
CLAIR: The Combined Language and Abstract

Interpretation Resource

Roberto Bagnara
Department of Mathematics

University of Parma
Italy

bagnara@cs.unipr.it

Version 1.0

Abstract

The CLAIR system has been developed in order to study and experiment with
various aspects of programming languages. This paper provides formal presenta-
tions of the supported languages, gives a brief description of the implementation,
and explains, by means of examples, how the system can be used.

Contents

1 Introduction 3

2 The SFL Language 4
2.1 Abstract Syntax . 4

2.1.1 Base Sets and Corresponding Syntactic Meta-Variables . 4
2.1.2 Derived Sets: . 4

2.2 Static Semantics . 5
2.2.1 Constants . 5
2.2.2 Expressions . 5
2.2.3 Declarations . 7

2.3 Dynamic Semantics . 10
2.3.1 Declarations . 12
2.3.2 Expressions . 14

3 The SIL Language 16
3.1 Abstract Syntax . 16

3.1.1 Base Sets and Corresponding Syntactic Meta-Variables . 16
3.1.2 Derived Sets: . 16

3.2 Static Semantics . 17
3.2.1 Constants . 18
3.2.2 Expressions . 18
3.2.3 Declarations . 20
3.2.4 Commands . 25

3.3 Dynamic Semantics . 26
3.3.1 Declarations . 30
3.3.2 Expressions . 35
3.3.3 Lists of Expressions . 37
3.3.4 Commands . 37

4 Concrete Syntax 40
4.1 Identifiers . 40
4.2 Operators . 40
4.3 The Grammar of SFL . 40
4.4 The Grammar of SIL . 42

1

5 Implementation 45
5.1 Short Guide to the Sources . 45
5.2 Syntax and Representation . 46

5.2.1 Type and GType . 46
5.2.2 Const, Num . 47
5.2.3 Declarations . 47
5.2.4 Formal Parameters . 50
5.2.5 Expressions . 50
5.2.6 Lists of Expressions . 54
5.2.7 Commands (SIL only) . 54
5.2.8 Program (SIL only) . 56

5.3 Correspondence Between Theory and Implementation 57

6 A Session with CLAIR 58

A GNU GENERAL PUBLIC LICENSE 62

B GNU Free Documentation License 69

2

Chapter 1

Introduction

CLAIR is a system that has been developed in order to study and experiment
with various aspects of programming languages. In particular:

1. lexical analysis;

2. syntactic analysis and generation of the abstract syntax tree (parsing);

3. static checking of type correctness;

4. operational semantics expressed by means of transition systems;

5. interpretation;

6. static analysis;

7. compilation.

CLAIR supports two languages: a simple functional language (SFL) and an
imperative language (SIL) that recalls Pascal to some extent. Both languages
adopt the static scoping rule.

The CLAIR approach is based on structured operational semantics à la
Plotkin for the formal description [1] and on the Prolog language for the im-
plementation. One of the advantages of this combined approach is that it is
relatively easy to extend the system so as to support other language features.

Chapters 2 and 3 present an operational semantics of the SFL and SIL
languages, respectively. These chapters, aiming at a formal and unambiguous
description of the languages, are intentionally non-discursive.

Chapter 4 briefly illustrates the concrete syntax recognized by CLAIR’s
parser, also establishing its relation with the abstract syntax of Chapters 2
and 3 and with its representation adopted in the Prolog system.

Chapter 5 contains a terse description of the implementation.
Chapter 6 shows a typical working session with CLAIR.

3

Chapter 2

The SFL Language

2.1 Abstract Syntax

2.1.1 Base Sets and Corresponding Syntactic Meta-Variables

Basic types: t ∈ Types def= {int,bool};

Integers: m,n ∈ Int def= {. . . ,−2,−1, 0, 1, 2, . . .};

Booleans: b ∈ T
def= {tt,ff};

Variables: x, y ∈ Var def= {x1, x2, . . .};

Binary operators: bop ∈ Bop def= {+,−, ∗,div,mod,==, <>,<=, >=, <, >, and, or}.

