
Symbolic Path-Oriented Test Data Generation for Floating-Point Programs

Roberto Bagnara∗, Matthieu Carlier†, Roberta Gori‡, Arnaud Gotlieb§
∗BUGSENG srl and Department of Mathematics and Computer Science, University of Parma, Italy

Email: roberto.bagnara@bugseng.com
†INRIA Rennes Bretagne Atlantique, France

‡Department of Computer Science, University of Pisa, Italy
Email: gori@di.unipi.it

§Certus Software V&V Center, SIMULA Research Laboratory, Norway
Email: arnaud@simula.no

Abstract—Verifying critical numerical software involves the
generation of test data for floating-point intensive programs. As
the symbolic execution of floating-point computations presents
significant difficulties, existing approaches usually resort to
random or search-based test data generation. However, without
symbolic reasoning, it is almost impossible to generate test
inputs that execute many paths with floating-point compu-
tations. Moreover, constraint solvers over the reals or the
rationals do not handle the rounding errors. In this paper,
we present a new version of FPSE, a symbolic evaluator for
C program paths, that specifically addresses this problem. The
tool solves path conditions containing floating-point computa-
tions by using correct and precise projection functions. This
version of the tool exploits an essential filtering property based
on the representation of floating-point numbers that makes
it suitable to generate path-oriented test inputs for complex
paths characterized by floating-point intensive computations.
The paper reviews the key implementation choices in FPSE
and the labeling search heuristics we selected to maximize the
benefits of enhanced filtering. Our experimental results show
that FPSE can generate correct test inputs for selected paths
containing several hundreds of iterations and thousands of
executable floating-point statements on a standard machine:
this is currently outside the scope of any other symbolic-
execution test data generator tool.

I. INTRODUCTION

During the last decade, the use of floating-point com-
putations in the design of critical systems has become
increasingly acceptable. Even in the civil and military avion-
ics domain, which are among the most critical domains
for software, floating-point numbers are now seen as a
sufficiently-safe, faster and cheaper alternative to fully-
controlled, implementation-based fixed-point arithmetic.

Acceptance of floating-point computations in the design of
critical systems took a long time. In fact, rounding errors are
difficult to predict and control, and can lead to catastrophic
failures. For instance, during the first Persian Gulf War, the
failure of a Patriot missile battery in Dhahran was traced to
an accumulating rounding error in the continuous execution
of tracking and guidance software, causing the death of
several civilians [26]. A careful analysis of this failure
revealed that, even though the rounding error obtained at

each step of the floating-point computation was very small,
the propagation during a long loop-iterating path could lead
to dramatic imprecision.

Adoption of floating-point computations in critical sys-
tems involves the use of thorough unit testing procedures
that are able to exercise complex chains of floating-point
operations. In particular, a popular practice among software
engineers in charge of the testing of floating-point-intensive
computations consists in executing carefully chosen loop-
iterating paths in programs. They usually pay more attention
to the paths that are most likely to expose the system to
unstable numerical computations. For critical systems, a
complementary requirement is to demonstrate the infeasi-
bility of certain paths, in order to convince a third-party
certification authority that certain unsafe behaviors of the
systems cannot be reached. As a consequence, software
engineers face two difficult problems:

1) How to accurately predict the expected output of a
given floating-point computation?1

2) How to find a test input that is able to exercise a given
path, the execution of which depends on the results of
floating-point computations, or to guarantee that such
a path is infeasible?

The first problem has been well addressed in the literature
[15] through several techniques, either based on multiple
related program executions [1], [9], or on statically-extracted
properties of programs [12], or on perturbation techniques
to evaluate the stability of a numerical program [27]. In
contrast, the second problem received only little attention.
Beyond the seminal work of W. Miller and D. L. Spooner
[23], who proposed to guide the search of floating-point
inputs to execute a selected path, few approaches try to
exactly reason about floating-point computations. The work
in [23] paved the way to the development of search-based
test data generation techniques, which consist in searching
test inputs by minimizing a cost function, evaluating the
distance between the currently executed path and a targeted
selected path [2], [14], [16], [20]. Although these techniques

1This is the the well-known oracle problem [28].

enable quick and efficient coverage of testing criteria such
as “all decisions,” they are unfortunately sensible to the
rounding-errors incurred in the computation of the branch
distance [2]. Moreover, search-based test data generation
cannot be used to study path feasibility, i.e., to decide
whether a possible execution path involving floating-point
computations is feasible or not in the program. In addition,
these techniques can be stuck in local minima without
being able to provide a meaningful result [2]. An approach
to tackle these problems combines program execution and
symbolic reasoning [10]. This kind of reasoning requires
solving constraints over floating-point numbers in order
to generate test inputs that exercise a selected behavior
of the program under test. However, solving floating-point
constraints is hard and requires dedicated filtering algorithms
[21], [22]. According to our knowledge, this approach
is currently implemented in four solvers only: ECLAIR2,
FPCS [5], FPSE3 [7], and Gatel, a test data generator for
Lustre programs [5], [18].

A promising approach to improve the filtering capabili-
ties of constraints over floating-point variables consists in
using some peculiar numerical properties of floating-point
numbers. For linear constraints, this led to a relaxation
technique where floating-point numbers and constraints are
converted into constraints over the reals by using linear
programming approaches [4]. For interval-based consistency
approaches, B. Marre and C. Michel identified a property
of the representation of floating-point numbers and pro-
posed to exploit it in filtering algorithms for addition and
subtraction constraints [19]. In [8], a reformulation of the
Marre-Michel property in terms of filtering by maximum
ULP (Units in the Last Place) was proposed in order to
ease its implementation in constraint solvers such as FPSE.
In addition, the authors sketched a generalization of the
property to multiplication and division constraints. This
paper is concerned with this challenge. More precisely, it
addresses the question of whether the Marre-Michel property
can be useful for the automatic solution of realistic test input
generation problems. The contributions of the paper are:

1) The filtering algorithm proposed in [19] for addition
and subtraction is reformulated and corrected.

2) The plan anticipated in [8] is brought to completion:
a uniform framework is thoroughly defined that gen-
eralizes the property identified by Marre and Michel
to the case of multiplication and division.

3) Our implementation of filtering by maximum ULP in
FPSE is presented and critical design choices (e.g., to
avoid slow convergence phenomena) are explained.

4) Experimental results are presented on constraint sys-
tems that have been extracted from programs engag-
ing into intensive floating-point computations. These

2http://bugseng.com/products/eclair
3http://www.irisa.fr/celtique/carlier/fpse.html

results show that the Marre-Michel property and its
generalization defined in this paper speed up the test
inputs generation process.

