ordering relationships.



154 Chapter 5. Range and Relations Analysis

Since we are about to drop clause 2 from our running example, it is
time to unveil a little lie. In fact, for ease of exposition we are describing
a simplified compilation process. In China, for instance, quantities which
are tied by an equality constraint, such as Y1 = Y2 in clause 2, are merged
into only one quantity. This means that, in reality, a quantity corresponds
to a set of formulas. This way the set of quantities for clause 2 would be
something like

{
〈Y1, Y2〉1, 〈X2〉2, 〈L〉3, 〈L1〉4

}
and the agents (5.50), (5.51),

(5.54), (5.57), and (5.58) would never be generated.

5.10.3 Quantity Arithmetic Agents

A classical quantitative technique is interval arithmetic which allows to
infer the variation interval of an expression from the intervals of its sub-
expressions. An example inference is the deduction of A ·B ∈ (−6, 30) from
A ∈ [3, 6) and B ∈ [−1, 5]. Since our R-approximation might be something
different from straight intervals, we call this inference technique quantity
arithmetic.

The abstract compiler examines the quantities of clause 1, in particular

〈X1〉2, 〈Y1〉3, 〈B〉5, 〈Y1 + B〉9, 〈X1 + B〉10,

and produces the agents

X̂q
9 ⊆ X̂

q
3 � X̂

q
5 and (5.59)

X̂q
10 ⊆ X̂

q
2 � X̂

q
5 , (5.60)

on the grounds that

(X1 + B) = (X1) + (B) and (5.61)
(Y1 + B) = (Y1) + (B). (5.62)

But (5.61) can be implicitly manipulated so to obtain

(X1) = (X1 + B)− (B) and (5.63)
(B) = (X1 + B)− (X1), (5.64)

and the same can be done for (5.62). Thus the abstract compiler can emit
also the agents

X̂q
3 ⊆ X̂

q
9 � X̂

q
5 , (5.65)

X̂q
5 ⊆ X̂

q
9 � X̂

q
3 , (5.66)

X̂q
2 ⊆ X̂

q
10 � X̂

q
5 , and (5.67)

X̂q
5 ⊆ X̂

q
10 � X̂

q
2 . (5.68)

Even though in our example only linear arithmetic expressions occur, we
can, of course, treat non-linear expressions in a very similar way. The next
technique, instead, is limited to linear constraints.



5.10. Numeric Agents 155

5.10.4 Linear Refinement Agents

Consider clause 1, where the quantities include 〈Y1〉3 and 〈B〉5. The con-
straint Y1 + B <= 1 can be transformed, by means of trivial algebraic ma-
nipulations, into

(Y1) ≤ 1− (B) and (5.69)
(B) ≤ 1− (Y1), (5.70)

which can then be approximated by means of the agents19

X̂q
3 ⊆ (≥)�

(
AR
(
{1}
)
� X̂q

1

)
and (5.71)

X̂q
1 ⊆ (≥)�

(
AR
(
{1}
)
� X̂q

3

)
. (5.72)

This simple pattern can be applied to any linear constraint. The agents
(5.71) and (5.72) also suggest that it is a good idea to employ R-approximations
providing reasonably tight overestimates for the singleton sets containing the
numeric constants that can appear in programs.

When using bounded differences a very common form of constraint is
subject to a simplified treatment. This form is

X1 = X - 1,

and can be found in all sorts of inductive definitions. The agent

X̂r
iX,iX1 ⊆

{
(x, y)

∣∣ x, y ∈ R, x− y = 1
}

achieves, through quantity refinement, the same effect of the linear refine-
ment agents that can be derived from X1 = X - 1. Notice that this applies
also to inequality constraints like X1 < X - 1. It also applies in the context
of the previous section, when our set of quantities includes, say, the formulæ
X+1 and X.

5.10.5 Relational Arithmetic Agents

Another important technique is relational arithmetic [Sim86] that infers con-
straints on the qualitative relationship of an expression to its arguments. It
can be given by a number of axiom schemata that are strongly dependent
on the R2-approximation employed. For instance, when using ordering re-

19Reminder: we are assuming that AR2 includes ordering relationships.



156 Chapter 5. Range and Relations Analysis

lationships the following are valid, for each ./ ∈ {=, 6=,≤<,≥, >}:

x ./ 0 ⇐⇒ (x+ y) ./ y (5.73)
x ./ y ⇐⇒ (x+ z) ./ (y + z) (5.74)
x ./ y ⇐⇒ ex ./ ey (5.75)

(x > 0 ∧ y > 0) =⇒
{
x ./ 1 =⇒ (x ∗ y) ./ y
y ./ 1 =⇒ (x ∗ y) ./ x

(5.76)

(x > 0 ∧ y < 0) =⇒
(
x ./ −y =⇒ −1 ./ (x/y)

)
(5.77)

Notice that this is only a small selection of the many axiom schemata on
which relational arithmetic can be based. Observe also that there is no
restriction to linear constraints.

If we consider clause 1 of our running example, whose quantities include

〈X1〉2, 〈Y1〉3, 〈B〉5, 〈Y1 + B〉9, 〈X1 + B〉10,

then axioms (5.73) and (5.74) justify the introduction of the following rela-
tional arithmetic agents:

X̂r
10,2 ⊆ X̂

q
5 � AR

(
{0}
)
,

X̂r
10,5 ⊆ X̂

q
2 � AR

(
{0}
)
,

X̂r
9,3 ⊆ X̂

q
5 � AR

(
{0}
)
,

X̂r
9,5 ⊆ X̂

q
3 � AR

(
{0}
)
,

X̂r
10,9 ⊆ X̂r

2,3,

X̂r
2,3 ⊆ X̂r

10,9.

Observe that the axiom schemata (5.73) and (5.74) hold also when the
R

2-approximation employed consists of bounded differences. Notice also
that a reasonable system of bounded differences is likely to satisfy

A� AR
(
{0}
)

= d(A),

for each A ∈ AR (see Definition 83 on page 138).

5.11 Binding Agents

Here we deal with the problem of reflecting into an abstract constraint
(namely, a collection of agents) the changes that are induced by the uni-
fication of two terms. Starting with an ask-and-tell constraint C, we must
produce another constraint C ′ as specified in Sections 4.5.2 on page 97, for
the case where the occur-check is performed at the concrete level, and 4.6.1
on page 107, when the occur-check is omitted. The new agent C ′ will be



5.11. Binding Agents 157

obtained by adding some new agents to C, by closing the result with respect
to the inference map, and by projecting away some information.

So we have an unknown n-tuple of multisets of real numbers, X̂, that
describes an unknown set of n-tuples of ground terms T̂ . Let us arbitrarily
choose

(t1, . . . , tn) ∈ T̂ .

All what we know is that th = u, for some term u. We distinguish the
following cases along the lines of Section 4.5.2: for each case the agents to
be added to C are specified.

Binding to a Symbolic Constant

A symbolic constant does not contain any numerical leaf. Thus we can add
the agent

X̂c
h ⊆ {0}. (5.78)

Binding to a Number

A number u has a single numerical leaf: u itself. The agents

X̂c
h ⊆ AN

(
{1}
)

and (5.79)

X̂q
h ⊆ AR

(
{u}
)

(5.80)

specify this fact.

Binding to an Alias

Here we know that u = tj for some j ∈ {1, . . . , n} with j 6= h. This means
that th and tj are identical, which can be abstracted by

X̂c
h ⊆ X̂c

j , (5.81)

X̂c
j ⊆ X̂c

h, (5.82)

X̂q
h ⊆ X̂

q
j , and (5.83)

X̂q
j ⊆ X̂

q
h . (5.84)

Relations are clearly inherited, too. Thus we can add the following agents,
for each m = {1, . . . , n} \ {h, j}:

X̂r
hm ⊆ X̂r

jm, (5.85)

X̂r
jm ⊆ X̂r

hm. (5.86)



158 Chapter 5. Range and Relations Analysis

Binding to a Compound

In this case u is obtained by instantiation from a “skeleton term” s that is a
compound term. More precisely, we can assume, without loss of generality,
that vars(s) = {Yj1 , . . . , Yjl}, with l ≥ 0 and

{j1, . . . , jl} ⊂ {1, . . . , n} \ {h},

and that

u = th = s
[
tj1/Yj1 , . . . , tjl/Yjl

]
. (5.87)

Let us consider the extension of nl+ : T → ℘+

f (R) to possibly non-ground
terms: nl+ : TVars → ℘+

f (R) is obtained by considering that a variable is not
a numerical leaf. Then, Equation (5.87) implies

nl+(th) = nl+(s) ]
l⊎

i=1

nl+
(
tji
)
. (5.88)

This implies both

∥∥nl+(th)
∥∥ = ‖nl+(s)‖+

l∑
i=1

∥∥nl+
(
tji
)∥∥ (5.89)

and

ζ
(
nl+(th)

)
= ζ
(
nl+(s)

)
∪

l⋃
i=1

ζ
(

nl+
(
tji
))
. (5.90)

Now, Equation 5.89 is equivalent, for each k = 1, . . . , l, to

∥∥nl+
(
tjk
)∥∥ =

∥∥nl+(th)
∥∥−

‖nl+(s)‖+
l∑

i=1
i6=k

∥∥nl+
(
tji
)∥∥
 (5.91)

whereas (5.90) implies, again for each k = 1, . . . , l,

ζ
(

nl+
(
tjk
)
⊆ ζ
(
nl+(th)

)
. (5.92)



5.12. Making It Practical 159

If we stipulate that cs
def=
∥∥nl+(s)

∥∥ and qs
def= ζ

(
nl+(s)

)
, we have justified

the addition to C of the following agents:

X̂c
h ⊆ AN

(
{cs}

)
�

l
�
i=1

X̂c
ji , (5.93)

X̂c
jk
⊆ X̂c

h �

(
AN
(
{cs}

)
�

l
�
i=1
i6=k

X̂c
ji

)
, for k = 1, . . . , l, (5.94)

X̂q
h ⊆ AR(qs)⊕

l⊕
i=1

X̂q
ji
, (5.95)

X̂q
jk
⊆ X̂q

h , for k = 1, . . . , l. (5.96)

For relations we reason as follows. Equation (5.92) implies that if the
numerical leaves of th are in some relation with the numerical leaves of, say,
tm, then this is true also for the subset of numerical leafs that are in tjk .
This justifies the agents

X̂r
jkm
⊆ X̂r

hm (5.97)

for each k = 1, . . . , l and each m = 1, . . . , n with m 6= jk. On the other
hand, the numeric leaves of th can be obtained by “putting together” the
pieces indicated by (5.90). If we join the relations that hold between each
piece and the leaves of tm we obtain a relation that holds for the entire
collection. We thus add the agents

X̂r
hm ⊆

(
AR(qs)� X̂q

m

)
⊕

l⊕
i=1

X̂r
jim, (5.98)

for each m ∈ {1, . . . , n} \ {h, j1, . . . , jl}.

Cyclic Binding to a Compound

In this case, the handling of cyclic binding turns out to be easy. However,
we need an approximation for subsets of the extended naturals N ∪ {∞}.
This N∞-approximation (whose simple definition is omitted) is needed for
cardinalities, since a cyclic term may have an infinite number of numerical
leaves.

With this change, cyclic bindings are very similar to normal bindings.
They are thus handled by means of the agents described in the previous
paragraph, where {j1, . . . , jl} has been replaced by {j1, . . . , jl} \ {h}.

5.12 Making It Practical

We have set up a very precise domain for range and relations analysis.
Indeed, being obtained from a non-trivial constraint system by means of the



160 Chapter 5. Range and Relations Analysis

ask-and-tell construction, this domain is much too complex to be practical.
We attack this complexity from two sides:

1. on one side, all the agents constituted by basic constraints (see Def-
inition 88 on page 145) and all the implicit agents can be efficiently
represented and dealt with by means of constraint networks;

2. on the other side, we can apply the golden rule of abstract interpreta-
tion: information can be safely thrown away at any time.

5.12.1 Representing Basic Constraints and Implicit Agents

The term constraint network is very general, and has been used to define
a wide variety of structures. Here we define a particular kind of constraint
networks that suits our purposes.

Definition 92 (Constraint network.) Let AN, AR, and A
R2 be approxi-

mations for N, R, and R2, respectively. A constraint network is a structure
of the form

(n, `, ˙̀, ῭),

where

1. n ∈ N; the members of Qn
def= {1, . . . , n} are called quantities; an

element of Rn
def=
{

(i, j)
∣∣ i, j ∈ Qn, i 6= j

}
is called a proper pair of

the constraint network;

2. ` : Qn → AN assigns a cardinality to each quantity;

3. ˙̀ : Qn → AR assigns a range to each quantity;

4. ῭: Rn → A
R2 assigns a relation to each proper pair.

In practice, a constraint network is a complete, directed, and labelled graph
where we have two labels for the nodes and one label for the edges. Each
constraint network corresponds to an element of D]n as given in (5.28) on
page 140. Constraint networks are also a compact representation for any set
of basic constraints.

A constraint network can be inconsistent.

Definition 93 (Consistency.) Let Q def= (n, `, ˙̀, ῭) be a constraint net-
work. Q is said inconsistent if at least one of the following conditions holds:

1. there exists i ∈ Qn such that `(i) = ∅;

2. there exists i ∈ Qn such that `(i) ≥ 1 and ˙̀(i) = ∅;



5.12. Making It Practical 161

3. there exist (i, j) ∈ Rn such that ῭(i, j) = ∅ and either `(i) ≥ 1 or
`(j) ≥ 1.

The constraint network Q is said consistent otherwise.

Another advantage of constraint networks is that all the implicit agents
need not be represented explicitly. The kernel operators they denote are
simply realized by graph algorithms. In the following presentation of the
algorithms we will make use of the notation ˆ̀(o) := e, where ˆ̀ is one of `,
˙̀, or ῭, o is a node or a pair, depending on ˆ̀, and e is an expressions. The
meaning of ˆ̀(o) := e can expressed, using Hoare logic, as follows:{ˆ̀(o) = K

}
ˆ̀(o) := e{ˆ̀(o) = K ⊗ e

}
Transitive Closure

A simple algorithm for applying transitive closure up to quiescence can be
obtained by a suitable variation of Warshall/Warren algorithm for graph
closure [War62, War75]. A first, naive version of it is given as Algorithm 3.

Require: any constraint network (n, `, ˙̀, ῭)
Ensure: ∀i, j, k ∈ Qn : `(j) ≥ 1 =⇒ ῭(i, k) ⊆ ῭(j, k)� ῭(i, j)

for all j ∈ Qn do
if `(j) ≥ 1 then

for all i ∈ Qn do
for all k ∈ Qn do

῭(i, k) := ῭(j, k)� ῭(i, j)

Algorithm 3: Naive algorithm for transitive closure.

Quantity Refinement

An almost obvious algorithm which applies quantity refinement as much as
possible is Algorithm 4 on the next page. Perhaps, the only non-obvious part
is the need for the outer iteration. To see why this is necessary, let us modify
the example above. Suppose that we have three quantities: A ∈ [1 .. 6] and
B,C ∈ [4, 9]. Suppose also that we have the relations A > B ≥ C and
A R

2 C. If we apply refinement to B and C or to A and C we cannot
deduce anything new. Then we can apply refinement to A and B, obtaining
A ∈ [5 .. 6] and B ∈ [4, 6), as we have seen before. But now we must apply
refinement to B and C again in order to obtain C ∈ [4, 6).

Indeed, Algorithm 4 is naive under several aspects. First of all it consid-
ers also the pairs from which no refinement is possible. This is easily fixed
by changing line 5 so to read as



162 Chapter 5. Range and Relations Analysis

Require: any constraint network (n, `, ˙̀, ῭)
Ensure: ∀i, j ∈ Qn : `(i) ≥ 1 =⇒ ˙̀(j) ⊆ ῭(i, j)� ˙̀(i)

1: repeat
2: changed := false
3: for all i ∈ Qn do
4: if `(i) ≥ 1 then
5: for all j ∈ Qn such that i 6= j do
6: ˙̀(j) := ῭(i, j)� ˙̀(i)
7: if ˙̀(j) has changed then
8: changed := true
9: until changed = false

Algorithm 4: Naive algorithm for quantity refinement.

for all j ∈ Qn such that i 6= j and ῭(i, j) 6= R
2 do

What we have obtained is an algorithm called AC-1 [Mac77]. More seri-
ous arc-consistency algorithms originate from the Waltz filtering algorithm
[Wal75], which was later named AC-2. A simpler and more general version
of AC-2, known as AC-3, is given as Algorithm 5. It improves on AC-1 by

Require: any constraint network (n, `, ˙̀, ῭)
Ensure: ∀i, j ∈ Qn : `(i) ≥ 1 =⇒ ˙̀(j) ⊆ ῭(i, j)� ˙̀(i)
S :=

{
(i, j)

∣∣ i, j ∈ Qn, `(i) ≥ 1, ῭(i, j) 6= R
2
}

while S 6= ∅ do
select (h, k) ∈ S
S := S \

{
(h, k)

}
˙̀(k) := ῭(h, k)� ˙̀(h)
if ˙̀(k) has changed and `(k) ≥ 1 then
S := S ∪

{
(k, l)

∣∣ l ∈ Qn, ῭(k, l) 6= R
2
}

Algorithm 5: AC-3 algorithm for quantity refinement.

avoiding repeated refinement using quantities which have not changed.

Numeric Constraint Propagation

The algorithm for numeric constraint propagation given as Algorithm 6 on
the facing page is self-explanatory.

The remaining agents can be “interpreted” in the standard way (see,
e.g., [VSD92a]) thus implementing the associated kernel operators. One
thing worth noticing, though it is well-known, is that the functional compo-
sition of two kernel operators is not necessarily a kernel operator. Thus, the
algorithms for transitive closure, quantity refinement, numeric constraint



5.12. Making It Practical 163

Require: any constraint network (n, `, ˙̀, ῭)
Ensure: ∀i, j ∈ Qn : i 6= j =⇒ ῭(i, j) ⊆ ˙̀(i)� ˙̀(j)

1: for all i ∈ Qn do
2: for all j ∈ Qn such that i 6= j do
3: ῭(i, j) := ˙̀(i)� ˙̀(j)

Algorithm 6: Algorithm for numeric-constraint-propagation.

propagation, and for the interpretation of all the other agents must be en-
closed in an outer loop and iterated, in principle, until quiescence. However,
depending on the chosen approximations for cardinalities, sets, and binary
relations, quiescence is not guaranteed to happen. This brings us to the
next section.

5.12.2 Widenings

Most members of the family of numerical domains we have presented20 either
have infinite height, or their height can be considered infinite by any practical
means. Thus widening operators are undoubtedly required in order to ensure
or speed-up the convergence of the analysis. We have widenings in several of
the domain components: widenings for the N-, R-, and R2-approximations,
serve as a base for designing widening operators at the higher levels.

However, the practicality of the domain relies also on unary widenings:
unary operators that allow losing information without losing correctness.
They typically consist in throwing away agents. Since our domain is mono-
tonic this is always safe. An example where this is absolutely necessary was
announced at the end of the previous section. Suppose we have the set of
agents constituted by

X̂q
1 ⊆ [0,+∞), (5.99)

X̂q
2 ⊆ [0,+∞), (5.100)

X̂q
1 ⊆ X̂

q
2 � [1, 1], (5.101)

X̂q
2 ⊆ X̂

q
1 � [1, 1]. (5.102)

They give rise to an infinite (or virtually infinite) sequence of refinements.
Even though this kind of situation occurs rarely, a unary widening is needed.
In the current version of China the system sets a watchdog timer before en-
tering the “agents interpreter”. In the above situation, a timeout condition
occurs and the execution of a unary widening is triggered. This widening
will identify the loop constituted by (5.101) and (5.102) in the dependency
graph of the interpreter and will arbitrarily kill one or both the guilty agents.

Unary widenings are also used in other places. In general, they are
employed in order to throttle complex agents. One extreme possibility is

20We have a specific domain for each possible choice of the various parameters.



164 Chapter 5. Range and Relations Analysis

to remove all the non-basic agents after each meet operation of the ask-
and-tell constraint system. This clearly results in a very fast analysis, but
all the “global effects” captured by complex agents are lost. Alternatively,
heuristics can be used in order to decide which agents to evict. Unary
widenings are also applied during the join operation. For example, the first
domain of Janssens et al. [JBE94], if recasted in our setting, prescribes the
removal of all the non-basic agents before each join operation.

5.13 Conclusion

We have shown that the compile-time detection of redundant numeric con-
straints in CLP programs can play a crucial role in the field of semantics
based program manipulation. This is especially true for the area of op-
timized compilation, where they can enable major performance leaps. Be-
sides reviewing known optimizations, we have proposed a novel optimization
based on call-graph simplification. The nice thing about the simplified call-
graph optimization is that it is an optimization in a strict sense: in exchange
for a small increase in code size, the optimized program is guaranteed to be
at least as fast as the unoptimized one. Moreover, this optimization helps
when the known indexing techniques, that are normally used to reduce the
search space, fail.

Even though the analysis of numeric constraints has many important
application, and despite the fact that almost every existing CLP language
incorporates some kind of numeric domain, this research topic is relatively
unexplored. We have described a sequence of approximations for character-
izing, by means of ranges and relations, the values of the numerical leaves
that appear in Herbrand terms. In particular, we have illustrated for the
first time the need for cardinality information. For each approximation
needed for the analysis, we have presented different alternatives that allow
for dealing with the complexity/precision tradeoff in several ways.

We have then presented a sophisticated numeric domain, which is ob-
tained (among other things) by means of the ask-and-tell construction of
Chapter 3. The ask-and-tell constraint system constitutes a very convenient
formalism for expressing both

• efficient reasoning techniques originating from the world of artificial
intelligence, where approximate deduction holds the spotlight since
the origins; and

• the abstract operations of the domain.

In practice, we have defined a family of concurrent languages that serve as
target-languages in an abstract compilation approach. One notable advan-
tage is that the correctness proof is constructive: every abstract agent has
been introduced at the end of an argument that shows its correctness.



5.13. Conclusion 165

The future work is of experimental nature. We have developed, in the
context of the China analyzer, a modular implementation of the numeric
domain presented in this chapter. Modularity is essential, due to the many
degrees of freedom that characterize the construction. Up to now, the em-
phasis of the development has been on correctness, but keeping into account
that efficiency must finally be obtained. We have just started working on
the optimization of the domain’s components. Then we will turn to the
experimentation of several widening strategies: something that, today, is a
completely empirical activity.



166 Chapter 5. Range and Relations Analysis



Chapter 6

Definiteness Analysis

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . 167

6.2 Boolean Functions for Groundness Analysis . . 169

6.3 Combination of Domains and Reactivity . . . . 170

6.4 Binary Decision Trees and Diagrams . . . . . . . 173

6.5 Is x Ground? . . . . . . . . . . . . . . . . . . . . . 175

6.6 Extracting Sure Groundness from ROBDDs . . 176

6.7 A New, Hybrid Implementation for Pos . . . . 179

6.8 Experimental Evaluation . . . . . . . . . . . . . . 184

6.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . 187

6.1 Introduction

The task of groundness analysis (or definiteness analysis as it is also referred
to) is to derive, for all the program points of interest, whether a certain vari-
able is bound to a unique value (or ground). This kind of information is very
important: it allows substantial optimizations to be performed at compile-
time, and is also crucial for most semantics-based program manipulation
tools. Moreover, many other analyses are made much more precise by the
availability of groundness information. For these reasons, the subject of
groundness analysis for (constraint) logic programs has been widely stud-
ied. After the early attempts, some classes of Boolean functions have been
recognized as constituting good abstract domains for groundness analysis
[CFW91, CH93, AMSS, HCC95]. In particular, the set of positive Boolean
functions, (namely, those functions that assume the true value under the
valuation assigning true to all variables), which is denoted by Pos, allows to
express Boolean properties of program variables where the property of one
variable may depend on that property of other variables. For groundness

167



168 Chapter 6. Definiteness Analysis

analysis, since variables can be bound to terms containing other variables,
the groundness of one variable may depend on the groundness of other vari-
ables. Pos has been recognized as the most precise domain for capturing
the kind of dependencies arising in groundness analysis.

This ability to express dependencies makes analysis based on Pos very
precise, but also makes it relatively expensive, as many operations on Boolean
formulas have exponential worst case complexity. Armstrong et al. [AMSS94a]
analyzed many representations of positive Boolean formulas for abstract in-
terpretation, and found Reduced Ordered Binary Decision Diagrams (ROB-
DDs) to give the best performance.

ROBDDs [Bry86], also known as Bryant graphs, are a representation for
Boolean functions supporting many efficient operations. Because of this,
they have often been used to implement Pos for abstract interpretation.
Indeed, ROBDDs are general enough to represent all Boolean functions.
However, nobody has yet succeeded in exploiting the (seemingly very small)
peculiarities of positive functions in order to obtain a more efficient imple-
mentation.

Several authors have reported successful experiences using ROBDDs for
groundness analysis (see, e.g., [CH93, AMSS]). However, in the literature
there is no reference to the problem of detecting, as efficiently as possible,
those variables which are deemed to be ground in the context of a ROBDD.
This is not surprising, since most currently implemented analyzers need to
derive this information only at the end of the analysis and only for presen-
tation purposes. In these cases efficiency is not a problem and the simple
approaches are sufficient. Things are very different when this information is
required during the analysis. This need arises when dealing with languages
which employ some sort of delay mechanism, which is typically based on
groundness conditions. One of these languages is CLP(R) [JMSY92b], where
non-linear constraints are delayed until they become linear; only then are
they sent to the constraint solver. In the context of our work on data-flow
analysis for CLP(R) we thus faced the following problem: in programs with
many non-linear constraints, the abstract interpreter spends a lot of time
deciding whether a constraint is delayed or not. In the early implementa-
tions of the China analyzer this kind of information (which is needed quite
often) was derived using the ROBDD package itself (see Section 6.5). This
had the advantage of making possible the use of untouched, readily-available
ROBDD software, while having the big disadvantage of inefficiency.

In this chapter we introduce and study the problem of quick detection of
ground variables using ROBDDs. We first propose an easy, even though not
completely satisfactory, solution. We then take a different approach where
we represent Pos functions in a hybrid way: ground variables are represented
explicitly, while ROBDDs come into play only for dependency and disjunc-
tive information. This solution uses the more efficient representation for
each kind of information: “surely ground variables” are best represented by



6.2. Boolean Functions for Groundness Analysis 169

means of sets (bit-vectors, at the implementation level), whereas ROBDDs
are used only for “conditional” and “disjunctive” information. In such a way,
besides making the information about ground variables readily available, we
can keep the ROBDDs generated during the analysis as small as possible.
This promises to be a win, given that most real programs (together with
their typical call-patterns) exhibit a high percentage of variables which are
ground at the program points of interest. Notice that Boolean functions are
used in the more general context of dependency analysis, including finiteness
analysis for deductive database languages [BDM92] and suspension analysis
for concurrent (constraint) logic programming languages [FGMP95]. The
techniques we propose might be useful also in these contexts. However,
this is something we have not studied yet. In Section 6.2 we briefly re-
view the usage of Boolean functions for groundness analysis of (constraint)
logic programs (even though we assume familiarity on this subject). Sec-
tion 6.3 presents the main motivations of this work. Binary-decision trees
and diagrams, and the problem of extracting sure groundness information
from them are introduced in sections 6.4 and 6.5. In Section 6.6 we show
a first non-trivial solution to the problem, while Section 6.7 introduces the
hybrid domain. The results of the experimental evaluation are reported in
Section 6.8. Section 6.9 concludes with some final remarks.

6.2 Boolean Functions for Groundness Analysis

After the early approaches to groundness analysis [Mel85, JS87], which
suffered from serious precision drawbacks, the use Boolean functions has
become customary in the field. The reason is that Boolean functions al-
low to capture in a very precise way the groundness dependencies which
are implicit in unification constraints such as z = f(g(x), y): the corre-
sponding Boolean function is (x ∧ y) ↔ z, meaning that z is ground if
and only if x and y are so. They also capture dependencies arising from
other constraint domains: for instance, x+ 2y + z = 4 can be abstracted as
((x ∧ y) → z) ∧ ((x ∧ z) → y) ∧ ((y ∧ z) → x). We now introduce Boolean
valuations and functions in a way which is suitable for what follows. Vars
is a fixed denumerable set of variable symbols.

Definition 94 (Boolean valuations.) The set of Boolean valuations
over Vars is given by A def= Vars → {0, 1}. For each a ∈ A, each x ∈ Vars,
and each c ∈ {0, 1} the valuation a[c/x] ∈ A is given, for each y ∈ Vars, by

a[c/x](y) def=
{
c, if x = y;
a(y), otherwise.

For X = {x1, x2, . . . } ⊆ Vars, we write a[c/X] for a[c/x1][c/x2] · · · .



170 Chapter 6. Definiteness Analysis

Definition 95 (Boolean functions.) The set of Boolean function over
Vars is F def= A → {0, 1}. The distinguished elements >,⊥ ∈ F are the
functions defined by > def= λa ∈ A . 1 and ⊥ def= λa ∈ A . 0. For f ∈ F ,
x ∈ Vars, and c ∈ {0, 1}, the function f [c/x] ∈ F is given, for each a ∈ A,
by f [c/x](a) def= f

(
a[c/x]

)
. When X ⊆ Vars, f [c/X] is defined in the obvious

way.

The question whether a Boolean function f forces a particular variable x
to be true (which is what, in the context of groundness analysis, we call
sure groundness information) is equivalent to the question whether f → x
is a tautology (namely, f → x = >). In what follows we will also need the
notion of dependent variables of a function.