2.1.2 Derived Sets:

Expressible types: et ∈ ETypes

et ::= t (2.1)

Denotable types: dt ∈ DTypes

dt ::= et|form → et (2.2)

Constants: con ∈ Con

con ::= m|b (2.3)

Declarations: d, d0, d1 ∈ Def

d ::=nil |x : t = e|d0; d1|d0 parallel d1|d0 private d1| function f(form) : et = e| rec d

(2.4)

Expressions: e, e0, e1 ∈ Exp

e ::= con|x|e0bope1| not e|−e| if e then e0 else e1| let d in e| input et|f(ae)
(2.5)

4

Actual expressions: ae ∈ ActExp

ae ::= .|e, ae (2.6)

Formal parameters: form ∈ Formals

form ::= .|x : t, form| name x : t, form function f(form) → et, form (2.7)

2.2 Static Semantics

Let V ⊆f Var and TEnv(V) def= V → DTypes. Then

α : V
def⇐⇒ α ∈ TEnv(V) (2.8)

and

TEnv def=
⋃

V⊆Var

TEnv(V). (2.9)

For each V ⊆f Var and each α : V we will define the following predicates:

α ` con : t, where con ∈ Con and t ∈ Types; (2.10)
α ` e : et, where e ∈ Exp and et ∈ ETypes; (2.11)
α ` d, where d ∈ Def; (2.12)
` d : β, where d ∈ Def and β ∈ TEnv; (2.13)

α, form ` ae, where form ∈ Formals and ae ∈ ActExp; (2.14)

We will also define the auxiliary predicates

form : β,with form ∈ Formals; (2.15)
match(form1, form2),with form1, form2 ∈ Formals. (2.16)

and the usual polymorphic functions FV and DV.

2.2.1 Constants

FV(m) def= ∅, if α ` m : int; (2.17)

FV(b) def= ∅, if α ` b : bool. (2.18)

2.2.2 Expressions

Constants:

FV(con) def= FV(con), (sic!); (2.19)
α ` con : t

α ` con : t
(sic!). (2.20)

5

Variables:

FV(x) def= {x}, (2.21)
α ` x : α(x). (2.22)

Boolean Negation:

FV(not e) def= FV(e), (2.23)
α ` e : bool

α `not e : bool
(2.24)

Unary Minus:

FV(−e) def= FV(e), (2.25)
α ` e : int

α ` −e : int
. (2.26)

Expression Block:

FV(let d in e) def= FV(e) \DV(d), (2.27)
α ` d,` d : β, α[β] ` e : et

if β : W .
α `let d in e : et

(2.28)

Conditional Expression:

FV(if e then e1 else e2)
def= FV(e) ∪ FV(e1) ∪ FV(e2) (2.29)

α ` e : bool, α ` e1 : et, α ` e2 : et

α `if e then e1 else e2 : et
(2.30)

Function Call:

FV(f(ae)) def= {f} ∪ FV(ae), (2.31)
α, form ` ae

if α(f) = form → et.
α ` f(ae) : et

(2.32)

Input:

FV(input et) def= ∅, (2.33)
α `input et : et. (2.34)

Binary Operators: If bop ∈ {+,−, ∗, div,mod},

t1 bop t2 = int ⇐⇒ t1 = int, t2 = int; (2.35)

if bop ∈ {==, <>,<=, >=, <, >}

t1 bop t2 = bool ⇐⇒ t1 = int, t2 = int; (2.36)

6

if bop ∈ {and, or}

t1 bop t2 = bool ⇐⇒ t1 = bool, t2 = bool. (2.37)

With this definition we define

FV(e1 bop e2)
def= FV(e1) ∪ FV(e2), (2.38)

α ` e1 : et1, α ` e2 : et2
if et = et1tbopet2.

α ` e1 bop e2 : et
(2.39)

Actual Expressions

FV(.) def= ∅, (2.40)

FV(e, ae) def= FV(e) ∪ FV(ae). (2.41)

2.2.3 Declarations

Nil:

FV(nil) def= ∅, (2.42)

DV(nil) def= ∅, (2.43)

α `nil, (2.44)
`nil: ∅. (2.45)

Simple Declaration:

FV(x : et = e) def= FV(e), (2.46)

DV(x : et = e) def= {x}, (2.47)
(2.48)

α ` e : et

α ` x : et = e
(2.49)

` x : et = e : {x = et}. (2.50)

Sequential Composition:

FV(d1; d2)
def= FV(d1) ∪ (FV(d2) \DV(d1)), (2.51)

DV(d1; d2)
def= DV(d1) ∪DV(d2), (2.52)

α ` d1,` d1 : β, α[β] ` d2
if β : W ,

α ` d1; d2

(2.53)

` d1 : α,` d2 : β

` d1; d2 : α[β]
(2.54)

7

Parallel Composition:

FV(d1 parallel d2)
def= FV(d1) ∪ FV(d2), (2.55)

DV(d1 parallel d2)
def= DV(d1) ∪DV(d2), (2.56)

α ` d1, α ` d2
if DV(d1) ∩DV(d2) = ∅,

α ` d1 parallel d2

(2.57)

` d1 : α,` d2 : β

` d1 parallel d2 : α ∪ β
(2.58)

Private Composition:

FV(d1 private d2)
def= FV(d1) ∪ (FV(d2) \DV(d1)), (2.59)