The rest of the paper is organized as follows. Next section
presents the IEEE 754 standard of binary floating-point
numbers and introduces the notations used throughout the
paper. Section III recalls the basic principles of interval-
based consistency techniques over floating-point variables
and constraints. Section IV presents our generalization of
the Marre-Michel property, while Section V details our
implementation of the property in FPSE. Section VI presents
our experimental results and analysis. Section VII discusses
related work and Section VIII concludes the paper.

II. PRELIMINARIES

A. IEEE 754
This section recalls the arithmetic model specified by the

IEEE 754 standard for binary floating-point arithmetic [13].
IEEE 754 binary floating-point formats are uniquely iden-

tified by: p ∈ N, the number of significant digits (precision);
emax ∈ N, the maximum exponent; emin ∈ N, the minimum
exponent (usually 1 − emax). The single precision format
has p = 24 and emax = 127, the double precision format
has p = 53 and emax = 1023 (IEEE 754 also defines
extended precision formats). An IEEE 754 floating-point
number z has the form (−1)sa.m × 2e where s is the
sign bit, a is the hidden bit, m is the significand and the
exponent e is also denoted by ez . Each format defines
several classes of numbers: normal numbers, subnormal
numbers, signed zeroes, infinities and NaNs (Not a Num-
ber). The smallest positive normal floating-point number
is fnormin = 1.0 · · · 0 × 2emin = 2emin and the largest is
fmax = 1.1 · · · 1×2emax = 2emax(2−21−p); normal numbers
have the hidden bit a = 1. The non-zero floating-point
numbers whose absolute value is less than 2emin are called
subnormals: they always have fewer than p significant digits
as their hidden bit is a = 0. Every finite floating-point
number is an integral multiple of the smallest subnormal
magnitude fmin = 0.0 · · · 01 × 2emin = 2emin+1−p. There
are two infinities, denoted by +∞ and −∞, and two signed
zeros, denoted by +0 and −0: they allow some algebraic
properties to be maintained [11]. NaNs are used to represent
the results of invalid computations such as a division or
a subtraction of two infinities. They allow the program
execution to continue without being halted by an exception.

IEEE 754 defines five rounding directions: toward neg-
ative infinity (down), toward positive infinity (up), toward
zero (chop) and toward the nearest representable value
(near); the latter comes into two flavors: tail-to-even or
tail-to-away in which values with even mantissa or values
away from zero are preferred, respectively. This paper is
only concerned with round-to-nearest, tail-to-even, which is,
by far, the most widely used. The round-to-nearest, tail-to-
even value of a real number x will be denoted by ◦(x).

http://bugseng.com/products/eclair
http://www.irisa.fr/celtique/carlier/fpse.html

All rounding modes are monotonic; in particular, for each
x, y ∈ R, x ≤ y implies ◦(x) ≤ ◦(y).

The most important requirement of IEEE 754 arithmetic
is the accuracy of floating-point computations: add, subtract,
multiply, divide, square root, remainder, conversion and
comparison operations must deliver to their destination the
exact result rounded as per the rounding mode in effect and
the format of the destination. It is said that these operations
are “exactly rounded.”

The accuracy requirement of IEEE 754 can still surprise
the average programmer: for example the single precision,
round-to-nearest addition of 999999995904 and 10000 (both
numbers can be exactly represented) gives 999999995904,
i.e., the second operand is absorbed. The maximum error
committed by representing a real number with a floating-
point number under some rounding mode can be expressed
in terms of the function ulp: R→ R [24]. Its value on 1.0
is about 10−7 for the single precision format.

The chop and near rounding modes are symmetric, i.e.,
the value after rounding does not depend on the sign: for
each x ∈ R, ◦(x) = −◦(−x).

B. Notation

R denotes the set of real numbers while Fp,emax
denotes

an idealized set of binary floating-point numbers, defined
from a given IEEE 754 format: this excludes subnormals and
NaNs, but includes −∞,+∞ and zeroes. This restriction al-
lows to considerably simplify the presentation (e.g., avoiding
all technical details concerning subnormals); yet, everything
can be generalized to any IEEE 754 binary floating-point
format [3]. The exposition is also much simplified by
allowing emax to be ∞, i.e., by considering an idealized
set of floats where the exponent is unbounded. F+

p,emax

denotes the “positive” subset of Fp,emax
, i.e., with s = 0.

When the format is clear from the context, a real decimal
constant (such as 1012) denotes the corresponding round-to-
nearest, tail-to-even floating-point value (i.e., 999999995904
for 1012). Henceforth, x+ (resp., x−) denotes the smallest
(resp., greatest) floating-point number strictly greater (resp.,
smaller) than x w.r.t. the considered IEEE 754 format. Of
course, we have fmax

+ = +∞ and (−fmax)− = −∞.
Binary arithmetic operations over the floats will be de-

noted by ⊕, 	, ⊗ and �, corresponding to +, −, · and /
over the reals, respectively. According to IEEE 754, they are
defined with the rounding operator ◦ by x⊕ y = ◦(x+ y),
x	 y = ◦(x− y), x⊗ y = ◦(x · y) and x� y = ◦(x/y). As
IEEE 754 floating-point numbers are closed by negation, we
will denote the negation of x ∈ Fp,emax

simply by −x. The
symbol � denotes any of ⊕, 	, ⊗ or �. A floating-point
variable x is associated to an interval of possible floating-
point values; we will write x ∈ [x,x], where x and x denote
the smallest and greatest value of the the interval, x ≤ x
and either x 6= +0 or x 6= −0.

III. BACKGROUND ON CONSTRAINT SOLVING OVER
FLOATING-POINT VARIABLES

A. Interval-based Consistency on Arithmetic Constraints
Program analysis usually starts with the generation

of an intermediate code representation in a form called
three-address code (TAC). In this form, complex arith-
metic expressions and assignments are decomposed into
sequences of assignment instructions of the form result :=
operand1 operator operand2. A further refinement con-
sists in the computation of the static single assignment form
(SSA) whereby, labeling each assigned variable with a fresh
name, assignments can be considered as if they were equality
constraints. For example, the TAC form of the floating-point
assignment z := z∗z+z is t := z∗z; z := t+z, which in
SSA form becomes t1 := z1 ∗ z1; z2 := t1 + z1, which, in
turn, can be regarded as the conjunction of the constraints
t1 = z1 ⊗ z1 and z2 = t1 ⊕ z1.