Definition 96 (Dependent and true variables.) For f ∈ F , the set of
variables on which f depends and the set of variables necessarily true for f
are given, respectively, by

vars(f) def=
{
x ∈ Vars

∣∣ ∃a ∈ A . f
(
a[0/x]

)
6= f

(
a[1/x]

) }
,

true(f) def=
{
x ∈ vars(f)

∣∣ ∀a ∈ A : f(a) = 1 =⇒ a(x) = 1
}
.

Two classes of Boolean functions which are suitable for groundness analy-
sis are known under the names of Def and Pos (see [AMSS] for details).
Pos consists precisely of those functions assuming the true value under
the everything-is-true assignment (i.e., f ∈ Pos if and only if f ∈ F and
f [1/Vars] = >). Pos is strictly more precise than Def for groundness anal-
ysis [AMSS]. The reason is that the elements of Pos allow to maintain
disjunctive information which is, instead, lost in Def.

6.3 Combination of Domains and Reactivity

It is well-known that different data-flow analyses can be combined together.
In the framework of abstract interpretation this can be achieved by means
of standard constructions such as reduced product and down-set completion
[CC79, CC92a]. The key point is that the combined analysis can be more
precise than each of the component ones for they can mutually improve
each other. However, the degree of cross-fertilization is highly dependent
on the degree and quality of interaction taking place among the component
domains. For the limited purpose of this discussion, when we talk about
combination of domains we refer to the following situation: we have several
distinct (both conceptually and at the implementation level) analysis’ do-
mains and, for the sake of ensuring correctness or improving precision, there
must be a flow of information between them. This can be formalized in
different ways. A methodology for the combination of abstract domains has



6.3. Combination of Domains and Reactivity 171

been proposed in [CLV94]. It is based onto low level actions such as tests
and queries. Basically, the component domains have the ability of querying
other domains for some kind of information. Of course, they must also be
able to respond to queries from other domains. For instance, the operations
of a domain for numerical information might ask a domain for groundness
whether a certain variable is guaranteed to be ground or not. Another
way of describing this kind of interaction is the one proposed in [Bag97].
Here the interaction among domains is asynchronous in that it can occur
at any time, or, in other words, it is not synchronized with the domain’s
operations. This is achieved by considering so called ask-and-tell constraint
systems built over product constraint systems. These constraint systems al-
low to express communication among domains in a very simple way. They
also inherit all the semantic elegance of concurrent constraint programming
languages [Sar93], which provide the basis for their construction. We will
now see, staying on an intuitive level and following the approach of [Bag97]
for simplicity, examples of how these combinations look like.

In the CLP(R) system [JMSY92b] non-linear constraints (likeX = Y ∗Z)
are delayed (i.e., not treated by the constraint solver) until they become lin-
ear (e.g., until either Y or Z are constrained to take a single value). Obvi-
ously, this cannot be forgotten in abstract constraint systems intended to for-
malize correct data-flow analyses of CLP(R). When the abstract constraint
system is able to extract numerical information from non-linear constraints
(such as the one proposed in [BGL93]), the abstraction αN (X = Y ∗ Z)
cannot be used without considering the groundness of Y and Z. By do-
ing this you would incur the risk of overshooting the concrete constraint
system (thus loosing soundness), which is unable to deduce anything from
non-linear constraints. The right thing to do is to combine the numeric ab-
stract constraint system with one for groundness and using, instead of the
abstraction αN (X = Y ∗ Z), the agent

A
def= ask

(
ground(Y ); ground(Z)

)
→ αN (X = Y ∗ Z). (6.1)

The intuitive reading is that the abstract constraint system is not allowed
to do anything with X = Y ∗ Z until Y or (this is the intuitive reading
of the semicolon) Z are ground. In this way, all the abstractions of non-
linear constraints are “disabled” until their wake-up conditions are met (in
the abstract, which, given a sound groundness analysis, implies that these
conditions are met also at the concrete level). The need for interaction
between groundness and numerical domains does not end here. Consider
again the constraint X = Y ∗Z: clearly X is definite if Y and Z are so. But
we cannot conclude that the groundness of Y follows from the one of X and
Z, as we need also the condition Z 6= 0. Similarly, we would like to conclude
that X is definite if Y or Z have a zero value. Thus we need approximations
of the concrete values of variables (i.e., bounds analysis), something which



172 Chapter 6. Definiteness Analysis

is not captured by common groundness analyses while being crucial when
dealing with non-linear constraints. In the approach of [Bag97] X = Y ∗ Z
would be abstractly compiled into an agent of the form1

A ‖ ask
(
ground(Y ) ∧ ground(Z)

)
→ tell

(
ground(X)

)
‖ ask(Y = 0;Z = 0)→ tell

(
ground(X)

)
‖ ask

(
ground(X) ∧ ground(Z) ∧ Z 6= 0

)
→ tell

(
ground(Y )

)
‖ ask

(
ground(X) ∧ ground(Y ) ∧ Y 6= 0

)
→ tell

(
ground(Z)

)
,

where A is the agent given in Equation (6.1). Of course, this is much more
precise than the Pos formula X ← Y ∧ Z, which is all you can say about
the groundness dependencies of X = Y ∗Z if you do not have any numerical
information. It is clear from these examples that, when analyzing CLP(R)
programs there is a bidirectional flow of information: groundness informa-
tion is required for a correct handling of delayed constraints and thus for
deriving more precise numerical patterns which, in turn, are used to pro-
vide more precise groundness information. Indeed, we are requiring a quite
complicated interaction between domains.

Another application of groundness analysis with fast access to ground
variables is for aliasing analysis. The most popular domain for this kind of
analysis is Sharing [JL89]. Without going into details, its strength over the
previous approaches [JS87, Deb89] comes from the fact that it keeps track
of groundness dependencies. In fact, Sharing has, as far as groundness
information is concerned, the same power of Def. When Pos is used for
groundness, using Sharing for aliasing at the same time is a waste: Sharing
spends time and space for keeping track of groundness, which is already done,
and more precisely, by Pos. A possible solution is to adopt a variation of the
domains proposed in [JS87, Deb89] (which are much less computationally
expensive than Sharing) and to combine it with Pos. We are currently
working along this line. This, however, is beyond the scope of this work.

Whatever conceptual methodology you follow to realize the combination
of any domain with one for groundness, a key component for the efficiency
is that the implementation of the latter must be reactive. By this we mean
that: (a) it must react quickly to external queries about the groundness of
variables; and, (b) it must absorb quickly groundness notifications coming
from other domains.

1We choose this form of presentation for clarity. It is clear that this agent will be
itself compiled to something different. For instance, the second agent of the parallel
composition will “live” in the groundness component, if the latter is able to capture the
indicated dependency.



6.4. Binary Decision Trees and Diagrams 173

(a) x
��

��

y
��

��

z
��

��

1
�
�� L
LL
0

�
�� S

SS
? z

��

��

0
�
�� L
LL
1

�
�
� @

@
@

z ?
��

��

0
�
�� L
LL
1

(b) x
��

��

y
��

��

z
��

��

1
�
�� L
LL
0

�
�� L
LL
0

�
�� \

\\
y

��

��

z
��

��

0
�
�� L
LL
1

�
�� L
LL
0

Figure 6.1: OBDTs for (x ∧ y)↔ z (a) and (x↔ z) ∧ y (b).

6.4 Binary Decision Trees and Diagrams

Binary decision trees (BDTs) and diagrams (BDDs) are well-known repre-
sentations of Boolean functions [Bry86, Bry92]. Binary decision trees, such
as the ones presented in Fig. 6.1 are binary trees where non-terminal nodes
are labeled with variable names, while terminal nodes are labeled with the
Boolean constants 0 or 1. The value of the represented function, for a given
assignment of Boolean values to variables, can be recovered by following
a particular path from the root: at any non-terminal node labeled with a
variable v, the thick branch is taken if v is assigned to 1, otherwise the thin
branch is taken. The terminal node reached by this walk on the tree is the
function value. For a non-terminal node n, we will call the node connected
to n by means of the thick (resp. thin) edge the true (resp. false) succes-
sor of n. A BDD is a directed acyclic graph which can be thought of as
obtained from a BDT by collapsing identical subtrees. With reference to
Fig. 6.1 (a), the subtrees marked with ‘?’ can be collapsed, as well as all
the terminal nodes having the same label. The action of collapsing identical
subtrees does not change the represented function. Given a total ordering
on the variable symbols, an ordered binary decision tree (OBDT) is a BDT
where the sequence of variables (associated to non-terminals) encountered in
any path from the root is strictly increasing. The trees depicted in Fig. 6.1
are indeed OBDTs where the ordering is such that x ≺ y ≺ z. Applying
the very same restriction to BDDs we obtain the notion of ordered binary
decision diagram, or OBDD.

Definition 97 (BDTs and OBDTs.) A binary decision tree is any string
generated by the grammar

BDT ::= 0 | 1 | ite(v,BDT,BDT)

where v ∈ Vars. The set of all BDTs is denoted by B. The semantics of



174 Chapter 6. Definiteness Analysis

BDTs is expressed by the function [[·]] : B → F , defined as follows:

[[0]] def= ⊥, [[1]] def= >, [[ite(v, b1, b0)]] def= ite
(
v, [[b1]], [[b0]]

)
,

where for each w ∈ Vars, f1, f0 ∈ F , and each a ∈ A,

ite(w, f1, f0)(a) def=
{
f1(a), if a(w) = 1;
f0(a), if a(w) = 0.

The subset Bo ⊆ B of ordered BDTs (OBDTs) is defined by the following
recurrent equation:

Bo
def= {0,1} ∪

{
ite(v, b1, b0)

∣∣ v ∈ Vars, b1, b0 ∈ {0,1}
}

∪

 ite(v, b1, b0)

∣∣∣∣∣∣∣
∀i = 0, 1 : bi ∈ Bo ∧
∃w ∈ Vars . ∃b′1, b′0 ∈ Bo .
bi = ite(w, b′1, b

′
0)⇒ v ≺ w

.
We will deliberately confuse a BDT with the Boolean function it represents.
In particular, for b ∈ B, when we write vars(b) or true(b) what we really
mean is vars([[b]]) or true([[b]]). This convention of referring to the semantics
simplifies the presentation and should not cause problems.

A reduced ordered binary decision diagram, or ROBDD, is an OBDD
such that:

1. there are no duplicate terminal nodes;

2. there are no duplicate non-terminal nodes (i.e., nodes having the same
label and the same true and false successors);

3. there are no redundant tests, that is each non-terminal node has dis-
tinct true and false successors.

Any OBDD can be converted into a ROBDD by repeatedly applying the
reduction rules corresponding to the above properties: collapsing all the
duplicate nodes into one and removing all the redundant tests, redirecting
edges in the obvious way. Application of these rules does not change the
represented functions. ROBDDs have one very important property: they are
canonical. This means that, for each fixed variables’ ordering, two ROBDDs
represent the same function if and only if they are identical.

The nice computational features of ROBDDs make them suitable for
implementing Pos (see, e.g., [CH93, AMSS]), even though ROBDDs are
clearly able to represent any Boolean function. Here we deal formally only
with OBDTs, since our results do not need all the properties of ROBDDs.
Indeed, since every OBDT is an OBDD and the reduction rules do not
change the represented Boolean function, everything we say about OBDTs
is true also for ROBDDs.



6.5. Is x Ground? 175

6.5 Is x Ground?

Capturing dependency and disjunctive information is essential for precise
groundness analysis. However, this kind of information is only needed for
maintaining precise intermediate results during the analysis. Instead, the
only information that is relevant for the user of the analysis’ results is
whether a certain variable is guaranteed to be ground at a certain point
or not. When combinations of domains are considered, as explained in Sec-
tion 6.3, it is vital to recover the set of ground variables quickly even during
the analysis itself. The problem of deriving this sure groundness informa-
tion from ROBDDS has not been tackled in previous works [CFW91, CH93,
AMSS]. Basically we know about five ways of doing that:

1. Given x ∈ Vars and a ROBDD representation b of a Boolean function
f , use the ROBDD package to test whether f → x is a tautology, that
is, whether f → x is equivalent to >. This test can be performed in
O(|b|) time. The main advantage of this solution is that it does not
require any change to the ROBDD package. One of the drawbacks
is that the reduction of f → x causes the creation and disposal of
“spurious” nodes which must be dealt with by the system2.

2. Given x ∈ Vars and a ROBDD representation b of a Boolean function
f , the information whether x is forced to 1 by f is obtained by visiting
b. The answer is affirmative if (a) there is at least one node in b
labeled with x; and, (b) each node in b labeled with x has its false
branch equal to 0. This method has still linear complexity, requires
the incorporation of the visit into the ROBDD package, and it is read-
only in that is does not involve the creation of any node.

3. Another possibility is to visit the ROBDD representation b to derive,
in one step, the set G of all the variables which are forced to 1. We
will see how this can be done in Section 6.6.

4. A variation of the previous method consists in avoiding visiting b, while
obtaining exactly the same information, by modifying ROBDD’s nodes
so that every node records the set of variables which are forced to true
by the Boolean function it represents. Section 6.6 explains how this
method of keeping explicit the information about true variables can
be easily implemented.

5. The last method is based on a quite radical, though very simple, so-
lution. Intuitively, it is based on the idea of keeping the information
about true variables totally separate from dependency and disjunc-
tive information. True variables are represented naturally by means of

2This is due to technical details which are vital for efficient and realistic implementa-
tions. This is, however, beyond the scope of this work.



176 Chapter 6. Definiteness Analysis

sets whereas only the dependency and disjunctive information is main-
tained by means of ROBDDs. This will be explained in Section 6.7.

6.6 Extracting Sure Groundness from ROBDDs

Here is the only property of OBDTs (and thus of ROBDDs) we need.

Definition 98 (Weak normal form.) A BDT b ∈ B is said to be in weak
normal form if and only if either b = 0 or b = 1, or there exist b1, b0 ∈ B
such that b = ite(v, b1, b0), v /∈ vars(b1) ∪ vars(b0), and both b1 and b0 are
in weak normal form.

Proposition 99 Each OBDT b ∈ Bo is in weak normal form.

Proof By induction on the structure of b: the base cases b = 0 and b = 1 are
trivial. If b = ite(v, b1, b0) then b1 and b0 are members of Bo, and thus are in
weak normal form by the induction hypothesis. Moreover, by the definition
of Bo, v does not occur neither in b1 nor in b0. But then the definition of [[·]]
ensures that, for each a ∈ A, [[b1]][0/v] = [[b1]][1/v] and likewise for b0. The
thesis now follows. 2

This is indeed the distinctive property of “free BDDs”, also called “1-
time branching programs”, where no ordering is required but each path from
the root is allowed to test a variable only once [Bry92].

Theorem 100 Let b = ite(v, b1, b0) be in weak normal form. Then we have

true(b) =


true(b0), if b1 = 0;
{v} ∪ true(b1), if b1 6= 0 and b0 = 0;
true(b1) ∩ true(b0), otherwise.

Lemma 101 Let b = ite(v, b1, b0) in weak normal form. Then vars(b) =
V ∪ vars(b1) ∪ vars(b0), where

V
def=
{
{v} if b1 6= b0,
∅ otherwise.

Proof Let x ∈ vars(b), namely, there exists a ∈ A such that b
(
a[0/x]

)
6=

b
(
a[1/x]

)
. If x = v then b1 6= b0 and x ∈ V . Otherwise, there are still two

cases: either a(v) = 1 or a(v) = 0. In the first case, b
(
a[0/x]

)
= b1

(
a[0/x]

)
and b

(
a[1/x]

)
= b1

(
a[1/x]

)
, thus x ∈ vars(b1). The second case is handled

symmetrically, yielding the conclusion x ∈ vars(b0). We have thus shown
that vars(b) ⊆ V ∪ vars(b1) ∪ vars(b0).



6.6. Extracting Sure Groundness from ROBDDs 177

We now prove that the reverse inclusion also holds. Let us consider x ∈
vars(b1). Since b is in weak normal form, it must be x 6= v. Take a ∈ A such
that b1

(
a[0/x]

)
6= b1

(
a[1/x]

)
, and let b′ = b[1/w]. Then, clearly, b′

(
a[0/x]

)
6=

b′
(
a[1/x]

)
and x ∈ vars(b). Symmetrically, taking x ∈ vars(b0) we obtain

again that x ∈ vars(b). If we suppose that x ∈ V ∪ vars(b1) ∪ vars(b0) but
x /∈ vars(b1) ∪ vars(b0), then we have x = v and b1 6= b0. So, there exists
a ∈ A such that b1(a) 6= b0(a). But then b

(
a[1/x]

)
= b1

(
a[1/x]

)
= b1(a)

and b
(
a[0/x]

)
= b0

(
a[0/x]

)
= b0(a), thus b

(
a[0/x]

)
6= b

(
a[1/x]

)
and x ∈

vars(b). 2

PROOF of Theorem 100. First of all, let us restate the claim in an
equivalent, though more convenient way. Let b = ite(v, b1, b0) be in weak
normal form. The theorem says that

true(b) = V ∪ V1 ∪ V0 ∪ V10,

where

V
def=
{
{V } if b1 6= 0 and b0 = 0,
∅ otherwise;

V1
def=
{

true(b1) if b0 = 0,
∅ otherwise;

V0
def=
{

true(b0) if b1 = 0,
∅ otherwise;

V10
def= true(b1) ∩ true(b0).

The following table shows that V , V1, V0, and V10 are pair-wise disjoint.

b1 ∈ b0 ∈ V = V1 = V0 = V10 =
{0} {0} ∅ ∅ ∅ ∅

B \ {0} {0} {v} true(b1) ∅ ∅

{0} B \ {0} ∅ ∅ true(b0) ∅

B \ {0} B \ {0} ∅ ∅ ∅
true(b1)
∩ true(b0)

In particular, V and V1 are disjoint due to the fact that b is in weak
normal form. We now show that V ∪ V1 ∪ V0 ∪ V10 ⊆ true(b). If we suppose
that x ∈ V ∪ V1 ∪ V0 ∪ V10, the following cases are mutually exclusive, and
all imply that x ∈ true(b).

x ∈ V : this means x = v, b1 6= 0, and b0 = 0. Since b1 6= b0 we have, by
Lemma 101, x ∈ vars(b). Also, if a ∈ A is such that b(a) = 1 it must
be a(x) = 1.



178 Chapter 6. Definiteness Analysis

x ∈ V1: so b1 6= 0 and b0 = 0. From Lemma 101 we have that x ∈ true(b1) ⊆
vars(b1) ⊆ vars(b). Now, if a ∈ A is such that b(a) = 1, it must be
b1(a) = 1, but, since x ∈ V1 = true(b1), this implies b(x) = 1.

x ∈ V0: this case is symmetric to the previous one.

x ∈ V10: that is x ∈ true(b1) ∩ true(b0), b1 6= 0, b0 6= 0, and x 6= v. In
particular, x ∈ true(b1) ⊆ vars(b1) ⊆ vars(b). Let a ∈ A such that
b(a) = 1. If a(v) = 1, then b(a) = b1(a) = 1 and thus a(x) = 1, since
x ∈ true(b1). If, instead, a(v) = 0, then b(a) = b0(a) = 1 and so
a(x) = 1, since x ∈ true(b0).

It remains to be shown that true(b) ⊆ V ∪ V1 ∪ V0 ∪ V10. We assume that
x ∈ true(b), namely that x ∈ vars(b) and

∀a ∈ A :
(
b(a) = 1 =⇒ a(x) = 1

)
.

Observe that the existence of such an x ensures that b1 and b0 cannot be
both equal to 0. We distinguish the following cases:

x = v: this means b1 6= 0 and b0 = 0, that is x ∈ V .

x 6= v: this case is further split as follows:

b1 = 0: for a ∈ A,

b0(a) = 1 =⇒ b
(
a[0/v]

)
= 1

=⇒ a[0/w](x) = 1
=⇒ a(x) = 1,

and thus, ∀a ∈ A : b0(a) = 1 ⇒ a(x) = 1. By Lemma 101
x ∈ {v} ∪ vars(b1) ∪ vars(b0). Since x 6= v and b1 = 0, this
implies x ∈ vars(b0). In conclusion, x ∈ true(b0) = V0.

b0 = 0: handled symmetrically.

b1 6= 0 and b0 6= 0: observe that, for each a ∈ A, b(a) = 1 is equiva-
lent to (

a(v) = 1 ∧ b1(a) = 1
)
∨
(
a(v) = 0 ∧ b0(a) = 1

)
.

Suppose, towards a contradiction, that

∃a ∈ A . b1(a) = 1 ∧ a(x) = 0.

We would have b
(
a[1/v]

)
= 1 and a[1/v](x) = 0 which is in

contrast with the assumption x ∈ true(b). Thus,

∀a ∈ A :
(
b1(a) = 1 =⇒ a(x) = 1

)
.



6.7. A New, Hybrid Implementation for Pos 179

Now suppose, ad absurdum, that x /∈ vars(b1), namely

∀a ∈ A : b1
(
a[1/x]

)
= b1

(
a[0/x]

)
.

Let a ∈ A such that b(a) = 1 and b(v) = 1 (such an a must exist,
since b1 6= 0). Now,

b(a) = b1(a) = b1
(
a[0/x]

)
= b
(
a[0/x]

)
= 1,

but, clearly, a[0/x](x) = 0 which contradicts the assumption x ∈
true(b). We can thus conclude that x ∈ vars(b1) and, by the
previous reasoning, that x ∈ true(b1). A symmetric argument
proves that also x ∈ true(b0) and thus x ∈ V10. 2

This theorem gives us at least two ways of deriving sure groundness
information from ROBDDs. One is by implementing a bottom-up visit,
collecting true variables as indicated. Another one, which is more in the
spirit of a reactive implementation, is based on a modification of the node
structure which is used to represent ROBDDs. In standard implementations,
a non-terminal node n has one field n.V which holds the test variable, plus
two fields n.T and n.F which are references to the nodes which are the
roots of the true and false branch, respectively. All the nodes are created
by means of a function create(v,@n1,@n0), taking a variable symbol and
two references to (already created) nodes, and returning a reference to the
newly created node. We can modify this state of things by adding to the node
structure a field n.G, containing the set of true variables for the function
represented by the ROBDD rooted at n, and by modifying the creation
function to initialize n.G as indicated by Theorem 100.

6.7 A New, Hybrid Implementation for Pos

The observation of many constraint logic programs shows that the percent-
age of variables which are found to be ground during the analysis, for typical
invocations, is as high as 80%. This suggests that representing Pos ele-
ments simply by means of ROBDDs, as in [CH93, AMSS], is probably not
the best thing we can do. Here we propose a hybrid implementation where
each Pos element is represented by a pair: the first component is the set
of true variables (just as in the domain used in early groundness analyzers
[Mel85, JS87]); the second component is a ROBDD. In each element of this
new representation there is no redundancy: the ROBDD component does
not contain any information about true variables. In fact, as we will see,
the hybrid representation has the property that ROBDDs are used only in
what they are good for: keeping track of dependencies and disjunctive in-
formation. True variables, instead are more efficiently represented by means



180 Chapter 6. Definiteness Analysis

of sets. The hybrid representation has two major advantages: (a) it is reac-
tive in the sense of Section 6.3; and, (b) it allows for keeping the ROBDDs
small, during the analysis, when many variables come out to be true, as it is
often the case. Consider Fig. 6.1 (b): the information about y being a true
variable (besides not being readily available) requires two nodes. In more in-
volved cases, the information about trueness of a variable coming late in the
ordering can be scattered over a large number of nodes. Notice that, while
having many true variables, in a straight ROBDD implementation, means
that the final ROBDDs will be very similar to a linear chain of nodes, the
intermediate steps still require the creation (and disposal) of complex (and
costly) ROBDDs. This phenomenon is avoided as much as possible in the
hybrid implementation.
(By ℘f(Vars) we denote the set of all finite subsets of Vars.)

Definition 102 (Hybrid representation.) The hybrid representation
for Pos is

G def=
{
〈G, b〉

∣∣ G ∈ ℘f(Vars), b ∈ Bo, vars(b) ∩G = true(b) = ∅

}
.

The meaning of G’s elements is given by the overloading [[·]] : G → F :[[
〈G, b〉

]] def=
∧

(G) ∧ [[b]],

where
∧
{x1, . . . , xn}

def= x1 ∧ · · · ∧ xn and
∧
∅

def= >.

Now, we briefly review the operations we need over Pos (and thus over G)
for the purpose of groundness analysis. The constraint accumulation pro-
cess requires computing the logical conjunction of two functions, the merge
over different computation paths amounts to logical disjunction, whereas
projection onto a designated set of variables is handled through existential
quantification. Functions of the kind x ↔ (y1, . . . , ym), for m ≥ 0, accom-
modate both abstract mgus and the combination operation in domains like
Pat(Pos) [CLV94].

Before introducing the G’s operations we introduce, by means of Ta-
ble 6.1, the needed operations over OBDTs and ROBDDs, their complexity
and semantics, as well as the correspondent operations over G. In what
follows we will refer to some operations on OBDTs whose meaning and
complexity is specified in the table. The restriction operation b[1/V ] (also
called valuation or co-factoring) is used for maintaining the invariant spec-
ified in Definition 102. In the definition of the abstract operators used in
groundness analysis, the functions of the form x↔ (y1, . . . , ym) are always
conjuncted with some other function. For this reason we provide a fam-
ily of specialized operations (x, V )

↔
⊗ : G → G, indexed over variables and

finite sets of variables. The operation (x, V )
↔
⊗ builds a representation for(

x↔
∧

(V )
)
∧ f , given one for f .



6.7. A New, Hybrid Implementation for Pos 181

Bo op Complexity Meaning G op

b1 ∧̈ b2 O(|b1||b2|) [[b1]] ∧ [[b2]] g1 ⊗ g2

b1 ∨̈ b2 O(|b1||b2|) [[b1]] ∨ [[b2]] g1 ⊕ g2

∃̈V b O
(
|b|2|V |

)
∃V [[b]] ∃∃V g Note: V ⊆ vars(b).∧̈

(V ) O(|V |)
∧

(V ) Note: V 6= ∅.

x ↔̈ V O(|V |) x↔
∧

(V ) Note: x /∈ V .

b[1/V ] O(|b|) [[b]][1/V ]

Table 6.1: Operations defined over Bo and G.

Definition 103 (Operations over G.) The operation ⊗ : G × G → G is
defined, for each 〈G1, b1〉, 〈G2, b2〉 ∈ G, as follows:

〈G1, b1〉 ⊗ 〈G2, b2〉
def= η

(
G1 ∪G2, b1

[
1/(G2 \G1)

]
∧̈ b2

[
1/(G1 \G2)

])
,

where, for each G ∈ ℘f(Vars) and b ∈ Bo such that G ∩ vars(b) = ∅,

η(G, b)

def=

{
〈G, b〉, if true(b) = ∅;
η
(
G ∪ true(b), b

[
1/ true(b)

])
, otherwise.

(6.2)

The join operation ⊕ : G × G → G is given by

〈G1, b1〉 ⊕ 〈G2, b2〉
def=
〈
G1 ∩G2,

(
b1 ∧̈

∧̈
(G1 \G2)

)
∨̈
(
b2 ∧̈

∧̈
(G2 \G1)

)〉
.

For each 〈G, b〉 ∈ G, each V ∈ ℘f(Vars), and x ∈ V ars, the unary operations
∃∃V : G → G and (x, V )

↔
⊗ : G → G are given by

∃∃V 〈G, b〉
def=
〈
G \ V, ∃̈V b

〉
and

(x, V )
↔
⊗〈G, b〉

def=


η
(
G ∪ V, b

[
1/(V \G)

])
, if x ∈ G;

η
(
G ∪ {x}, b[1/x]

)
, if V ⊆ G;

η
(
G, b ∧̈

(
x ↔̈ (V \G)

))
, if x /∈ G and V * G.



182 Chapter 6. Definiteness Analysis

The following result holds almost by definition.

Theorem 104 The operations of Definition 103 are well-defined. More-
over, for each g, g1, g2 ∈ G, each V ∈ ℘f(Vars), and x ∈ Vars,

[[g1 ⊗ g2]] = [[g1]] ∧ [[g2]], [[g1 ⊕ g2]] = [[g1]] ∨ [[g2]],[[
∃∃V g

]]
= ∃V [[g]],

[[
(x, V )

↔
⊗ g
]]

=
(
x↔

∧
(V )
)
∧ [[g]].

Definition 105 (Restriction operation.) For each b ∈ B, each x ∈
Vars, and each c ∈ {0, 1} the restriction of b with respect to x and c is the
BDT b[c/x] defined as follows:

0[c/x] def= 0;

1[c/x] def= 1;

ite(v, b1, b0)[c/x] def=
{
bc[c/x], if x = v;
ite
(
v, b1[c/x], b0[c/x]

)
, otherwise.

This restriction operation on BDTs is easily seen to be the syntactic coun-
terpart of the operation on Boolean functions given in Definition 95.

Proposition 106 For each b ∈ B, each x ∈ Vars, and each c ∈ {0, 1},[[
b[c/x]

]]
= [[b]][c/x].

Proof By induction on the structure of b. The base cases b = 0 and b = 1
are immediate from definitions 95 and 105. For the induction step, suppose
b = ite(v, b1, b0). If x = v then[[

b[c/v]
]]

=
[[
bc[c/v]

]]
= [[bc]][c/v]
= ite

(
v, [[b1]], [[b0]]

)
[c/v]

= [[b]][c/v].

If x 6= v then [[
b[c/x]

]]
=
[[
ite(v, b1[c/x], b0[c/x])

]]
= ite

(
v,
[[
b1[c/x]

]]
,
[[
b0[c/x]

]])
= ite

(
v, [[b1]][c/x], [[b0]][c/x]

)
= ite

(
v, [[b1]], [[b0]]

)
[c/x]

= [[b]][c/x].

2



6.7. A New, Hybrid Implementation for Pos 183

Lemma 107 For each b ∈ B, each x ∈ Vars, and each c ∈ {0, 1} we have
that x /∈ vars

(
b[c/x]

)
.

