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Università di Pisa,

Corso Italia 40,
56125 Pisa, Italy.

EMail: bagnara@di.unipi.it

Abstract

We address the problem of compile-time detection of implicit and redun-
dant numeric constraints in CLP programs. We discuss how this kind of con-
straints have several important applications in the general field of semantics
based program manipulation and, specifically, optimized compilation. We at-
tack the problem in an original and effective way. The basic ideas underlying
our approach are: (1) the use of approximate and efficient constraint inference
techniques originally developed in the field of artificial intelligence. These tech-
niques allow great flexibility in dealing with the complexity/precision tradeoff of
the analysis. And (2) the integration of these techniques within an appropriate
framework for the definition of non-standard semantics of CLP. We show that
one notable advantage of this combined approach is that it allows to close the
often existing gap between the formalization of data-flow analysis in terms of
abstract interpretation and the possibility of efficient implementations. Some
preliminary results (both in terms of complexity and precision) obtained with
our prototype implementation are presented.

1 Introduction

Constraint logic programming (CLP) is a generalization of the pure logic programming
paradigm (LP), having similar model-theoretic, fixpoint and operational semantics
[14]. The CLP notion of constraint solving in a given algebraic structure encompasses
the one of unification over some Herbrand universe. This gives CLP languages a great
advantage, in terms of expressivity and flexibility, over LP. In some cases CLP pro-
grams can also be naturally more efficient than the correspondent LP ones, because
of the ability of reasoning directly in the “domain of discourse” (e.g., real arithmetic),
without requiring complicated encodings of data objects as first-order terms. How-
ever, the basic operational step in CLP program execution, a test for solvability of



constraints, is generally far more involved than unification. Furthermore, a correct
implementation of a CLP language needs a complete solver, that is a full decision
procedure for the satisfiability of constraints in the language’s domain(s). The in-
discriminate use of such complete solvers in their full generality can lead to severe
inefficiencies. For these reasons, the optimized compilation of CLP programs can give
rise to impressive performance improvements, even more impressive than the ones
obtainable for the compilation of Prolog. Data-flow analysis of CLP programs has
a great potential in obtaining valuable information for the compiler, and promises
playing a fundamental role in the achievement of the last point in the following CLP
wish list: (1) retaining the declarativity and flexibility of logic programming; (2)
augmenting expressivity by allowing direct programming in the intended computa-
tional domain; and (3) gaining competitivity, in terms of efficiency, with respect to
other programming paradigms. In this work we are concerned with a specific kind of
analysis for CLP programs over numeric domains.

There are several CLP languages which incorporate some kind of numeric do-
mains. Here is a list (with the particular numeric domains in parentheses) [15]:
CHIP (numeric constraints over finite domains, linear rational constraints), CLP(R)
(real linear arithmetic, delay mechanism for non-linear constraints), Prolog-III (linear
rational arithmetic), Trilogy (linear integer arithmetic), CAL (linear rational arith-
metic, possibly non-linear equations), RISC-CLP(Real) (real arithmetic), CLP(BNR)
(arithmetic on real intervals), clp(FD) (finite domains), Echidna (finite domains and
real intervals arithmetic).

Roughly speaking, the target of the data-flow analysis we present is the derivation
of numeric constraints that, at some program point p, are either

implicit i.e., they are not present in the program’s text at p, but they are guaranteed
to hold if the computation from p has to succeed; or

truly redundant i.e., they are in the program’s text at p, but they are either implied
by the constraints accumulated before reaching p (in this case they could be
ignored) or they will be implied by the other constraints collected through any
successful computation from p (in which case they can be subject to simplified
treatment). We call these constraints past redundant and future redundant ,
respectively1.

redundant i.e., they are present in the program’s text at p, or they are implicit at p.
Notice that adding a redundant constraint c at p would result in c being future
redundant.

Since in this paper we restrict ourselves to considering only clause entry and clause
(successful) exit as program points, we could have used the expressions numeric
call patterns and numeric success patterns to denote redundant constraints at those
points. However we decided to use the implicit/redundant terminology because it
helps in understanding the applications.