In an interval-based consistency approach to constraint
solving over the floats, constraints are used to iteratively
refine the intervals associated to each variable. A projection
is a function that, given a constraint and the intervals
associated to two of the variables occurring in it, computes a
possibly refined interval for the third variable (the projection
is said to be over the third variable). Taking z2 = t1⊕ z1 as
an example, the projection over z2 is called direct projection
(it goes in the same sense of the TAC assignment it comes
from), while the projections over t1 and z1 are called indirect
projections. Non-optimal projections for the four arithmetic
operations can be found in [7], [21].4

B. The Marre-Michel Property
In [19], Marre and Michel published an idea to improve

the filtering of the addition/subtraction projectors. This is
based on a property of the distribution of floating-point
numbers among the reals: the greater a float is, the greater
the distance between it and its immediate successor is.
More precisely, for a given float x with exponent ex, if
∆ = x+ − x, then for y of exponent ex + 1 we have
y+ − y = 2∆.

Proposition 3.1: [19, Proposition 1] Let z ∈ Fp,∞ be
such that 0 < z < +∞; let also

z = 1.b2 · · · bi

k︷ ︸︸ ︷
0 · · · 0× 2ez , with bi = 1;

α = 1.1 · · · 1× 2ez+k, with k = p− i;
β = α⊕ z.

Then, for each x, y ∈ Fp,∞, z = x 	 y implies x ≤ β and
y ≤ α. Moreover, β 	 α = β − α = z.

4E.g., for the constraint z = x⊕ y we have z = x⊕ y and z = x⊕ y
(direct), x = mid(z,z+) 	 y and x = mid(z,z−) 	 y (1st indirect),
y = mid(z,z+) 	 x and y = mid(z,z−) 	 x (2nd indirect). Here,
for finite x, y ∈ Fp,emax , we denote by mid(x, y) the number that is
exactly halfway between x and y; note that either mid(x, y) ∈ Fp,emax

or mid(x, y) ∈ Fp+1,emax .

z
α

α+ α++

β

β+

z

∆ 2∆ 2∆0

Figure 1. An illustration of the Marre-Michel property

This property, which can be generalized to subnormals,
can intuitively be explained on Figure 1 as follows. Let
z ∈ Fp,∞ be a strictly positive constant such that z =
x	 y, where x, y ∈ Fp,∞ are unknown. The Marre-Michel
property says that y cannot be greater than α. In fact, α
is carefully positioned so that α++ − α+ = 2(α+ − α),
eα + 1 = eβ and z = β − α; if we take y = α+ we need
x > β if we want z = x− y; however, the smallest element
of Fp,∞ that is greater than β, β+, is 2∆ away from β, i.e.,
too much. Going further with y does not help: if we take
y ≥ α+, then y − α is an odd multiple of ∆ (one ∆ step
from α to α+, all the subsequent steps being even multiples
of ∆), whereas for each x ≥ β, x−β is an even multiple of
∆. Hence, if y > α,

∣∣z−(x−y)
∣∣ ≥ ∆ = 2ez+1−i. However,

since k 6= p−1, z+− z = z− z− = 2ez+1−p ≤ ∆. The last
inequality, which holds because p ≥ i, implies z 6= x 	 y.
A similar reasoning allows to see that x cannot be greater
than β independently from the value of y.

In order to improve the filtering of the addition/subtraction
projectors, in [19], Marre and Michel presented an algorithm
to maximize the values of α and β over an interval. That
algorithm and the main ideas behind the work presented in
[19] will be revisited and discussed in detail in Section IV-C.

IV. FILTERING BY MAXIMUM ULP
This section reformulates the Marre-Michel property so as

to generalize it to multiplication and division. The filtering
algorithms that result from this generalization are collec-
tively called filtering by maximum ULP.

A. Upper Bound

For each floating-point operation � ∈ {⊕,	,⊗,�}, we
will define the sets F� ⊆ Fp,emax and F� ⊆ F+

p,∞. Then
we will define a function δ� : F� → F� satisfying the
following properties, for each z ∈ F� \ {−0,+0,−∞}:

∃y ∈ F� . δ�(z)� y = z; (1)

∀z′ ∈ F� : z′ > δ�(z) =⇒ @y ∈ F� . z′ � y = z. (2)

In words, δ�(z) is the greatest float in F� that can be the
left operand of � to obtain z. Remark that we may have
F� * Fp,emax

: properties (1) and (2) refer to an idealized
set of floating-point numbers with unbounded exponents.

Since we are interested in finding the upper bound of
δ�(z) for z ∈ [z,z], we need the following

Proposition 4.1: Let w, v1, . . . , vn ∈ F�\{−0,+0,−∞}
be such that, for each i = 1, . . . , n, δ�(w) ≥ δ�(vi). Then,

for each i = 1, . . . , n and w′ ∈ F� such that w′ > δ�(w),
there does not exist a float y ∈ F� such that w′ � y = vi.

Let z = x�y be a constraint where −0,+0,−∞ /∈ [z,z]
and let w ∈ [z,z] be such that δ�(w) ≥ δ�(v) for each
v ∈ [z,z]: then no element of x that is greater than δ�(w)
can participate to a solution of the constraint.

Dually, in order to refine the upper bound of y subject to
the constraint z = x� y, it is possible to define a function
δ
′
� that satisfies properties similar to (1) and (2). In this

paper we will focus on bounds for x only. Note, though,
that when � is commutative (i.e., ⊕ or ⊗), δ� = δ

′
�.

B. Lower bound

For computing the lower bound, we will introduce func-
tions δ� : F� → F� for each z ∈ F� \ {−0,+0,+∞}:

∃y ∈ F� . δ�(z)� y = z; (3)

∀z′ ∈ F� : z′ < δ�(z) =⇒ @y ∈ F� . z′ � y = z. (4)

These properties entail a result similar to Proposition 4.1:
given the constraint z = x� y where −0,+0,+∞ /∈ [z,z]
and w ∈ [z,z] such that δ�(w) ≤ δ�(v) for each v ∈ [z,z],
the float δ�(w) is a possibly refined lower bound for x.

C. Filtering by Maximum ULP on Addition/Subtraction

In this section we introduce the functions δ⊕ and δ⊕.
The functions δ	 and δ	 can be deduced by symmetry,
as explained in Section III-B and [19]. Using the Michel
and Marre property (Proposition 3.1) we formally define the
function δ⊕ as follows.

Definition 4.1: Let us define F⊕ = Fp,emax , F⊕ = F+
p,∞,

and let z ∈ F⊕ be such that |z| = 1.b2 · · · bi0 · · · 0 × 2ez ,
with bi = 1. Similarly to Proposition 3.1, let k = p − i,
α = 1.1 · · · 1× 2ez+k and β = α⊕ z. Then δ⊕ : F⊕ → F⊕
is defined, for each z ∈ F⊕, as follows:

δ⊕(z) =

+∞, if z = −∞ or z = +∞;
α, if −∞ < z < 0;
+0, if z = −0 or z = +0;
β, if 0 < z < +∞.