DV(d1 private d2)
def= DV(d1) ∪DV(d2), (2.60)

α ` d1,` d1 : β, α[β] ` d2
if β : W ,

α ` d1 private d2

(2.61)

` d1 : α,` d2 : β

` d1 private d2 : β
(2.62)

Function Declaration:

FV(function f(form) : et = e) def= FV(e) \DV(form), (2.63)

DV(function f(form) : et = e) def= {f} (2.64)

form : β, α[β] ` e : et
if β : W ,

α `function f(form) : et = e
(2.65)

`function f(form) : et = e : {f = form → et}. (2.66)

Recursive Declaration:

FV(rec d) def= FV(d) \DV(d), (2.67)

DV(rec d) def= DV(d), (2.68)

` d : β, α[β¶W] ` d
if W = FV(d) ∩DV(d),

α `rec d
(2.69)

` d : β

`rec d : β
(2.70)

8

Formal Parameters

Defined Variables:

DV(.) def= ∅, (2.71)

DV(x : et, form) def= {x} ∪DV(form), (2.72)

DV(name x : et, form) def= {x} ∪DV(form), (2.73)

DV(function f(form1) : et, form) def= {f} ∪DV(form). (2.74)

Predicate form : β:

. : ∅, (2.75)
form : β

if x /∈ DV(form),
(x : et, form) : {x = et} ∪ β

(2.76)

form : β
if x /∈ DV(form),

(name x : et, form) : {x = et} ∪ β
(2.77)

form : β
if f /∈ DV(form),

(function f(form1) : et, form) : {f = form1 → et} ∪ β
(2.78)

Predicate match(form, form): True if the lists of formals coincide as far as
the number, order, type and mechanisms of the formals contained.

match(., .), (2.79)
match(form1, form2)

match((x : et, form1), (y : et, form2))
(2.80)

match(form1, form2)

match((name x : et, form1), (name y : et, form2))
(2.81)

match(f1, f2),match(f3, f4)

match((function f(f3) : et, f1), (function g(f4) : et, f2))
(2.82)

Predicate α, form ` ae: This predicate defines the legality of an actual ex-
pression with respect to a formal parameter and a type environment.

α, . ` . (2.83)

Call by value:

α, form ` ae, α ` e : et

α, (x : et, form) ` e, ae
(2.84)

Call by name:

α, form ` ae, α ` e : et

α, (name x : et, form) ` e, ae
(2.85)

9

Functional parameters:

match(form1, form2), (α, form) ` ae
if α(g) = form2 → et.

α, (function f(form1) : et, form) ` g, ae
(2.86)

2.3 Dynamic Semantics

We define the following sets, with the corresponding meta-variables:

cl ∈ NExp def=
{

e ∈ Exp
∣∣ FV(e) = ∅

}
, (2.87)

Abstracts def= {λform.e : et}. (2.88)

and then

dval ∈ DVal def= Con + NExp + Abstracts. (2.89)

Moreover, for each V ⊆f Var,

Env(V) def= V → DVal, (2.90)

ρ ∈ Env def=
⋃

V⊆fVar

Env(V). (2.91)

We add the following productions to the abstract syntax of SFL:

ae ::= λform.e : et, ae, (2.92)
d ::= form = ae, (2.93)
d ::= ρ. (2.94)

We also define:

FV(λform.e : et, ae) def= (FV(e) \DV(form)) ∪ FV(ae), (2.95)

DV(form = ae) def= DV(form),FV(form = ae) = FV(ae), (2.96)

and

α, form ` ae

α ` form = ae
(2.97)

form : β

` form = ae : β
(2.98)

Finally, we define

DV(ρ) def= V, (2.99)

and, if ρ : V ,

FV(ρ) def=
⋃

x∈V

FV(ρ(x)), (2.100)

10

where FV(dval) is defined as follows:

FV(con) def= ∅, (2.101)

FV(cl) def= ∅, (2.102)

FV(λform.e : et) def= FV(e) \DV(form). (2.103)

We are now in position to define the predicates ` dval : dt and α ` dval.