Proof Let a ∈ A. Then[[
b[c/x]

]](
a[0/x]

)
= [[b]][c/x]

(
a[0/x]

)
= [[b]]

(
a[0/x][c/x]

)
= [[b]]

(
a[c/x]

)
= [[b]]

(
a[1/x][c/x]

)
= [[b]][c/x]

(
a[1/x]

)
=
[[
b[c/x]

]](
a[1/x]

)
. 2

PROOF of Theorem 104 (sketch). We first see that, if 〈G, b〉 is the
result of one of the operations of Definition 103, then we have true(b) =
∅. We use Lemma 107 and other simple facts about Boolean functions.
Of course, we also exploit the assumption that the semantics of OBDT
operations is as given in Table 6.1. For the ⊗ and (x, V )

↔
⊗ operators this

is true by the definition of η given in Equation (6.2). Also, true
(
∃V̄ b

)
⊆

true(b), which handles the case of the ∃∃V̄ operators. For the ⊕ operator,
from

true(b1) = true(b2) = ∅,

vars(b1) ∩G1 = vars(b2) ∩G2 = ∅,

we obtain

true
(
b1 ∧̈

∧̈
(G1 \G2)

)
= G1 \G2,

true
(
b2 ∧̈

∧̈
(G2 \G1)

)
= G2 \G1.

Since, for each b′, b′′ ∈ B, true(b′ ∨̈b′′) = true(b′)∩true(b′′) the thesis follows.
Now we see that, if an operator gives back 〈G, b〉, then we have G ∩

vars(b) = ∅. It is immediate from the definition that any non-recursive
application η(G, b) is such that G ∩ vars(b) = ∅. Thus, by Lemma 107,(

G ∪ true(b)
)
∩ vars

(
b
[
1/ true(b)

])
=
(
G ∪ true(b)

)
∩
(

vars(b) \ true(b)
)

= G∩
(

vars(b) \ true(b)
)

= ∅,

and also the recursive applications of η enjoy the same property. This com-
pletes the proof for the ⊗ and (x, V )

↔
⊗ operators. For the ⊕ operator, just



184 Chapter 6. Definiteness Analysis

observe that

vars
((
b1 ∧̈

∧̈
(G1 \G2)

)
∨̈
(
b2 ∧̈

∧̈
(G2 \G1)

))
⊆

vars(b1) ∪ vars(b2) ∪ (G1 \G2) ∪ (G2 \G1).

Then, since vars
(
∃∃V̄ b

)
= vars(b) ∩ V and (G \ V ) ∩

(
vars(b) ∩ V

)
= ∅ we

have the thesis for ∃∃V̄ .
The statement about the operations’ semantics is routine. 2

Notice that G operations make use of the Bo (ROBDD) operations only
when strictly necessary. When this happens, expensive operations like ∧̈ and
∨̈ are invoked with operands of the smallest possible size. In particular, we
exploit the fact that the restriction operation is relatively cheap. However,
we cannot avoid searching for true variables, as the ⊗ and (x, V )

↔
⊗ oper-

ators need that. For this purpose, the procedure implicit in Theorem 100
comes in handy. In programs where many variables are ground the ROB-
DDs generated will be kept small, and so also the cost of searching will be
diminished. As a final remark, observe that in a real implementation the
operations which are executed can be further optimized. Without entering
into details, the basic analysis step, for what concerns groundness and in a
bottom-up framework, generates macro-operations of the form

(x1, V1)
↔
⊗
(
(x2, V2)

↔
⊗
(
· · · ((xn, Vn)

↔
⊗(g1 ⊗ g2 ⊗ · · · ⊗ gm)) · · ·

))
.

These operations can be greatly simplified by first collecting all the true
variables in the gi’s in one sweep (a bunch of set unions) and iterating
through the (xi, Vi)

↔
⊗ indexes for collecting further true variables. Then

the ROBDDs which occur in the macro-operation are restricted using the
collected true variables and, at the end of this process, the ROBDD package
is invoked over the simplified arguments. Only then we search for further
true variables in the resulting ROBDD.

6.8 Experimental Evaluation

The ideas presented here have been experimentally validated in the context
of the development of the China analyzer [Bag94]. China is a data-flow
analyzer for CLP(HN ) languages (i.e. Prolog, CLP(R), clp(FD) and so
forth) written in Prolog and C++. It performs bottom-up analysis deriving
information on both call and success patterns by means of program trans-
formations and optimized fixpoint computation techniques.

The assessment of the hybrid domain has been done in a quite radical
way. In fact, we have compared the standard, pure ROBDD-based imple-
mentation of Pos against the hybrid domain on the following problem: de-
riving, once for each clause’s evaluation, a Boolean vector indicating which



6.8. Experimental Evaluation 185

Analysis time (sec) N. of BDD nodes

Program STD HYB S/H STD HYB S/H

CS 1.06 0.6 1.77 12387 391 31.7

Disj 1.06 0.6 1.77 72918 176 414.3

DNF 5.17 4.4 1.18 5782 111 52.1

Gabriel 1.13 0.74 1.53 28634 10472 2.73

Kalah 3.92 2.02 1.94 43522 645 67.5

Peep 6.13 5.52 1.11 176402 128332 1.37

PG 0.37 0.25 1.48 3732 86 43.4

Plan 0.59 0.5 1.18 1736 65 26.7

Table 6.2: Experimental results obtained with the China analyzer.

variables are known to be ground and which are not. This is a very minimal
demand for each analysis requiring the knowledge about definitely ground
variables during the analysis. We have thus performed the analysis of a
number of programs on a domain similar to Pat(Pos) [CLV94], switching off
all the other domains currently supported by China

3. Pat(<) is a generic
structural domain which is parametric with respect to any abstract domain
<. Roughly speaking, Pat(<) associates to each variable the following in-
formation:

• a pattern, that is to say, the principal functor and subterms which are
bound to the variable;

• the “properties” of the variable, which are delegated to the < domain
(the two implementations of Pos, in our case).

As reported in [CLV93], Pat(Pos) is a very precise domain for groundness
analysis.

The experimental results are reported in Table 6.2. The table gives, for
each program, the analysis times and the number of ROBDD nodes allo-
cated for the standard implementation (STD) and the hybrid one (HYB),
respectively. It also shows the ratio STD/HYB for the above mentioned
figures (S/H). The computation times have been taken on a 80486DX4 ma-
chine with 32 MB of RAM running Linux 1.3.64. The tested programs
have become standard for the evaluation of data-flow analyzers. They are
a cutting-stock program CS, the generate and test version of a disjunctive
scheduling program Disj, a program to put Boolean formulas in disjunctive
normal form DNF, the Browse program Gabriel taken from Gabriel bench-
mark, an alpha-beta procedure Kalah, the peephole optimizer of SB-Prolog

3Namely, numerical bounds and relations, aliasing, and polymorphic types



186 Chapter 6. Definiteness Analysis

Peep, a program PG written by W. Older to solve a particular mathematical
problem, and the famous planning program Plan by D.H.D. Warren.

The results indicate that the hybrid implementation outperforms the
standard one in both time and space efficiency. The systematic speed-up
obtained was not expected. Indeed, we were prepared to content ourselves
with a moderate slow-down which would have been recovered in the reactive
combinations. The space figures show that we have achieved significant (and
sometimes huge) savings in the number of allocated ROBDD nodes. With
the hybrid domain we are thus able to keep the ROBDDs which are created
and traversed during the analysis as small as possible. This phenomenon is
responsible for the speed-up. It seems that, even for programs characterized
by not-so-many ground variables, there are always enough ground variables
to make the hybrid implementation competitive. This can be observed, for
instance, in the case of the Peep program, which was analyzed with a non-
ground, most-general input pattern. The following additional observations
are important for a full understanding of Table 6.2:

1. we are not comparing against a poor standard implementation of Pos,
as can be seen by comparing the analysis times with those of [CLV93].
The ROBDD package we are using is fine-tuned: it employs separate
caches for the main operations (with hit-rates in the range 95%–99%
for almost all programs), specialized and optimized versions of the
important operations over ROBDDs, as well as aggressive memory
allocation strategies. Indeed, we were led to the present work by the
apparent impossibility of further optimizing the standard implementa-
tion. Moreover, the hybrid implementation has room for improvement,
especially for what concerns the handling of bit-vectors.

2. We are not taking into account the cost of garbage-collection for ROBDD
nodes. In particular, the sizes of the relevant data-structures were cho-
sen so that the analysis of the tested programs could run to completion
without any node deallocation or reallocation.

3. The Boolean vectors computed during our test analyses are what is
necessary for, say, the quick handling of delayed constraints and goals,
and the efficient simplification of aliasing information. However, the
experiment does not take into account the inevitable gains which are
a consequence of the fast access to ground variables. Furthermore,
in a truly reactive combination, the set of ground variables is not
needed only at the end of each clause’s evaluation (this is the optimistic
hypothesis under which we conducted the experimentation), but at
each body-atom evaluation for each clause. In this context the hybrid
implementation, due to its incrementality, is even more favored with
respect to the standard one (which is not incremental at all).



6.9. Conclusion 187

6.9 Conclusion

We have studied the problem, given an implementation of Pos based on
ROBDDs, of determining as efficiently as possible the set of variables which
are forced to true in the abstract representation. We have explained why,
for the sake of realizing reactive combinations of domains, it is important
to detect these variables (which correspond to ground ones at the concrete
level) as quickly as possible. This problem has not been treated before in
the literature [CH93, AMSS, HCC95]. After reviewing the näıf approaches,
we have presented a simple method of detecting all the true variables in
a ROBDD representation at once. We have then proposed a novel hybrid
representation for Boolean functions. This representation is designed in a
way to take advantage from the observation that most programs (together
with their typical queries) have a high percentage of variables which are
deemed to be ground at the program points of interest. With the new
representation, not only the information about true (ground) variables is
always readily available (instead of being scattered all over the ROBDDs),
but we are also able to keep the usage of (expensive) ROBDDs at a minimum.
This is clearly important for efficiency reasons. In fact, we have presented
the experimental results obtained with a prototype implementation of the
hybrid domain which outperforms, from any point of view, the standard
implementation based on ROBDDs only. Surprisingly enough, we have thus
been able to assess the superiority of the hybrid domain even for those cases
where fast access to ground variables is not important.



188 Chapter 6. Definiteness Analysis



Chapter 7

Precise Detection of
Call-Patterns

Contents

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . 189
7.2 The Magic-Templates Algorithm . . . . . . . . . 194
7.3 Generalized Semantics . . . . . . . . . . . . . . . 195

7.3.1 Interpretation Domains . . . . . . . . . . . . . . . 195
7.3.2 Functional Representations . . . . . . . . . . . . . 199
7.3.3 Generalized CLP Programs . . . . . . . . . . . . . 202
7.3.4 The Functional Semantics . . . . . . . . . . . . . . 202
7.3.5 Top-Down (Operational) Construction . . . . . . . 203
7.3.6 Bottom-Up (Fixpoint) Construction . . . . . . . . 204

7.4 Abstract Interpretation . . . . . . . . . . . . . . . 209
7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . 211
7.6 Proof of the Main Result . . . . . . . . . . . . . . 211

7.1 Introduction

In data-flow analysis of constraint logic programs we are often interested
in deriving information about just two kinds of program points: clause’s
entries and clause’s successful exits. Using a terminology that has become
customary in the field, that is to say that we want to derive call-patterns
and success-patterns. In other words, for each clause we want to derive
properties of the constraint store that are valid

1. whenever the clause is invoked (call-patterns); and

2. whenever a computation starting with the invocation of the clause
terminates with success (success-patterns).

189



190 Chapter 7. Precise Detection of Call-Patterns

In principle, call-patterns can be reconstructed, to a limited extent,
from the success-patterns. This, however, often implies significant precision
losses. As the precision of call-patterns is very important for many applica-
tions, their direct computation is desirable. Top-down analysis methods are
usually advocated for this purpose, since the standard execution strategy
of (constraint) logic programs is top-down. Alternatively, methods based
on program transformation and bottom-up analysis can be employed. This
approach, however, can result in a loss of precision because the connection
between call- and success-patterns is not preserved.

In a recent work, Debray and Ramakrishnan [DR94] introduced a bottom-
up analysis technique for logic programs based on program transformation.
They showed, among other things, that their bottom-up analysis is at least
as precise (on both call- and success-patterns) as any top-down abstract
interpretation using the same abstract domain and abstract operators.

The basic idea behind the approach of Debray and Ramakrishnan is to
employ a variation of the Magic Templates algorithm [Ram88]. Nothing
new yet, since this follows a line of research on bottom-up analysis methods
based on the Magic Sets or similar transformations [Kan93, CDY94, Nil91].
However, as several authors [CDY94, Nil91, DR94] have pointed out, a direct
application of Magic Templates can result in a loss of precision. While both
call- and success-patterns are derived, the connection between them is lost.
As a simple example, let us consider a program P containing the following
CLP(R) clause, R:

transistor_state(Beta, Ib, Ic, Ie):-
Ib >= 0,
Ic = Beta*Ib,
Ie+Ib+Ic = 0.

Suppose we apply the magic transformation to P and analyze the result em-
ploying a domain for range and relations, like those presented in Chapter 5,
and a domain for groundness. The analysis of P can discover two differ-
ent call-patterns (perhaps coming from two different call sites) for predicate
transistor_state/4:

Dc
1

def=
(
Beta > 0

)
,

Dc
2

def=
(
Beta > 0 ∧ ground(Beta)

)
.

Analyzing clause R with respect to these call-patterns we can obtain the
success-patterns1

Ds
1

def=
(
Beta > 0 ∧ Ib ≥ 0

)
, (7.1)

Ds
2

def= Ds
1 ∧
(
Ic ≥ 0 ∧ Ie ≤ 0

)
.

(7.2)



7.1. Introduction 191

Now, if the success-patterns are merged, obtaining Ds
1, we have clearly lost

information. With the standard approach, i.e., by maintaining two separate
relations for call- and success-patterns, even if we keep both Ds

1 and Ds
2, all

that can be said may be summarized as

callsR
def= {Dc

1, D
c
2},

succsR
def= {Ds

1, D
s
2}.

(7.3)

Having lost the connection between call- and success-patterns, when con-
fronted with a call-pattern, say,

Dc def= (Beta = 60),

which is stronger than Dc
2, we must content ourselves with the success-

pattern

Ds def= Dc ∧Ds
1.

In fact, Dc is “compatible” with both Ds
1 and Ds

2. Stated differently, Ds
1

and Ds
2 are both possible as success-patterns for Dc. In order to obtain the

strictly more precise result

Es def= Dc ∧Ds
2

we must keep the relation between call- and success-patterns explicitly. This
means that for clause R we must record, instead of the two relations given
in (7.3), something like

callsuccsR
def=
{
Dc

1 7→ Ds
1, D

c
2 7→ Ds

2

}
. (7.4)

The intuitive reading of (7.4) is as follows:

all the concrete call-patterns of clause R are described by either
Dc

1 or Dc
2. Moreover, every call-pattern that is described by Dc

i

gives rise to a concrete success-pattern that is described by Ds
i ,

for i = 1, 2.

In this particular example, all the concrete call-patterns described by Dc

are also described by Dc
1 and Dc

2. Formally:

γ(Dc) ⊆ γ(Dc
1) ∩ γ(Dc

2).

As a consequence, we are allowed to conclude that the ensuing success-
patterns are described by both Ds

1 and Ds
2. Thus we can conclude that

Es = Dc ∧Ds
2 = Dc ∧Ds

1 ∧Ds
2

1Notice that Ic = Beta*Ib is a non-linear constraint.



192 Chapter 7. Definiteness Analysis

p(X) :-
q(a,X),
q(X,b).

q(X,Y).

?- p(X).

Figure 7.1: Program showing some difficulties with the magic transforma-
tion.

is a correct success-pattern for clause R corresponding to the call-pattern
Dc.

The above example does not tell the entire story, and the reason is that
we have considered an abstract domain, which, in addition, turns out to be
monotonic2. Indeed, when dealing with monotonic properties only, the prob-
lem can be understood as a lack of expressivity of the domain, rather than a
deficiency of the transformation approach. In this case, in fact, the informa-
tion loss can be avoided to the extent the domain employed can represent the
dependencies of the success-patterns from the call-patterns. For the above
example, the ask-and-tell combination of the numerical domain with the
groundness domain (see Section 3.7 on page sec:combining-domains) would
allow to obtain the success-pattern

Es
1

def=
(
Beta > 0 ∧ Ib ≥ 0

)
‖ ask

(
ground(Beta)

)
→ tell

(
Ic ≥ 0 ∧ Ie ≤ 0

)
,

instead of Ds
1 as given by (7.1).

The limitations of the transformation approach are more serious when
the analysis concerns (also) non-monotonic properties and, in this case, the
theory developed in Chapter 3 is not applicable. The next example provides
a very compelling argument: it shows that a straightforward application of
magic transformation, followed by a standard bottom-up evaluation, causes
information loss already at the concrete level.

Consider the program and goal in Figure 7.1.3 The bottom-up evaluation
of the transformed program on the standard domain of Herbrand equality

2Notice how the call-pattern Dc is “preserved” in the success-patterns Ds and Es.
This, of course, will not always happen for non-monotonic domains.

3This nice example is due to an anonymous referee.



193

constraints yields the following sets of call- and success-patterns4:

calls def=
{
p(X), q(a,X), q(X, b), q(b, b)∗

}
,

succs def=
{
p(X), p(a)∗, p(b)∗, q(a,X), q(X, b), q(b, b)∗

}
.

(7.5)

Here our inability to re-couple call- and success-patterns is self-evident.
However, the real problem is that the patterns marked with ‘∗’ will never be
computed by a top-down evaluation of the original program! This precision
loss at the concrete level is clearly reflected at the abstract level. No matter
how refined is the domain for freeness analysis we might employ, the fact
that top-down evaluation of ?-p(X) succeeds with a free argument cannot
be derived.

The approach of [DR94], which is restricted to ordinary logic programs,
solves the problems outlined above. It consists in transforming the source
program by means of Magic Templates. Then an “explicated” version of
the transformed program is built. In the explicated version the arguments
of each clause head and body atom are duplicated: one copy represents the
tuple of arguments at the moment of the call (the “calling arguments”),
whereas the other copy represents the arguments at the moment of return
(the “return arguments”). The “explication” of clause’s bodies makes ex-
plicit the operational aspects of the execution of logic programs: unification
in particular. The solution of [DR94] is not generalizable to the entire class
of CLP programs, since it exploits some peculiar properties of the Herbrand
constraint system, where a tuple of terms is a strong normal form for con-
straints. This way, and by duplicating the arguments, they are able to
describe the partial functions that represent the connection between call-
and success-patterns in the clauses heads. Of course, this cannot be done
for generic CLP languages.

In this work we aim at generalizing the overall result of [DR94] to the
unrestricted case of constraint logic programs: “the abstract interpretation
of languages with a top-down execution strategy need not itself be top-down.”
A bottom-up analysis framework has some advantages over top-down ones.
It is simpler, it is easier to guarantee termination without special devices
such as memoization. This, however, is beyond the scope of this work.

We present a generalized framework for the semantics of the entire class
of CLP languages. The approach, which is still based on program transfor-
mation and bottom-up evaluation, is able to capture both call- and success-
patterns without loss of precision at the concrete level. The framework can
accommodate a very wide range of non-standard semantics and, in particu-
lar, abstract interpretations. We employ domains of partial functions that
are parametric with respect to a given interpretation domain. These partial

4Observe that, for simplicity, we are exploiting the fact that tuples of terms constitute
a normal form for Herbrand equality constraints.



194 Chapter 7. Definiteness Analysis

functions express both call-patterns, success-patterns, and the connection
between them in a very convenient way. Moreover, the entire construction
is almost automatic: given any abstract domain we can define a functional
representation over it and define an iteration sequence that computes the de-
sired approximation of the abstract semantics. The only domain-dependent
thing is (part of) the design of a suitable widening operator [CC77, CC92b]
ensuring termination.

7.2 The Magic-Templates Algorithm

Our objective is to capture the top-down control strategy of CLP lan-
guages by means of a program transformation followed by a bottom-up
evaluation. The transformation we employ is a generalization of Magic Set
[BR87, BMSU86] that is applied by an instance of the Magic Templates
algorithm. This algorithm is applicable to any language where programs
are made up by Horn-like clauses: CLP in our case. The basic idea is
to introduce auxiliary clauses, called magic clauses. They are intended to
“compute” the constraints “passed” from one atom to another in the origi-
nal clauses, following the control strategy of the language’s implementation
model (namely, extended SLD-resolution). Roughly speaking, each magic
clause describes a procedure call in the body of an original clause. The
Magic Templates algorithm also prescribes the addition of an atom (the
magic atom, which is defined by the magic clauses) in the body of the origi-
nal clauses. This atom forces the bottom-up evaluation to take into account
the conditions under which the clause is invoked. In an evaluation over
the standard (or concrete) domain this can be thought of as a “filter” that
reduces the search space, preventing the generation of irrelevant facts, i.e.,
those that cannot be produced by any execution, standing a particular set of
initial goals. In a data-flow analysis setting, the added atom is what makes
possible a goal-dependent analysis with the effect of improving the accuracy.
The original clauses with the magic atom added are called modified clauses.
Here is the Magic Templates algorithm, instantiated over CLP languages
and assuming a left-to-right selection rule.5

Definition 108 (Magic Templates.) [Ram88] Let P be a CLP program
and G be a set of initial goals. Starting from P and G, we build a new
program Pm

G . Initially Pm
G is empty. Assuming that in P no predicate symbol

has ‘magic ’ as a prefix, we perform the following steps:

1. for each predicate symbol p/n in P (where n denotes the arity), create
a new predicate symbol magic p/n.

5For the knowledgeable reader: in our case the adorned program coincides with the
original program [Ram88].



195

2. For each clause R of P , add the modified version of R to Pm
G . Let

p(t̄ ) be the head of R. The modified version is obtained by adding
magic p(t̄ ) in the leftmost position of the body of R.

3. For each clause R in P and each atom qi(t̄i) in the body of R, add
a magic clause to Pm

G : the head is magic qi(t̄i), whereas the body
consists of all the constraints and atoms preceding qi(t̄i) in the modified
version of R.

4. For each goal g in G and each atom qi(t̄i) in g, add a magic clause
to Pm

G : the head is magic qi(t̄i) whereas the body consists of all the
constraints and atoms preceding qi(t̄i) in g.

For a predicate symbol p we will use the more comfortable notation m p
instead of magic p.

As an example, Magic Templates transforms the program of Figure 7.1
on page fig:magic-example into the program of Figure 7.2. For a CLP exam-
ple, the CLP(N ) program in Figure 5.2 on page fig:numeric-mc91 is trans-
formed as in Figure 7.3.

7.3 Generalized Semantics

As shown in Chapter 3, the characteristics of the CLP framework [JL87]
allow for the definition of a generalized algebraic semantics. However, the
framework presented in Chapter 3 is limited to (possibly non-standard) in-
terpretations based on monotonic properties. For this class of properties
the similarities between the standard and non-standard interpretations are
striking, as monotonicity allows to employ constraints also to represent the
non-standard properties. For our purposes we need a more general frame-
work, capturing also non-monotonic properties, which is introduced in the
following sections.

7.3.1 Interpretation Domains

Here we generalize the semantic treatment for CLP languages presented in
Section 3.2 on page sec:case-study-CLP. While several things carry through
without change to the case where non-monotonic properties are considered,
we can no longer assume that the domain of interpretation is a constraint
system. We thus introduce a class of algebraic structures called interpreta-
tion domains.

The carrier of an interpretation domain is a set of properties, or descrip-
tions. In our setting, we assume that properties deal with program variables.
Properties usually describe the instantiation status of program variables, at
some level of abstraction. As we did in Section 3.2.3 on page sec:constraint-
systems, we make explicit some (very reasonable) assumptions about the



196 Chapter 7. Definiteness Analysis

p(X) :- m_q(a, X) :-
m_p(X), m_p(X).
q(a,X), m_q(X, b) :-
q(X,b). m_p(X),

q(a, X).

q(X,Y) :- m_p(X).
m_q(X, Y).

Figure 7.2: The “magic version” of the program in Figure 7.1.

mc(N, N-10) :-
m_mc(N, N-10),
N > 100.

mc(N, M) :-
m_mc(N, M),
N <= 100,
mc(N+11, U),
mc(U, M).

m_mc(N+11, U) :-
m_mc(N, M),
N <= 100.

m_mc(U, M) :-
m_mc(N, M),
N <= 100,
mc(N+11, U).

Figure 7.3: The “magic version” of the program in Figure 5.2 on
page fig:numeric-mc91.



197

relationships of properties to program variables. We still assume the ex-
istence of two denumerable sets of variable symbols, V and Λ, which are
disjoint. We also denote the set of all variables by Vars def= V ] Λ. For
a property D, we will indicate by FV (D) the set variables D talks about.
The notion of renaming remains also unchanged: if a property D describes a
tuple of variables X̄, D[Ȳ /X̄] is that very same property applied to Ȳ , if Ȳ
and X̄ are disjoint tuples of distinct variables. The renaming [Y/X] has no
effect on D if X /∈ FV (D), whereas variable capture is avoided by consistent
renaming of bound variables. We will say that [Ȳ /X̄] is a renaming for D
if and only if FV (D) ∩ Ȳ = ∅.

Definition 109 (Interpretation domain.) Any algebra D̄ of the form〈
D,E,⊗,⊕,0,1, {∃̄̄∃X̄}X̄∈Vars? , {dX̄Ȳ }X̄,Ȳ ∈Vars?

〉
is an interpretation domain if it satisfies the following conditions:

I0. D is a set of properties;

I1. E is a preorder over D;

I2. for each D ∈ D, D E 1;

I3. ⊗ is an associative binary operator over D;

I4. 〈D,⊕,0〉 is a commutative and idempotent monoid;

I5. 0 is an annihilator for ⊗, namely, for each D ∈ D we have D ⊗ 0 =
0⊗D = 0;

I6. for each X̄ ∈ Vars? we have ∃̄̄∃X̄ : D → D and FV
(
∃̄̄∃X̄ D

)
⊆ X̄ for each

D ∈ D;

I7. for each X̄, Ȳ ∈ Vars?, dX̄Ȳ ∈ D and dX̄Ȳ = dȲ X̄ .

The relation E is referred to as the approximation ordering of the inter-
pretation domain. It specifies the relative precision of the properties in D:
D1 E D2 means that D1 is more precise than D2 or, alternatively, that D2 is
a safe approximation of D1. The ⊕ operator models the merging of informa-
tion coming from different execution paths. Its properties ensure that the
merging process is insensitive to grouping, ordering and multiplicity. More-
over, empty or failed paths (which intuitively correspond to 0) are ignored.
The ⊗ operator models the constraint accumulation process. The element
1 describes, intuitively, the empty constraint store, i.e., the one containing
no information at all. The ∃̄̄∃X̄ operators represent the hiding process: any
variable X /∈ X̄ appearing in the scope of ∃̄̄∃X̄ is isolated (hidden) from other
occurrences of X outside the scope. The “complement sign” that appears



198 Chapter 7. Definiteness Analysis

on top of ∃̄̄∃ signifies that we formalize hiding in a dual way with respect to
traditional approaches [SRP91, GDL95]. The distinguished elements dX̄Ȳ
represent parameter passing.

Indeed, interpretation domains must satisfy some other (very technical)
conditions related to how they deal with variables. The interested reader can
find these additional requirements in Hypothesis 121 on page hypo:magic-
id-axioms.

Notice that the above definition specifies the bare essentials we require
from a (non-standard) domain that is suitable for the abstract interpretation
of CLP languages. This way we can capture abstract domains that are very
weak, despite their importance for data-flow analysis. It is worth noticing
that any constraint system, in the sense of Definition 7 on page def:constraint-
system is an interpretation domain. The converse, of course, does not hold.

However, in a generalized framework such as the one we are describing,
we need also structures that are able to capture the “concrete” (or standard)
semantics of programs. Here, of course, we are much more demanding, since
we want to prove the equivalence between different semantic constructions
(e.g., the operational, top-down construction and the bottom-up construc-
tion). For this purpose, we now introduce a class of “strong” interpretation
domains. With the domains in this class one can characterize the standard
semantics of any CLP language.

Definition 110 (Strong interpretation domain.) An interpretation
domain D̄ is a strong interpretation domain if and only if it satisfies the fol-
lowing conditions, for each X̄, Ȳ ∈ Vars?, each renaming ρ, and D,D1, D2 ∈
D:

S1. ⊗ is commutative and idempotent;

S2. D ⊗ ∃̄̄∃X̄ D = D;

S3. for each family {Di ∈ D}i∈N,
⊕

i∈NDi
def= D1 ⊕D2 ⊕ · · · exists and is

unique in D; moreover, associativity, commutativity, and idempotence
of ⊕ apply to denumerable as well as to finite families of operands;

S4. ∃̄̄∃X̄
(
∃̄̄∃X̄ D1 ⊗D2

)
= ∃̄̄∃X̄

(
D1 ⊗ ∃̄̄∃X̄ D2

)
= ∃̄̄∃X̄ D1 ⊗ ∃̄̄∃X̄ D2;

S5. if X̄ρ = Ȳ ρ = Ȳ then ∃̄̄∃Ȳ (Dρ) = ∃̄̄∃Ȳ
(
D ⊗ dX̄Ȳ

)
;

S6. ∃̄̄∃X̄
(
∃̄̄∃X̄ D

)
= ∃̄̄∃X̄ D, namely, ∃̄̄∃X̄ is idempotent;

S7. if FV (D1) ∩ FV (D2) ⊆ Ȳ and FV (D1) ∩ X̄ ⊆ Ȳ then

∃̄̄∃X̄(D1 ⊗D2) = ∃̄̄∃X̄
(
∃̄̄∃Ȳ D1 ⊗D2

)
.