Theorem 4.1: δ⊕ is well-defined and satisfies (1) and (2).
The function δ⊕ : F⊕ → F⊕ is defined dually: for each

z ∈ F⊕ \ {−0,+0,+∞}, δ⊕(z) = − δ⊕(−z). It is easy
to see that properties (1) and (2) of δ⊕ entail properties (3)
and (4) of δ⊕.

We now need algorithms to maximize δ⊕ and minimize
δ⊕ over an interval of floating-point values. Since the two
problems are dual to each other, we will focus on the
maximization of δ⊕. As δ⊕ is not monotonic, a nontrivial
analysis of its range over an interval is required. When the
interval contains only finite, nonzero and positive (resp.,
negative) values, the range of δ⊕ has a simple shape. We
are thus brought to consider an interval [z,z] such that
z /∈ {−∞,−0,+0} and z /∈ {−0,+0,+∞} have the same
sign. We will now revisit and correct the algorithm proposed
by Michel and Marre in [19] to maximize δ⊕ over [z,z].

The idea presented in [19] is the following. When dealing
with an interval [z,z] with z > 0, α (and thus β and our
δ⊕) grows with the exponent and the number of successive
0 bits to the right of the mantissa, i.e., k in Proposition 3.1
and in Definition 4.1. Thus, maximizing these two criteria
allows to maximize α over the interval.

Definition 4.2: Let z be a variable over Fp,emax such
that z /∈ {−∞,−0,+0} and z /∈ {−0,+0,+∞} have the
same sign and z < z. Then µ⊕(z) ∈ Fp,emax

is given by
1.0 · · · 0 × 2ez , if ez 6= ez; otherwise we define µ⊕(z) =
1.b2 · · · bia0 · · · × 2ez , where, for some bi+1 6= b′i+1,

|z| = 1.b2 · · · bibi+1 · · · × 2ez ;

|z| = 1.b2 · · · bib′i+1 · · · × 2ez ;

a =

{
0, if 1.b2 · · · bi0 · · · 0× 2ez = |z|;
1, otherwise.

Theorem 4.2: Let z be as in Definition 4.2. Then, for
each z ∈ [z,z], δ⊕(z) ≤ δ⊕

(
µ⊕(z)

)
.

As we have already pointed out, the algorithm of Defini-
tion 4.2 is very similar to the algorithm presented in [19].
There is an importance difference, though: in the case when
z = 1.b2 · · · bibi+10 · · · 0× 2ez , z = 1.b2 · · · bib′i+1 · · ·× 2ez

and bj = 1, for some j ≤ i. In this case, the algorithm
of [19] returns 1.b2 · · · bi10 · · · 0× 2ez . Note, however, that
the value that maximizes α is z, which is different from
1.b2 · · · bi10 · · · 0× 2ez .

Definition 4.2 can be extended to intervals that include
subnormals [3], but not to intervals containing zeroes. So,
when z’s interval contains zeroes, only the classical filtering
is applied. For efficiency reasons, filtering by maximum ULP
is only applied when δ⊕

(
µ⊕(z)

)
≤ fmax so as to avoid the

use of wider floating-point formats.
Example 4.1: Consider z = x⊕y with z ∈ [1.0, 2.0], x ∈

[−1.0×250, 1.0×250] and y ∈ [−1.0×230, 1.0×230]. With
classical filtering we obtain x,y ∈ [−1.0 × 230, 1.0 × 230],
whereas with filtering by maximum ULP we obtain the much
tighter interval x,y ∈ [−1.1 · · · 1× 224, 1.0× 225].

This example shows that filtering by maximum ULP
can be stronger than classical interval-consistency based
filtering. However, there are trivial examples that show the
opposite phenomenon so that classical and maximum ULP

are orthogonal: both should be applied, through interval
intersection, in order to obtain optimal results.

D. Filtering by Maximum ULP on Multiplication

Let z ∈ Fp,emax
be a strictly positive constant such that

z = x ⊗ y, where x, y ∈ Fp,emax
are unknown. As for

Property 3.1, there exists a greatest float xm ∈ Fp,emax
such

that there exists y ∈ Fp,emax satisfying z = xm ⊗ y. More
precisely, xm is the float such that z = xm ⊗ fnormin. Such a
float always exists because multiplication by fnormin = 2emin

is equivalent to an exponent shifting. Now let us consider
x′ ∈ Fp,emax

such that x′ > xm. By monotonicity of ⊗,
z < x′⊗fnormin and there is no other float y 6= fnormin such that
z = x′ ⊗ y. In fact, by monotonicity, such float y should
be smaller than fnormin. On the other hand, y must be greater
than +0 for otherwise x′⊗ y would not be strictly positive.
However, for no y ∈ Fp,emax

we have +0 < y < fnormin.
Therefore, the value xm such that z = xm ⊗ fnormin is the
greatest value for x that can satisfy z = xm⊗y for some y.

Definition 4.3: F⊗ =
{
z ∈ Fp,emax

∣∣ fnormin · |z| ≤ fmax

}
and F⊗ = F+

p,emax
are the domain and codomain of

δ⊗ : F⊗ → F⊗, defined for each z ∈ F⊗ as follows:

δ⊗(z) = |z| · 2−emin

Theorem 4.3: Function δ⊗ is well-defined and satis-
fies (1) and (2).

The function δ⊗ is simply defined as δ⊗ = − δ⊗(z).
Moreover, Definition 4.3 and Theorem 4.3 can be extended
to intervals that include subnormals replacing all occurrences
of fnormin by fmin [3].

The value M ∈ [z,z] that maximizes δ⊗ is the one with
the greatest absolute value, i.e., M = max

{
|z|, |z|}. Since

δ⊗ is defined as − δ⊗(z), the value that minimizes δ⊗ is
again M . Hence, if [z,z] does not contain zeroes, δ⊗(M)
(resp., δ⊗(M)) is an upper bound (resp., a lower bound) of
x w.r.t. the constraint z = x⊗y. The restriction to intervals
not containing zeroes is justified by the fact that, e.g., if
z = 0 then z = x ⊗ y holds with x = fmax and y = 0,
hence no useful filtering can be applied to x.

As the product is commutative, the function of Defini-
tion 4.3 can be used for filtering y as well. Note that this
filtering can only be applied when max

{
|z|, |z|

}
∈ F⊗.

Example 4.2: Consider the IEEE 754 single-precision
constraint z = x ⊗ y with z ∈ [1.0 × 2−50, 1.0 × 2−30]
and x,y ∈ [−∞,+∞]. We have

δ⊗(1.0× 2−30) = 1.0× 2−30 · 2−(−126) = 1.0× 296,

δ⊗(1.0× 2−30) = −1.0× 2−30 · 2−(−126) = −1.0× 296,

so, while classical filtering does not prune the intervals for x
and y, filtering by maximum ULP yields the refined intervals
x,y ∈ [−1.0 · · · 0× 296, 1.0 · · · 0× 296].