Constants:

` m : int, α ` m, (2.104)
` b : bool, α ` b. (2.105)

Name Expressions:

∅ ` cl : et

` cl : et
(2.106)

α ` cl (2.107)

Abstracts:

` λform.e : et : form → et, (2.108)
form : β, α[β] ` e : et

if β : W .
α ` λform.e : et

(2.109)

Now we can define the rules for environments. Let ρ : V . Then

∀x ∈ V ` ρ(x) : β(x)

` ρ : β
(2.110)

∀x ∈ V α ` ρ(x)

α ` ρ
(2.111)

Let Acon the set defined by

acon ∈ Acon (2.112)

where

acon ::= .|con, acon|λform.e : et, acon|cl, acon (2.113)

We can now define the configuration and relations of the transition system.
We will define, for each α ∈ TEnv:

Γ(α, E) = { e ∈ Exp | ∃et ∈ ETypes : α ` e : et } (2.114)
T (α, E) = Con (2.115)

ρ ` e → e′ (2.116)

11

Γ(α, Ae) = { ae ∈ ActExp | ∃form ∈ Formals : α, form ` ae } (2.117)
T (α, Ae) = Acon (2.118)

ρ, form ` ae → ae′ (2.119)

Γ(α, D) = { d ∈ Def | α ` d } (2.120)
T (α, D) = {ρ ∈ Env |α ` ρ} (2.121)

ρ ` d → d′. (2.122)

We will also define the predicate

acon ` form → ρ. (2.123)

2.3.1 Declarations

Nil:

ρ `nil→ ∅ (2.124)

Simple Definition:

ρ ` e → e′

ρ ` x : et = e → x : et = e′
(2.125)

ρ ` x : et = con → {x = con} (2.126)

Sequential Composition:

ρ ` d1 → d′1

ρ ` d1; d2 → d′1; d2

(2.127)

ρ[ρ0] ` d2 → d′2 ρ0 : α0

ρ ` ρ0; d2 → ρ0; d′2
(2.128)

ρ ` ρ0; ρ1 → ρ0[ρ1] (2.129)

Private Composition:

ρ ` d1 → d′1

ρ ` d1 private d2 → d′1 private d2

(2.130)

ρ[ρ0] ` d2 → d′2 ρ0 : α0

ρ ` ρ0 private d2 → ρ0 private d′2
(2.131)

ρ ` ρ0 private ρ1 → ρ1 (2.132)

12

Parallel Composition:

ρ ` d1 → d′1

ρ ` d1 parallel d2 → d′1 parallel d2

(2.133)

ρ ` d2 → d′2 ρ0 : α0

ρ ` ρ0 parallel d2 → ρ0 parallel d′2
(2.134)

ρ ` ρ0 parallel ρ1 → ρ0 ∪ ρ1 (2.135)

Function Declaration:

ρ `function f(form) : et = e → { f = λform. let ρ¶W in e : et } (2.136)

where W = FV(e) \DV(form).

Recursive Declaration:

ρ \R ` d → d′

where R
def= DV(d) ∩ FV(d),

ρ `rec d →rec d′
(2.137)

ρ `rec ρ0 → ρ1 (2.138)

where

ρ1
def= {x = con | x = con ∈ ρ0 }

∪ {x = cl | x = cl ∈ ρ0 }

∪

{
f(form) : et =letrec ρ0 \ F in e

∣∣∣∣∣ f(form) : et = e ∈ ρ0

F = DV(form)

}

Parameter Passing (form = ae):

ρ, form ` ae → ae′

ρ ` form = ae → form = ae′
(2.139)

acon ` form → ρ0

ρ ` form = acon → ρ0

(2.140)

Predicate ρ, form ` ae → ae′:

., . ` . → . (2.141)

Call by value:

ρ ` e → e′

ρ, (x : et, form) ` e, ae → e′, ae
, (2.142)

ρ, form ` ae → ae′

ρ, (x : et, form) ` con, ae → con, ae′
(2.143)

13

Call by name:

V
def= FV(e) 6= ∅

ρ, (name x : et, form) ` e, ae →let ρ¶V in e, ae,
, (2.144)

ρ, form ` ae → ae′

ρ, (name x : et, form) ` cl, ae → cl, ae′
. (2.145)

Functional parameter:

ρ(g) = λform2.e : et

ρ, (function f(form1) : et, form) ` g, ae → λform2.e : et, ae
, (2.146)

ρ, form ` ae → ae′

ρ, (function f(form1) : et, form) ` λform2.e : et, ae → λform2.e : et, ae′

(2.147)

Predicate acon ` form → ρ:

. ` . → ∅ (2.148)
acon ` form → ρ

con, acon ` x : et, form → {x = con} ∪ ρ
(2.149)

acon ` form → ρ

cl, acon `name x : et, form → {x = cl} ∪ ρ
(2.150)

acon ` form → ρ

λform1.e : et, acon `function f(form2), form → {f = λform1.e : et} ∪ ρ
(2.151)

2.3.2 Expressions

Not:

ρ ` e → e′

ρ `not e →not e′
(2.152)

ρ `not tt → ff (2.153)
ρ `not ff → tt (2.154)

Minus:

ρ ` e → e′

ρ ` −e → −e′
(2.155)

ρ ` −m → n where n = −m. (2.156)