Our interest in automated detection of implicit and redundant numeric constraints
is motivated by the wide range of applications they have in semantics-based program

1In [17] a more restrictive notion of future redundancy is defined.



manipulation. Moreover, while analysis techniques devoted to the discovery of implicit
constraints over some Herbrand universe are well known (e.g., depth-k [22]), in the
field of numeric domains very little has been done. An exception is represented by
the work described in [19]. However, the analyses they propose are limited to linear
constraints and use simple description domains which, though allowing for efficient
implementations, cannot obtain precise information about constraints interplay.

We present a general methodology for the detection of numeric constraints which
fall into the above classification. The techniques we use for reasoning about arithmetic
constraints come from the world of artificial intelligence, and are known under the
generic name of constraint propagation [8]. Notice that we do not commit ourselves
to any specific CLP language, even though all the languages mentioned above can be
profitably analyzed with the techniques we propose. In particular, we allow and reason
about linear and non-linear constraints, integer, rational, and real numbers as well as
interval domains. The work we present here was started in [2] in the restricted context
of finite domains, the analysis for the detection of future redundant constraints was
sketched in [4], and the constraint propagation techniques we use were presented in
[5]. All the other things in this paper are new. Due to space limitations we will be
very superficial on some parts, even though we try to convey all the essential ideas.
However, the interested reader will find every detail in [3].

The main part of the paper is in Section 2 which describes, with some original
material, the applications of redundant constraints. Section 3 gives a brief description
of the constraint propagation techniques employed, while Section 4 sketches the kind
of semantics treatment we have developed for describing our analysis in the frame-
work of abstract interpretation. Some preliminary results obtained with a prototype
implementation of our analyzer, even though disseminated through Section 2, are
summarized in Section 5. Section 6 concludes with some remarks and directions for
future work.

2 What Redundant Constraints Are For

In this section we show a number of applications for redundant constraints. Some
of them are domain-independent, but we concentrate on redundant constraints over
numeric domains. We will see that the range of situations where they prove to be
useful is quite wide. It should then be clear that their automatic detection is very
important for the whole field of semantics-based manipulation of CLP programs. The
first four subsections are devoted to applications related to the compilation of CLP
programs. Traditionally, this is one of the major interest areas for data-flow analysis.
The remaining two subsections describe applications of redundant constraints to the
improvement of other data-flow analyses.

2.1 Domain Reduction

In CLP systems supporting finite domains, like CHIP, clp(FD) and Echidna, vari-
ables can range over finite sets of integer numbers. These sets must be specified by
the programmer. There are combinatorial problems, such as n-queens, where this



operation is trivial: variables denoting row or column indexes range over {1, . . . , n}.
For other problems, like scheduling, the ranges of variables are not so obvious. Leav-
ing the user alone in the (tedious) task of specifying the lower and upper bounds for
any variable involved in the problem is inadvisable. On one hand the user can give
bounds that are too tight, thus loosing solutions. On the other hand he can exceed in
being conservative by specifying bounds that are too loose. In that case he will incur
inefficiency, as finite domains constraint solvers work by gradually eliminating values
from variable’s ranges.

A solution to this problem is either to assist the user during program development
or to provide him with a compiler able to tighten the bounds he has specified. In this
case the programmer can take the relaxing habit of being conservative, relying on the
compiler’s ability of achieving domain reduction. Whatever the programmer’s habit is,
domain reduction at compile-time can be an important optimization as possibly many
inconsistent values can be removed once and for all from the variable’s domains. This
has to be contrasted with the situation where these inconsistent values are removed
over and over again during the computation.

The following example is somewhat unnatural, but it shows how it can be difficult
for an unassisted human to provide good variable’s bounds. In contrast, it shows how
relatively tight bounds can be hidden in a program and how they can be discovered
by means of data-flow analysis. It is a finite domain version of the McCarthy’s 91-
function:

domain mc
(
[0, 200], [0, 2000]

)
.

C1 : mc(N,M) :− N > 100,M = N − 10 2 .

C2 : mc(N,M) :− N ≤ 100, T = N + 11
2 mc(T,U),mc(U,M).