E. Filtering by Maximum ULP on Division

On the Fp,emax
domain, a role similar to the one of fnormin

in the definition of filtering by ULP max on multiplication
is played by fmax in the definition of filtering by ULP max
on division.

Definition 4.4: Let

F� =
{
z ∈ Fp,emax

∣∣ |z| ⊗ fmax ≤ fmax

}
and F� = F+

p,emax
. Then δ� : F� → F� is defined, for

each z ∈ F�, by δ�(z) = |z| ⊗ fmax.
Theorem 4.4: Function δ� is well-defined and satis-

fies (1) and (2).
A similar result can be obtained for intervals that include

subnormals by a suitable modification of Definition 4.4 [3].
The function δ� is simply defined, for each z ∈ F�, by

δ� = − δ�(z).
The value M ∈ [z,z] that maximizes δ� is the one that

has the greatest absolute value, i.e., M = max
{
|z|, |z|

}
.

Since δ� is defined as − δ�(z), M is also the value that
minimizes δ�. Hence, if [z,z] does not contain zeroes,
δ�(M) (resp., δ�(M)) is an upper bound (resp. a lower
bound) of x w.r.t. the constraint z = x � y. Once again,
the restriction to intervals not containing zeroes is justified
by the fact that, e.g., if z = 0 then z = x � y holds with
x = fmax and y = ∞, hence, also in this case, no useful
filtering can be applied to x. Note that this filtering can only
be applied when max

{
|z|, |z|

}
∈ F�.

Example 4.3: Consider the IEEE 754 single-precision
constraint z = x�y with z ∈ [−1.0×2−110,−1.0×2−121]
and x,y ∈ [−∞,+∞]. We have

δ�(1.0× 2−110) = 1.0× 2−110 · 1.1 · · · 1× 2127

= 1.1 · · · 1× 217,

δ�(1.0× 2−110) = −1.0× 2−110 · 1.1 · · · 1× 2127

= −1.1 · · · 1× 217.

Again, filtering by maximum ULP improves upon classical
filtering with x ∈ [−1.1 . . . 1× 217, 1.1 . . . 1× 217].

F. Synthesis

Table I provides a compact presentation of filtering by
maximum ULP under the assumption emin = 1 − emax,
where the required functions can be summarized as follows:

δ⊕(z) =

{
β, if 0 < z < +∞,
α, if −∞ < z < 0;

δ⊕(z) = − δ⊕(−z);

δ⊗(z) = |z| · 2−emin ; δ⊗(z) = − δ⊗(z);

δ�(z) = |z| ⊗ fmax; δ�(z) = − δ�(z).

V. IMPLEMENTATION IN FPSE

A. FPSE

FPSE [7] is a constraint solver based on interval consis-
tency filtering dedicated to the analysis of IEEE 754 floating-
point computations coming from C programs. The tool takes
a path condition as input, which is a quantifier-free conjunc-
tion of constraints extracted from a path of a C function.
Constraints hold over the input variables of the program,
including global variables, as well as temporary variables
introduced by classical compiler code transformations. For a
given path condition, FPSE can either return the first solution
found or show that there is no solution. In the former case,
the result can be interpreted as a test data that activates the
selected path; in the latter case, infeasibility of the path is
proved. Of course, solving the constraints in reasonable time
is not always possible since the search space can be huge.

The constraints in FPSE are based on expressions built
over ⊕, 	, ⊗, � and the relations =, 6=, <, ≤. Interval
constraints (e.g., x ∈ [a, b]) are allowed as well as IEEE 754
type casting constraints, namely float-to-double, double-to-
float, long-to-double and double-to-long. FPSE works under
some hypotheses that are now summarized. The tool deals
only with the near tail-to-even rounding mode, which is
used by default in almost all C implementations and is the
most difficult to handle in constraint solving over floating-
point variables [21]. To model floating-point computations,
special attention is paid to conform to the actual execution
of programs. In order to capture the semantics of the
program, it is of course necessary to respect the precedence
of expression operators as specified by the C language as
well as the evaluation order realized by the language imple-
mentation at hand. FPSE respects the shape of expressions
as represented in the abstract syntax tree of the program
without any rearrangement or simplification. The order in
which operands are evaluated by a C implementation can be
matched by using a preprocessor like CIL [25].

Any symbolic expression is decomposed into a sequence
of TAC assignments where fresh temporary variables are
introduced bearing in mind that the order of evaluation must
be preserved.5 This decomposition requires that intermediate
results of an operation conform to the type of storage of
its operands.6 Constraint solving is implemented by using
interval consistency combined with search heuristics. Several
heuristics with static and dynamic choice of variable have
been considered. FPSE is implemented with about 10 KLOC
of SICStus Prolog (for the high-level constraint-solving
machinery) and C (for the projection functions).

5The introduction of temporary variables does not change the semantics
of floating-point computations as long as it reflects the behavior of the
compiler and of the floating-point unit.

6This is not always true: e.g., on Intel’s architectures based on the 387
floating-point coprocessor, registers have more precision than the IEEE 754
float and double types; this makes rounding unpredictable. Luckily,
SSE instruction sets, which do not pose this problem, are superseding 387.

Table I
FILTERING BY MAXIMUM ULP SYNOPSIS

Constraint x ⊆ · y ⊆ · Condition(s)

z = x⊕ y, 0 < z ≤ fmax [δ⊕(ζ), δ⊕(ζ)] [δ⊕(ζ), δ⊕(ζ)] ζ = µ⊕(z), −fmax ≤ δ⊕(ζ), δ⊕(ζ) ≤ fmax

z = x⊕ y, −fmax ≤ z < 0 [− δ⊕(ζ′),− δ⊕(ζ′)] [− δ⊕(ζ′),− δ⊕(ζ′)] ζ′ = µ⊕(−z), −fmax ≤ δ⊕(ζ′), δ⊕(ζ′) ≤ fmax

z = x	 y, 0 < z ≤ fmax [δ⊕(ζ), δ⊕(ζ)] [− δ⊕(ζ),− δ⊕(ζ)] ζ = µ⊕(z), −fmax ≤ δ⊕(ζ), δ⊕(ζ) ≤ fmax

z = x	 y, −fmax ≤ z < 0 [− δ⊕(ζ′),− δ⊕(ζ′)] [δ⊕(ζ
′), δ⊕(ζ′)] ζ′ = µ⊕(−z), −fmax ≤ δ⊕(ζ′), δ⊕(ζ′) ≤ fmax