199

Any strong interpretation domain is a closed constraint system. Notice that
here, for the first time, we needed to give a rather precise specification of the
projection operators and the parameter passing elements. These conditions
are clearly satisfied by any concrete constraint domain, and are necessary in
order to ensure the equivalence between the semantic constructions we will
present later.

7.3.2 Functional Representations

In the following sections, we will present semantic characterizations of CLP
capturing both call- and success-patterns and maintaining the connection
between them. For any such characterization, and given an interpreta-
tion domain D̄, the “meaning” of a program clause R is a partial func-
tion µR : D � ℘(D). The idea is that descriptions appearing in the do-
main of µR, dom(µR), are the possible call-patterns for R, whereas, for each
D ∈ dom(µR), µR(D) describes the possible outcomes of a call to R started
in a constraint store described by C.

Partial functions of this kind can be conveniently represented by subsets
of D ×D [Bou92]. However, since we are concerned with successful compu-
tations only, we will use subsets of

(
D \ {0}

)
× D to represent the partial

functions of interest. Instead of the usual notation for pairs (Dc, Ds) we will
use the perspicuous notation (Dc 7→ Ds) for emphasis. Intuitively, a pair
(Dc 7→ Ds) represent the set of all computations starting with a (consistent)
constraint store described by Dc and terminating (successfully or not) in a
constraint store described by Ds.

Before introducing the functional representation we need to define a bi-
nary predicate over properties. It expresses the notion of compatibility of
two properties. In a bottom-up construction what happens is that (charac-
terizations of) partial computations are, in a sense, concatenated in order to
obtain (characterizations of) longer computations. Suppose we know that
some partial computation starting with the invocation of predicate p, in the
context of a constraint store satisfying D1, arrives at a point where predicate
q is called with a constraint store characterized by property D2. Suppose
we know also that, whenever predicate q is called with a constraint satis-
fying D3, the computation succeeds with a constraint described by D4. If
we blindly concatenate the above partial computations, then we may obtain
a computation that cannot exist in any top-down derivation. In fact, the
above hypotheses do not constitute the evidence that a computation from p
starting in a constraint satisfying D1 succeeds with a constraint satisfying
D4. In our construction we will require that D2 and D3 are compatible.

Definition 111 (Compatibility predicate.) Let D̄\ be a strong inter-
pretation domain. Then, G\ ⊆ D ×D is given for each D\

1, D
\
2 ∈ D\, by

D\
1 G

\ D\
2

def⇐⇒ D\
1 = D\

2.



200 Chapter 7. Definiteness Analysis

If, instead, D̄] is an interpretation domain intended to abstract another in-
terpretation domain D̄\ trough a concretization function γ : D] → ℘(D\),
then G] ⊆ D] ×D] satisfies the following safety requirement:

∀D]
1, D

]
2 ∈ D :

(
(D]

1 G
] D]

2)
)
∨
(
γ(D]

1) ∩ γ(D]
2) = ∅

)
.

The G predicates will be used in order to limit the extent to which the
bottom-up construction concatenates partial computations that are not con-
catenatable. This is the essence of the problem, illustrated above with the
program of Figure 7.1, affecting the standard approaches employing the
magic transformation followed by bottom-up evaluation.

The above definition makes clear the different notions of compatibility in
the concrete case, where strong interpretation domains are used to charac-
terize the concrete semantics, and in the abstract case. In the former case,
we want a correct and complete criterion for deciding whether two partial
computations can be concatenated, still obtaining a partial computation:
the first computation must end up with a constraint store that is exactly
the starting constraint store of the second computation.

In the latter case, when D̄] is an analysis’ domain, we must content our-
selves with an approximation. Suppose that D̄] embodies both groundness
and freeness information. Clearly, a partial computation ending up with a
constraint where X is free cannot be prolonged with a partial computation
starting with X ground, since no satisfiable constraint can make X both
ground and free. If we are employing a domain for ranges and relations
of and among numerical variables, we can certainly conclude that a partial
computation ending with X ≥ 0 cannot be extended with another partial
computation that starts with X < 0.

At the implementation level, G] admits different degrees of sophistication,
and may involve several domains. Suppose we have domains for aliasing,
freeness, and structural information. While the aliasing domain provides
definite non-sharing information, the combination of structural information
and freeness provides some definite sharing information. Suppose that the
aliasing component of D]

1 implies “X and Y do not share a common vari-
able”. Suppose also that the structural component of D]

2 contains X = f(Z)
and Y = g(a, Z) and that the freeness component reveals that Z is indeed
free. A refined implementation would discover this inconsistency making
D]

1 G
] D]

2 false. Definition 111, however, imposes only the correctness of
G], the precision being left to efficiency considerations that are outside the
scope of the present discussion.

Definition 112 (Functional representation.) Let D̄ be an interpreta-
tion domain. The functional representation over D̄ is defined as:

D̄F

def=
〈
DF,EF,⊗F,0F, {∃̄̄∃

F

X̄}X̄∈Vars?
〉
,



201

where

DF

def= ℘
((
D \ {0}

)
×D

)
,

0F

def= ∅,

∃̄̄∃F

X̄ S
def=
{(
∃̄̄∃X̄ Dc 7→ ∃̄̄∃X̄ Ds

) ∣∣∣ (Dc 7→ Ds) ∈ S
}
.

The relation EF ⊆ DF ×DF is given for each S1, S2 ∈ DF, by

S1 EF S2
def⇐⇒ ∀(Dc

1 7→ Ds
1) ∈ S1 :

∃(Dc
2 7→ Ds

2) ∈ S2 .

(Dc
1 E D

c
2) ∧ (Ds

1 E D
s
2).

Finally, if we define

D̃F

def= D ∪DF,

the binary operator ⊗F : D̃F×D̃F → D̃F is given as follows, for each S, S1, S2 ∈
DF and each D,D1, D2 ∈ D:

S1 ⊗F S2
def=

Dc
1 7→ Ds

1 ⊗Ds
2

∣∣∣∣∣∣∣∣∣∣
(Dc

1 7→ Ds
1) ∈ S1

(Dc
2 7→ Ds

2) ∈ S2

(∃̄̄∃FV (Dc
2)D

s
1) G Dc

2

Ds
1 ⊗Ds

2 6= 0

,

D ⊗F S
def=

D 7→ D ⊗Ds

∣∣∣∣∣∣∣
(Dc 7→ Ds) ∈ S(
∃̄̄∃FV (Dc)D

)
G Dc

D ⊗Ds 6= 0

,
S ⊗F D

def=

{
Dc 7→ Ds ⊗D

∣∣∣∣∣ (Dc 7→ Ds) ∈ S
Ds ⊗D 6= 0

}
,

D1 ⊗F D2
def= D1 ⊗D2.

The notion of FV (·) and renaming are extended pointwise to functional
domains, preserving all the needed properties.

It is possible to show (see Proposition 122 on page prop:functional-
domains-properties) that the following hold: 0F is an annihilator for ⊗F;
EF is a preorder with minimum element 0F; ⊗F is componentwise mono-
tonic with respect to ⊆, and completely left- and right-distributive with
respect to ∪; finally, ∃̄̄∃F

X̄ is monotonic with respect to ⊆ and continuous
with respect to ∪.



202 Chapter 7. Definiteness Analysis

7.3.3 Generalized CLP Programs

We assume, for simplicity, that clauses are of the form

p(X̄) :− {c1, . . . , cn} � (b1, . . . , bk),

where {c1, . . . , cn} is a (conjunctive) set of atomic constraints and (b1, . . . , bk)
is a sequence of atoms. Notice that the parentheses around (b1, . . . , bk) will
be often omitted for simplicity. When ⊗ is commutative this assumption
can be made without restrictions. The reader can easily figure out how to
modify (at the price of some complications) the subsequent definitions in
order to accommodate non-commutative ⊗ operators.

It is also convenient to consider, instead of a syntactic CLP(X ) program
P , its semantic version over some interpretation domain D̄. This is obtained
by interpreting the set of constraints appearing in clauses through a function
[[·]]D̄

C
: ℘f(C)→ D, where C is the language of (syntactic) atomic constraints

for CLP(X ).
Another important simplification can be obtained if we assume, without

loss of generality, that the heads of program clauses are normalized. It is
for this purpose that we have an additional, totally ordered set of variable
symbols, Λ = {A1, A2, A3, . . . }, disjoint from V . The head of each program
clause defining a predicate p/n will always be p(A1, . . . , An), and denoted
by p(~Λ), where ~Λ means “an initial segment of Λ of the appropriate length.”
This device will avoid much of the burden of talking “modulo renaming”.

A CLP(D̄) program is a sequence of Horn-like formulas of the form

p(~Λ) :− D � b1, . . . , bk,

where D ∈ D. Given a CLP(X ) program P and a constraint interpretation
[[·]]D̄

C
, the CLP(D̄) program [[P ]]D̄

C
is given, for each r = 1, . . . , #P , by

[[P ]]D̄
C

[r] =
(
p(~Λ) :− [[C]]D̄

C
� B

) def⇐⇒ P [r] =
(
p(~Λ) :− C � B

)
.

7.3.4 The Functional Semantics

Given any functional domain D̄F, our semantics associates an element of DF

to each program clause.

Definition 113 (Functional interpretation.) Let D̄ be an interpreta-
tion domain, let P be a CLP(D̄) program, and let G be a set of CLP(D̄)
goals. A functional interpretation for P over D̄ is any element I of

ID̄F
PG

def= {1, . . . ,#P} → DF

such that, for each r = 1, . . . , #P , if the head of P [r] is p(~Λ) then
FV

(
I(r)

)
⊆ ~Λ. The operations and relations of D̄F are extended pointwise

to ID̄F
PG

in the obvious way. Functional interpretations will be represented by
means of function graphs.



203

It is straightforward to show that all the interesting properties of functional
representations lift smoothly to interpretations.

7.3.5 Top-Down (Operational) Construction

The notion of derivation for CLP(D̄) programs is quite standard. Notice
that we restrict ourselves to the leftmost selection rule.

Definition 114 (Finite derivation.) Given any interpretation domain
D̄, let P be a CLP(D̄) program and G be an initial goal for P . A finite
derivation of P from G is a sequence of goals (G0, G1, . . . , Gn), together
with a sequence (R1, . . . , Rk) of variants of clauses in P that are renamed
apart, where G0 = G and, for each i > 0 we have:

1. Gi = Di � pi1(X̄i1), . . . , pin(X̄in) with Di 6= 0;

2. R1, . . . , Rh are the variants used in the derivation up to Gi;

3. Rh+1 =
(
pi1(Ȳ ) :− D � B

)
is a variant of P [r] such that6

FV (Rh+1) ∩
(
FV (G0) ∪

h⋃
j=1

FV (Rj)
)

= ∅;

4. Gi+1 = Di ⊗ dX̄i1 Ȳ ⊗D � B ::
(
pi2(X̄i2), . . . , pin(X̄in)

)
.

Each transition from Gi to Gi+1 is called a derivation step and is indicated
by Gi ;P Gi+1. When D̄ is the standard constraint domain for the CLP
language at hand, the constraint Di associated to Gi is called the constraint
store at step i. A successful derivation is a finite derivation where the last
goal is constituted by constraints only. The derivation is finitely failed oth-
erwise.

The only important point about the operational construction is that call-
patterns are recorded, by means of functional representation’s elements, to-
gether with the corresponding success-patterns.

Definition 115 (Operational semantics.) Given a domain D̄, a CLP(D̄)
program P , and a set G of CLP(D̄) goals, we define OD̄F

(P,G) ∈ ID̄F
PG

as

OD̄F
(P,G) def=

{(
r,OD̄F

(P,G, r)
) ∣∣∣ 1 ≤ r ≤ #P

}
,

6This static condition is sufficient to ensure correct renaming apart. This is because we
assume (see Hypothesis 121 on page hypo:magic-id-axioms) that ⊗ does not introduce new
variables: FV (D1 ⊗D2) ⊆ FV (D1)∪FV (D2), for each D1, D2 ∈ D (in other words, ⊗ is
relevant). If ⊗ is not relevant such a renaming-apart condition cannot be given statically,
i.e., before actually starting the derivation.



204 Chapter 7. Definiteness Analysis

where

OD̄F
(P,G, r) def= 

(
(∃̄̄∃X̄ Dc)[~Λ/X̄] 7→

(∃̄̄∃X̄ Ds)[~Λ/X̄]
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

G0 ∈ G
R =

(
p(Ȳ ) :− D � BR

)
is a variant of P [r]

G0 ;∗P D
c � p(X̄) ::B

Dc 6= 0
Dc � p(X̄) ;{R} G

′

;∗P Ds � B′

Ds 6= 0 =⇒ B′ = ε



.

In words, here is what happens. We take any goal G0 in our set of initial
goals G and a suitable variant R of clause P [r]. Suppose there is a finite
derivation from G0 to a goal where the constraint is Dc and the first atom,
p(X̄), has the same predicate symbol, p, of P [r] (the sequence B of atoms
yet to be solved after the call to p does not matter). Suppose also that Dc is
consistent, and consider a partial derivation from Dc � p(X̄) starting with
an application of clause R (arriving at a configuration G′, which we do not
care about), and continuing until a configuration, say, Ds � B′ is reached,
where B′ is the sequence of atoms yet to be solved. The last condition says
an important thing about the partiality of this last derivation:

• either Ds = 0, in which case the derivation is failed (B′ might be
non-empty or not); nonetheless, clause P [r] has been invoked with
call-pattern Dc;

• or B′ = ε, in which case the derivation is indeed total and successful;
Ds is thus the success-pattern corresponding to an invocation of clause
P [r] with call-pattern Dc.

Notice that properties are normalized using the distinguished variable sym-
bols in Λ.

7.3.6 Bottom-Up (Fixpoint) Construction

Given CLP(X ) program P , a set of CLP(X ) goals G, and an interpretation
domain D̄, let PG be the generalized CLP(D̄) program obtained by trans-
forming P as specified by Definition 108 and interpreting the constraints
over D̄. The bottom-up construction for P is defined over PG.

For a program P and each i = 1, . . . , #P we assume that PG[i] is the
modified clause corresponding to P [i]. Moreover, we represent the bodies of
the clauses of PG as a triple: magic atom (if any), property (describing the



205

original clause’s constraints), and original body atoms. Thus, each clause of
PG has the general form

p̂(~Λ) :− (M,D,B)

where p̂ is a (possibly magic) atom, M is a set of magic atoms that is either
empty or a singleton, D ∈ D is a property, and B is a finite, possibly empty
sequence of atoms. This representation allows us to generalize the following
three cases: modified clauses,

p(~Λ) :−
({

m p(~Λ)
}
, D,

(
p1(X̄1), . . . , pn(X̄n)

))
;

magic clauses arising from the transformation of a goal,

m p(~Λ) :−
(
∅, D,

(
p1(X̄1), . . . , pn(X̄n)

))
;

and other magic clauses,

m p(~Λ) :−
({

m q(X̄)
}
, D,

(
p1(X̄1), . . . , pn(X̄n)

))
.

Remember that our set of program variables is Vars = V ] Λ, where
Λ and V are totally ordered. For ~Λ ∈ Λ? and W ⊆f Vars, we denote by
Ȳ �~Λ W the fact that, with respect to the ordering of V , Ȳ is a tuple
of distinct consecutive variables in V such that # Ȳ = # ~Λ and the first
element of Ȳ immediately follows the greatest variable in W .

Definition 116 (Interpretation transformer.) Let P be any CLP(X )
program and G a set of CLP(X ) goals. Let D̄F be the functional represen-
tation over some domain D̄. Let PG be the CLP(D̄) program obtained by
applying the Magic Templates algorithm to P and G and interpreting the
result over D̄ through [[·]]D̄

C
. The operator induced by PG over ID̄F

PG
,

T D̄F
PG

: ID̄F
PG
→ ID̄F

PG
,

is given by

T D̄F
PG

(I) def=
{(
r, T D̄F

PG
(r, I)

) ∣∣∣ 1 ≤ r ≤ #PG
}
, for each I ∈ ID̄F

PG
,

where T D̄F
PG

: {1, . . . ,#PG} × ID̄F
PG
→ ID̄F

PG
is defined as follows: if

PG[r] = p̂(~Λ) :−
(
M,D,

(
p1(X̄1), . . . , pn(X̄n)

))
,



206 Chapter 7. Definiteness Analysis

then

T D̄F
PG

(r, I) def=

⋃



∃̄̄∃F
~Λ ηr(S)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

if M =
{
m q(X̄)

}
PG[r0] = m q(~Λ0) :− T0

Ȳ �~Λ0
FV (PG[r]) ∪ Λ

S0 = $r

(
I(r0), ~Λ0, X̄, Ȳ

)
else S0 = {1 7→ 1}
for each i = 1, . . . , n:
PG[ri] = pi(~Λi) :− Ti
Ȳi �~Λi

FV (PG[r]) ∪ Λ
∪ Ȳ ∪

⋃i−1
k=1 Ȳk

Si =
(
I(ri)[Ȳi/~Λi]

)
S =←−⊗ F

(
S0, D,dX̄1Ȳ1

, S1,

. . . ,dX̄nȲn , Sn
)



,

where ←−⊗ F : D̃?F → D̃F performs the left-associative composition, through ⊗F,
of the sequence of descriptions constituting its argument. The auxiliary
function $r : D̄F × (Vars?)3 � D̄F is given, for each S ∈ DF, and each
~Λ0, X̄, Ȳ ∈ Vars? of the same cardinality, by

$r(S, ~Λ0, X̄, Ȳ ) def=
{
S[Ȳ /~Λ0]⊗F dX̄Ȳ , if PG[r] is magic;
S, if PG[r] is modified.

The function ηr : D̃F → D̄F, instead, is such that, for each D ∈ D,

ηr(D) def= {D 7→ D},

whereas for each S ∈ DF we have

ηr(S) def=
{

(Ds 7→ Ds)
∣∣ (Dc 7→ Ds) ∈ S

}
,

if PG[r] is magic, and

ηr(S) def= S,

if PG[r] is modified.

Notice that we have provided a uniform treatment for both the magic and
modified clauses. This required the introduction of the functions ηr and
$r that encapsulate all the differences in the treatment of the two kinds



207

of clauses. While ηr is used to make the success-pattern of magic clauses
act as a call-pattern for modified clauses (the magic clauses serve the only
purpose of characterizing the call-conditions for the original clauses), $r

is used to rename and to performing parameter passing for the call-success
pairs associated to magic atoms, but only in the body of magic clauses. Here
is a more “operational” explanation of how T D̄F

PG
(r, I) is computed.

1. Take a normalized version of the r-th clause in PG. This can be a
modified clause (if 1 ≤ R ≤ #P ), or it can be a magic clause (if
#P < r ≤ #PG).

2. If the r-th clause has no magic atom in the body (M = ∅), the call-
description S0 is simply {1 7→ 1}. Skip to step 7.

3. Otherwise M must be a singleton, say,
{
m q(X̄)

}
. If r corresponds

to a modified clause, then m q(X̄) is indeed m p(~Λ). If, instead, r
corresponds to a magic clause, then m q(X̄) can be different from
m p(~Λ).

4. Take a normalized version of any magic clause describing the magic
predicate m q. Suppose this is a version of the r0-th clause.

5. Take a tuple of variables whose cardinality is the same as the the
arity of q (same cardinality of ~Λ0), disjoint from the free variables
occurring in the version of the r-th clause selected at step 1, and
without variables belonging to the special set of variables Λ.

6. Take the functional description associated to r0 in the current inter-
pretation I and call it S̃0. If r corresponds to a magic clause S̃0 needs
to be renamed and to have the parameter passing element added to it.
If r corresponds to a clause S̃0 needs nothing. Let S0 be the outcome
of this step.

7. Choose clauses r1, . . . , rn to “resolve” against the other atoms in the
body of the r-th clause.

8. For each i = 1, . . . , n, let Si the description associated to the ri-th
clause in the current interpretation I, suitably renamed.

9. Put the pieces together applying ⊗F in a left-associative way. Call S
the result.

10. If r corresponds to a magic clause, transform S suitably: calls to
magic clauses are meaningless, whereas the successes of magic clauses
represent calls to ordinary clauses. If r, corresponds to a modified
clause, do nothing.



208 Chapter 7. Definiteness Analysis

11. Project the outcome of step 10 onto the variables ~Λ. Put the result
into the set of functional descriptions we are building.

12. Repeat until all the choices for r0, r1, . . . , rn in the above process have
been made in all the possible ways. This union of all the description
so obtained is the new interpretation for the r-th clause.

Now, the concrete iteration sequence [CC92b] that is used for the bottom-
up construction of the semantics is inductively defined as follows, for each
ordinal κ ∈ O:

T D̄F
PG
↑0 def= 0F,

T D̄F
PG
↑(κ+ 1) def= T D̄F

PG

(
T D̄F
PG
↑κ
)
,

T D̄F
PG
↑κ def=

⋃
β<κ

(
T D̄F
PG
↑β
)
,

when κ > 0 is a limit ordinal.

The ⊆ relation is the computational order of the functional representation
[CC92b], capturing the relationship between successive iterates in the iter-
ation sequence. Notice that this is one of the cases in abstract interpreta-
tion where the approximation and computational orderings are different. In
[Scu96] it is shown that T D̄F

PG
is continuous on the complete lattice

(
ID̄F
PG
,⊆
)
.

This implies the existence of the least fixpoint of T D̄F
PG

and allows us to define
the result of the bottom-up semantic construction as

F D̄F
PG

def= lfp
(
T D̄F
PG

)
= T D̄F

PG
↑ω. (7.6)

Moreover, we have the following important result.

Theorem 117 (Equivalence.) Let D̄ be a strong interpretation domain
and D̄F the functional representation over D̄. Given a CLP(X ) program P̃ ,
a set G̃ of CLP(X ) goals, and a constraint interpretation [[·]]D̄

C
, let P and

G be the CLP(D̄) program and goals obtained from P̃ and G̃ through [[·]]D̄
C

.
Let also PG be the CLP(D̄) program obtained from P̃ , G̃, and [[·]]D̄

C
as in

Definition 116. Then, if we define σ : ID̄F
PG
→ ID̄F

PG
as

λI ∈ ID̄F
PG

. λr ∈ {1, . . . ,#P} .{
(Dc 7→ Ds)

∣∣ (Dc 7→ Ds) ∈ I(r), Ds 6= 0
}

we have

σ
(
OD̄F

(P,G)
)

= F D̄F
PG
� {1, . . . ,#P}.

Moreover, if we denote by calls(r) the subset of {#P+1, . . . ,#PG} contain-
ing the indices of the magic clauses corresponding to calls of the predicate



7.4. Abstract Interpretation 209

defined by the r-th clause, then, for each r = 1, . . . , #P ,

(D 7→ 0) ∈ OD̄F
(P,G)(r) =⇒

∃r′ ∈ calls(r) . (D 7→ D) ∈ F D̄F
PG

(r′).

What σ does is just to strip the failure call-patterns, i.e., elements of the
form (Dc 7→ 0), from the functional interpretation obtained through the top-
down construction. The restriction to {1, . . . ,#P} in the first statement
is also necessary, since the transformed program contains also the magic
clauses that were used to derive call-patterns.

Roughly speaking, a call-pattern is said to be correct if it brings to at
least one successful computation [GM92]. Of course, observing correct call-
patterns only (instead of any call-pattern) does not provide much informa-
tion for the typical applications of data-flow analysis. The first statement of
the theorem says that all and only the possibly correct call-patterns7 for the
r-th original clause can be found in F D̄F

PG
(r). The second statement specifies

that any other call-pattern for the r-th clause is contained in F D̄F
PG

(r′), for
some index r′ such that, if the r-th clause defines predicate p, then the r′-th
clause defines predicate m p.

We have thus a semantic construction that, for the purpose of capturing
both call- and success-patterns, is as good as the operational one. More-
over, this construction can be easily abstracted for the purpose of data-flow
analysis. This is the subject of the following section.

7.4 Abstract Interpretation

The problem of ensuring the correctness of the analysis is dealt with much
in the same way as in Section 3.2.5 on page sec:hierarchy-non-standard-
semantics.

Definition 118 (Abstraction function.) Let D̄\ and D̄] be two interpre-
tation domains. A function α : D\ → D] is an abstraction function of D̄\
into D̄] if and only if:

A1. α is a semi-morphism, namely, for each D\, D\
1, D

\
2 ∈ D\ and X̄, Ȳ ∈

Vars?:

α(D\
1 ⊗

\ D\
2) E] α(D\

1)⊗] α(D\
2),

α(D\
1 ⊕

\ D\
2) E] α(D\

1)⊕] α(D\
2),

α(0\) E] 0],

α
(
∃̄̄∃\X̄ D

\
)
E] ∃̄̄∃]X̄ α(D\),

α
(
d\
X̄Ȳ

)
E] d]

X̄Ȳ
;

7If D̄ is an abstract domain we might not be able to detect all the failures.



210 Chapter 7. Definiteness Analysis

A2. for each increasing chain {D\
j ∈ D\}j∈N, and each D] ∈ D],

∀j ∈ N : α(D\
j) E

] D] =⇒ α

(⊕\

j∈N
D\
j

)
E] D];

A3. for each D\ ∈ D\ and each renaming [Ȳ /X̄] for D\, we have

α(|D\)[Ȳ /X̄] = α
(
D\[Ȳ /X̄]

)
.

Each abstraction function α : D\ → D] is extended to α : DF
\ → DF

] point-
wise: for each S ∈ DF

\,

α(S) def=
{(
α(D\

1) 7→ α(D\
2)
) ∣∣∣ (D\

1 7→ D\
2) ∈ S

}
. (7.7)

It can be shown that the extended function is an abstraction function along
the lines of Definition 118.

When we use a functional representation as an abstract domain for data-
flow analysis, we must ensure termination. If the domain that is used as a
base for the functional construction is finite, also the corresponding func-
tional representation is so. In any case we guarantee or accelerate termina-
tion by using widening operators [CC77, CC92b]. Here we give a simplified
definition of this device for convergence enforcement and acceleration, in the
case of the functional representation.

Definition 119 (Widening.) [CC77] Given a functional representation
D̄]F, a binary operator ∇]F : DF

] → DF
] is called a widening for D̄]F if

W1. for each S1, S2 ∈ DF
] we have S1 EF S1 ∇]F S2 and S2 EF S1 ∇]F S2;

W2. for each increasing chain S0 ⊆ S1 ⊆ S2 ⊆ S3 ⊆ · · · , the sequence given
by S′0

def= S0 and, for n ≥ 1, S′n
def= S′n−1 ∇

]
F Sn, is stationary after

some k ∈ N.

The following result is an application of a theorem in [CC92b, Proposi-
tion 6.20]. The soundness of the approach clearly follows.

Theorem 120 Let P and G be a CLP(X ) program and a set of CLP(X )
goals, respectively. Let D̄\ and D̄] be two interpretation domains, and let
[[·]]D̄

\

C
and [[·]]D̄

]

C
be two constraint interpretations for C (the language of con-

straints of X ). Let α : D̄\ → D̄] be an abstraction function such that α ◦
[[·]]D̄

\

C
E] [[·]]D̄

]

C
. Let P \ be the CLP(D̄\) program obtained by applying the

Magic Templates algorithm to P and G and interpreting the result over D̄
through [[·]]D̄

\

C
. Likewise, P ] is obtained from P̃ , G̃, and [[·]]D̄

]

C
. Let also ∇]F a



7.5. Conclusion 211

widening operator over D̄]F. Consider the abstract iteration sequence for P ]

with widening ∇]F inductively defined by{
T D̄

]

P]
⇑ 0 def= 0]F,

T D̄
]

P]
⇑ (k + 1) def= (T D̄]

P]
⇑ k)∇]F T D̄

]

P]
(T D̄]

P]
⇑ k), for k ∈ N.

(7.8)

The abstract iteration is eventually stable after ` ∈ N steps and

α
(

lfp(T D̄
\

P\
)
)

= α
(
T D̄

\

P\
↑ ω
)
E]F (T D̄

]

P]
⇑ `).

Thus we have (again) an abstract compilation approach, where the soundness
of the compilation function [[·]]D̄

]

C
is expressed by the requirement α◦ [[·]]D̄

\

C
E]

[[·]]D̄
]

C

Concerning the precision of the analysis, observe that the abstract iter-
ation given above, is much simplified. In reality, especially with “domains”
like the functional ones we employ, one uses a family of widening opera-
tors. In principle, it is possible to use a different widening operator at each
iteration step. Roughly speaking, widening operators coming early in the se-
quence do not lose much precision. Later in the sequence, when the shape of
the fixpoint is more likely to have been established, more aggressive widen-
ing operators come into play [Bou92]. There is not much more to say, in
general, since the design of widening operators (and the overall precision
of the analysis) is highly dependent from the actual domain employed (see,
e.g., [CH78]).

7.5 Conclusion

We have presented a generalized framework for the semantics of the entire
class of CLP languages. The approach, which is based on the Magic Tem-
plates program transformation and bottom-up evaluation, is able to capture
both call- and success-patterns without loss of precision. The framework
can accommodate a very wide range of non-standard semantics and, in par-
ticular, abstract interpretations. A remarkable feature is that the entire
construction is almost automatic: given any abstract domain we provide a
standard way of upgrading it and using it to obtain a precise bottom-up
computation of the abstract semantics. The only thing that must be dealt
with in a domain-dependent way is providing suitable widening operators
so to ensure the convergence of the method.

7.6 Proof of the Main Result

In this section we present the (overly complicated) proof of the main result
of this chapter. It would be very nice to find a simpler proof, of course.