The analyzer mentioned in Section 5 is able to derive the success patterns2 φ1, for
clause C1, and φ2, for clause C2, such that:

φ1 ⇒ 100 < N ≤ 200 ∧ 90 < M ≤ 190,
φ2 ⇒ 0 ≤ N ≤ 100 ∧ 90 < M ≤ 91 ∧ 90 < U ≤ 101.

Notice how the analyzer correctly infers that any finite derivation from the second
clause must end up with an answer constraint entailing M ∈ (90, 91]. Since variables
are constrained to take integer values3 it can be concluded that M must be bound to
91.

2.2 Extracting Determinacy

In the history of efficient Prolog execution a major role has been played by the avoid-
ance of unnecessary backtracking, since this is the principal source of inefficiency.
These efforts go back to the WAM [24] with the indexing mechanism used to reduce

2Every example of redundant constraint we give is one that our current prototype implementation
is able to detect.

3Actually, this knowledge can be easily incorporated into the analyzer.



shallow backtracking. A more general way of avoiding backtracking is to use global
analysis for detecting conditions under which clauses may succeed in a program (de-
terminacy analysis). Run-time tests to check this conditions may allow for choice
point elimination or, at least, for reduction of backtracking search (determinacy ex-
ploitation).

Notice that backtracking in CLP can be significantly more complex than in Prolog.
The reason is that in CLP languages it is not enough to store a reference to variables
that have become bound since the last choice point creation, and to unbind them
on backtracking. In CLP it is generally necessary to record changes to constraints,
as expressions appearing in them can assume different forms while the computation
proceeds.

We show here, more or less following the exposition in [9], how redundant con-
straints can be used for determinacy discovery and exploitation. Consider a CLP
program P and a clause in P of the form

C : p(X̄) :− c 2 q1(X̄1), . . . , qn(X̄n). (1)

Suppose now that data-flow analysis of P computes the success pattern φ for clause C,
and the call pattern ψ for atom p(X̄). Define the clause condition of C as Φ = φ∧ψ. Φ
is a necessary condition for C to succeed when p is invoked from a successful context.
In other words, every successful computation calling C is such that, on successful exit
from C, the accumulated constraint entails Φ. This fact can be captured by rewriting
clause C into

C ′ : p(X̄) :− Φ ∧ c 2 q1(X̄1), . . . , qn(X̄n). (2)

Let now P ′ be the program obtained by transforming each clause of the form (1) into
the form (2) as explained. It turns out that P and P ′ are logically equivalent, and that
the exposed clause conditions can be used for detecting and exploiting determinacy
in the compilation of P . In fact, suppose the predicate p being defined in P by
clauses C1, . . . , Cm with respective success patterns φ1, . . . , φm and clause conditions
Φ1, . . . ,Φm. The best we can hope for is that, for each i, j ∈ {1, . . . ,m} with i 6= j,
φi ∧ φj is unsatisfiable. In that case p is deterministic. Or, if the above condition
fails, it may happen that Φi ∧ Φj is unsatisfiable whenever i 6= j. Thus p might
not be deterministic in itself, but we are guaranteed that in P it is always used
in a determinate way. In both cases, when the conditions are simple enough to be
checked, it is possible to avoid the creation of a choice point jumping directly to the
single right clause. Weaker assumptions still allow to exclude clauses from search
by partitioning the set of clauses into “mutually incompatible” subsets. Of course,
determinacy exploitation requires the existence of an adequate indexing mechanism.
As an example consider the famous CLP program expressing the Fibonacci sequence:

C1 : fib(N,F ) :− N = 0, F = 1 2 .

C2 : fib(N,F ) :− N = 1, F = 1 2 .

C3 : fib(N,F ) :− N > 1, F = F1 + F2,

2 fib(N − 1, F1),fib(N − 2, F2).