Identifier:

ρ ` x → ρ(x) (2.157)

14

Binary operators:

ρ ` e0 → e′0

ρ ` e0 bop e1 → e′0 bop e1

(2.158)

ρ ` e1 → e′1

ρ ` con bop e1 → con bop e′1
(2.159)

ρ ` con1 bop con2 → con, where con = con1 bop con2. (2.160)

Conditional expression:

ρ ` e → e′

ρ `if e then e1 else e2 →if e′ then e1 else e2

(2.161)

ρ `if tt then e1 else e2 → e1 (2.162)
ρ `if ff then e1 else e2 → e2 (2.163)

Block:

ρ ` d → d′

ρ `let d in e →let d′ in e
(2.164)

ρ[ρ0] ` e → e′ ρ0 : α0

ρ `let ρ0 in e →let ρ0 in e′
(2.165)

ρ `let ρ0 in con → con (2.166)

Function Call:

ρ ` f(ae) →let form = ae in e if {ρ(f) = λform.e : et}. (2.167)

Input: If the user digits a representation of m,

ρ `input int → m; (2.168)

if the user digits a representation of b,

ρ `input bool → b. (2.169)

15

Chapter 3

The SIL Language

3.1 Abstract Syntax

3.1.1 Base Sets and Corresponding Syntactic Meta-Variables

Basic types: t ∈ Types def= {int,bool};

Integers: m,n ∈ Int def= {. . . ,−2,−1, 0, 1, 2, . . .};

Booleans: b ∈ T = {tt,ff};

Variables: x, y ∈ Var def= {x1, x2, . . .};

Binary operators: bop ∈ Bop def= {+,−, ∗,div,mod,==, <>,<=, >=, <, >, and, or}.

3.1.2 Derived Sets:

General types: gt ∈ GTypes

gt ::= t|(lim, t) array (3.1)

where lim ∈ Lim is defined by

lim ::= m..n|m..n, lim (3.2)

Expressible types: et ∈ ETypes

et ::= t (3.3)

Type of lists of expressions: elt ∈ ELTypes

elt ::= .|et, elt (3.4)

Denotable types: dt ∈ DTypes

dt ::= gt|form → et|form proc |et loc (3.5)

16

Constants: con ∈ Con

con ::= m|b (3.6)

Declarations: d, d0, d1 ∈ Def

d ::=nil | const x : t = e| var x : gt = e

|d0; d1|d0 parallel d1|d0 private d1

| procedure p(form)c| function f(form) : et = e| rec d (3.7)

Expressions: e, e0, e1 ∈ Exp

e ::= con|x|x[el]|e0 bop e1| not e| − e| if e then e0 else e1

| input et|f(ae)| let d in e| expr d; c result e (3.8)

Commands: c, c1, c2 ∈ Com

c ::=nop |x := e|x[el] := e|c1; c2| if e then c1 else c2

| while e do c|d; c| print el|p(ae) (3.9)

Lists of expressionsi: el ∈ ExpList

el ::= .|e, el (3.10)

Actual expressions: ae ∈ ActExp

ae ::= .|e, ae (3.11)

Formal parameters: form ∈ Formals

form ::= .|x : t, form| name x : t, form| ref x : t, form
| copy x : t, form| const x : t, form
| function f(form) → et, form| procedure p(form), form (3.12)

3.2 Static Semantics

Let V ⊆f Var and TEnv(V) def= V → DTypes. Then

α : V
def⇐⇒ α ∈ TEnv(V) (3.13)

and

TEnv def=
⋃

V⊆fVar

TEnv(V). (3.14)

17

For each V ⊆f Var and each α : V , we will define the following predicates:

α ` con : t, where con ∈ Con and t ∈ Types; (3.15)
α ` e : et, where e ∈ Exp and et ∈ ETypes; (3.16)
α ` el : elt, where el ∈ ExpList and elt ∈ ELTypes; (3.17)
α ` d, where d ∈ Def; (3.18)
` d : β, where d ∈ Def and β ∈ TEnv; (3.19)

α, form ` ae, where form ∈ Formals and ae ∈ ActExp. (3.20)

We will also define the usual polymorphic functions FV and DV and the auxil-
iary predicates

form : β, with form ∈ Formals; (3.21)
match(form1, form2), with form1, form2 ∈ Formals; (3.22)

` lim, with lim ∈ Lim; (3.23)
ok(lim, elt), with lim ∈ Lim and elt ∈ ELTypes. (3.24)

3.2.1 Constants

FV(m) def= ∅, if α ` m : int; (3.25)

FV(b) def= ∅, if α ` b : bool. (3.26)

3.2.2 Expressions

Constants:

FV(con) def= FV(con), (sic!); (3.27)
α ` con : t

α ` con : t
(sic!). (3.28)

Identifiers:

FV(x) def= {x}, (3.29)
α ` x : et, (3.30)

if α(x) = et or α(x) = et loc.