212 Chapter 7. Definiteness Analysis

As mentioned previously, Definition 109 on page def:interpretation-domain
does not specify some important, though very reasonable, requirements that
interpretation domains must satisfy. Here we make them explicit.

Hypothesis 121 (Further axioms for i.d.) The operators of an inter-
pretation domain D̄ “do not invent new free variables”. That is to say that,
for each X̄, Ȳ ∈ Vars? and each C1, C2 ∈ D̄:

H1. we have

FV (C1 ⊗ C2) ⊆ FV (C1) ∪ FV (C2),
FV (C1 ⊕ C2) ⊆ FV (C1) ∪ FV (C2);

H2. FV
(
dX̄Ȳ

)
⊆ X̄ ∪ Ȳ .

Moreover, the operators are generic, or, in other words, they are insensible
to variables’ names:

H3. if [Ȳ /X̄] is a renaming for both C1 and C2, then

(C1 ⊗ C2)[Ȳ /X̄] = C1[Ȳ /X̄]⊗ C2[Ȳ /X̄]

and likewise for the other operators;

H4. if [Ȳ /X̄] is a renaming for C, then(
∃̄̄∃X̄ C

)
[Ȳ /X̄] = ∃̄̄∃Ȳ

(
C[Ȳ /X̄]

)
;

H5. if [Z̄/Ȳ ] is a renaming for C, then(
C[X̄/Ȳ ]

)
[Z̄/X̄] = C[Z̄/Ȳ ];

H6. if [Z̄/Ȳ ] is a renaming for C, X̄ ∩ Ȳ = ∅, and Z̄ ∩ X̄ = ∅, then

∃̄̄∃X̄ C = ∃̄̄∃X̄
(
C[Z̄/Ȳ ]

)
.

H7. if [Ȳ /X̄] is a renaming for both C1 and C2, then

C1 E C2 =⇒ C1[Ȳ /X̄] E C2[Ȳ /X̄].

Proposition 122 (Functional representation’s properties.) Let D̄ be
any domain, and D̄F the functional representation built over it. Then the
following properties hold:

1. for each S ∈ DF we have 0F ⊗F S = S ⊗F 0F = 0F;

2. 〈DF,EF〉 is a preorder with minimum element 0F;



213

3. ⊗F : DF×DF → DF (i.e., ⊗F restricted to DF) is componentwise mono-
tonic with respect to ⊆ and completely left- and right-distributive with
respect to ∪;

4. ∃̄̄∃F

X̄ is monotonic with respect to ⊆ and continuous with respect to ∪;

5. for each family {Sj ∈ DF}j∈N and each S ∈ DF,

∀j ∈ N : Sj EF S =⇒
⋃
j∈N

Sj EF S.

Proof The statements are all trivial consequences of the definition. We just
show that ⊗F is completely distributive with respect to ∪. Consider a family
{Si ∈ DF}i∈N. We must show that

S ⊗F

⋃
i∈N

Si =
⋃
i∈N

(S ⊗F Si)

and (⋃
i∈N

Si

)
⊗F S =

⋃
i∈N

(Si ⊗F S).

For each k ∈ N, from Sk ⊆
⋃
i∈N Si and the monotonicity of ⊗F with respect

to ⊆ we get

(S ⊗F Sk) ⊆ S ⊗F

(⋃
i∈N

Si

)
,

and thus ⋃
i∈N

(S ⊗F Si) ⊆ S ⊗F

(⋃
i∈N

Si

)
.

By the same kind of reasoning we derive also

⋃
i∈N

(Si ⊗F S) ⊆
(⋃
i∈N

Si

)
⊗F S.

For the reverse inclusions, by definition of ⊗F we have that for each (Dc 7→
Ds) ∈ S⊗F

⋃
i∈N Si there must exists h ∈ N such that (Dc 7→ Ds) ∈ S⊗FSh.

We can thus conclude that

S ⊗F

(⋃
i∈N

Si

)
⊆
⋃
i∈N

(S ⊗F Si),



214 Chapter 7. Definiteness Analysis

and, by a similar argument, that(⋃
i∈N

Si

)
⊗F S ⊆

⋃
i∈N

(Si ⊗F S).

2

Lemma 123 For each C1, C2 ∈ D and each X̄, Ȳ , Z̄ ∈ Vars?, if the condi-
tions

FV (C1) ∩ FV (C2) = ∅, FV (C1) ∩ X̄ ⊆ Ȳ ,
FV (C1) ∩ Z̄ = ∅,

hold, then ∃̄̄∃X̄
(
C1 ⊗ dȲ Z̄ ⊗ C2

)
= ∃̄̄∃X̄

(
∃̄̄∃Ȳ C1 ⊗ dȲ Z̄ ⊗ C2

)
.

Proof By properties H1 and H2 of Hypothesis 121 we have that

FV (dȲ Z̄ ⊗ C2

)
⊆ FV (C2) ∪ Ȳ ∪ Z̄,

then

FV (C1) ∩ FV
(
dȲ Z̄ ⊗ C2

)
⊆
(
FV (C1) ∩ FV (C2)

)
∪
(
FV (C1) ∩ Ȳ

)
∪
(
FV (C1) ∩ Z̄

)
= FV (C1) ∩ Ȳ

[since FV (C1) ∩ FV (C2) = ∅ and FV (C1) ∩ Z̄ = ∅]

⊆ Ȳ

Thus, since FV (C1) ∩ X̄ ⊆ Ȳ , condition S7 of Definition 110 implies the
thesis. 2

Lemma 124 For each C1, C2 ∈ D and each X̄, Ȳ , Z̄ ∈ Vars?, if the condi-
tions

FV (C1) ∩ Ȳ = ∅, Ȳ ∩ X̄ = ∅,

FV (C2) ∩ Z̄ = ∅,

hold, then

∃̄̄∃X̄
(
C1 ⊗ dȲ Z̄ ⊗ ∃̄̄∃Ȳ C2

)
= ∃̄̄∃X̄

(
C1 ⊗ ∃̄̄∃Z̄(C2[Z̄/Ȳ ])

)
.

Proof By properties H1 and H2 of Hypothesis 121 we have that

FV
(
dȲ Z̄ ⊗ ∃̄̄∃Ȳ C2

)
⊆ Ȳ ∪ Z̄,



215

and then

FV (C1) ∩ FV
(
dȲ Z̄ ⊗ ∃̄̄∃Ȳ C2

)
⊆ FV (C1) ∩ (Ȳ ∪ Z̄)
=
(
FV (C1) ∩ Ȳ

)
∪
(
FV (C1) ∩ Z̄

)
= FV (C1) ∩ Z̄

[since FV (C1) ∩ Ȳ = ∅]

⊆ Z̄.

Moreover,

FV
(
dȲ Z̄ ⊗ ∃̄̄∃Ȳ C2

)
∩ X̄ ⊆

(
Ȳ ∪ Z̄

)
∩ X̄

=
(
Ȳ ∩ X̄

)
∪
(
Z̄ ∩ X̄

)
= Z̄ ∩ X̄

[since Ȳ ∩ X̄ = ∅]

⊆ Z̄.

Then, by condition S7 of Definition 110, we can write:

∃̄̄∃X̄
(
C1 ⊗ dȲ Z̄ ⊗ ∃̄̄∃Ȳ C2

)
= ∃̄̄∃X̄

(
C1 ⊗ ∃̄̄∃Z̄

(
dȲ Z̄ ⊗ ∃̄̄∃Ȳ C2

))
= ∃̄̄∃X̄

(
C1 ⊗ ∃̄̄∃Z̄

((
∃̄̄∃Ȳ C2

)
[Z̄/Ȳ ]

))
[by S5 with [Z̄/Ȳ ] = ρ]

= ∃̄̄∃X̄
(
C1 ⊗ ∃̄̄∃Z̄

(
∃̄̄∃Z̄
(
C2[Z̄/Ȳ ]

)))
[by H4 since FV (C2) ∩ Z̄ = ∅]

= ∃̄̄∃X̄
(
C1 ⊗ ∃̄̄∃Z̄

(
C2[Z̄/Ȳ ]

))
.

[by S6 (i.e., idempotence)]

2

Lemma 125 For each C1, C2 ∈ D, each X̄, Ȳ , Z̄ ∈ Vars?, and each renam-
ing ρ such that Ȳ ρ = Z̄ρ = Z̄

∃̄̄∃X̄
(
C1 ⊗ dȲ Z̄ ⊗ ∃̄̄∃Z̄(C1ρ)⊗ C2

)
= ∃̄̄∃X̄

(
C1 ⊗ dȲ Z̄ ⊗ C2

)
.

Proof By S5 we have ∃̄̄∃Z̄(C1ρ) = ∃̄̄∃Z̄
(
C1 ⊗ dȲ Z̄

)
, thus

∃̄̄∃X̄
(
C1 ⊗ dȲ Z̄ ⊗ ∃̄̄∃Z̄(C1ρ)⊗ C2

)
= ∃̄̄∃X̄

(
C1 ⊗ dȲ Z̄ ⊗ ∃̄̄∃Z̄

(
C1 ⊗ dȲ Z̄

)
⊗ C2

)
= ∃̄̄∃X̄

(
C1 ⊗ dȲ Z̄ ⊗ C2

)
[by S2] 2



216 Chapter 7. Definiteness Analysis

Lemma 126 For each initial goal G0, consider the partial derivation

G0 ;∗P Ĉ
c � p(X̄) ::B

;{Rk} Ĉ
c ⊗ dX̄Ȳ ⊗ Cρ � (p1(Ȳ1), . . . , pn(Ȳn)) ::B

;∗P Ĉ
s �

(
pi(Ȳi), . . . , pn(Ȳn)

)
::B,

(7.9)

where

Ĉs = Ĉc ⊗ dX̄Ȳ ⊗ Cρ⊗
n⊗
i=1

(dȲiX̄i ⊗ Ci).

and Rk ≡ p(Ȳ ) :− Cρ � p1(Ȳ1), . . . , pn(Ȳn) is a variant of P [r] such
that FV (Rk) ∩

(
FV (G0) ∪

⋃k−1
j=1 FV (Rj)

)
= ∅, and Ūρ = Ȳ , Ū1ρ = Ȳ1,

. . . , Ūnρ = Ȳn. Then,

∃̄̄∃X̄ Ĉs = ∃̄̄∃X̄
(
Ĉc ⊗ dX̄Ȳ ⊗ Cρ⊗

n⊗
i=1

(dȲiX̄i ⊗ Ci)
)

= ∃̄̄∃X̄
(
∃̄̄∃X̄ Ĉc ⊗ dX̄Ȳ ⊗ Cρ⊗

n⊗
i=1

(dȲiX̄i ⊗ ∃̄̄∃X̄i Ci)
)
.

(7.10)

Proof By the derivation (7.9) there must exist derivations

1 � pi(Ȳi) ;{Rk+hi
} 1⊗ dȲiX̄i ⊗ C

′
iρi � Bri

;∗P dȲiX̄i ⊗ Ci � ∅
(7.11)

such that hi > 0 and Rk+hi =
(
pi(X̄i) :− C ′iρi � Bri

)
is a variant of P [ri]

with FV (Rk+hi)∩
(
FV (G0)∪

⋃k+hi−1
j=1 FV (Rj)

)
= ∅. Obviously, hi < hi+1.

Observe also that in (7.11) we have used the same variants employed in
(7.9). This implies that FV (Ci) ∩ Ȳi = ∅.

Consider the expressions

∃̄̄∃X̄ Ĉs = ∃̄̄∃X̄
(
Ĉc ⊗ dX̄Ȳ ⊗

E︷ ︸︸ ︷
Cρ⊗

n⊗
i=1

(
dȲiX̄i ⊗ Ci

))
= ∃̄̄∃X̄

(
Ĉc ⊗ dX̄Ȳ ⊗ E

)
. (7.12)

We apply Lemma 123 to (7.12). The hypotheses are readily checked exploit-
ing point 3 of Definition 114 on page def:finite-derivation:

FV (C) ∩ X̄ ⊆ X̄;

FV (C) ∩ FV (E) ⊆
(k−1⋃
j=1

FV (Rj)
)
∩
( N⋃
j=k

FV (Rj)
)

= ∅;

FV (C) ∩ Ȳ ⊆
(k−1⋃
j=1

FV (Rj)
)
∩
( N⋃
j=k

FV (Rj)
)

= ∅.



217

Thus we obtain

∃̄̄∃X̄ Ĉs = ∃̄̄∃X̄
(
∃̄̄∃X̄ Ĉc ⊗ dX̄Ȳ ⊗ E

)
= ∃̄̄∃X̄

(
∃̄̄∃X̄ Ĉc ⊗ dX̄Ȳ ⊗ Cρ⊗

n⊗
i=1

(dȲiX̄i ⊗ Ci)
)
. (7.13)

We transform (7.13) by applying Lemma 123 again. In this case we must
prove that, for each i = 1, . . . , n,

∃̄̄∃X̄ Ĉs = ∃̄̄∃X̄
(
∃̄̄∃X̄ Ĉc ⊗ dX̄Ȳ ⊗ Cρ⊗

n⊗
i=1

(dȲiX̄i ⊗ ∃̄̄∃X̄i Ci)
)
. (7.14)

Consider, for each i = 1, . . . , n, the expression

Ei =
(
∃̄̄∃X̄ Ĉc ⊗ dX̄Ȳ ⊗ Cρ

⊗
i−1⊗
j=1

(dȲjX̄j ⊗ ∃̄̄∃X̄j Cj)⊗
n⊗
j=i

(dȲjX̄j ⊗ Cj)
)

The right-hand sides of (7.13) and (7.14) are given by E1 and En+1, respec-
tively. It is possible to prove that E1 = En+1 by showing that E1 = E2,
E2 = E3, . . . , En = En+1. The equality Ei = Ei+1 can be obtained by
using Lemma 125. To this purpose, we consider the following expression for
Ei:

Ei =

Ci−1︷ ︸︸ ︷(
∃̄̄∃X̄ C ⊗ dX̄Ȳ ⊗ Cρ⊗

i−1⊗
j=1

(dȲjX̄j ⊗ ∃̄̄∃X̄j Cj)

⊗ dȲiX̄i ⊗ Ci ⊗
n⊗

j=i+1
(dȲjX̄j ⊗ Cj)︸ ︷︷ ︸
Ci+1

)
(7.15)

By ⊗ commutativity and associativity, we can write

Ei = Ci ⊗ dȲiX̄i ⊗ (Ci−1 ⊗ Ci+1). (7.16)

The hypotheses of Lemma 123 are checked, for each i = 1, . . . , n, as follows



218 Chapter 7. Definiteness Analysis

(still using point 3 of Definition 114):

FV (Ci) ∩ X̄ ⊆
(k+hi+1−1⋃

j=k+hi

FV (Rj)
)
∩
( k⋃
j=1

FV (Rj)
)

= ∅

⊆ Ȳi;
FV (Ci) ∩ FV (Ci−1 ⊗ Ci+1)

⊆ FV (Ci) ∩
(
FV (Ci−1) ∪ FV (Ci+1)

)
=
(
FV (Ci) ∩ FV (Ci−1)

)
∪
(
FV (Ci) ∩ FV (Ci+1)

)
⊆
((k+hi+1−1⋃

j=k+hi

FV (Rj)
)
∩
(k+hi−1⋃

j=1

FV (Rj)
))

∪
((k+hi+1−1⋃

j=k+hi

FV (Rj)
)
∩
( N⋃
j=k+hi+1

FV (Rj)
))

= ∅;

FV (Ci) ∩ X̄i ⊆
(k+hi+1−1⋃

j=k+hi

FV (Rj)
)
∩ FV (Rk)

= ∅.

Thus, by Lemma 123 we can write, for each i = 1, . . . , n,

Ei = ∃̄̄∃X̄i Ci ⊗ dȲiX̄i ⊗ (Ci−1 ⊗ Ci+1).

By substituting the expressions for Ci−1 and Ci+1 we have the thesis.

Theorem 127 (117) (Equivalence.) Let D̄ be a strong interpretation
domain and D̄F the functional representation over D̄. Given a CLP(X )
program P̃ and a set G̃ of CLP(X ) goals, a constraint interpretation [[·]]D̄

C
,

let P and G be the CLP(D̄) program and goals obtained from P̃ and G̃
through [[·]]D̄

C
. Let also PGm be the CLP(D̄) program obtained from P̃ , G̃, and

[[·]]D̄
C

as in Definition 116. Then

σ
(
OD̄F

(P,G)
)

= F D̄F
PG
� {1, . . . ,#P}.

Moreover, for each r ∈ {1, . . . ,#P},

(C 7→ 0) ∈ OD̄F
(P,G)(r) =⇒

∃r′ ∈
{

#P + 1, . . . ,#PGm
}
. (C 7→ C) ∈ F D̄F

PG
(r′). (7.17)



219

Proof Since the proof, while not difficult, is quite complicated, we will
adhere strictly to the following notational conventions. We will focus on the
the r-th clause of the program, P [r]. It is given by

P [r] def=
(
p(Ū) :− C � p1(Ū1), . . . , pn(Ūn)

)
.

In the top-down derivations we will consider, in particular, a variant of P [r],
obtained from P [r] through the application of a renaming ρ:

P [r]ρ def=
(
p(Ȳ ) :− Cρ � p1(Ȳ1), . . . , pn(Ȳn)

)
,

whence it is clear that Ūρ = Ȳ , Ū1ρ = Ȳ1, . . . , Ūnρ = Ȳn.
Staten that pi always denotes the predicate symbol of the i-th atom goal

in the body of P [r], we will also talk about n clauses in P defining pi, for
each i = 1, . . . , n. The indexes for these clauses are r1, . . . , rn, respectively.
When, for some i = 1, . . . , n, we use a variant of ri in a derivation, we will
write it as

pi(X̄i) :− Ciρi � Bi.

So far for the original program P and the variants of its clauses, we now
deal with the magic program PGm . Recall that our transformation has the
following property: the modified clause corresponding to P [r] is PGm [r]; the
magic clauses are in the range #P + 1, . . . , #PGm . Moreover, the magic
clauses are normalized so that the variable symbols that appear in their
heads are initial segments of Λ, denoted by ~Λ. Thus, the modified clause
PGm [r] is

p(~Λ) :−
〈
{m p(~Λ)}, Cρ̈,

(
p1(W̄1), . . . , pn(W̄n)

)〉
,

for some renaming ρ̈ such that

Ū ρ̈ = ~Λ, Ū1ρ̈ = W̄1, . . . , Ūnρ̈ = W̄n.

In the magic program we will also have n magic clauses, one for each call in
the body of P [r]. These magic clauses will have indexes r′1, . . . , r′n, and will
define the predicates m p1, . . . , m pn, respectively. For each i = 1, . . . , n,
the clause PGm [r′i] is

m pi(~Λi) :−
〈
{m p(V̄ i)}, Cρ̈i,

(
p1(V̄ i

1 ), . . . , pi−1(V̄ i
i−1)

)〉
,

where Ū ρ̈i = V̄ i, Ū1ρ̈i = V̄ i
1 , . . . , Ūi−1ρ̈i = V̄ i

i−1, and Ūiρ̈i = ~Λi.
In the proof we will consider, among other things, a derivation such that:

1. it starts with a goal G0 drawn from the set G of initial goals;



220 Chapter 7. Definiteness Analysis

2. after a certain number of derivation steps (possibly 0), it performs a
step employing a variant of P [r];

3. it performs other derivation steps and stops as soon as one of the
following condition holds:

• a goal with an unsatisfiable constraint store is reached;

• the last call in the body of P [r] “returns”.

Such a derivation will be written as follows:

G0 ;∗P Ĉc � p(X̄) ::B
;{r} Ĉ

c
1 �

(
p1(Ȳ1), . . . , pn(Ȳn)

)
::B

;∗P Ĉs
1 �

(
p2(Ȳ2), . . . , pn(Ȳn)

)
::B

= Ĉc
2 �

(
p2(Ȳ2), . . . , pn(Ȳn)

)
::B

;∗P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

...
;∗P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
;∗P Ĉc

m �
(
pm(Ȳm), . . . , pn(Ȳn)

)
::B

;∗P Ĉs � B′ ::B,

(7.18)

with the condition that either Ĉs = 0 or Ĉs 6= 0 and B′ = ε. We use this
prototypical partial derivation in order to define the following symbols:

• the k-th goal in (7.18) is Gk;

• the variant of clause used to rewrite Gk is denoted by Rk, with k ≥ 0
(see Definition 114 on page def:finite-derivation);

• Ĉc is the constraint store at the time of the considered call to P [r];

• if Ĉs 6= 0 then Ĉs is the constraint store on exit to the above call;

• for each i = 1, . . . , n, if the call to pi in the body of P [r] takes place
in (7.18), then the constraint store at the time of the call is Ĉc

i ;

• for each i = 1, . . . , n, if the call mentioned above succeeds, then the
constraint store on exit is Ĉs

i ; in that case we have also Ĉs
i = Ĉc

i+1 if
i < n.

In order to ascertain that these hypothesis are clear, please make sure you
understand that in (7.18) we have Ĉc

1 = Ĉc ⊗ dX̄Ȳ ⊗ Cρ.
Still on notation. Our convention is that, while descriptions arising from

top-down (partial) derivation are characterized by a “hat accent”, as in Ĉsup
sub ,

the non-accented version Csup
sub denotes the same description projected and



221

renamed onto ~Λ. For instance, in what follows we will use the (possibly
subscripted) symbols Ĉs and Cs that are correlated by

Cs =
(
∃̄̄∃X̄ Ĉs

)
[~Λ/X̄].

We will also use “reversed hats” to denote descriptions arising from the
bottom-up computations, Čs for instance. With this notation, one of the
objectives of the proof will be to show, for example, that(

∃̄̄∃X̄ Ĉs
)
[~Λ/X̄] =

(
∃̄̄∃~Λ Č

s
)

= Cs.

We also assume, without loss of generality, that variables employed in
top-down derivations are totally distinct from those used in the bottom-up
construction.8

All the properties indicated by Hi, for i = 1, . . . , 7 refer to Hypothe-
sis 121 on page hypo:magic-id-axioms.

First Inclusion

We start by showing the inclusion

σ
(
OD̄F

(P,G)
)
⊆ F D̄F

PG
� {1, . . . ,#P}

and the implication (7.17), for each r ∈ {1, . . . ,#P}. We need to show that
for each G0 ∈ G:

(a) if G0 =
(
Ĉc � p(X̄) ::B

)
, then there exists a clause r′ in PGm , describing

the first call in G0, such that

(Cc 7→ Cc) ∈ F D̄F
PG

(r′), where Cc def=
(
∃̄̄∃X̄ Ĉc

)
[~Λ/X̄].

Moreover, suppose there exists a derivation

G0 ;m
P Ĉc � p(X̄) ::B

;{Rk} Ĉ
c ⊗ dX̄Ȳ ⊗ Cρ �

(
p1(Ȳ1), . . . , pn(Ȳn)

)
::B

;h
P Ĉi �

(
pi(Ȳi), . . . , pn(Ȳn)

)
::B,

where m,h ∈ N, Rk =
(
p(Ȳ ) :− Cρ � p1(Ȳ1), . . . , pn(Ȳn)

)
is a variant

of P [r] such that

FV (Rk) ∩
(

FV (G0) ∪
(k−1⋃
j=1

FV (Rj)
))

= ∅. (7.19)

8This assumption is not restrictive considering that we work on expressions deriving
from two distinct mechanisms (top-down and bottom-up). A way to avoid collisions is,
for instance, to use variables with an even index for the top-down derivations, reserving
those with an odd index for the bottom-up construction.



222 Chapter 7. Definiteness Analysis

Then there exists a magic clause r
′
i, obtained from P [r] (i.e., describing

the i-th call in the body of P [r]), such that

(Cc
i 7→ Cc

i ) ∈ F
D̄F
PG

(r′i),

where Cc
i

def=
(
∃̄̄∃Ȳi Ĉ

c
i

)
[~Λi/Ȳi].

(b) Suppose there exists a derivation

G0 ;m
P Ĉc � p(X̄) ::B

;{Rk} Ĉ
c ⊗ dX̄Ȳ ⊗ Cρ �

(
p1(X̄1), . . . , pn(X̄n)

)
::B

;l
P Ĉ

s � B′ ::B,

where m, l ∈ N and Rk =
(
p(Ȳ ) :− Cρ � p1(Ȳ1), . . . , pn(Ȳn)

)
is a

variant of P [r] renamed apart as in (7.19). Then, if Ĉs 6= 0 and
B′ = ε, we have

(Cc 7→ Cs) ∈ F D̄F
PG

(r),

where

Cc def=
(
∃̄̄∃X̄ Ĉc

)
[~Λ/X̄]

)
and

Cs def=
(
∃̄̄∃X̄ Ĉs

)
[~Λ/X̄]

)
.

Otherwise, if Ĉs = 0 then

∃r′ ∈
{

#P + 1, . . . ,#PGm
}
. (Cc 7→ Cc) ∈ F D̄F

PG
(r′).

The proof is by total induction on the length N of the considered deriva-
tions.

Base case (a). Let N = 0. The derivation coincides with the initial query
G0 =

(
Ĉc � p(X̄) :: B

)
. By definition of magic program, the first call in

G0 corresponds to the normalized clause PGm [r′] =
(
m p(~Λ) :− Ĉc[~Λ/X̄]

)
.

So, by ηr′ definition, (Cc 7→ Cc) belongs to
(
T D̄F
PG
↑1
)
(r′) and thus to F D̄F

PG
(r′).



223

Base case (b). Let N = 1 (a success requires at least one derivation step).
Consider the partial derivation

G0 =
(
Ĉc � p(X̄) ::B

)
;{R1}

Ĉs︷ ︸︸ ︷
Ĉc ⊗ dX̄Ȳ ⊗ Cρ � B (7.20)

where R1 =
(
p(Ȳ ) :− Cρ � ∅

)
is a variant of P [r] renamed apart from G0.

The renaming ρ is such that Ūρ = Ȳ . By the base case (a), there is a clause
r′ in PGm , corresponding to the first call in G0, such that

(Cc 7→ Cc) ∈ F D̄F
PG

(r′). (7.21)

Let PGm [r] =
(
p(~Λ) :−

〈
{m p(~Λ)}, Cρ̈,∅

〉)
, where Ū ρ̈ = ~Λ. Let Ĉs =

Ĉc ⊗ dX̄Ȳ ⊗ Cρ the partial answer constraint in (7.20).
If Ĉs = 0 then (Cc 7→ 0) ∈ OD̄F

(P,G)(r), and, by (7.21), the thesis
(7.17) holds.

If Ĉs 6= 0 we reason as follows. Consider the function T D̄F
PG

as given in

Definition 116 on page def:TP. In the computation of T D̄F
PG

(r,F D̄F
PG

) we have

S′ = $r

(
F D̄F
PG

(r′), ~Λ, ~Λ, Z̄
)
, (7.22)

where Z̄ �~Λ FV (PGm [r]) ∪ Λ, and thus

S = S′ ⊗F Cρ̈.

By manipulating (7.22), taking into account (7.21), and considering that
PGm [r] is a modified clause, we obtain (Cc 7→ Cc) ∈ S′.

Observe that T D̄F
PG

(F D̄F
PG

) = F D̄F
PG

, since F D̄F
PG

is a fixpoint; therefore

∃̄̄∃~Λ ηr(S) = ∃̄̄∃~Λ S ⊆ F
D̄F
PG

(r). By ⊗F distributivity with respect to ∪ we
have that (

Cc 7→ ∃̄̄∃~Λ(Cc ⊗ Cρ̈︸ ︷︷ ︸)) ∈ F D̄F
PG

(r) (7.23)

provided that, by ⊗F definition,

Cc ⊗ Cρ̈ 6= 0. (7.24)

In other words, for (7.23) to hold, we must ensure that the indicated pair
is not “discarded” by the ⊗F operator, i.e., (7.24) holds. We will now show
that

∃̄̄∃~Λ(Cc ⊗ Cρ̈) =
(
∃̄̄∃X̄(Ĉc ⊗ dX̄Ȳ ⊗ Cρ︸ ︷︷ ︸

Ĉs

)
)
[~Λ/X̄]. (7.25)



224 Chapter 7. Definiteness Analysis

This way, since Ĉs 6= 0, we will also prove that (7.24) and (7.23) hold. The
validity of (7.25) is proved as follows:(

∃̄̄∃X̄(Ĉc ⊗ dX̄Ȳ ⊗ Cρ)
)
[~Λ/X̄]

=
(
∃̄̄∃X̄(∃̄̄∃X̄ Ĉc ⊗ dX̄Ȳ ⊗ Cρ)

)
[~Λ/X̄]

[by Lemma 126]

= ∃̄̄∃~Λ
(

(∃̄̄∃X̄ Ĉc ⊗ dX̄Ȳ ⊗ Cρ)[~Λ/X̄]
)

[by H4]

= ∃̄̄∃~Λ
(
(∃̄̄∃X̄ Ĉc)[~Λ/X̄]⊗ d~ΛȲ ⊗ Cρ[~Λ/X̄]

)
[by H3]

= ∃̄̄∃~Λ
(
∃̄̄∃~Λ
(
Ĉc[~Λ/X̄]

)
⊗d~ΛȲ ⊗ Cρ

)
[by H4 and since FV (Cρ) ∩ X̄ ⊆ FV (R1) ∩ FV (G0) = ∅]

= ∃̄̄∃~Λ
(
Ĉc[~Λ/X̄]

)
⊗ ∃̄̄∃~Λ

(
d~ΛȲ ⊗ Cρ

)
[by S4]

= ∃̄̄∃~Λ
(
Ĉc[~Λ/X̄]

)
⊗ ∃̄̄∃~Λ

(
Cρ[~Λ/Ȳ ]

)
[by S5, since Ȳ (ρ[~Λ/Ȳ ]) = ~Λ]

= ∃̄̄∃~Λ
(
∃̄̄∃~Λ
(
Ĉc[~Λ/X̄]

)
⊗Cρ̈

)
[by S4 and since ρ̈ = ρ[~Λ/Ȳ ]]

= ∃̄̄∃~Λ(Cc ⊗ Cρ̈)
[by def. of Cc]

Thus the thesis, i.e., (Cc 7→ Cs) ∈ F D̄F
PG

(r), follows by (7.25).