Our analyzer derives the following success patterns4:

φ1 ⇒ N = 0, F = 1
φ2 ⇒ N = 1, F = 1
φ3 ⇒ N ≥ 2, F ≥ 2

Notice that, when fib is called with the first argument instantiated (or definite), a
simple test allows to select the appropriate clause without creating a choice point.
When fib is called with its second argument instantiated then a similar test allows at
least to discriminate between {C1, C2} (a choice point is necessary) and C3 (no choice
point). In both cases some calls can be made to hit an immediate failure instead of
proceeding deeper before failing or looping forever, e.g., fib(1.5, X), fib(X, 1.5).

2.3 Static Call Graph Simplification

Suppose we are given a methodology for approximate deduction of implicit con-
straints. Then, if the approximate constraint system has a non-trivial notion of
consistency5, we also have a methodology for approximate consistency checking which
we can use for control-flow analysis of CLP programs. By soundness, when false is
derived as an implicit constraint we can safely conclude that the original set of con-
straints was unsatisfiable, and that the computation branch responsible for this state
of affairs is dead, i.e., it cannot possibly lead to any success.

This information can be employed at compile-time to generate a simplified call
graph for the program at hand. Let

p(X̄) :− q1(Ȳ1), . . . , qn(Ȳn).

be a program clause, and let the predicate qi, 1 ≤ i ≤ n, be defined by clauses
Ci1, . . . , Cim. While performing the analysis we may discover that whenever we use
clause Cij , with 1 ≤ j ≤ m, to resolve with qi(Ȳi), we end up with an unsatisfiable
constraint. In this case we can drop the edge from the qi(Ȳi) call in the above clause
to Cij from the syntactic call graph of the program. This simplification can be used
for generating faster code6. We illustrate this point by means of an example. Our
analyzer produces the following call graph representation, when presented with the
fib program:

C3 :− {C2, C3}, {C1, C2, C3}.

The above notation can be read as follows: if a call to clause C3 has to succeed,
then the first atom will give rise to a call whose range is restricted to clauses C2

and C3, while the second atom will result in an unrestricted call, i.e., whose range
is constituted by C1, C2, and C3. In other words, when treating the first recursive

4The same patterns would have been derived even if N > 1 did not appear in C3.
5This is not the case for, let’s say, groundness or definiteness analysis, where constraints are of the

form X = gnd and X = any. It is our case where, clearly, {X < 0, X ≥ 1} ` false (see Section 3),
and the case of depth-k abstraction [22].

6We do not want to make a strong claim here, but we have not found any previously published
proposal for this optimization.



call of clause C3, clause C1 can be forgotten. This information allows for search
space reduction without any overhead, in the case where the third clause of fib is
called with the first argument uninstantiated, that is, when search is not avoidable.
Figure 1 shows how this can be achieved by means of a simple compilation scheme in
the setting of the WAM and its extensions [16].

fib/3 1: try me else fib/3 2
< code for clause 1 >

fib/3 2: retry me else fib/3 3
fib/3 2a: < code for clause 2 >
fib/3 3: trust me
fib/3 3a: ...

call fib/3 2 3
call fib/3 1
...

fib/3 2 3: try fib/3 2a
trust fib/3 3a

Figure 1: Call graph simplification: fragment of WAM-like code for the 3rd clause of fib to

be executed when the first argument is not definite.

Notice how this simple transformation reduces the amount of backtracking. In
fact every time clause C3 is invoked a pointless call to clause C1 is avoided, with the
consequent saving of one backtracking. Indeed, it is easy to think about more involved
examples where the pruned computation branch would have proceeded deeper before
failing, thus wasting more work. When the number of applicable clauses is found to
be one, a choice point can be avoided, thus achieving greater savings. In these cases
determinacy is exploited without any run-time effort. In contrast, the optimization is
always achieved without any time overhead at the price of at most a small, constant
increase of space usage for additional code. An example where choice point creations
are avoided is the following:

C1 : square(N,SN ) :− N = 0, SN = 0 2 .

C2 : square(N,SN ) :− N = M + 1, SN = SM + 2 ∗M + 1
2 square(M,SM ).

C3 : square3(X,Y, Z) :− X < Y, Y < Z, SX + SY = SZ

2 square(X,SX), square(Y, SY ),
square(Z, SZ).

where the detected call graph is given by

C2 :− {C1, C2}. C3 :− {C1, C2}, {C2}, {C2}.