z = x⊗ y, 0 < |z| ≤ 2(2− 21−p) [δ⊗(m), δ⊗(m)] [δ⊗(m), δ⊗(m)] m = max
{
|z|, |z|

}
,

z = x� y, 0 < |z| ≤ 1 [δ�(m), δ�(m)] m = max
{
|z|, |z|

}

B. Relative ε

Slow convergence phenomena typically arise when few
values are continuously pruned in a constraint propagation
cycle. For example, the constraint x < y ∧ y ≤ x causes a
slow convergence phenomenon over floating-point (and, for
that matter, also integer) variables. Each time a projection
function is woken, a single float is pruned from the domain
of x and y. Unsatisfiability is ultimately proved, but not
in reasonable time. To avoid slow convergence phenomena,
we implemented a procedure that stops the filtering under a
given threshold called relative ε. For a given floating-point
variable, if a filtering function does not reduce its domain
of more than ε%, then we withdraw that filtering function
and do not prune the domain. An important difference with
respect to interval-propagation-based constraint solvers over
continuous domains is that we differentiate the treatment
of direct and indirect projection functions. For direct pro-
jection functions this threshold is positioned at 0%, while
for indirect projection functions it is positioned at 10% (a
value that was experimentally determined to provide a good
compromise). The idea is to benefit from the structure of the
problem. When all the input variables of the program under
test are instantiated, direct projection functions are sufficient
to get a solution: thus applying them unconditionally is
advantageous. In contrast, when a local or an output variable
is instantiated first, this may lead to a propagation cycle
that has to be cut very early: we discovered that cutting
it using the relative ε on indirect projection functions is
very effective as every potential propagation cycle involves
at least one indirect projection function. For example, in
x < y∧y ≤ x only indirect projection functions are involved
on both variables, and propagation cycles do not occur. Of
course, in this pathological case there is no propagation
cycle but the system is still partially consistent at the end of
the initial filtering: hopefully other constraints will allow to
prune many values from the domains of x and y so that
enumeration will not have to try all the values to prove
unsatisfiability.

VI. EXPERIMENTAL EVALUATION

The aim of our experimental study was to evaluate filter-
ing by maximum ULP (in brief ULP Max) and to determine
whether it is an effective, practical property for solving
constraints over the floats with an acceptable overhead. For
presentation of the results in this paper we selected two C
functions performing intensive floating-point computations.
The first one is a small C function that computes a root of a
polynomial equation within a given range: dichotomic()
in Figure 2. Its computations are dominated by single-
precision floating-point computations. The second program
is a real-world program embedded on unmanned airplanes
to avoid fly-to-fly collision.

We implemented several search heuristics with static and
dynamic variable orderings. For the choice of values, we
implemented a domain-splitting strategy adapted to floating-
point variables that proved to be very effective. For a given
variable, our strategy selects first the floating-point value
v that separates the domain of x in two equivalently-sized
sub-domains, i.e., two domains containing the same number
of floats; then it considers x = v, x < v and x > v by
successively backtracking on these choices.

For the dichotomic() function we selected at random
a path that iterates 12 times in the loop and considered all its
path prefixes from iteration 1 to 12. For each path, we used
FPSE to automatically generate a test input (an instantiation
of all the input variables) that covers the path. We considered
two versions of FPSE: a version that implements ULP Max
filtering as defined in this paper, and a version without
that. We measured: the number of elementary (ternary)
constraints on the path (NbC); the number of uninstantiated
floating-point variables on the path and the number of
variables involved in the solution path of the search tree
(NbV); the number of times ULP Max filtering takes place,
globally and on the solution path (NbE); the number of
floats pruned by ULP Max, in millions, globally and on
the solution path (NbD); the percentage of domains pruned
by ULP Max over all the variables involved in the solution
path (%); the CPU time for generating test inputs with the
standard version of FPSE (w/o) and with FPSE augmented

Table II
EXPERIMENTAL RESULTS FOR dichotomic() (TIMEOUT = 30 MIN)

NbC NbV Global results On the solution path ULP Max Speedup
NbE NbD NbV NbE NbD % w/o w/ factor

1 17 12 62 17,515 12 1 864 20.2 0.142 0.080 1.775
2 31 22 3,948 484,128 22 0 0 0.00 12.326 3.536 3.486
3 45 32 461 102,522 32 3 1,174 9.15 3.969 0.872 4.552
4 59 42 544,377 9,208,097 42 0 0 0.00 timeout 847.778 ∞
5 73 52 510 158,716 52 5 1,895 8.86 2.370 1.506 1.574
6 87 62 799 209,621 62 0 0 0.00 timeout 2.050 ∞
7 101 72 494 87,934 72 7 2,625 8.77 6.087 0.983 6.192
8 115 82 timeout timeout timeout timeout timeout 0.00 timeout timeout ∞
9 129 92 258 83,166 92 9 3,338 8.67 2.352 0.978 2.405

10 143 102 637 157,421 102 0 0 0.00 timeout 2.482 ∞
11 157 112 224 73,702 112 11 4,034 8.57 2.471 0.724 3.413
12 171 122 635 153,318 122 0 0 0.00 4.924 2.642 1.864

float f(float x) { return x*x - 2.0F; }
float dichotomic(float xL, float xR) {

float xM = 1.0F;
while ((xR - xL) > 0.0001F) {

xM = (xR + xL) / 2.0F;
if ((f(xL) * f(xM)) > -1.0F) { xL = xM; }
else { xR = xM; } }

return xM; }

Figure 2. The dichotomic() function

with ULP Max (w/); the ratio between w/o and w/ (Speedup
factor).

For CPU time, we took the average of 10 runs of the same
test input generation process. All results were computed on
a system equipped with an Intel Core 2 Duo 3.00 GHz and
running Linux 2.6 with 4 GB of RAM.

The results for dichotomic(), are presented in Ta-
ble II. These show that FPSE with ULP Max is effective
enough to solve at least 3 constraint systems that the
standard version cannot solve. Moreover, ULP Max is able
to prune the domains of floating-variables in all the cases
and CPU time gains are due to this extra pruning power. On
6 paths, FPSE with ULP Max was able to prune between
8% and 20% of the variable domains.

The second example is a real-world example ex-
tracted from a critical embedded system. The function
tcas_periodic_task_1Hz(), an excerpt of which is
presented in Figure 3, is the core of a TCAS system (Traf-
fic Collision Avoidance System) embedded into unmanned
aircrafts.7 The system receives the speed and direction of
other aircrafts and, based on floating-point computations,
it modifies the speed and direction of the host aircraft in
order to avoid collisions. This program is interesting because
determining the feasibility of its paths is hard and requires
precise reasoning on non-linear floating-point computations.