Inductive case (b). Assume the thesis is valid for derivations whose
length is less than N . We prove that it holds also for derivations of length
N (case (b)). Consider a partial derivation

G0 ;m
P Ĉc � p(X̄) ::B

;{Rk} Ĉ
c ⊗ dX̄Ȳ ⊗ Cρ �

(
p1(Ȳ1), . . . , pn(Ȳn)

)
::B︸ ︷︷ ︸

G′

;l
P Ĉ

s � B′ ::B,

(7.26)

where m+ l + 1 = N and

Rk =
(
p(Ȳ ) :− Cρ �

(
p1(Ȳ1), . . . , pn(Ȳn)

))
is a variant of P [r] such that

FV (Rk) ∩
(

FV (G0) ∪
k−1⋃
j=1

FV (Rj)
)

= ∅



225

and Ūρ = Ȳ , Ū1ρ = Ȳ1, . . . , Ūnρ = Ȳn. This derivation is responsible for
the fact that

(Cc 7→ Cs) ∈ OD̄F
(P,G)(r). (7.27)

If Ĉs = 0 then (Cc 7→ 0) ∈ OD̄F
(P,G)(r). This holds because there is a

derivation whose length is either

• zero, in which case we must have G0 =
(
Ĉc � p(X̄) :: B

)
. By the

inductive hypothesis there exists r′ such that PGm [r′] =
(
m p(~Λ) :−

Ĉc[~Λ/X̄]
)

and

(Cc 7→ Cc) ∈ F D̄F
PG

(r′). (7.28)

Or the length of the derivation is

• greater than zero. This derivation is of the form

G0 ;
m1
P C ′ � q(W̄ ) ::B0

;{Rp} C̃ � B1 :: p(X̄) ::B2 ::B0

;
m2
P Ĉc � p(X̄) ::B2 ::B0

where m1 +m2 + 1 = m < N , Rp is a variant of some program clause
P [r′′]. PGm [r′] is the magic clause describing the j-th call to p in the
body of r′′, where j = #B1 + 1. By the inductive hypothesis (7.28)
holds in this case too.

Suppose, instead, that Ĉs 6= 0. By Definition 115 we have that, in
(7.26), B′ = ε and Ĉs is the constraint store at the successful exit from the
indicated call to P [r]. We will now rewrite Ĉs, in order to show that the
pair in (7.27) belongs also to F D̄F

PG
(r). A consequence of (7.26) is that, for

each i = 1, . . . , n, there must exist derivations

1 � pi(Ȳi) ;{Rk+hi
} 1⊗ dȲiX̄i ⊗ Ciρi � Bri

;
ki
P dȲiX̄i ⊗ C̀

s
i � ∅

(7.29)

such that9 ki < l, hi > 0 and Rk+hi =
(
pi(X̄i) :− Ciρi � Bri

)
is a variant of

P [ri] with

FV (Rk+hi) ∩
(

FV (G0) ∪
k+hi−1⋃
j=1

FV (Rj)
)

= ∅. (7.30)

Observe that the variants used in the derivation (7.26) up to the call of pi
in G′, for each i = 1, . . . , n, are R1, . . . , Rk+hi−1. Obviously, hi < hi+1.

9Notice that
∑n
i=1(ki + 1) = l.



226 Chapter 7. Definiteness Analysis

Observe also that in (7.29) we have used the same variants employed in
(7.26). This implies that FV (C̀s

i ) ∩ Ȳi = ∅. Thus we can write

Ĉs = Ĉc ⊗ dX̄Ȳ ⊗ Cρ⊗
n⊗
i=1

(dȲiX̄i ⊗ C̀
s
i ). (7.31)

We have thus obtained our final formulation for the partial answer constraint
of the partial derivation (7.20):(
∃̄̄∃X̄ Ĉs

)
[~Λ/X̄] = ∃̄̄∃X̄

(
Ĉc ⊗ dX̄Ȳ ⊗ Cρ⊗

n⊗
i=1

(
dȲiX̄i ⊗ C̀

s
i

))
[~Λ/X̄]

= ∃̄̄∃X̄
(
∃̄̄∃X̄ Ĉc ⊗ dX̄Ȳ ⊗ Cρ

⊗
n⊗
i=1

(
dȲiX̄i ⊗ ∃̄̄∃X̄i C̀

s
i

))
[~Λ/X̄]

[by Lemma 126]

(7.32)

We will now show that the bottom-up construction derives, for P [r], a pair
that, taking into account (7.32), is identical to the pair in (7.27).

Recall that the partial derivation (7.26) employs the following variant of
P [r]:

Rk =
(
p(Ȳ ) :− Cρ �

(
p1(Ȳ1), . . . , pn(Ȳn)

))
.

By definition of magic program, there exists a renaming ρ̈ with Ū ρ̈ = ~Λ,
Ū1ρ̈ = W̄1, . . . , Ūnρ̈ = W̄n, such that PGm contains the following clauses
derived from P [r]:

PGm [r] =
(
p(~Λ) :−

〈
{m p(~Λ)}, Cρ̈,

(
p1(W̄1), . . . , pn(W̄n)

)〉)
, (7.33)

and, for each i = 1, . . . , n,

PGm [r′i] =
(
m pi(~Λi) :−

〈
{m p(V̄ i)}, Cρ̈,

(
p1(V̄ i

1 ), . . . , pi−1(V̄ i
i−1)

)〉)
.

(7.34)

By the inductive hypothesis we have that:

•
(
Cc 7→ Cc

)
∈ F D̄F

PG
(r′) (as stated in (7.28));

• for each i = 1, . . . , n, by (7.26) we have that

G0 ;m
P Ĉc � p(X̄) ::B

;{Rk} Ĉ
c ⊗ dX̄Ȳ ⊗ Cρ �

(
p1(Ȳ1), . . . , pn(Ȳn)

)
::B

;h
P Ĉ

c
i �

(
pi(Ȳi), . . . , pn(Ȳn)

)
::B



227

is a derivation whose length is less than N , where

Ĉc
i = Ĉc ⊗ dX̄Ȳ ⊗ Cρ⊗

i−1⊗
j=1

(dȲjX̄j ⊗ C̀
s
j),

each C̀s
j being obtained from the derivations in (7.29). Thus, there

exists a clause in PGm (precisely, clause r′i as given in (7.34)) such that(
Cc
i 7→ Cc

i

)
∈ F D̄F

PG
(r′i).

• For each i = 1, . . . , n, by (7.26) we have that

G0 ;m
P Ĉc � p(X̄) ::B

;h+1
P Ĉc

i �
(
pi(Ȳi), . . . , pn(Ȳn)

)
::B

;{Rk+hi
} Ĉ

c
i ⊗ dȲiX̄i ⊗ Ciρi
� Bi ::

(
pi+1(Ȳi+1), . . . , pn(Ȳn)

)
::B

;
ki
P Ĉs

i �
(
pi+1(Ȳi+1), . . . , pn(Ȳn)

)
::B

is a partial derivation of length less than N , where Rk+hi is a variant
of P [ri] (satisfying the conditions described in (7.30)), Ĉs

i 6= 0 (since
Ĉs 6= 0) and

Ĉs
i = Ĉc ⊗ dX̄Ȳ ⊗ Cρ⊗

i⊗
j=1

(dȲjX̄j ⊗ C̀
s
j). (7.35)

Thus, (Cc
i 7→ Cs

i ) ∈ F
D̄F
PG

(ri).

By Lemma 126 we have that, for each i = 1, . . . , n:

∃̄̄∃X̄i Ĉ
s
i = ∃̄̄∃X̄i

(
∃̄̄∃X̄ Ĉc ⊗ dX̄Ȳ ⊗ Cρ⊗

i⊗
j=1

(
dȲjX̄j ⊗ ∃̄̄∃X̄j C̀

s
j

))
, (7.36)

and thus(
∃̄̄∃X̄i Ĉ

s
i

)
[~Λi/X̄i] =(
∃̄̄∃X̄i

(
∃̄̄∃X̄ Ĉc ⊗ dX̄Ȳ ⊗ Cρ⊗

i⊗
j=1

(dȲjX̄j ⊗ ∃̄̄∃X̄j C̀
s
j)
))

[~Λi/X̄i]. (7.37)

With reference to Definition 116, the evaluation of T D̄F
PG

(r,F D̄F
PG

) gives:

S′ = $r

(
F D̄F
PG

(r′), ~Λ, ~Λ, Z̄
)
, (7.38)

and, for each i = 1, . . . , n,

Si = (F D̄F
PG

(ri))[Z̄i/~Λi] (7.39)



228 Chapter 7. Definiteness Analysis

where

Z̄ �~Λ FV (PGm [r]) ∪ Λ, (7.40)

and

Z̄i �~Λi
FV (PGm [r]) ∪ Λ ∪ Z̄ ∪ Z̄1 ∪ · · · ∪ Z̄i−1. (7.41)

Thus

S = S′ ⊗F Cρ̈⊗F

n⊗
F

i=1

(dW̄iZ̄i
⊗F Si) (7.42)

Again, by manipulating (7.38), taking into account (7.28) and considering
that PGm [r] is a modified clause, we obtain (Cc 7→ Cc) ∈ S′; moreover, for
each i = 1, . . . , n, (Cc

i 7→ Cs
i ) ∈ Si.

We also have ∃̄̄∃~Λ ηr(S) = ∃̄̄∃~Λ S ⊆ F
D̄F
PG

(r), since T D̄F
PG

(F D̄F
PG

) = F D̄F
PG

. From
⊗F distributivity with respect to ∪ and from (7.37) we obtain(

Cc 7→ ∃̄̄∃~Λ Č
s
)
∈ F D̄F

PG
(r), (7.43)

where the success component ∃̄̄∃~Λ Č
s can be written as follows:

∃̄̄∃~Λ Č
s def= ∃̄̄∃~Λ

(
Cc ⊗ Cρ̈⊗

n⊗
i=1

(
dW̄iZ̄i

⊗
(
∃̄̄∃~Λi Č

s
i

)
[Z̄i/~Λi]

))
, (7.44)

provided that, by ⊗F definition, Čs 6= 0 and, considering that, for each i = 1,
. . . , n, it is

FV
((
∃̄̄∃~Λ Č

c
i

)
[Z̄i/~Λi]

)
⊆ Z̄i,

we have

∃̄̄∃Z̄i

( Ci︷ ︸︸ ︷
Cc ⊗ Cρ̈⊗

i−1⊗
j=1

(
dW̄jZ̄j

⊗
(
∃̄̄∃~Λj Č

s
j

)
[Z̄j/~Λj ]

)
⊗ dW̄iZ̄i

)
=
(
∃̄̄∃~Λ Č

c
i

)
[Z̄i/~Λi]. (7.45)



229

Now we prove that (7.45) holds. First we note that(
∃̄̄∃~Λ Č

c
i

)
[Z̄i/~Λi] =

(
∃̄̄∃Ȳi Ĉ

c
i

)
[Z̄i/Ȳi] (7.46)

[by the inductive hypothesis and H5]

=
(
∃̄̄∃Ȳi
(
∃̄̄∃X̄ Ĉc ⊗ dX̄Ȳ ⊗ Cρ

⊗
i−1⊗
j=1

(
dȲjX̄j ⊗ ∃̄̄∃X̄j C̀

s
i

)))
[Z̄i/Ȳi]

[derives from (7.36)]

= ∃̄̄∃Z̄i
((
∃̄̄∃X̄ Ĉc ⊗ dX̄Ȳ ⊗ Cρ

⊗
i−1⊗
j=1

(
dȲjX̄j ⊗ ∃̄̄∃X̄j C̀

s
i

))
[Z̄i/Ȳi]

)
(7.47)

[by H4]

Moreover,(
∃̄̄∃~Λi Č

s
i

)
[Z̄i/~Λi] =

(
∃̄̄∃X̄i Ĉ

s
i

)
[~Λi/X̄i][Z̄i/~Λi]

=
(
∃̄̄∃X̄i

(
Ĉc
i ⊗ dȲiX̄i ⊗ ∃̄̄∃X̄i C̀

s
i

))
[Z̄i/X̄i]

[by (7.29) and (7.36)]

=
(
∃̄̄∃X̄i

(
Ĉc
i ⊗ dȲiX̄i

)
⊗ ∃̄̄∃X̄i C̀

s
i

)
[Z̄i/X̄i]

[by axiom S4 of Definition 110]

=
(
∃̄̄∃X̄i

(
Ĉc
i [X̄i/Ȳi]

)
⊗ ∃̄̄∃X̄i C̀

s
i

)
[Z̄i/X̄i]

[by S5, since X̄i ∩ Ȳi = ∅]

=
(
∃̄̄∃X̄i

(
Ĉc
i [X̄i/Ȳi]

))
[Z̄i/X̄i]⊗

(
∃̄̄∃X̄i C̀

s
i

)
[Z̄i/X̄i]

[by H3]

=
(
∃̄̄∃Ȳi Ĉ

c
i

)
[X̄i/Ȳi][Z̄i/X̄i]⊗

(
∃̄̄∃X̄i C̀

s
i

)
[Z̄i/X̄i]

[by H4, since FV (Ĉc
i ) ∩ X̄i = ∅]

=
(
∃̄̄∃Ȳi Ĉ

c
i

)
[Z̄i/Ȳi]⊗

(
∃̄̄∃X̄i C̀

s
i

)
[Z̄i/X̄i] (7.48)

[by H5, since Z̄i ∩ Ȳi = ∅ and FV (Ĉc
i ) ∩ Z̄i = ∅]

Substituting (7.48) for
(
∃̄̄∃~Λi Č

s
i

)
[Z̄i/~Λi] in the over-braced expression in



230 Chapter 7. Definiteness Analysis

(7.45), we obtain, for i = 1, . . . , n:

∃̄̄∃Z̄i C
i

= ∃̄̄∃Z̄i

(
Cc ⊗ Cρ̈

⊗
i−1⊗
j=1

(
dW̄jZ̄j

⊗
(
∃̄̄∃Ȳj Ĉ

c
j

)
[Z̄j/Ȳj ]⊗

(
∃̄̄∃X̄j C̀

s
j

)
[Z̄j/X̄j ]

)
⊗ dW̄iZ̄i

)
= ∃̄̄∃Z̄i

((
Cc ⊗ Cρ̈

⊗
i−1⊗
j=1

(
dW̄jZ̄j

⊗
(
∃̄̄∃Z̄j Ĉ

c
j

)
[Z̄j/Ȳj ]⊗

(
∃̄̄∃X̄j C̀

s
j

)
[Z̄j/X̄j ]

))
[Z̄i/W̄i]

)
[by S5 with [Z̄i/W̄i] = ρ]

= ∃̄̄∃Z̄i

((
(∃̄̄∃X̄ Cc)[~Λ/X̄]⊗ Cρ̈

⊗
i−1⊗
j=1

(
dW̄jZ̄i

⊗
(
∃̄̄∃Ȳj Ĉ

c
j

)
[Z̄j/Ȳj ]⊗

(
∃̄̄∃X̄j C̀

s
j

)
[Z̄j/X̄j ]

))
[Z̄i/W̄i]

)
[by definition of Cc]

= ∃̄̄∃Z̄i

((
∃̄̄∃X̄ Cc ⊗ dX̄~Λ

⊗

F︷ ︸︸ ︷
Cρ̈⊗

i−1⊗
j=1

(
dW̄jZ̄j

⊗
(
∃̄̄∃Ȳj Ĉ

c
j

)
[Z̄j/Ȳj ]⊗

(
∃̄̄∃X̄j C̀

s
j

)
[Z̄j/X̄j ]

)
)

[Z̄i/W̄i]
)

[by Lemma 124 since FV (F ) ∩ X̄ = FV (Ĉc) ∩ ~Λ = X̄ ∩ ~Λ = Z̄i ∩ X̄i = ∅ ]

(7.49)

Now, we consider the renaming

ρi−1
def= [Ȳ /~Λ] ; [Ȳ1/W̄1] ; · · · ; [Ȳn/W̄n] ; [X̄1/Z̄1] ; · · · ; [X̄i−1/Z̄i−1].



231

By (7.49) we can write

∃̄̄∃Z̄i C
i = ∃̄̄∃Z̄i

(((
∃̄̄∃X̄ Cc ⊗ dX̄~Λ ⊗ Cρ̈

⊗
i−1⊗
j=1

(
dW̄jZ̄j

⊗
(
∃̄̄∃Ȳj Ĉ

c
j

)
[Z̄j/Ȳj ]

⊗
(
∃̄̄∃X̄j C̀

s
j

)
[Z̄j/X̄j ]

))
[Z̄i/W̄i]

)
ρi−1

)
[

by H6, since FV (Ci)∩ cod(ρi−1) = Z̄i ∩ cod(ρi−1) =
Z̄i ∩ dom(ρi−1) = ∅

]
= ∃̄̄∃Z̄i

((
∃̄̄∃X̄ Cc ⊗ dX̄Ȳ ⊗ Cρ̈ρi−1

⊗
i−1⊗
j=1

(
dȲjX̄j ⊗

(
∃̄̄∃Ȳj Ĉ

c
j

)
[X̄j/Ȳj ]⊗ ∃̄̄∃X̄j C̀

s
j

))
[Z̄i/Ȳi]

)
[by H3 and then applying ρi−1]

= ∃̄̄∃Z̄i
((
∃̄̄∃X̄ Cc ⊗ dX̄Ȳ ⊗ Cρ

⊗
i−1⊗
j=1

(
dȲjX̄j ⊗

(
∃̄̄∃Ȳj Ĉ

c
j

)
[X̄j/Ȳj ]⊗ ∃̄̄∃X̄j C̀

s
j

))
[Z̄i/Ȳi]

)
[

since ρ̈ρi−1 = ρ[X̄1/Z̄1] · · · [X̄i−1/Z̄i−1] and
FV (C) ∩ Z̄k = ∅, for each k = 1, . . . , i− 1

]

(7.50)

We will now show that

∃̄̄∃Z̄i C
i = ∃̄̄∃Z̄i

((
∃̄̄∃X̄ Ĉc ⊗ dX̄Ȳ ⊗ Cρ

⊗
i−1⊗
j=1

(
dȲjX̄j ⊗ ∃̄̄∃X̄j C̀

s
j

))
[Z̄i/Ȳi]

)
, (7.51)

where the right-hand side of (7.51) is the same as (7.47). This is done by
considering the generic expression

Ek
def= ∃̄̄∃Z̄i

((
∃̄̄∃X̄ Ĉc ⊗ dX̄Ȳ ⊗ Cρ⊗

k−1⊗
j=1

(
dȲjX̄j ⊗ ∃̄̄∃X̄j C̀

s
j

)
⊗

i−1⊗
j=k

(
dW̄jZ̄j

⊗
(
∃̄̄∃Ȳj Ĉ

c
j

)
[Z̄j/Ȳj ]⊗ ∃̄̄∃X̄j C̀

s
j

))
[Z̄i/Ȳi]

)
. (7.52)

The right-hand sides of (7.50) and (7.51) are given by E1 and Ei, respec-
tively. It is possible to prove that E1 = Ei by showing that E1 = E2,
E2 = E3, . . . , Ei−1 = Ei. The equality Ek = Ek+1 can be obtained using



232 Chapter 7. Definiteness Analysis

Lemma 125. To this purpose, we consider the following expression for Ek

Ek
def= ∃̄̄∃Z̄k

(( D︷ ︸︸ ︷
∃̄̄∃X̄ Ĉc ⊗ dX̄Ȳ ⊗ Cρ⊗

k−1⊗
j=1

(
dȲjX̄j ⊗ ∃̄̄∃X̄j C̀

s
j

)
⊗ dȲkX̄k ⊗

(
∃̄̄∃Ȳk Ĉ

c
k

)
[Z̄k/Ȳk]⊗

(
∃̄̄∃X̄k C̀

s
k

)
[Z̄k/X̄k]

⊗
i−1⊗

j=k+1

(
dȲjX̄j ⊗

(
∃̄̄∃Ȳj Ĉ

c
j

)
[Z̄j/Ȳj ]⊗

(
∃̄̄∃X̄j C̀

s
j

)
[Z̄j/X̄j ]

))
[Z̄i/Ȳi]

)
, (7.53)

By (7.46) and (7.47) we have that, for each k = 1, . . . , i,(
∃̄̄∃Ȳk Ĉ

c
i

)
[Z̄k/Ȳk] =

(
∃̄̄∃Ȳk D

)
[Z̄k/Ȳk],

thus Lemma 125 applies giving the desired result.
We will now show that

∃̄̄∃~Λ Č
s = ∃̄̄∃~Λ

(
Cc ⊗ Cρ̈⊗

n⊗
i=1

(
dW̄iZ̄i

⊗
(
∃̄̄∃X̄i C̀

s
i

)
[Z̄i/X̄i]

))
. (7.54)

This is done by considering that, by the inductive hypothesis, we can write:(
∃̄̄∃~Λi Č

s
i

)
)[Z̄i/~Λi] =

(
∃̄̄∃Ȳi Ĉ

c
i

)
[Z̄i/Ȳi]⊗

(
∃̄̄∃X̄i C̀

s
i

)
[Z̄i/X̄i]

[by (7.48)]

=
(
∃̄̄∃~Λi Č

c
i

)
[Z̄i/~Λi]⊗

(
∃̄̄∃X̄i C̀

s
i

)
[Z̄i/X̄i]

[by inductive hypothesis]

(7.55)

Now, we consider the generic expression

Ei
def= ∃̄̄∃~Λ

(
Cc ⊗ Cρ̈⊗

i−1⊗
j=1

(
dW̄jZ̄j

⊗
(
∃̄̄∃X̄j C̀

s
j

)
[Z̄j/X̄j ]

)
⊗

n⊗
j=i

(
dW̄jZ̄j

⊗
(
∃̄̄∃~Λj Č

c
j

)
[Z̄j/Ȳj ]⊗

(
∃̄̄∃X̄j C̀

s
j

)
[Z̄j/X̄j ]

))
. (7.56)

The right-hand sides of (7.44) and (7.54) are, considering (7.55), given by
E1 and En+1, respectively. It is possible to prove that E1 = En by showing
that E1 = E2, E2 = E3, . . . , En = En+1. The equality Ei = Ei+1 can
be obtained using S2 of Definition 110. To this purpose, we consider the
following expression for Ei

Ei
def= ∃̄̄∃~Λ

( Ci︷ ︸︸ ︷
Cc ⊗ Cρ̈⊗

i−1⊗
j=1

(
dW̄jZ̄j

⊗
(
∃̄̄∃X̄j C̀

s
j

)
[Z̄j/X̄j ]

)
⊗ dW̄iZ̄i

⊗
(
∃̄̄∃~Λi Č

c
i

)
[Z̄i/~Λi]⊗

(
∃̄̄∃X̄i C̀

s
i

)
[Z̄i/X̄i]

⊗
n⊗

j=i+1

(
dW̄jZ̄j

⊗
(
∃̄̄∃~Λj Č

c
j

)
[Z̄j/~Λj ]⊗

(
∃̄̄∃X̄j C̀

s
j

)
[Z̄j/X̄j ]

))
, (7.57)



233

By (7.45), for each i = 1, . . . , n,:(
∃̄̄∃~Λi Č

c
i

)
[Z̄j/~Λi] = ∃̄̄∃Z̄i C

i

thus S2 applies giving the desired result. It remains to be proved that
Cs = ∃̄̄∃~Λ Č

s. For this purpose we define

ρn
def= [~Λ/Ȳ ] ; [W̄1/Ȳ1] ; · · · ; [W̄n/Ȳn] ; [Z̄1/X̄1] ; · · · ; [Z̄n/X̄n],

then

Cs = ∃̄̄∃X̄
(
∃̄̄∃X̄ Ĉc ⊗ dX̄Ȳ ⊗ Cρ⊗

n⊗
i=1

(
dȲiX̄i ⊗ ∃̄̄∃X̄i C̀

s
i

))
[~Λ/X̄]

[by (7.32)]

= ∃̄̄∃X̄
((
∃̄̄∃X̄ Ĉc ⊗ dX̄Ȳ ⊗ Cρ⊗

n⊗
i=1

(
dȲiX̄i ⊗ ∃̄̄∃X̄i C̀

s
i

))
ρn

)
[~Λ/X̄]

[by H6, since FV (Ĉs) ∩ cod(ρn) = X̄ ∩ cod(ρn) = X̄ ∩ dom(ρn) = ∅]

= ∃̄̄∃X̄
(
∃̄̄∃X̄ Ĉc ⊗ dX̄~Λ

⊗ Cρ̈⊗
n⊗
i=1

(
dW̄iZ̄i

⊗
(
∃̄̄∃X̄i C̀

s
i

)
[Z̄i/X̄i]

))
[~Λ/X̄]

[by H3 and the definition of ρn]

= ∃̄̄∃~Λ

((
∃̄̄∃X̄ Ĉc

)
[~Λ/X̄]⊗ d~Λ~Λ

⊗

G︷ ︸︸ ︷(
Cρ̈⊗

n⊗
i=1

(
dW̄iZ̄i

⊗
(
∃̄̄∃X̄i C̀

s
i

)
[Z̄i/X̄i]

))
[~Λ/X̄]

)
[by H4 and H3]

= ∃̄̄∃~Λ
(
Cc ⊗ Cρ̈⊗

n⊗
i=1

(
dW̄iZ̄i

⊗
(
∃̄̄∃X̄i C̀

s
i

)
[Z̄i/X̄i]

))
[by definition of Cc and since FV (G) ∩ X̄ = ∅]

= ∃̄̄∃~Λ Č
s

[by (7.54)]

(7.58)

Therefore, we have the thesis: (Cc 7→ Cs) ∈ F D̄F
PG

(r). The induction step for
(a) can be carried out in a similar way.

Second Inclusion

We now show that F D̄F
PG
� {1, . . . ,#P} ⊆ OD̄F

(P,G). Staten differently:

(a) if there exists a magic clause r′ ∈ {#P +1, . . . ,#PGm} in PGm such that(
∃̄̄∃~Λ Č

c 7→ ∃̄̄∃~Λ Č
c
)
∈ F D̄F

PG
(r′), then there exists a partial derivation

from a goal G0 ∈ G of the form G0 ;∗P Ĉ
c � p(X̄) ::B, such that

∃̄̄∃~Λ Č
c =

(
∃̄̄∃X̄ Ĉc

)
[~Λ/X̄]



234 Chapter 7. Definiteness Analysis

(b) If there exists a modified clause r of PGm such that the pair
(
∃̄̄∃~Λ Č

c 7→
∃̄̄∃~Λ Č

s
)

belongs to F D̄F
PG

(r), then there exists a partial derivation from
a goal G0 ∈ G of the form

G0 ;∗P Ĉ
c � p(X̄) ::B

;{Rk} Ĉ
c ⊗ dX̄Ȳ ⊗ Cρ �

(
p1(Ȳ1), . . . , pn(Ȳn)

)
::B

;∗P Ĉ
s � B, with Ĉs 6= 0,

where Rk =
(
p(Ȳ ) :− Cρ � p1(Ȳ1), . . . , pn(Ȳn)

)
is a variant of P [r]

such that FV (Rk) ∩
(

FV (G0) ∪
(⋃k−1

j=1 FV (Rj)
))

= ∅. Moreover we
have

∃̄̄∃~Λ Č
c =

(
∃̄̄∃X̄ Ĉc

)
[~Λ/X̄] and ∃̄̄∃~Λ Č

s =
(
∃̄̄∃X̄ Ĉs

)
[~Λ/X̄]

The proof has the following structure. The hypotheses say that for some
r ∈ {1, . . . ,#PGm} we have some e ∈ DF such that e belongs to F D̄F

PG
(r).

Since

F D̄F
PG

=
⋃
i∈N

T D̄F
PG
↑i,

there must exist k ∈ N such that e ∈
(
T D̄F
PG
↑k
)
(r). The proof continues by

induction on k.

Base case (a). For k = 1 there must exist r′ such that(
∃̄̄∃~Λ Č

c 7→ ∃̄̄∃~Λ Č
c
)
∈
(
T D̄F
PG

(∅)
)
(r′).

Thus, by definition of T D̄F
PG

, we have PGm [r′] =
(
m p(~Λ) :− Čc

)
. By the

definition of magic program, PGm [r′] describes the first call in an initial goal
G0 ∈ G of the form G0 =

(
Ĉc � p(X̄)::B

)
, where ∃̄̄∃~Λ Č

c =
(
∃̄̄∃X̄ Ĉc

)
[~Λ/X̄] =

Cc.

Base case (b). Here we take k = 2, since each modified clause has at
least an atom: the magic one. If, for some r, we have(

∃̄̄∃~Λ Č
c 7→ ∃̄̄∃~Λ Č

s
)
∈
(
T D̄F
PG
↑2
)
(r), (7.59)

then PGm [r] =
(
p(~Λ) :−

〈
m p(~Λ), Cρ̈,∅

〉)
with

∃̄̄∃~Λ Č
s = ∃̄̄∃~Λ

(
∃̄̄∃~Λ Č

c ⊗ Cρ̈
)

(7.60)

where Ū ρ̈ = ~Λ and Čs 6= 0, by ⊗F definition (case (ii)). Thus, by T D̄F
PG

definition, there exists a clause r′ defining m p such that
(
∃̄̄∃~Λ Č

c 7→ ∃̄̄∃~Λ Č
c
)
∈



235

(
T D̄F
PG

(∅)
)
(r′). By the base case (a) there exists a initial goal G0 =

(
Ĉc �

p(X̄) ::B
)

such that (7.60) can be rewritten as

∃̄̄∃~Λ Č
s = ∃̄̄∃~Λ(Cc ⊗ Cρ̈). (7.61)

Consider the clause P [r] from which PGm [r] was generated. Let R1 =(
p(Ȳ ) :− Cρ � ∅

)
be a variant of P [r] such that FV (G0) ∩ FV (R1) = ∅.