2.4 Future Redundant Constraints Optimization

As mentioned in the introduction, we say that a constraint is future redundant if,
after the satisfiability check, adding or not adding it to the current constraint (i.e.,
the constraint accumulated so far in the computation), will not affect any answer
constraints. Consider the (by now standard) example:

C1 : mortgage(P, T, I, R,B) :− T = 1,
B = P ∗ (1 + I/1200)−R 2 .

C2 : mortgage(P, T, I, R,B) :− T > 1, T1 = T − 1, P ≥ 0,
P1 = P ∗ (1 + I/1200)−R

2 mortgage(P1, T1, I, R,B).

In any derivation from the second clause the constraint T1 = T − 1 ∧ T1 > 1 or T1 =
T − 1∧T1 = 1 will be encountered, and both imply T > 1. Thus T > 1 in the second
clause is future redundant. If T is uninstantiated, not adding the future redundant
constraint reduces the “size” of the current constraint, thus reducing the complexity
of any subsequent satisfiability check. A dramatic speed-up is obtainable thanks
to this optimization [17]. Notice that the definition of future redundant constraint
given in [17] is more restrictive than ours and, while allowing a stronger result for
the equivalence of the optimized program with respect to the original one, it fails
to capture situations which can be important not only for compilation purposes (see
Section 2.5.1 below). As an example, consider a version of fib having a constraint
F ≥ 2 or weaker in the recursive clause. This is future redundant for our definition
(and is recognized by the analyzer), while it is not such for the definition in [17].

2.5 Improving any Other Analysis

It is well known that different data-flow analyses can be combined together. In the
framework of abstract interpretation this is achieved by means of standard construc-
tions such as direct reduced product [7]. The combined analysis can be more precise
than each of the component ones. However, what we want to emphasize here, is that
redundant constraint analyses can improve both the precision and the efficiency of
any other analysis. This is due to the ability, described in Section 2.3, of discovering
computation branches which are dead. The obvious implication is that these branches
can be safely excluded from analysis, thus resulting in improved efficiency, because less
branches need to be analyzed, and better precision, because the merge-over-all-paths
operation needed for ensuring soundness [6] has potentially a less dramatic effect. We
illustrate this last point by means of an example. Consider the following predicate
definition:

C1 : r(X,Y, Z) :− Y < X,Z = 0 2 .

C2 : r(X,Y, Z) :− Y ≥ X,Z = Y −X 2 .

This defines the so called ramp function, and is one of the linear piecewise functions
which are used to build simple mathematical models of valuing options and other



financial instruments such as stocks and bonds [18]. Suppose we are interested in def-
initeness analysis7 of a program containing the above clauses. A standard definiteness
analyzer cannot derive any useful exit pattern for a call to r(X,Y, Z) whose context
is X = any ∧Y = any ∧Z = any , even though the “real” call pattern implied Y < X.
In contrast, it may well be the case that, in the same situation, the definiteness ana-
lyzer combined with ours (or supplemented with the simplified call graph described
in Section 2.3) can deduce the exit pattern Z = gnd . This is due to the ability of
recognizing that, in the mentioned context, only clause C1 is applicable. Indeed, this
is what happens in the option program distributed with the CLP(R) system.

2.5.1 Improving the Results of some Other Analyses

The previous section showed how our analysis can generally improve the others. There
are, however, more specific situations where its results may be of help. For example,
the freeness analysis proposed in [10] can be greatly improved by the detection of
future redundant constraints. In fact, their abstraction is such that constraints like
N ≥ 0 “destroy” (sometimes unnecessarily) the freeness of N . This kind of constraints
are very commonly used as clause guards, and many of them can be recognized as be-
ing future redundant. This information imply that they do not need to be abstracted,
with the corresponding precision gain.