Array references:

FV(x[el]) def= {x} ∪ FV(el), (3.31)
α ` el : elt α(x) = (lim, et) array ok(lim, elt)

α ` x[el] : et
(3.32)

Predicate ok(lim, elt): True if and only if elt has as many elements (all of
type int) as lim.

ok(., .) (3.33)
ok(lim, elt)

ok((n..m, lim) : (int, elt))
(3.34)

18

Boolean Negation:

FV(not e) def= FV(e), (3.35)
α ` e : bool

α `not e : bool
(3.36)

Unary Minus:

FV(−e) def= FV(e), (3.37)
α ` e : int

α ` −e : int
(3.38)

Expression Block:

FV(let d in e) def= FV(e) \DV(d), (3.39)
α ` d ` d : β α[β] ` e : et

if β : W .
α `let d in e : et

(3.40)

Conditional Expression:

FV(if e then e1 else e2)
def= FV(e) ∪ FV(e1) ∪ FV(e2) (3.41)

α ` e : bool, α ` e1 : et, α ` e2 : et

α `if e then e1 else e2 : et
(3.42)

Function Call:

FV(f(ae)) def= {f} ∪ FV(ae), (3.43)
α, form ` ae

if α(f) = form → et.
α ` f(ae) : et

(3.44)

Input:

FV(input et) def= ∅, (3.45)
α `input et : et. (3.46)

Expressions with Side-Effects:

FV(expr d; c result e) def=
(
FV(c) ∪ FV(e)

)
\DV(d), (3.47)

α ` d,` d : β, α[β] ` c, α[β] ` e : et
if β : W .

α `expr d; c result e : et
(3.48)

Binary Operators: If bop ∈ {+,−, ∗, div,mod},

t1 bop t2 = int ⇐⇒ t1 = int, t2 = int; (3.49)

19

if bop ∈ {==, <>,<=, >=, <, >}

t1 bop t2 = bool ⇐⇒ t1 = int, t2 = int; (3.50)

if bop ∈ {and, or}

t1 bop t2 = bool ⇐⇒ t1 = bool, t2 = bool. (3.51)

With this definition we define

FV(e1 bop e2)
def= FV(e1) ∪ FV(e2), (3.52)

α ` e1 : et1, α ` e2 : et2
if et = et1 bop et2.

α ` e1 bop e2 : et
(3.53)

Actual Expressions

FV(.) def= ∅, (3.54)

FV(e, ae) def= FV(e) ∪ FV(ae). (3.55)

Lists of Expressions

FV(.) def= ∅, (3.56)

FV(e, el) def= FV(e) ∪ FV(el). (3.57)

α ` . : ., (3.58)
α ` e : et, α ` el : elt

α ` e, el : et, elt
(3.59)

3.2.3 Declarations

Nil:

FV(nil) def= ∅, (3.60)

DV(nil) def= ∅, (3.61)

α `nil, (3.62)
`nil: ∅. (3.63)

Constant Declaration:

FV(const x : et = e) def= FV(e), (3.64)

DV(const x : et = e) def= {x}, (3.65)

α ` e : et

α `const x : et = e
(3.66)

`const x : et = e : {x = et}. (3.67)

20

Simple Variable Declaration:

FV(var x : et = e) def= FV(e), (3.68)

DV(var x : et = e) def= {x}, (3.69)

α ` e : et

α `var x : et = e
(3.70)

`var x : et = e : {x = et loc}. (3.71)

Array Declaration:

FV(var x : (lim, t) array= e) def= FV(e), (3.72)

DV(var x : (lim, t) array= e) def= {x}, (3.73)

α ` e : et ` lim

α `var x : (lim, et) array= e
(3.74)

`var x : (lim, t) array= e : {x = (lim, et) array}. (3.75)

Predicate ` lim: True if and only if lim is legal.