Since Ĉc 6= 0 by base case (a) there must exist a partial derivation

G0 =
(
Ĉc � p(X̄) ::B

)
;{R1}

Ĉs︷ ︸︸ ︷
Ĉc ⊗ dX̄Ȳ ⊗ Cρ � B (7.62)

We now prove that the partial answer constraint of (7.62), suitably renamed,
is the success component of the pair in (7.59), namely

∃̄̄∃~Λ
(
Cc ⊗ Cρ̈

)
=
(
∃̄̄∃X̄
(
Ĉc ⊗ dX̄Ȳ ⊗ Cρ

))
[~Λ/X̄], (7.63)

and thus that we also have Ĉs 6= 0. Equation (7.63) is identical to (7.25),
thus (7.63) holds, as we saw while proving the first implication.

Inductive case (b). We now consider the case k > 2. If for some r we
have that (

∃̄̄∃~Λ Č
c 7→ ∃̄̄∃~Λ Č

s
)
∈
(
T D̄F
PG
↑k
)
(r)

and

PGm [r] =
(
p(~Λ) :−

〈
{m p(~Λ)}, Cρ̈,

(
p1(W̄1), . . . , pn(W̄n)

)〉)
,

then we must have, by T D̄F
PG

definition, that

∃̄̄∃~Λ Č
s = ∃̄̄∃~Λ

(
∃̄̄∃~Λ Č

c ⊗ Cρ̈⊗
n⊗
i=1

(
dW̄iZ̄i

⊗
(
∃̄̄∃~Λi Č

s
i

)
[Z̄i/~Λi]

))
, (7.64)

where, by ⊗F definition, Čs 6= 0 and for each i = 1, . . . , n,

∃̄̄∃Z̄i

(
∃̄̄∃~Λ Č

c ⊗ Cρ̈⊗
i−1⊗
j=1

(
dW̄jZ̄j

⊗
(
∃̄̄∃~Λj Č

s
j

)
[Z̄i/~Λi]

)
⊗ dW̄iZ̄i

)
=
(
∃̄̄∃~Λi Č

c
i

)
[Z̄i/~Λi]. (7.65)

Moreover, for each i = 1, . . . , n, we have

Z̄i �~Λi
FV (PGm [r]) ∪ Λ ∪ Z̄1 ∪ · · · ∪ Z̄i−1,

and Čc, Čs
1, . . . , Čs

n are given by the inductive hypotheses as follows.



236 Chapter 7. Definiteness Analysis

1. There exists r′ such that PGm [r′] describes a call to p such that(
∃̄̄∃~Λ Č

c 7→ ∃̄̄∃~Λ Č
c
)
∈
(
T D̄F
PG
↑(k − 1)

)
(r′)

By the inductive hypothesis, there exists a derivation

G0 ;∗P Ĉ
c � p(X̄) ::B (7.66)

such that G0 ∈ G and ∃̄̄∃~Λ Č
c =

(
∃̄̄∃X̄ Ĉc

)
[~Λ/X̄] = Cc.

2. For each i = 1, . . . , n, there exists ri such that(
∃̄̄∃~Λi Č

c
i 7→ ∃̄̄∃~Λi Č

s
i

)
∈
(
T D̄F
PG
↑(k − 1)

)
(ri).

By the inductive hypothesis, for i = 1, . . . , n, there exists a derivation
from Gi0 ∈ G

Gi0 ;∗P G
i
ki

=
(
Ĉc
i � pi(Y

i
i ) ::Bi

)
;{Rik+hi

} Ĉ
c
i ⊗ dȲ ii X̄i

i
⊗ Ciρii � Bi

ri ::Bi

;∗P Ĉ
s
i � B

i,

(7.67)

where Rik+hi
=
(
pi(X̄i

i ) :− Ciρ
i
i � Bi

ri

)
is a variant of P [ri] such that

FV (Rik+hi
) ∩
(
FV (G0) ∪

(⋃k+hi−1
j=1 FV (Rij)

))
= ∅. Furthermore,

∃̄̄∃~Λi Č
c
i =

(
∃̄̄∃Ȳ ii Ĉ

c
i

)
[~Λi/Ȳ i

i ] = Cc
i

and

∃̄̄∃~Λi Č
s
i =

(
∃̄̄∃Ȳ ii Ĉ

s
i

)
[~Λi/Ȳ i

i ] = Cs
i .

Now, by (7.67), for each i, . . . , n, there must exist the following deriva-
tion:

1 � pi(Ȳ i
i ) ;{Rik+hi

} 1⊗ dȲ ii X̄i
i
⊗ Ciρii � Bi

ri ;∗P C̀
s
i � ∅, (7.68)

and Ĉs
i = Ĉc

i ⊗ C̀s
i . Observe that in (7.68) we have used the same

variants employed in (7.67). This implies that FV (C̀s
i ) ∩ Ȳ i

i = ∅.



237

Then we have:(
∃̄̄∃Ȳ ii Ĉ

s
i

)
[~Λi/Ȳ i

i ] =
(
∃̄̄∃Ȳ ii

(
Ĉc
i ⊗ C̀s

i

))
[~Λi/Ȳ i

i ]
[by the above result]

=
(
∃̄̄∃Ȳ ii

(
∃̄̄∃Ȳ ii Ĉ

c
i ⊗ C̀s

i

))
[~Λi/Ȳ i

i ][
by S7 since FV (Ĉc

i ) ∩ FV (C̀s
i ) ⊆ Ȳ ii and

FV (Ĉc
i ) ∩ Ȳ ii ⊆ Ȳ ii

]
=
(
∃̄̄∃Ȳ ii Ĉ

c
i

)
[~Λi/Ȳ i

i ]⊗
(
∃̄̄∃Ȳ ii C̀

s
i

)
[~Λi/Ȳ i

i ]
[by S4 and H3]

= ∃̄̄∃~Λi Č
c
i ⊗

(
∃̄̄∃Ȳ ii C̀

s
i

)
[~Λi/Ȳ i

i ]
[by inductive hypothesis 2]

=
(
∃̄̄∃Ȳ ii Ĉ

s
i

)
[~Λi/Ȳ i

i ][Z̄i/~Λi]
[by H5]

(7.69)

Thus,(
∃̄̄∃Ȳ ii Ĉ

s
i

)
[Z̄i/Ȳ i

i ] =
(
∃̄̄∃~Λi Č

c
i

)
[Z̄i/~Λi]⊗

(
∃̄̄∃Ȳ ii C̀

s
i

)
[~Λi/Ȳ i

i ][Z̄i/~Λi].
[by (7.69) and H3]

=
(
∃̄̄∃~Λi Č

c
i

)
[Z̄i/~Λi]⊗

(
∃̄̄∃Ȳ ii C̀

s
i

)
[Z̄i/Ȳ i

i ]
[by H5]

(7.70)

We will now show that

∃̄̄∃~Λ Č
s = ∃̄̄∃~Λ

(
∃̄̄∃~Λ Č

c ⊗ Cρ̈⊗
n⊗
i=1

(
dW̄iZ̄i

⊗
(
∃̄̄∃Ȳ ii C̀

s
i

)
[Z̄i/Ȳ i

i ]
))
. (7.71)

Consider the generic expression

Ei
def= ∃̄̄∃~Λ

(
∃̄̄∃~Λ Č

c ⊗ Cρ̈⊗
i⊗

j=1

(
dW̄jZ̄j

⊗
(
∃̄̄∃~Λj Č

s
j

)
[Z̄j/~Λj ]

)
⊗

n⊗
j=i+1

(
dW̄jZ̄j

⊗
(
∃̄̄∃
Ȳ jj
C̀s
j

)
[Z̄j/Ȳ

j
j ]
))

. (7.72)

The right-hand sides of (7.64) and (7.71) are given by En and E0, respec-
tively. It is possible to prove that En = E0 by showing that En = En−1,
En−1 = En−2, . . . , E1 = E0. The equality Ei = Ei−1 can be obtained using
S2 of Definition 110. For this purpose, we consider, taking into account



238 Chapter 7. Definiteness Analysis

(7.70), the following expression for Ei

Ei
def= ∃̄̄∃~Λ

( Ci−1︷ ︸︸ ︷
∃̄̄∃~Λ Č

c ⊗ Cρ̈⊗
i−1⊗
j=1

(
dW̄jZ̄j

⊗
(
∃̄̄∃~Λj Č

s
j

)
[Z̄j/~Λj ]

)
⊗ dW̄iZ̄i

⊗
(
∃̄̄∃~Λi Č

c
i

)
[Z̄i/~Λi]⊗

(
∃̄̄∃Ȳ ii C̀

s
i

)
[Z̄i/Ȳ i

i ]

⊗
n⊗

j=i+1

(
dW̄jZ̄j

⊗
(
∃̄̄∃
Ȳ jj
C̀s
j

)
[Z̄j/Ȳ

j
j ]
))

. (7.73)

By (7.65), for each i = 1, . . . , n we have

∃̄̄∃Z̄i C
i−1 =

(
∃̄̄∃~Λi Č

c
i

)
[Z̄i/~Λi],

thus S2 applies giving the desired result.
The aim is now to show that we can reconstruct an existing derivation

whose answer constraint is the right-hand side of (7.71), by composing the
partial derivations described in (7.66) and (7.67).

We show this by total induction on the number of calls, n. We start by
considering clause P [r], which originated the modified clause PGm [r], and the
derivation (7.66):

G0 ;∗P Ĉ
c � p(X̄) ::B.

Since Ĉc 6= 0 (by the inductive hypothesis), there exists a variant of P [r],

Rk =
(
p(Ȳ ) :− Cρ �

(
p1(Ȳ1), . . . , pn(Ȳn)

))
,

where Ūρ = Ȳ , Ū1ρ = Ȳ1, . . . ,Ūnρ = Ȳn, and

FV (Rk) ∩
(

FV (G0) ∪
k−1⋃
i=1

FV (Ri)
)

= ∅,

such that we have

G0 ;∗P Gk

= Ĉc � p(X̄) ::B

;{Rk} Ĉ
c ⊗ dX̄Ȳ ⊗ Cρ︸ ︷︷ ︸

Ĉc
1

�
(
p1(Ȳ1), . . . , pn(Ȳn)

)
::B

(7.74)

If we project Ĉc
1 onto the relevant variables Ȳ1, we have that

∃̄̄∃Ȳ1
Ĉc

1 = ∃̄̄∃Ȳ1

(
Ĉc ⊗ dX̄Ȳ ⊗ Cρ

)
= ∃̄̄∃Ȳ1

(
∃̄̄∃X̄ Ĉc ⊗ dX̄Ȳ ⊗ Cρ

)
[by Lemma 126]

(7.75)



239

We show that this call-pattern, suitably renamed onto ~Λ1, is exactly the call-
pattern considered in the bottom-up construction. We consider a renaming
ρ′1 such that

~Λρ
′
1 = Ȳ , W̄1ρ

′
1 = Ȳ1, . . . , W̄nρ

′
1 = Ȳn.

By (7.65) we can write

∃̄̄∃~Λ1
Čc

1 =
(
∃̄̄∃Z̄1

(
∃̄̄∃~Λ Č

c ⊗ Cρ̈⊗ dW̄1Z̄1

))
[~Λ1/Z̄1]

=
(
∃̄̄∃Z̄1

((
∃̄̄∃~Λ Č

c ⊗ Cρ̈
)
[Z̄1/W̄1]

)
[~Λ1/Z̄1]

[by S5 with [Z̄1/W̄1] = ρ]

=
(
∃̄̄∃W̄1

(
∃̄̄∃~Λ Č

c ⊗ Cρ̈
))

[Z̄1/W̄1][~Λ1/Z̄1]

[by H4]

=
(
∃̄̄∃W̄1

(
∃̄̄∃~Λ Č

c ⊗ Cρ̈
))

[~Λ1/W̄1]

[by H5]

=
(
∃̄̄∃W̄1

(
(∃̄̄∃X̄ Ĉc)[~Λ/X̄]⊗ Cρ̈

))
[~Λ1/W̄1]

[by inductive hypothesis 1]

=
(
∃̄̄∃W̄1

(
∃̄̄∃X̄ Ĉc ⊗ dX̄~Λ ⊗ Cρ̈

))
[~Λ1/W̄1][

by Lemma 124, since FV (Cρ̈) ∩ X̄ = ∅

and FV (Ĉc) ∩ ~Λ = X̄ ∩ ~Λ = X̄ ∩ W̄i = ∅

]
=
(
∃̄̄∃W̄1

(
∃̄̄∃X̄ Ĉc ⊗ dX̄~Λ ⊗ Cρ̈

)
ρ′1[W̄1/Ȳ1]

)
[~Λ1/W̄1]

[by H6, since FV (∃̄̄∃X̄ Ĉ
c ⊗ dX̄~Λ ⊗ Cρ̈) ∩ cod(ρ′1[W̄1/Ȳ1]) = ∅]

=
(
∃̄̄∃W̄1

((
∃̄̄∃X̄ Ĉc ⊗ dX̄Ȳ ⊗ Cρ

))
[W̄1/Ȳ1]

)
[~Λ1/W̄1]

[by the definitions of ρ′1, ρ, and ρ̈]

=
((
∃̄̄∃Ȳ1

(
∃̄̄∃X̄ Ĉc ⊗ dX̄Ȳ ⊗ Cρ

))
[W̄1/Ȳ1]

)
[~Λ1/W̄1]

[by H4]

=
(
∃̄̄∃Ȳ1

(
∃̄̄∃X̄ Ĉc ⊗ dX̄Ȳ ⊗ Cρ

))
[~Λ1/Ȳ1]

[by H5]

=
(
∃̄̄∃Ȳ1

Ĉc
1

)
[~Λ1/Ȳ1]

Then we have that ∃̄̄∃~Λi Č
c
1 =

(
∃̄̄∃Ȳ1

Ĉc
1

)
[~Λ1/Ȳ1] =

(
∃̄̄∃Ȳ 1

1
Ĉc

1

)
[~Λ1/Ȳ

1
1 ] by the

inductive hypothesis 2.
The goalG1

k1
in (7.67) (for i = 1) is (a variant of)Gk in (7.74). Therefore,

we can continue the derivation as in (7.67), but using a different variant of



240 Chapter 7. Definiteness Analysis

clause P [r1]:

G0 ;∗P Gk =
(
Ĉc � p(X̄) ::B

)
;{Rk} Ĉ

c ⊗ dX̄Ȳ ⊗ Cρ �
(
p1(Ȳ1), . . . , pn(Ȳn)

)
::B

;∗P Ĉ
s
1 �

(
p2(Ȳ2), . . . , pn(Ȳn)

)
::B,

so we have
(
∃̄̄∃Ȳ1

Ĉs
1

)
[~Λ1/Ȳ1] = ∃̄̄∃~Λ1

Čs
1. Now, suppose that what we have

just proved for the first call holds for all the calls up to the (i − 1)-th one.
This means that

G0 ;∗P Ĉc � p(X̄) ::B
;{Rk} Ĉ

c
1 �

(
p1(Ȳ1), . . . , pn(Ȳn)

)
::B

;∗P Ĉs
1 �

(
p2(Ȳ2), . . . , pn(Ȳn)

)
::B

= Ĉc
2 �

(
p2(Ȳ2), . . . , pn(Ȳn)

)
::B

;∗P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

...
;∗P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
;∗P Ĉc

i−1 �
(
pi−1(Ȳi−1), . . . , pn(Ȳn)

)
::B

;∗P Ĉs
i−1 �

(
pi(Ȳi), . . . , pn(Ȳn)

)
::B,

(7.76)

for each j ≤ i− 1 we have

∃̄̄∃~Λj Č
c
j =

(
∃̄̄∃Ȳj Ĉ

c
j

)
[~Λj/Ȳj ],

∃̄̄∃~Λj Č
s
j =

(
∃̄̄∃Ȳj Ĉ

s
j

)
[~Λj/Ȳj ]

where

∃̄̄∃Ȳj Ĉ
c
j = ∃̄̄∃Ȳj

(
Ĉc ⊗ dX̄Ȳ ⊗ Cρ⊗

j−1⊗
k=1

(
dȲkX̄k ⊗ C̀

s
k

))
= ∃̄̄∃Ȳj

(
∃̄̄∃X̄ Ĉc ⊗ dX̄Ȳ ⊗ Cρ⊗

j−1⊗
k=1

(
dȲkX̄k ⊗ ∃̄̄∃X̄k C̀

s
k

))
[by Lemma 126]

Similarly, we have also10

∃̄̄∃Ȳj Ĉ
s
j = ∃̄̄∃Ȳj

(
∃̄̄∃X̄ Ĉc ⊗ dX̄Ȳ ⊗ Cρ⊗

j⊗
k=1

(
dȲkX̄k ⊗ ∃̄̄∃X̄k C̀

s
k

))
We show that, by (7.76), there exists a derivation

G0 ;∗P Ĉ
s
i−1 �

(
pi(Ȳi), . . . , pn(Ȳn)

)
::B,

= Ĉc
i �

(
pi(Ȳi), . . . , pn(Ȳn)

)
::B

;∗P Ĉ
s
i �

(
pi+1(Ȳi+1), . . . , pn(Ȳn)

)
::B

10We assume that, for each j = 1, . . . , i− 1, the variant of P [rj ] employed is Rk+hj =(
pj(X̄j) :− Cjρj � Brj

)
. However, the only important thing here is that the renaming-

apart conditions must hold.



241

such that
(
∃̄̄∃Ȳi Ĉ

c
i

)
[~Λi/Ȳi] = ∃̄̄∃~Λi Č

c
i and

(
∃̄̄∃Ȳi Ĉ

s
i

)
[~Λi/Ȳi] = ∃̄̄∃~Λi Č

s
i . We con-

sider a renaming ρ′i such that

~Λρ′i = Ȳ , W̄1ρ
′
i = Ȳ1, . . . , W̄nρ

′
i = Ȳn, Z̄1ρ

′
i = X̄1, . . . , Z̄iρ

′
i = X̄i.

Notice that

ρ̈ρ′i = ρ[X̄1/Z̄1] · · · ρ[X̄i/Z̄i].

Then we can write

∃̄̄∃~Λi Č
c
i =

(
∃̄̄∃Z̄i
(
∃̄̄∃~Λ Č

c ⊗ Cρ̈

⊗
i−1⊗
j=1

(
dW̄jZ̄j

⊗
(
∃̄̄∃X̄j C̀

s
j

)
[Z̄j/X̄j ]

)
⊗ dW̄iZ̄i

))
[~Λi/Z̄i]

[by (7.65)]

=
(
∃̄̄∃Z̄i
((
∃̄̄∃~Λ Č

c ⊗ Cρ̈

⊗
i−1⊗
j=1

(
dW̄jZ̄j

⊗
(
∃̄̄∃X̄j C̀

s
j

)
[Z̄j/X̄j ]

))
[Z̄i/W̄i]

))
[~Λi/Z̄i]

[by S5 with [Z̄i/W̄i] = ρ]

=
(
∃̄̄∃W̄i

(
∃̄̄∃~Λ Č

c ⊗ Cρ̈

⊗
i−1⊗
j=1

(
dW̄jZ̄j

⊗
(
∃̄̄∃X̄j C̀

s
j

)
[Z̄j/X̄j ]

)))
[Z̄i/W̄i][~Λi/Z̄i]

[by H4]

=
(
∃̄̄∃W̄i

(
∃̄̄∃~Λ Č

c ⊗ Cρ̈

⊗
i−1⊗
j=1

(
dW̄jZ̄j

⊗
(
∃̄̄∃X̄j C̀

s
j

)
[Z̄j/X̄j ]

)))
[~Λi/W̄i]

[by H5]

=
(
∃̄̄∃W̄i

(((
∃̄̄∃X̄ Ĉc

)
[~Λ/X̄]⊗ Cρ̈

⊗
i−1⊗
j=1

(
dW̄jZ̄j

⊗
(
∃̄̄∃X̄j C̀

s
j

)
[Z̄j/X̄j ]

))
ρ
′
i[W̄i/Ȳi]

))
[~Λi/W̄i]

[by definition of Cc and H6, since ρ′i[W̄i/Ȳi] is a renaming for Čc
i ]



242 Chapter 7. Definiteness Analysis

=
(
∃̄̄∃W̄i

((
∃̄̄∃X̄ Ĉc

)
[Ȳ /X̄]⊗ Cρ

⊗
i−1⊗
j=1

(
dȲjX̄j ⊗ ∃̄̄∃X̄j C̀

s
j

)
[W̄i/Ȳi]

)
[~Λi/W̄i]

)
[by H3 and definition of ρ′, ρ and ρ̈]

=
(
∃̄̄∃Ȳi
(
∃̄̄∃X̄ Ĉc ⊗ dX̄Ȳ

⊗

H︷ ︸︸ ︷
Cρ⊗

i−1⊗
j=1

(
dȲjX̄j ⊗ ∃̄̄∃X̄j C̀

s
j

)))
[~Λi/Ȳi][

by H4 and Lemma 124, since FV (H) ∩ X̄ =

FV (Ĉc) ∩ Ȳ = X̄ ∩ Ȳ = X̄ ∩ Ȳi = ∅

]
=
(
∃̄̄∃Ȳi Ĉ

s
i−1

)
[~Λi/Ȳi]

We can thus conclude that there exists a derivation

G0 ;∗P Ĉ
c � p(X̄) ::B

;{Rk} Ĉ
c ⊗ dX̄Ȳ ⊗ Cρ �

(
p1(Ȳ1), . . . , pn(Ȳn)

)
::B

;∗P Ĉ
s � B,

such that
(
∃̄̄∃X̄ Ĉc

)
[~Λ/X̄] = ∃̄̄∃~Λ Č

c and
(
∃̄̄∃X̄ Ĉs

)
[~Λ/X̄] = ∃̄̄∃~Λ Č

s, which im-
plies Ĉs 6= 0.

The inductive case for (a) can be proved analogously. 2



Chapter 8

Conclusion

Back in the introduction we have stated our (admittedly ambitious) objec-
tives concerning the analysis of constraint logic-based languages. As the
reader will have noticed, there is still much work to do. Whereas we are
rather satisfied about the current status of our theoretical treatment, we
did not have enough time to complete the experimental part of the project.
Indeed, we underestimated both

• the effort required in order to set up the theory: we thought that many
of the “needed pieces” were already there, but a closer analysis often
revealed that this was not the case; and

• the effort required in order to implement the China.

All the (families) of domains described in this thesis have been imple-
mented and tested, here included a generic implementation of the hierarchy
of domains described in Chapter 3. However, up to now the emphasis of the
development has been mainly on correctness, though keeping into account
that efficiency should finally be obtained. The work on the optimization
of the domains has just started. While the generic structural domain of
Chapter 4 and the groundness domain of Chapter 6 are already highly op-
timized, much work is still needed for the numerical domains of Chapter 5.
For the latter, extensive experimentation is required. Since our actual im-
plementation (and the theory on which it is based) has several degrees of
freedom, finding the right compromise between different techniques is not
easy. Similar comments apply to Chapter 7, where we need considerably
more empirical comparison among different domains and among different
widening policies. Even the domain-independent part of China requires
more work. For instance, it applies a sub-optimal version of the magic trans-
formation that causes the unnecessary repetition of some analysis’ work. We
are currently modifying the analyzer in order to employ the more efficient
Supplementary Magic-Set transformation described in [BR87]. More work is

243



244 Chapter 8. Conclusion

also necessary in the field of fixpoint computation strategies. Just one exam-
ple that, furthermore, appears not to have been tackled from the theoretical
point of view: while there are studies devoted to fixpoint iteration strategies
that try to minimize both the analysis work and the application of unneces-
sary widenings [Bou93, Sch96], no one seems to have studied the strategies
that might allow for the efficient application of narrowings [Cou96].

For future work of a more speculative nature, we would like to pursue the
possibility of programming the analysis that the work described in chapters 3
and 5 seem to open up. We feel that this ability is a step forward towards
our dream about user-defined analysis’ domains. Here, by ‘user’ we mean
any programmer, not just the designer of data-flow analyzers. What we
have today are particular program analyzers that use a specific domain of
properties. While domains for important, program independent, low-level
properties such as groundness, aliasing and so forth, are well-known, very
little has been done for high-level, user-defined properties. We envisage the
possibility of having development environments where the program analysis
component is able to deal with properties that are not known a priori.

For instance, Prolog programmers develop their own data-structures by
freely using the first-order objects of the language. Suppose that a user
defines a particular kind of structure: say, a kind of tree. Now, knowing
that the representation of some tree is ground might not be enough. Perhaps
one wants to know whether a certain tree is almost perfectly balanced, or
some other property of the particular structure that the user has devised.
Obviously, the analyzer cannot be endowed with all the domains for each
property. The user should instead be allowed to provide the system with a
description of the properties of interest. The possibility, which is exploited
in our approach, of programming both the abstraction function and the
abstract domain, might be the right way to go.

Any writing can be improved.

But eventually you have to put something out the door.

— DONALD E. KNUTH, lecturing on Mathematical Writing,
Stanford University (1987)



Bibliography

[AH83] G. Alefeld and J. Herzberger. Introduction to Interval Compu-
tation. Academic Press, New York, 1983.

[AH92] A. Aiba and R. Hasegawa. Constraint logic programming sys-
tems — CAL, GDCC and their constraint solvers. In Proceed-
ings of the International Conference on Fifth Generation Com-
puter Systems (FGCS’92), pages 113–131, Tokyo, Japan, 1992.
ICOT.

[AK85] J. F. Allen and H. A. Kautz. A model of naive temporal rea-
soning. In J. R. Hobbs and R. Moore, editors, Formal Theories
of the Commonsense World, pages 251–268. Ablex, Norwood,
NJ, 1985.

[AK91] H. Aı̈t-Kaci. Warren’s Abstract Machine. A Tutorial Recon-
struction. The MIT Press, 1991.

[All83] J. F. Allen. Maintaining knowledge about temporal intervals.
Communications of the ACM, 26(11):832–843, 1983.

[AMSS] T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard.
Two classes of Boolean functions for dependency analysis. To
appear in Science of Computer Programming. A previous ver-
sion of this work is available in [AMSS94b].

[AMSS94a] T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard.
Boolean functions for dependency analysis: Algebraic prop-
erties and efficient representation. In B. Le Charlier, editor,
Static Analysis: Proceedings of the First International Sympo-
sium, number 864 in Lecture Notes in Computer Science, pages
266–280. Springer-Verlag, Berlin, 1994.

[AMSS94b] T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard.
Two classes of Boolean functions for dependency analysis. Tech-
nical Report 94/211, Dept. Computer Science, Monash Univer-
sity, Melbourne, 1994.

245



246 Bibliography

[Apt92] K. Apt, editor. Logic Programming: Proceedings of the Joint In-
ternational Conference and Symposium on Logic Programming,
MIT Press Series in Logic Programming, Washington, USA,
1992. The MIT Press.

[ASS+88] A. Aiba, K. Sakai, Y. Sato, D. J. Hawley, and R. Hasegawa. The
constraint logic programming language CAL. In Proceedings
of the International Conference on Fifth Generation Computer
Systems (FGCS’88), pages 263–276, Tokyo, Japan, 1988. ICOT.

[Bag92] R. Bagnara. Interpretazione astratta di linguaggi logici con
vincoli su domini finiti. M.Sc. dissertation, University of Pisa,
July 1992. In Italian.

[Bag94] R. Bagnara. On the detection of implicit and redundant numeric
constraints in CLP programs. In M. Alpuente, R. Barbuti, and
I. Ramos, editors, Proceedings of the “1994 Joint Conference
on Declarative Programming (GULP-PRODE ’94)”, pages 312–
326, Peñ́ıscola, Spain, September 1994.

[Bag95a] R. Bagnara. Constraint systems for pattern analysis of con-
straint logic-based languages. In M. Alpuente and M. I. Sessa,
editors, Proceedings of the “1995 Joint Conference on Declar-
ative Programming (GULP-PRODE ’95)”, pages 581–592, Ma-
rina di Vietri, Italy, September 1995.

[Bag95b] R. Bagnara. A unified proof for the convergence of Jacobi and
Gauss-Seidel methods. SIAM Review, 37(1):93–97, 1995.

[Bag96a] R. Bagnara. A hierarchy of constraint systems for data-flow
analysis of constraint logic-based languages. Technical Re-
port TR-96-10, Dipartimento di Informatica, Università di Pisa,
1996.

[Bag96b] R. Bagnara. A reactive implementation of Pos using ROBDDs.
In Kuchen and Swierstra [KS96], pages 107–121.

[Bag96c] R. Bagnara. Straight ROBDDs are not the best for Pos. In
P. Lucio, M. Martelli, and M. Navarro, editors, Proceedings
of the “1996 Joint Conference on Declarative Programming
(APPIA-GULP-PRODE ’96)”, pages 493–496, Donostia-San
Sebastián, Spain, July 1996.

[Bag97] R. Bagnara. A hierarchy of constraint systems for data-flow
analysis of constraint logic-based languages. To appear in Sci-
ence of Computer Programming. The full version is available
in [Bag96a]. A previous version of this work was published in
[Bag95a], 1997.