The analysis described in [12] aims at the compile-time detection of those non-
linear constraints, which are delayed in the CLP(R) implementation, that will become
linear at run time. This analysis is important for remedying the limitation of CLP(R)
to linear constraints by incorporating powerful (and computationally complex) meth-
ods from computer algebra as the ones employed in RISC-CLP(Real). With the
results of the above analysis this extension can be done in a smooth way: non-linear
constraints which are guaranteed to become linear will be simply delayed, while only
the other non-linear constraints will be treated with the special solving techniques.
Thus, programs not requiring the extra power of these techniques will be hopefully
recognized as such, and will not pay any penalties. The analysis of [12] is a kind of
definiteness. One of its difficulties shows up when considering the simplest non-linear
constraint: X = Y ∗ Z. Clearly X is definite if Y and Z are such. But we cannot
conclude that the definiteness of Y follows from the one of X and Z, as we need also
the condition Z 6= 0. Similarly, we would like to conclude that X is definite if Y or
Z have a zero value. It should then be clear how the results of the analysis we pro-
pose can be of help: by providing approximations of the concrete values of variables,
something which is not captured by common definiteness analyses while being crucial
when dealing with non-linear constraints.

3 Arithmetic Reasoning

Our analysis is based on constraint inference (a variant of constraint propagation) [8].
This technique, developed in the field of AI, has been applied to temporal and spatial
reasoning [1, 23].

7I.e. aimed at discovering variables which are constrained to a unique value.



Let us focus our attention to arithmetic domains, where the constraints are binary
relations over expressions. We represent them by means of labelled digraphs. Nodes
are called quantities and are labeled with the corresponding arithmetic expression and
a variation interval. Edges are labelled with relation symbols. An example appears in
figure 2. Conjunction of constraints is handled by connecting digraphs in the obvious
way, merging the nodes having equal labels.

[0,+∞)
"!
# 
X + Y

(0, 1)
"!
# 

2 ∗ Z-
>

Figure 2: Simple example of constraint network representing the (conjunctive) set of con-

straints
{
X + Y > 2 ∗ Z,X + Y ∈ [0,+∞), 2 ∗ Z ∈ (0, 1)

}
.

Let us consider a digraph representing a conjunction of constraints. We can enrich
it by either adding new edges to it or by adding (stronger) relations to the labels of
existing edges or by refining the interval labels. Of course, we are interested in ap-
proximate but sound deduction. To this purpose we use a number of computationally
efficient techniques, both qualitative (on the ordinal relationships between arithmetic
expressions) and quantitative (on the values these expressions can take). All these
techniques are integrated, that is, inference made with one technique can trigger fur-
ther inferences by the other ones. As a result the range of arithmetic inferences the
system is able to perform is quite wide and suitable for our application. An example
of qualitative technique is computing the transitive closure of the constraint digraph
using the following table:

< ≤ > ≥ = 6=
< < < ?? ?? < ??

≤ < ≤ ?? ?? ≤ ??

> ?? ?? > > > ??

≥ ?? ?? > ≥ ≥ ??

= < ≤ > ≥ = 6=
6= ?? ?? ?? ?? 6= ??

New relationships are found by looking up the relevant table entries. For example,
the system infers A < C from A ≤ B, B < C. A classical quantitative technique is
interval arithmetic which allows to infer the variation interval of an expression from
the intervals of its sub-expressions. An example inference is: A ∈ [3, 6)∧B ∈ [−1, 5] `
A+B ∈ [2, 11). Another important technique is relational arithmetic [23] which infers
constraints on the qualitative relationship of an expression to its arguments. It is
encoded by a number of axiom schema, for example, for each ./ ∈ {=, 6=,≤<,≥, >}:



x ./ 0 ⇒ (x+ y) ./ y

(x > 0 ∧ y > 0) ⇒
{
x ./ 1⇒ (x ∗ y) ./ y
y ./ 1⇒ (x ∗ y) ./ x

(x > 0 ∧ y < 0) ⇒
(
x ./ −y ⇒ −1 ./ (x/y)

)
x ./ y ⇒ ex ./ ey

An example of inference is: X ≥ 0 ∧ Y ≥ 0 ` X + 1 ≤ Y + 2X + 1. Notice that
there is no restriction to linear constraints. The last technique we mention is numeric
constraint propagation, which consists in determining the relationship between two
quantities when their associated intervals do not overlap, except possibly at their
endpoints. For example, if A ∈ (−∞, 2], B ∈ [2,+∞), and C ∈ [5, 10], we can infer
that A ≤ B and A < C. It is also possible to go the other way around, i.e., knowing
that U < V may allow to refine the intervals associated to U and V so that they
do not overlap. The integration of these techniques, and possibly others, allows to
obtain a very good tradeoff between inferential power and computational complexity.
We refer to [3] for an extensive treatment of these issues.