` ., (3.76)
` lim

if n ≤ m.
` n..m, lim

(3.77)

Function Declaration:

FV(function f(form) : et = e) def= FV(e) \DV(form), (3.78)

DV(function f(form) : et = e) def= {f} (3.79)

form : β, α[β] ` e : et
if β : W ,

α `function f(form) : et = e
(3.80)

`function f(form) : et = e : {f = form → et}. (3.81)

Procedure Declaration:

FV(procedure p(form)c) def= FV(c) \DV(form), (3.82)

DV(procedure p(form)c) def= {p} (3.83)

form : β, α[β] ` c
if β : W ,

α `procedure p(form)c
(3.84)

`procedure p(form)c : {p = form proc}. (3.85)

21

Sequential Composition:

FV(d1; d2)
def= FV(d1) ∪ (FV(d2) \DV(d1)), (3.86)

DV(d1; d2)
def= DV(d1) ∪DV(d2), (3.87)

α ` d1,` d1 : β, α[β] ` d2
if β : W ,

α ` d1; d2

(3.88)

` d1 : α,` d2 : β

` d1; d2 : α[β]
(3.89)

Parallel Composition:

FV(d1 parallel d2)
def= FV(d1) ∪ FV(d2), (3.90)

DV(d1 parallel d2)
def= DV(d1) ∪DV(d2), (3.91)

α ` d1, α ` d2
if DV(d1) ∩DV(d2) = ∅,

α ` d1 parallel d2

(3.92)

` d1 : α,` d2 : β

` d1 parallel d2 : α ∪ β
(3.93)

Private Composition:

FV(d1 private d2)
def= FV(d1) ∪ (FV(d2) \DV(d1)), (3.94)

DV(d1 private d2)
def= DV(d1) ∪DV(d2), (3.95)

α ` d1,` d1 : β, α[β] ` d2
if β : W ,

α ` d1 private d2

(3.96)

` d1 : α,` d2 : β

` d1 private d2 : β
(3.97)

Recursive Declaration:

FV(rec d) def= FV(d) \DV(d), (3.98)

DV(rec d) def= DV(d), (3.99)

` d : β, α[β¶W] ` d
if W = FV(d) ∩DV(d),

α `rec d
(3.100)

` d : β

`rec d : β
(3.101)

22

Formal Parameters:

Defined Variables:

DV(.) def= ∅, (3.102)

DV(x : et, form) def= {x} ∪DV(form), (3.103)

DV(name x : et, form) def= {x} ∪DV(form), (3.104)

DV(ref x : et, form) def= {x} ∪DV(form), (3.105)

DV(const x : et, form) def= {x} ∪DV(form), (3.106)

DV(copy: et, form) def= {x} ∪DV(form), (3.107)

DV
(
function f(form1) : et, form

) def= {f} ∪DV(form), (3.108)

DV
(
procedure p(form1), form

) def= {p} ∪DV(form). (3.109)

Predicate form : β:

. : ∅, (3.110)
form : β

if x /∈ DV(form),
(x : et, form) : {x = et} ∪ β

(3.111)

form : β
if x /∈ DV(form),

(name x : et, form) : {x = et} ∪ β
(3.112)

form : β
if x /∈ DV(form),

(ref x : et, form) : {x = et} ∪ β
(3.113)

form : β
if x /∈ DV(form),

(const x : et, form) : {x = et} ∪ β
(3.114)

form : β
if x /∈ DV(form),

(copy x : et, form) : {x = et} ∪ β
(3.115)

form : β
if f /∈ DV(form),

(function f(form1) : et, form) : {f = form1 → et} ∪ β
(3.116)

form : β
if p /∈ DV(form).

(procedure p(form1), form) : {p = form1 proc} ∪ β
(3.117)

Predicate α, form ` ae: This predicate defines legality of an actual expression
with respect to an actual expression and a type environment.

α, . ` . (3.118)

Call by value:

α, form ` ae, α ` e : et

α, (x : et, form) ` e, ae
(3.119)

23

Call by name:

α, form ` ae, α ` e : et

α, (name x : et, form) ` e, ae
(3.120)

Call by reference:

α, form ` ae
if α(y) = et loc,

α, (ref x : et, form) ` y, ae
(3.121)

α, form ` ae, α ` y[el] : et
if α(y) = (lim, et) array.

α, (ref x : et, form) ` y[el], ae
(3.122)

Call by constant:

α, form ` ae, α ` e : et

α, (const x : et, form) ` e, ae
(3.123)

Call by value-result:

α, form ` ae
if α(y) = et loc,

α, (copy x : et, form) ` y, ae
(3.124)

α, form ` ae, α ` y[el] : et
if α(y) = (lim, et) array.

α, (copy x : et, form) ` y[el], ae
(3.125)

Functional parameters:

match(form1, form2), (α, form) ` ae
if α(g) = form2 → et.

α, (function f(form1) : et, form) ` g, ae
(3.126)

Procedural parameters:

match(form1, form2), (α, form) ` ae
if α(q) = form2 proc.