Bibliography 247

[BCSZ96] R. Bagnara, M. Comini, F. Scozzari, and E. Zaffanella. The
AND-compositionality of CLP computed answer constraints.
In P. Lucio, M. Martelli, and M. Navarro, editors, Proceed-
ings of the “1996 Joint Conference on Declarative Program-
ming (APPIA-GULP-PRODE ’96)”, pages 355–366, Donostia-
San Sebastián, Spain, July 1996.

[BDM92] P. Bigot, S. K. Debray, and K. Marriott. Understanding finite-
ness analysis using abstract interpretation. In Apt [Apt92],
pages 735–749.

[BGL92] R. Bagnara, R. Giacobazzi, and G. Levi. Static analysis of CLP
programs over numeric domains. In M. Billaud, P. Castéran,
MM. Corsini, K. Musumbu, and A. Rauzy, editors, Actes
“Workshop on Static Analysis ’92”, volume 81–82 of Bigre,
pages 43–50, Bordeaux, September 1992. Atelier Irisa, IRISA
Campus de Beaulieu. Extended abstract.

[BGL93] R. Bagnara, R. Giacobazzi, and G. Levi. An application of
constraint propagation to data-flow analysis. In Proceedings
of “The Ninth Conference on Artificial Intelligence for Appli-
cations”, pages 270–276, Orlando, Florida, March 1993. IEEE
Computer Society Press, Los Alamitos, CA.

[Ble74] W. W. Bledsoe. The sup-inf method in Presburger arithmetic.
Memo ATP-18, Math. Dept., University of Texas at Austin,
Austin, 1974.

[BM83] R. Barbuti and A. Martelli. A structured approach to seman-
tics correctness. Science of Computer Programming, 3:279–311,
1983.

[BMSU86] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic
sets and other strange ways to implement logic programs. In
Proceedings of the ACM Symposium on Principles of Database
Systems, pages 1–15, 1986.

[BMV94] F. Benhamou, D. McAllester, and P. Van Hentenryck.
CLP(intervals) revisited. In Bruynooghe [Bru94], pages 124–
138.

[Bou92] F. Bourdoncle. Abstract interpretation by dynamic partition-
ing. Journal of Functional Programming, 2(4):407–435, 1992.

[Bou93] F. Bourdoncle. Sémantiques des langages impératifs d’ordre
supérieur et interprétation abstraite. Technical Report PRL
Research Report 22, DEC Paris Research Laboratory, 1993.



248 Bibliography

[BR87] C. Beeri and R. Ramakrishnan. On the power of Magic. In Pro-
ceedings of the ACM-SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, 1987.

[Bru94] M. Bruynooghe, editor. Logic Programming: Proceedings of
the 1994 International Symposium, MIT Press Series in Logic
Programming, Ithaca, NY, USA, 1994. The MIT Press.

[Bry86] R. E. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Transactions on Computers, C-35(8):677–
691, August 1986.

[Bry92] R. E. Bryant. Symbolic boolean manipulation with ordered
binary-decision diagrams. ACM Computing Surveys, 24(3):293–
318, September 1992.

[BS81] S. Burris and H. P. Sankappanavar. A Course in Universal
Algebra. Springer-Verlag, Berlin, 1981.

[Cap93] Olga Caprotti. RISC-CLP(R-Trees): RISC-CLP(Real) handles
symbolic functions. In A. Miola, editor, DISCO’93: Interna-
tional Symposium on Design and Implementation of Symbolic
Computation Systems. Springer-Verlag, Berlin, 1993.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In Proceedings of the Fourth
Annual ACM Symposium on Principles of Programming Lan-
guages, pages 238–252, 1977.

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In Proceedings of the Sixth Annual ACM Sympo-
sium on Principles of Programming Languages, pages 269–282,
1979.

[CC92a] P. Cousot and R. Cousot. Abstract interpretation and ap-
plications to logic programs. Journal of Logic Programming,
13(2&3):103–179, 1992.

[CC92b] P. Cousot and R. Cousot. Abstract interpretation frameworks.
Journal of Logic and Computation, 2(4):511–547, 1992.

[CC92c] P. Cousot and R. Cousot. Comparing the Galois connection
and widening/narrowing approaches to abstract interpretation.
In M. Bruynooghe and M. Wirsing, editors, Proceedings of the
4th International Symposium on Programming Language Im-
plementation and Logic Programming, volume 631 of Lecture



Bibliography 249

Notes in Computer Science, pages 269–295, Leuven, Belgium,
1992. Springer-Verlag, Berlin.

[CC95] P. Cousot and R. Cousot. Compositional and inductive semantic
definitions in fixpoint, equational, constraint, closure-condition,
rule-based and game theoretic form. In P. Wolper, editor, Pro-
ceedings of the 7th International Conference on Computer-Aided
Verification (CAV ’95), volume 939 of Lecture Notes in Com-
puter Science, pages 293–308. Springer-Verlag, Berlin, 1995. In-
vited paper.

[CD93] M. Codish and B. Demoen. Analysing logic programs using
“Prop”-ositional logic programs and a magic wand. In D. Miller,
editor, Logic Programming: Proceedings of the 1993 Interna-
tional Symposium, pages 114–129, Vancouver, Canada, 1993.
The MIT Press.

[CDY90] M. Codish, D. Dams, and E. Yardeni. Bottom-up abstract inter-
pretation of logic programs. Technical Report CS90-24, Weiz-
mann Institute of Science, Dept of appl. maths and comp. sci.,
1990.

[CDY94] M. Codish, D. Dams, and E. Yardeni. Bottom-up abstract in-
terpretation of logic programs. Theoretical Computer Science,
124(1):93–125, 1994. An earlier version of this work appeared
in [CDY90].

[CF92] P. Codognet and G. Filé. Computations, abstractions and con-
straints. In Proceedings of the Fourth IEEE International Con-
ference on Computer Languages. IEEE Computer Society Press,
1992.

[CFW91] A. Cortesi, G. Filé, and W. Winsborough. Prop revisited:
Propositional formula as abstract domain for groundness anal-
ysis. In Proc. Sixth IEEE Symp. on Logic In Computer Science,
pages 322–327. IEEE Computer Society Press, 1991.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear
restraints among variables of a program. In Proceedings of the
Fifth Annual ACM Symposium on Principles of Programming
Languages, pages 84–96, 1978.

[CH93] B. Le Charlier and P. Van Hentenryck. Groundness analysis
for Prolog: Implementation and evaluation of the domain Prop.
In Proceedings of the ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, pages
99–110. ACM Press, 1993.



250 Bibliography

[CJH94] B. Carlson, S. Janson, and S. Haridi. AKL(FD): A concurrent
language for FD programming. In Bruynooghe [Bru94], pages
521–535.

[CL94] C. K. Chiu and J. H. M. Lee. Towards practical interval con-
straint solving in logic programming. In Bruynooghe [Bru94],
pages 109–123.

[Cle87] J. G. Cleary. Logical arithmetic. Future Computing Systems,
2(2):125–149, 1987.

[CLV93] A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Concep-
tual and software support for abstract domain design: Generic
structural domain and open product. Technical Report CS-93-
13, Brown University, Providence, RI, 1993.

[CLV94] A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Combina-
tions of abstract domains for logic programming. In Conference
Record of POPL ’94: 21st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 227–239,
Portland, Oregon, 1994.

[Col82] A. Colmerauer. Prolog and Infinite Trees. In K. L. Clark and
S. Å. Tärnlund, editors, Logic Programming, APIC Studies in
Data Processing, volume 16, pages 231–251. Academic Press,
New York, 1982.

[Col84] A. Colmerauer. Equations and inequations on finite and infinite
trees. In Proceedings of the International Conference on Fifth
Generation Computer Systems (FGCS’84), pages 85–99, Tokyo,
Japan, 1984. ICOT.

[Col90] A. Colmerauer. An introduction to Prolog-III. Communications
of the ACM, 33(7):69–90, 1990.

[Cou78] P. Cousot. Méthodes itératives de construction et
d’approximation de points fixes d’opérateurs monotones
sur un treillis, analyse sémantique de programmes. Thèse
d’Ètat, Université Scientifique et Médicale de Grenoble,
Grenoble, France, March 1978.

[Cou96] P. Cousot. Efficient narrowing strategies. Personal communica-
tion, September 1996.

[CRR92] T. Chen, I. V. Ramakrishnan, and R. Ramesh. Multistage
indexing algorithms for speeding Prolog execution. In Apt
[Apt92], pages 639–653.



Bibliography 251

[Dar91] P. W. Dart. On derived dependencies and connected databases.
Journal of Logic Programming, 11(1&2):163–188, 1991.

[Dav87] E. Davis. Constraint propagation with interval labels. Artificial
Intelligence, 32:281–331, 1987.

[DC93] D. Diaz and P. Codognet. A minimal extension of the WAM
for clp(FD). In D. S. Warren, editor, Proc. Tenth Int’l Conf.
on Logic Programming, pages 774–790. The MIT Press, 1993.

[DE73] G. B. Dantzig and B. C. Eaves. Fourier-Motzkin elimination
and its dual. Journal of Combinatorial Theory (A), 14:288–
297, 1973.

[Dea85] T. Dean. Temporal imagery: An approach to reasoning about
time for planning and problem solving. Technical Report 433,
Yale University, New Haven, CT, 1985.

[Deb89] S. K. Debray. Static inference of modes and data dependencies
in logic programs. ACM Transactions on Programming Lan-
guages and Systems, 11(3):418–450, 1989.

[DJBC93] V. Dumortier, G. Janssens, M. Bruynooghe, and M. Codish.
Freeness analysis in the presence of numerical constraints. In
Tenth International Conference on Logic Programming, pages
100–115. The MIT Press, June 1993.

[DR94] S. K. Debray and R. Ramakrishnan. Abstract interpretation of
logic programs using magic transformations. Journal of Logic
Programming, 18(2):149–176, 1994.

[DRRS93] S. Dawson, C. R. Ramakrishnan, I. V. Ramakrishnan, and R. C.
Sekar. Extracting determinacy in logic programs. In Warren
[War93], pages 424–438.

[DVS+88] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun,
T. Graf, and F. Berthier. The constraint logic programming
language CHIP. In Proceedings of the International Conference
on Fifth Generation Computer Systems (FGCS’88), pages 693–
702, Tokyo, Japan, 1988. ICOT.

[EF92] I. Z. Emiris and R. J. Fateman. Towards an efficient imple-
mentation of interval arithmetic. Technical Report UCB/CSD
92/693, Computer Science Division (EECS), University of Cal-
ifornia at Berkeley, 1992.

[FGMP95] M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi.
Confluence and concurrent constraint programming. In V. S.



252 Bibliography

Alagar and M. Nivat, editors, Proceedings of the Fourth In-
ternational Conference on Algebraic Methodology and Software
Technology (AMAST’95), volume 936 of Lecture Notes in Com-
puter Science, pages 531–545. Springer-Verlag, Berlin, 1995.

[Fik70] R. E. Fikes. REF-ARF: A system for solving problems stated
as procedures. Artificial Intelligence, 1:27–120, 1970.

[FR94] G. Filé and F. Ranzato. Improving abstract interpretations
by systematic lifting to the powerset. In Bruynooghe [Bru94],
pages 655–669.

[Fre78] E. C. Freuder. Synthesizing constraint expressions. Communi-
cations of the ACM, 21(11):958–966, 1978.

[GDL92] R. Giacobazzi, S. K. Debray, and G. Levi. A generalized se-
mantics for constraint logic programs. In Proceedings of the In-
ternational Conference on Fifth Generation Computer Systems
(FGCS’92), pages 581–591, Tokyo, Japan, 1992. ICOT.

[GDL95] R. Giacobazzi, S. K. Debray, and G. Levi. Generalized seman-
tics and abstract interpretation for constraint logic programs.
Journal of Logic Programming, 25(3):191–247, 1995.

[GHK+80] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mis-
love, and D. S. Scott. A Compendium of Continuous Lattices.
Springer-Verlag, Berlin, 1980.

[GM92] M. Gabbrielli and M. C. Meo. Fixpoint semantics for partial
computed answer substitutions and call patterns. In H. Kirch-
ner and G. Levi, editors, Algebraic and Logic Programming,
Proceedings of the Third International Conference, volume 632
of Lecture Notes in Computer Science, pages 84–99, Volterra,
Italy, 1992. Springer-Verlag, Berlin.

[GPR95] R. Giacobazzi, C. Palamidessi, and F. Ranzato. Weak
relative pseudo-complements of closure operators. Techni-
cal Report LIX/RR/95/04, Laboratoire d’Informatique, École
Polytechnique, Paris, 1995. Available on WWW at URL
http://www.di.unipi.it/~giaco.

[GR96] R. Giacobazzi and F. Ranzato. Compositional optimization of
disjunctive abstract interpretations. In H. R. Nielson, editor,
Proceedings of the 1996 European Symposium on Programming,
volume 1058 of Lecture Notes in Computer Science, pages 141–
155. Springer-Verlag, Berlin, 1996.



Bibliography 253

[Han93] M. Hanus. Analysis of nonlinear constraints in CLP(R). In
Warren [War93], pages 83–99.

[Han96] M. Handjieva. Stan: A static analyzer for CLP(R) based on ab-
stract interpretation. In R. Cousot and D. A. Schmidt, editors,
Static Analysis: Proceedings of the 3rd International Sympo-
sium, volume 1145 of Lecture Notes in Computer Science, pages
383–384, Aachen, Germany, 1996. Springer-Verlag, Berlin. Sys-
tem description.

[HCC95] P. Van Hentenryck, A. Cortesi, and B. Le Charlier. Evaluation
of the domain PROP. Journal of Logic Programming, 23(3):237–
278, 1995. Extended version of [CH93].

[Hic94] T. Hickey. CLP(F) and constrained ODE’s. In Proceedings of
the 1994 Workshop on Constraints and Modelling, Ithaca, USA,
1994.

[HM89] T. Hickey and S. Mudambi. Global compilation of Prolog. Jour-
nal of Logic Programming, 7(3):193–230, 1989.

[HMO91] R. Helm, K. Marriott, and M. Odersky. Spatial query opti-
mization: from boolean constraints to range queries. Technical
Report RC 17231, IBM Research Division, T. J. Watson Re-
search Center, Yorktown Heights, 1991.

[Hol95] C. Holzbaur. OFAI clp(q,r) manual, edition 1.3.3. Technical
Report TR-95-09, Austrian Research Institute for Artificial In-
telligence, Vienna, 1995.

[Hon92] H. Hong. Non-linear real constraints in constraint logic pro-
gramming. In H. Kirchner and G. Levi, editors, Algebraic
and Logic Programming, Proceedings of the Third International
Conference, volume 632 of Lecture Notes in Computer Science,
pages 201–212, Volterra, Italy, 1992. Springer-Verlag, Berlin.

[Hon93] H. Hong. RISC-CLP(Real): Logic programming with non-linear
constraints over the reals. In F. Benhamou and A. Colmerauer,
editors, Constraint Logic Programming: Selected Research. The
MIT Press, 1993.

[HSS+92] W. Havens, S. Sidebottom, G. Sidebottom, J. Jones, and
R. Ovans. Echidna: a constraint logic programming shell. In
Proceedings of the 1992 Pacific Rim International Conference
on Artificial Intelligence, Seoul, 1992.



254 Bibliography

[Jan94] S. Janson. AKL - A Multiparadigm Programming Language.
PhD thesis, Uppsala University, Sweden, June 1994. Also avail-
able in the SICS Dissertation Series: SICS/D–14–SE.

[JB92] G. Janssens and M. Bruynooghe. Deriving descriptions of pos-
sible values of program variables by means of abstract interpre-
tation. Journal of Logic Programming, 13(2&3):205–258, 1992.

[JBE94] G. Janssens, M. Bruynooghe, and V. Englebert. Abstracting
numerical values in CLP(H, N). In M. Hermenegildo and J. Pen-
jam, editors, Proc. Sixth Int’l Symp. on Programming Language
Implementation and Logic Programming, volume 844 of Lecture
Notes in Computer Science, pages 400–414. Springer-Verlag,
Berlin, 1994.

[JL87] J. Jaffar and J.-L. Lassez. Constraint logic programming.
In Proceedings of the Fourteenth Annual ACM Symposium on
Principles of Programming Languages, pages 111–119. ACM
Press, 1987.

[JL89] D. Jacobs and A. Langen. Accurate and efficient approxima-
tion of variable aliasing in logic programs. In E. L. Lusk and
R. A. Overbeek, editors, Logic Programming: Proceedings of the
North American Conference, MIT Press Series in Logic Pro-
gramming, pages 154–165, Cleveland, Ohio, USA, 1989. The
MIT Press.

[JM87] J. Jaffar and S. Michaylov. Methodology and implementation
of a CLP system. In J.-L. Lassez, editor, Proceedings of the
Fourth International Conference on Logic Programming, MIT
Press Series in Logic Programming, pages 196–218, Melbourne,
Australia, 1987. The MIT Press.

[JM94] J. Jaffar and M. Maher. Constraint logic programming: A sur-
vey. Journal of Logic Programming, 19&20:503–582, 1994.

[JMM91] N. Jørgensen, K. Marriot, and S. Michaylov. Some global
compile-time optimizations for CLP(R). In Saraswat and Ueda
[SU91], pages 420–434.

[JMSY92a] J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. An abstract
machine for CLP(R). In Proceedings of the ACM SIGPLAN’92
Conference on Programming Language Design and Implementa-
tion, volume 27 of SIGPLAN Notices, pages 128–139, San Fran-
cisco, California, 1992. Association for Computing Machinery.



Bibliography 255

[JMSY92b] J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(R)
language and system. ACM Transactions on Programming Lan-
guages and Systems, 14(3):339–395, 1992.

[JS87] N. D. Jones and H. Søndergaard. A semantics-based frame-
work for the abstract interpretation of Prolog. In S. Abramsky
and C. Hankin, editors, Abstract Interpretation of Declarative
Languages, chapter 6, pages 123–142. Ellis Horwood Ltd, West
Sussex, England, 1987.

[Kan90] T. Kanamori. Abstract interpretation based on Alexander tem-
plates. Technical Report TR-549, ICOT, Tokyo, Japan, 1990.

[Kan93] T. Kanamori. Abstract interpretation based on Alexander tem-
plates. Journal of Logic Programming, 15(1&2):31–54, 1993.
An earlier version of this work appeared in [Kan90].

[KB88] R. A. Kowalski and K. A. Bowen, editors. Logic Programming:
Proceedings of the Fifth International Conference and Sympo-
sium on Logic Programming, MIT Press Series in Logic Pro-
gramming, Seattle, USA, 1988. The MIT Press.

[Kei94] T. Keisu. Tree Constraints. PhD thesis, The Royal Institute of
Technology, Stockholm, Sweden, May 1994. Also available in
the SICS Dissertation Series: SICS/D–16–SE.

[KM81] U. W. Kulisch and W. L. Miranker. Computer Arithmetic in
Theory and Practice. Academic Press, New York, 1981.

[Knu80] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of
Computer Programming. Addison-Wesley, second edition, 1980.

[KS96] H. Kuchen and S. D. Swierstra, editors. Programming Lan-
guages: Implementations, Logics and Programs, Proceedings of
the Eighth International Symposium, volume 1140 of Lecture
Notes in Computer Science, Aachen, Germany, 1996. Springer-
Verlag, Berlin.

[Lag85] J. C. Lagarias. The computational complexity of simultaneous
Diophantine approximation problems. SIAM Journal of Com-
puting, 14(1):196–209, 1985.

[LCVH92] B. Le Charlier and P. Van Hentenryck. Experimental evaluation
of a generic abstract interpretation algorithm for Prolog. In
Proceedings of the Fourth IEEE International Conference on
Computer Languages, pages 137–146. IEEE Computer Society
Press, 1992.



256 Bibliography

[LL94] J. H. M. Lee and T. W. Lee. A WAM-based abstract machine for
interval constraint logic programming and the multiple-trailing
problem. In Proceedings of the Sixth IEEE International Con-
ference on Tools with Artificial Intelligence, New Orleans, 1994.

[LM95] G. Levi and D. Micciancio. Analysis of pure PROLOG pro-
grams. In M. Alpuente and M. I. Sessa, editors, Proceed-
ings of the “1995 Joint Conference on Declarative Programming
(GULP-PRODE ’95)”, pages 521–532, Marina di Vietri, Italy,
September 1995.

[LMM88] J.-L. Lassez, M. J. Maher, and K. Marriott. Unification revis-
ited. In J. Minker, editor, Foundations of Deductive Databases
and Logic Programming, pages 587–625. Morgan Kaufmann,
Los Altos, Ca., 1988.

[LMY87] C. Lassez, K. McAloon, and R. Yap. Constraint logic program-
ming and option trading. IEEE Expert, 2(3), 1987.

[Mac77] A. K. Mackworth. Consistency in networks of relations. Artifi-
cial Intelligence, 8:99–118, 1977.

[Mel85] C. S. Mellish. Some global optimizations for a Prolog compiler.
Journal of Logic Programming, 2(1):43–66, 1985.

[MF85] A. K. Mackworth and E. C. Freuder. The complexity of some
polynomial network consistency algorithms for constraint satis-
faction problems. Artificial Intelligence, 25:65–74, 1985.

[Mon74] U. Montanari. Networks of constraints: Fundamental properties
and applications to picture processing. Information Sciences,
7:95–132, 1974.

[Moo66] R. E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs,
NJ, 1966.

[MS88] K. Marriott and H. Søndergaard. On describing success pat-
terns of logic programs. Technical Report 12, The University of
Melbourne, 1988.

[MS93] K. Marriott and H. Søndergaard. Precise and efficient ground-
ness analysis for logic programs. ACM Letters on Programming
Languages and Systems, 2(4):181–196, 1993.

[Mus90] K. Musumbu. Interprétation Abstraite des Programmes Prolog.
PhD thesis, Facultés Universitaires Notre-Dame de la Paix –
Namur Institut d’Informatique, Belgium, September 1990.



Bibliography 257

[Nil91] U. Nilsson. Abstract interpretation: A kind of Magic. In
J. Ma luszyński and M. Wirsing, editors, Proceedings of the
3rd International Symposium on Programming Language Im-
plementation and Logic Programming, volume 528 of Lecture
Notes in Computer Science, pages 299–310, Passau, Germany,
1991. Springer-Verlag, Berlin.

[NRC94] Academic careers for experimental computer scientists and engi-
neers. Report of the Committee on Academic Careers for Exper-
imental Computer Scientists, Computer Science and TeleCom-
munication Board, Commission on Physical Sciences, Mathe-
matics, and Applications — U.S.A. National Research Council,
1994.

[OV93] W. Older and A. Vellino. Constraints arithmetic on real inter-
vals. In F. Benhamou and A. Colmerauer, editors, Constraint
Logic Programming: Selected Research. The MIT Press, 1993.

[PB94] G. Pesant and M. Boyer. QUAD-CLP(R): Adding the power
of quadratic constraints. In A. Borning, editor, Principles and
Practice of Constraint Programming: Proceedings of the Second
International Workshop, volume 874 of Lecture Notes in Com-
puter Science, pages 95–108, Rosario, Orcas Island, USA, 1994.
Springer-Verlag, Berlin.

[Pug92] W. Pugh. A practical algorithm for exact array dependence
analysis. Communications of the ACM, 35(8):102–114, 1992.

[Ram88] R. Ramakrishnan. Magic Templates: A spellbinding approach
to logic programs. In Kowalski and Bowen [KB88], pages 140–
159.

[Ric68] D. Richardson. Some undecidable problems involving elemen-
tary functions of a real variable. Journal of Symbolic Logic,
33:514–520, 1968.

[RRW90] R. Ramesch, I. V. Ramakrishnan, and D. S. Warren. Automata-
driven indexing of Prolog clauses. In Proceedings of the Seven-
teenth Annual ACM Symposium on Principles of Programming
Languages, pages 281–290, 1990.

[SA89] K. Sakai and A. Aiba. CAL: A theoretical background of con-
straint logic programming and its applications. Journal of Sym-
bolic Computation, 8:589–603, 1989.

[Sar92] V. A. Saraswat. The category of constraint systems is Cartesian-
closed. In Proceedings, Seventh Annual IEEE Symposium on



258 Bibliography

Logic in Computer Science, pages 341–345, Santa Cruz, Cali-
fornia, 1992. IEEE Computer Society Press.

[Sar93] V. A. Saraswat. Concurrent Constraint Programming. The MIT
Press, Cambridge, Mass., 1993.

[Sch96] E. Schön. On the computation of fixpoints in static program
analysis with an application to analysis of AKL. Technical Re-
port R95:06, Swedish Institute of Computer Science, 1996.

[Sco82] D. Scott. Domains for denotational semantics. In M. Nielsen
and E. M. Schmidt, editors, Proc. ninth Int. Coll. on Au-
tomata, Languages and Programming, volume 140 of Lecture
Notes in Computer Science, pages 577–613. Springer-Verlag,
Berlin, 1982.

[Scu96] M. C. Scudellari. Analisi bottom-up di programmi logici con
vincoli basata su trasformazioni Magic-Set. M.Sc. dissertation,
R. Bagnara and G. Levi supervisors, University of Pisa, April
1996. In Italian.

[Sho77] R. E. Shostak. On the SUP-INF method in for proving Pres-
burger formulas. Journal of the ACM, 24(4):529–543, 1977.

[Sho81] R. E. Shostak. Deciding linear inequalities by computing loop
residues. Journal of the ACM, 28(4):769–779, 1981.

[SIC95] Swedish Institute of Computer Science, Programming Systems
Group. SICStus Prolog User’s Manual, release 3 #0 edition,
1995.

[Sim83] R. Simmons. Representing and reasoning about change in geo-
logic interpretation. Technical Report 749, MIT AI Laboratory,
1983.

[Sim86] R. Simmons. Commonsense arithmetic reasoning. In T. Kehler
and S. Rosenschein, editors, Proceedings of the Fifth National
Conference on Artificial Intelligence (AAAI-86), volume 1,
pages 118–124, Philadelphia, PA, 1986. AAAI Press / The MIT
Press. Distributed by Morgan Kaufmann.

[SRP91] V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic foun-
dation of concurrent constraint programming. In Proceedings of
the Eighteenth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 333–353. Association for Comput-
ing Machinery, 1991.



Bibliography 259

[SS80] G. J. Sussman and G. L. Steele. Constraints: a language
for expressing almost hierarchical descriptions. Artificial Intel-
ligence, 14(1):1–39, 1980.

[ST84] T. Sato and H. Tamaki. Enumeration of success patterns in logic
programs. Theoretical Computer Science, 34:227–240, 1984.

[SU91] V. Saraswat and K. Ueda, editors. Logic Programming: Pro-
ceedings of the 1991 International Symposium, MIT Press Series
in Logic Programming, San Diego, USA, 1991. The MIT Press.

[Sut63] I. E. Sutherland. Sketchpad: A man-machine graphical com-
munication system. Technical Report 296, MIT Lincoln Labs,
1963.

[Tay90] A. Taylor. LIPS on a MIPS: Results from a Prolog compiler
for a RISC. In D. H. D. Warren and P. Szeredi, editors, Logic
Programming: Proceedings of the Seventh International Con-
ference on Logic Programming, MIT Press Series in Logic Pro-
gramming, pages 174–185, Jerusalem, Israel, 1990. The MIT
Press.

[VCL94] P. Van Hentenryck, A. Cortesi, and B. Le Charlier. Type analy-
sis of Prolog using type graphs. In Proceedings of the ACM SIG-
PLAN’94 Conference on Programming Language Design and
Implementation, volume 29 of SIGPLAN Notices, pages 337–
348, Orlando, Florida, 1994. Association for Computing Ma-
chinery.

[VD92] P. VanRoy and A. M. Despain. High-performance logic pro-
gramming with the Aquarius Prolog compiler. IEEE Computer,
25(1):54, 1992.

[Ver83] S. Vere. Planning in time: Windows and durations for activities
and goals. IEEE Trans. Patt. Anal. Mach. Intell., 5(3):246–267,
1983.

[Vod88a] P. Voda. The constraint language Trilogy: Semantics and com-
putation. Technical report, Complete Logic Systems, North
Vancouver, BC, Canada, 1988.

[Vod88b] P. Voda. Types of Trilogy. In Kowalski and Bowen [KB88],
pages 580–589.

[VSD92a] P. Van Hentenryck, A. V. Saraswat, and Y. Deville. Constraint
logic programming over finite domains: the design, implemen-
tation, and applications of cc(fd). Technical report, Brown
University, Providence, RI, 1992.



260 Bibliography

[VSD92b] P. Van Hentenryck, H. Simonis, and M. Dincbas. Constraint
satisfaction using constraint logic programming. Artificial In-
telligence, 58:113–159, 1992.

[Wal75] D. Waltz. Understanding line drawings of scenes with shad-
ows. In P. Winston, editor, The Psychology of Computer Vision,
chapter 2. McGraw-Hill, New York, 1975.

[War62] S. Warshall. A theorem on boolean matrices. Journal of the
ACM, 9(1):11–12, 1962.

[War75] H. S. Warren. A modification of Warshall’s algorithm for the
transitive closure of binary relations. Communications of the
ACM, 18(4):218–220, 1975.

[War83] D. H. Warren. An abstract Prolog instruction set. Technical
Report Note 309, SRI International, 1983.

[War93] D. S. Warren, editor. Logic Programming: Proceedings of the
Tenth International Conference on Logic Programming, MIT
Press Series in Logic Programming, Budapest, Hungary, 1993.
The MIT Press.

[WW96] G. Weyer and W. Winsborough. Annotated structure shape
graphs for abstract analysis of Prolog. In Kuchen and Swierstra
[KS96], pages 92–106.

[Yem79] Y. Yemini. Some theoretical aspects of position-location prob-
lems. In Proceedings of the 20th Symposium on the Foundations
of Computer Science, pages 1–7, 1979.

[Zaf95] E. Zaffanella. Sharing correctness. Personal communication,
December 1995.