4 Generalized, Concrete, and Abstract Semantics

We adopt a generalized semantics approach, i.e. where semantics is parameterized
with respect to an underlying constraint system, as in [11]. The main advantages are
that: (1) different instances of CLP can be used to define non-standard semantics
for constraint logic programs; and (2) the abstract interpretation of CLP programs
can be thus formalized inside the CLP paradigm. To achieve this last point one
has to define an “abstract” (or, in our case, approximate) constraint system, which
soundly captures the interesting properties of the “concrete” one. Then the abstract
and concrete semantics are more easily related, being instances (over two different
constraint systems) of the same generalized semantics.

The constraint systems we use in our formulation are built starting from the
ones defined in [21]. They are constituted by a set C of atomic constraints (e.g.,
X ∗ Y = 2 ∗ Z) and an entailment relation ` over the subsets of C satisfying some
very reasonable conditions (reflexivity and transitivity). In the concrete semantics the
entailment relation `[ is defined by the logical theory axiomatizing the computation
domain (e.g., the theory RCF of real closed fields). In the approximate semantics the
entailment `] will be “less powerful” (e.g., the one defined by the inference techniques
of Section 3). Of course, we must ensure soundness which, roughly speaking, amounts
to saying that C ′ `] C ′′ ⇒ C ′ `[ C ′′. Any entailment relation defines an upper closure
operator over ℘(C): ρ(C) =

{
c ∈ C

∣∣ C ` c}. Then a minimal first-order structure is
built over the above constraint systems by introducing (soundly correlated concrete
and abstract versions of) hiding operators ∃X , modelling the projection of constraints
over variables, and diagonal elements dXY , modelling “parameter passing”. Our
generalized semantics of a CLP program P is constructed from these building blocks.



Here is the immediate consequence operator defining the bottom-up version:

TP (I) =
⊕
C∈P


p(X̄) :− ∃X̄ c̃

∣∣∣∣∣∣∣∣∣∣∣∣

C : p(X̄) :− c 2 p1(X̄1), . . . , pn(X̄n);
vars(C) ∩ vars(I) = ∅
∀i = 1, . . . , n :

pi(Ȳi) :− ci ∈ I, c′i = dX̄i,Ȳi ⊗ ci;
c̃ = c⊗ c′1 ⊗ · · · ⊗ c′n;
c̃ 6` false.


,

where C1 ⊗ C2 = ρ(C1 ∪ C2) models (concrete and approximate) conjunction of
constraints, while two different flavors of ⊕ are used to capture disjunction in the
concrete semantics (where the constraint arising from all the computation paths must
be kept distinct) and in the approximate one (where these constraints are merged
together). As a concluding remark, notice that, in order to ensure the finiteness
of our analysis, a widening/narrowing approach [6] is used in the abstract fixpoint
computation. This is due to the presence of unbounded intervals in our approximate
constraint system. The interested reader will find all the details in [3].

5 Preliminary Results

Our work on numeric redundant constraint analysis has been concretized in a proto-
type analyzer based on the ideas sketched in Sections 3 and 4. During the design and
implementation of the prototype we had two objectives in mind: (1) to demonstrate
the feasibility of the approach; and (2) to retain as much “declarativity” as possible,
in order to end up with an executable specification which would be very useful for
developing more refined and efficient implementations. The result of this work is
constituted by about 3200 lines of SICStus Prolog (98% portable). The only syntax
currently accepted by the analyzer is the one of CLP(R). We plan to accommodate at
least CHIP and Prolog-III in future versions. We cannot describe here the implemen-
tation, so we just give some preliminary results of its use. Table 1 reports, for each
of five different programs, the analysis time (a Sun SPARCstation 10 was used) and
a description of the benefits obtained. We have met the first four programs before;
the last one, option, is the more complex and is distributed with the CLP(R) system.