For tcas_periodic_task_1Hz(), we selected all
the possible paths up to 5 iterations of the main loop. This
corresponds to about 130 paths among which 51% were

7The complete source code is available at http://paparazzi.enac.fr

void tcas_periodic_task_1Hz(void) {
...
for (i = 2; i < NB_ACS; i++) {

uint32_t dt = gps_itow - acs[i].itow;
...
float dx = acs[i].east - estimator_x;
float dy = acs[i].north - estimator_y;
float dz = acs[i].alt - estimator_z;
float dvx
= vx - acs[i].gspeed * sinf(acs[i].course);

float dvy
= vy - acs[i].gspeed * cosf(acs[i].course);

float dvz = estimator_z_dot - acs[i].climb;
float scal = dvx*dx + dvy*dy + dvz*dz;
float ddh = dx*dx + dy*dy;
float ddv = dz*dz;
float tau = TCAS_HUGE_TAU;
...
switch (tcas_acs_status[i].status) {
case TCAS_RA: ... break;
case TCAS_TA: ... break;
case TCAS_NO_ALARM: ... break;

} } }

Figure 3. An excerpt of tcas.c

shown to be infeasible by FPSE, regardless of whether ULP
Max was used or not. For the remaining 49% of feasible
paths, ULP Max has effects on 27 paths. We generated test
inputs for all these paths with both versions of FPSE (i.e.,
w and w/o ULP Max). The results, which are reported in
Table III, show that ULP Max always prunes the search
space by more than 40 millions of single-precision floating-
point values. In other words, ULP Max effectively prunes
the search space in most cases. However, this extra-pruning
does not always result in the overall speedup of the test
input generation process: with reference to Table III, when
the speedup is below 1 the overhead of computing ULP Max
is not compensated by the gains it offers. On the other hand,
it must be observed that those cases are not too frequent (9
cases out of 27 in this example) and the implementation of
ULP Max in FPSE has much room for improvement.

http://paparazzi.enac.fr

Table III
EXPERIMENTAL RESULTS FOR tcas_periodic_task_1Hz()

NbC NbV Global results On the solution path ULP Max Speedup
NbE NbD (M) NbV NbE NbD (M) % w/o w/ factor

1 157 191 5 765 191 1 11 0.28 1.200 1.212 0.99
2 152 191 1 45 191 1 45 1.07 3.261 3.313 0.98
3 152 191 1 45 191 1 45 1.07 3.688 3.715 0.99
4 152 191 4 753 191 0 0 0.00 0.039 0.032 1.22
5 152 191 4 753 191 0 0 0.00 0.041 0.037 1.11
6 157 191 4 955 191 0 0 0.00 0.060 0.048 1.25
7 157 191 4 955 191 0 0 0.00 0.071 0.078 0.91
8 157 191 25 1,884 191 20 1,884 2.20 0.046 0.046 1.00
9 157 191 25 1,884 191 20 1,884 2.20 0.369 0.382 0.97

10 157 191 25 1,884 191 20 1,884 2.20 0.068 0.068 1.00
11 157 191 25 1,884 191 20 1,884 2.20 0.706 0.698 1.01
12 152 191 25 1,884 191 20 1,884 2.20 0.029 0.027 1.05
13 152 191 25 1,884 191 20 1,884 2.20 0.027 0.029 0.93
14 157 191 3 387 191 1 10 0.24 0.076 0.030 2.53
15 157 191 3 395 191 0 0 0.00 0.081 0.039 0.93
16 157 191 1 43 191 1 43 1.01 0.071 0.076 0.93
17 157 191 3 387 191 1 10 0.24 0.074 0.032 2.31
18 157 191 3 395 191 0 0 0.00 0.083 0.040 2.08
19 157 191 1 43 191 1 43 1.01 0.075 0.076 0.99
20 152 191 1 43 191 1 43 1.01 0.079 0.079 1.00
21 152 191 1 43 191 1 43 1.01 0.075 0.075 1.00
22 152 191 8 521 191 6 144 0.56 0.077 0.033 2.33
23 152 191 8 521 191 6 144 0.56 0.077 0.033 2.33
24 157 191 2 477 191 0 0 0.00 0.079 0.031 2.55
25 157 191 2 477 191 0 0 0.00 0.074 0.032 2.31
26 152 191 1 43 191 1 43 1.01 0.075 0.077 0.97
27 152 191 1 43 191 1 43 1.01 0.078 0.077 1.01

VII. DISCUSSION

In this paper we brought to completion the plan antic-
ipated in [8]. This is part of a long-term research effort
concerning the correct, precise and efficient handling of
floating-point constraints [4], [5], [7], [8], [19], [21], [22].

Other authors have considered using search-based test
data generation with a specific notion of distance in their fit-
ness function [16], [17]. For instance, search-based tools like
AUSTIN and FloPSy can generate a test input for a specific
path by evaluating the path covered by some current input
with respect to a targeted path in the program. However,
they cannot solve the constraints of path conditions, since:
1) they cannot determine unsatisfiability when the path is
infeasible, and 2) they can fail to find a test input while the
set of constraints is satisfiable.8

Recently, Borges et al. [6] combined a search-based test
data generation engine with the RealPaver interval constraint
solver, which is well-known in the Constraint Programming
community. Even though FPSE and RealPaver are based
on similar principles, their treatment of intervals is com-
pletely different. While FPSE preserves the solutions over
the floats, RealPaver preserves the solutions over the reals

8The floating-point intensive programs shown in the previous section
seem to be outside the reach of the search-based tool AUSTIN [16]: for
example, AUSTIN seems to die pseudo-randomly on dichotomic();
both for dichotomic()and tcas_periodic_task_1Hz() we were
not able to produce any test input data within 2 days of CPU time.

by making the appropriate choices in the rounding modes
used for computing the interval bounds. [7] contains small
examples showing that an interval constraint solver over the
reals can miss floating-point solutions to constraints over
floating-point variables. However, as RealPaver can treat
transcendental functions with high precision, the approach
followed in [6] allows the generation of floating-point inputs
for programs that use such functions in a nontrivial way,
something that is outside the scope of this paper.

VIII. CONCLUSION

This paper concerns constraint solving over floating-point
numbers and its application to automatic test data generation.
Interval-based consistency techniques are very effective for
the solution of such numerical constraints, provided precise
and efficient filtering algorithms are available. We refor-
mulated and corrected the filtering algorithm proposed by
Marre and Michel in [19] for addition and subtraction. We
proposed a uniform framework that generalizes the property
identified by Marre and Michel to the case of multiplication
and division. The main ideas of this article were roughly
sketched in [8]: in this paper they have been revised,
corrected and extended. The new filtering algorithms have
been implemented in the FPSE system and the experimental
evaluation show that they definitely improve the state-of-
the-art of automatic test data generation for floating-point
programs. Future work includes the exploration of other

properties based on linearization of floating-point compu-
tations, such as those proposed in [4].