Notice that the current prototype does not make use of sophisticated fixpoint
computation techniques. Furthermore, we have not exploited yet one of the big ad-
vantages of constraint propagation techniques: incrementality. For example, even
though we compile relational and interval arithmetic down to quite efficient code,
we “execute” the entire code sequence irrespectively of whether the constraint net-
work contains enough additional information to obtain something new. In a more
refined implementation we would use the generated code to attach demons to quan-
tities. These demons would be fired only on the occurrence of relevant changes in the
network. Similar considerations can be done for the numeric constraint propagation
technique. Even bigger is the room for improvements of transitive closure (now ab-
sorbing 60% of the prototype’s execution time). First of all we are currently using
a naive variation of Warshall/Warren algorithm for graph closure [26, 25], since it



Program
Analysis

Time Benefits

fib 1640 ms

• 1 future redundant constraints (N > 1);
• deterministic if 1st argument definitea;
• partially deterministic if 2nd argument definite;
• 1 simplified procedure call.

aThe success pattern N ≥ 2 would have been found even in
case N > 1 was not present in the recursive clause.

mc91 440 ms

• domain reductiona;
• partially deterministic if 2nd argument definiteb.

aThis is the only program for which we have have given a
finite domain version. Of course, domain reduction would be
achieved for other programs too.

bIt is also deterministic if the 1st argument is definite.

square3 1180 ms

• deterministic if 1st argument definite;
• deterministic if 2nd argument definite;
• 2 simplified (deterministic) procedure calls.

mortgage 200 ms • 1 future redundant constraint (N > 1).

option 11440 ms • 2 simplified (deterministic) procedure calls.

Table 1: Some results obtained by the prototype analyzer implementation.

is more suitable for the simple Prolog data structures we employ. Much more effi-
cient techniques exist for this task which make use of particular information about
the graph structure [13]. Secondly, we do not currently make use of the constraint
network’s “macro-structure”. The networks arising from our analysis method can be
partitioned into sub-networks being connected in a very simple tree structure. The
root is constituted by the network corresponding to a program clause, the leaves are
networks coming from constrained atoms in the current interpretation, one for each
atom in the clause body. The root is connected to its children through sheaves of
edges (i.e., equality constraints). This is a restricted kind of a structure defined and
studied in [20]. Roughly speaking, this allows transitive closure to be applied on a lo-
cal sub-network basis, and to become global only if new edges (constraints) are added
between the nodes (quantities) making up the “interfaces” between sub-networks.

In summary, many optimizations and clever programming techniques are possible,
and we expect the new analyzer’s implementation we are designing will attain a per-
formance improvement of one to two orders of magnitude over the current prototype.

6 Conclusions

We have shown that the compile-time detection of implicit and redundant numeric
constraints in CLP programs can play a crucial role in the field of semantics based
program manipulation. This is especially true for the area of optimized compilation,
where they can enable major performance leaps. Nonetheless, and despite the fact



that almost every existing CLP language incorporates some kind of numeric domain,
this research topic is relatively unexplored. We have attacked the problem by adapt-
ing efficient reasoning techniques originating from the world of artificial intelligence,
where approximate deduction holds the spotlight since the origins. These techniques
have then be integrated into a generalized semantics framework, allowing the easy
formalization of our data-flow analysis in terms of abstract interpretation. The pre-
liminary results obtained with our prototype implementation justify our belief that
we are on the right way towards satisfactory solutions for the problems of data-flow
analysis and highly optimized compilation of CLP programs.

Current and future work includes: (1) studying variants of depth-k approximations
to be integrated with ours8 for more precise analysis of real programs; (2) development
of an “highly-engineered” version of the approximate constraint solver; and (3) study
of the possible extensions of this work to the concurrent constraint programming
paradigm.
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