ACKNOWLEDGMENT

We are grateful to Abramo Bagnara (BUGSENG srl, Italy)
for the many fruitful discussions we had on the subject
of this paper, and to Paul Zimmermann (INRIA Lorraine,
France) for the help he gave us proving a crucial result.

REFERENCES

[1] P. E. Ammann and J. C. Knight. Data diversity: An approach
to software fault tolerance. IEEE Transactions on Computers,
37(4):418–425, 1988.

[2] A. Arcuri. Theoretical analysis of local search in software
testing. In Proc. of the 5th Int’l Symp. on Stochastic
Algorithms: Foundations and Applications, volume 5792 of
LNCS, pages 156–168, 2009.

[3] R. Bagnara, M. Carlier, R. Gori, and A. Gotlieb. Filtering
floating-point constraints by maximum ULP. Submitted for
publication, 2013.

[4] M. S. Belaid, C. Michel, and M. Rueher. Boosting local con-
sistency algorithms over floating-point numbers. In Proc. of
the 18th Int’l Conf. on Principles and Practice of Constraint
Programming, volume 7514 of LNCS, pages 127–140, 2012.

[5] B. Blanc, F. Bouquet, A. Gotlieb, B. Jeannet, T. Jeron,
B. Legeard, B. Marre, C. Michel, and M. Rueher. The V3F
project. In Proc. of the 1st Workshop on Constraints in
Software Testing, Verification and Analysis, 2006.

[6] M. Borges, M. d’Amorim, S. Anand, D. Bushnell, and C. S.
Pasareanu. Symbolic execution with interval solving and
meta-heuristic search. In Proc. of the 5th IEEE Int’l Conf. on
Software Testing, Verification and Validation, pages 111–120,
2012.

[7] B. Botella, A. Gotlieb, and C. Michel. Symbolic execution
of floating-point computations. Software Testing, Verification
and Reliability, 16(2):97–121, 2006.

[8] M. Carlier and A. Gotlieb. Filtering by ULP maximum. In
Proc. of the 23rd IEEE Int’l Conf. on Tools with Artificial
Intelligence, pages 209–214, 2011.

[9] F. T. Chan, T. Y. Chen, S. C. Cheung, M. F. Lau, and
S. M. Yiu. Application of metamorphic testing in numerical
analysis. In Proc. of the IASTED Int’l Conf. on Software
Engineering, pages 191–197, 1998.

[10] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In Proc. of the ACM SIGPLAN
2005 Conf. on Programming Language Design and Imple-
mentation, pages 213–223, 2005.

[11] D. Goldberg. What every computer scientist should know
about floating-point arithmetic. ACM Computing Surveys,
23(1):5–48, 1991.

[12] E. Goubault. Static analyses of the precision of floating-point
operations. In Static Analysis: 8th Int’l Symp., SAS 2001,
volume 2126 of LNCS, pages 234–259, 2001.

[13] The Institute of Electrical and Electronics Engineers, Inc.
IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-
2008 (revision of IEEE Std 754-1985), August 2008.

[14] B. Korel. Automated software test data generation. IEEE
Transactions on Software Engineering, 16(8):870–879, 1990.

[15] V. V. Kuliamin. Standardization and testing of mathematical
functions. In Perspectives of Systems Informatics, volume
5947 of LNCS, pages 257–268, 2010.

[16] K. Lakhotia, M. Harman, and H. Gross. AUSTIN: A tool
for search based software testing for the C language and its
evaluation on deployed automotive systems. In Proc. of the
2nd Int’l Symp. on Search Based Software Engineering, pages
101–110, 2010.

[17] K. Lakhotia, N. Tillmann, M. Harman, and J. De Halleux.
FloPSy: Search-based floating point constraint solving for
symbolic execution. In Proc. of the 22nd IFIP WG 6.1 Int’l
Conference on Testing Software and Systems, pages 142–157,
2010.

[18] B. Marre and B. Blanc. Test selection strategies for Lustre
descriptions in GATeL. In Proc. of the Workshop on Model
Based Testing, volume 111 of Electronic Notes in Theoretical
Computer Science, pages 93–111, 2005.

[19] B. Marre and C. Michel. Improving the floating point addition
and subtraction constraints. In Proc. of the 16th Int’l Conf. on
Principles and Practice of Constraint Programming, volume
6308 of LNCS, pages 360–367, 2010.

[20] P. McMinn. Search-based software test data generation:
A survey. Software Testing, Verification and Reliability,
14(2):105–156, 2004.

[21] C. Michel. Exact projection functions for floating point
number constraints. In Proc. of the 7th Int’l Symp. on
Artificial Intelligence and Mathematics, 2002.

[22] C. Michel, M. Rueher, and Y. Lebbah. Solving constraints
over floating-point numbers. In Proc. of the 7th Int’l Conf. on
Principles and Practice of Constraint Programming, volume
2239 of LNCS, pages 524–538, 2001.

[23] W. Miller and D. L. Spooner. Automatic generation of
floating-point test data. IEEE Transactions on Software
Engineering, 2(3):223–226, 1976.

[24] J.-M. Muller. On the definition of ulp(x). Rapport de
recherche 5504, INRIA, 2005.

[25] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL:
Intermediate language and tools for analysis and transforma-
tion of C programs. In Compiler Construction: Proc. of the
11th Int’l Conf., volume 2304 of LNCS, pages 213–228, 2002.

[26] R. Skeel. Roundoff error and the Patriot missile. SIAM News,
25(4):11, July 1992.

[27] E. Tang, E. T. Barr, X. Li, and Z. Su. Perturbing numerical
calculations for statistical analysis of floating-point program
(in)stability. In Proc. of the 19th Int’l Symp. on Software
Testing and Analysis, pages 131–142, 2010.

[28] E. J. Weyuker. On testing non-testable programs. The
Computer Journal, 25(4):465–470, 1982.

	Introduction
	Preliminaries
	IEEE 754
	Notation
	Background on Constraint Solving over Floating-Point Variables
	Interval-based Consistency on Arithmetic Constraints
	The Marre-Michel Property

	Filtering by Maximum ULP
	Upper Bound
	Lower bound
	Filtering by Maximum ULP on Addition/Subtraction
	Filtering by Maximum ULP on Multiplication
	Filtering by Maximum ULP on Division
	Synthesis

	Implementation in FPSE
	FPSE
	Relative epsilon

	Experimental Evaluation

	Discussion

	Conclusion
	Acknowledgment
	References