α, (procedure p(form1), form) ` q, ae
(3.127)

24

Predicate match(form, form): True if the lists of formals coincide as far as
the number, order, type and mechanisms of the formals contained.

match(., .), (3.128)
match(form1, form2)

match((x : et, form1), (y : et, form2))
(3.129)

match(form1, form2)

match((name x : et, form1), (name y : et, form2))
(3.130)

match(form1, form2)

match((ref x : et, form1), (ref y : et, form2))
(3.131)

match(form1, form2)

match((const x : et, form1), (const y : et, form2))
(3.132)

match(form1, form2)

match((copy x : et, form1), (copy y : et, form2))
(3.133)

match(f1, f2),match(f3, f4)

match((function f(f3) : et, f1), (function g(f4) : et, f2))
(3.134)

match(f1, f2),match(f3, f4)

match((procedure p(f3), f1), (procedure q(f4), f2))
(3.135)

3.2.4 Commands

Nop:

FV(nop) def= ∅, (3.136)
α `nop . (3.137)

Assignment:

FV(x := e) def= {x} ∪ FV(e), (3.138)
FV(x[el] := e) = FV(x[el]) ∪ FV(e), (3.139)

α ` e : et
if α(x) = et loc,

α ` x := e
(3.140)

α ` e : et, α ` x[el] : et
if α(x) = (lim, et) array.

α ` x[el] := e
(3.141)

Sequential composition:

FV(c1; c2)
def= FV(c1) ∪ FV(c2), (3.142)

α ` c1, α ` c2

α ` c1; c2

(3.143)

25

If:

FV(if e then c1 else c2)
def= FV(e) ∪ FV(c1) ∪ FV(c2), (3.144)

α ` e : bool, α ` c1, α ` c2

α `if e then c1 else c2

(3.145)

While:

FV(while e do c) def= FV(e) ∪ FV(c), (3.146)
α ` e : bool, α ` c

α `while e do c
(3.147)

Block:

FV(d; c) def= FV(c) \DV(d) (3.148)
α ` d,` d : β, α[β] ` c

if β : W .
α ` d; c

(3.149)

Procedure call:

FV(p(ae)) = {p} ∪ FV(ae), (3.150)
α, form ` ae

if α(p) = form proc.
α ` p(ae)

(3.151)

Print:

FV(print el) def= FV(el), (3.152)
α ` el : elt

α `print el
(3.153)

3.3 Dynamic Semantics

The set of locations Loc is given by the disjoint union

l ∈ Loc def= Loc(int) + Loc(bool) (3.154)

where Loc(int) def= Loc(bool) def= N. The function NewLoc: Types × ℘(Loc) →
Loc is defined, for each L ⊆f Loc, by

NewLoc(t, L) def= (max L) + 1 ∈ Loc(t). (3.155)

This gives significant advantages in the treatment of arrays since, by providing
consecutive memory cells, it allows laying out arrays by columns (or by rows),
thereby simplifying the translation of multi-indexes into an offset with respect
to the array’s base address. To this purpose, we will refer to the function

offset : Lim× ConL → Loc (3.156)

26

We can now define the set of stores

Stores def=

 σ : L → Con

∣∣∣∣∣∣∣
L ⊆f Loc
∀l ∈ Loc(int) ∩ L : σ(l) ∈ Int
∀l ∈ Loc(bool) ∩ L : σ(l) ∈ T

 (3.157)

and

Abstracts def= {λform.e : et} ∪ {λform.c}, (3.158)

c ∈ Copy def= Loc× Loc, (3.159)

a ∈ Array def= Lim× Loc, (3.160)

cl ∈ NExp def=
{

e ∈ Exp
∣∣ FV(e) = ∅

}
, (3.161)

and thus

dval ∈ DVal def= Con + Loc + Copy + Array + NExp + Abstracts. (3.162)

For each V ⊆f Var,

Env(V) def= V → (DTypes×DVal), (3.163)

ρ ∈ Env def=
⋃

V⊆fVar

Env(V). (3.164)

Finally, if ρ ∈ Env(V), then, for each x ∈ V ,

ρt(x) def= π1

(
ρ(x)

)
, (3.165)

ρv(x) def= π2

(
ρ(x)

)
, (3.166)

(3.167)

where π1 and π2 denote the projections over the first and second component,
respectively.

We add the following productions to the abstract syntax of SIL:

ae ::= λform.e : et, ae, (3.168)
ae ::= λform.c, ae, (3.169)
ae ::= l, ae, (3.170)
d ::= form = ae, (3.171)
d ::= ρ, (3.172)
c ::=halt . (3.173)

Consequently, we define:

FV(λform.e : et, ae) def= (FV(e) \DV(form)) ∪ FV(ae), (3.174)

FV(λform.c, ae) def= (FV(c) \DV(form)) ∪ FV(ae), (3.175)

FV(l, ae) def= FV(ae), (3.176)

DV(form = ae) def= DV(form), (3.177)

FV(form = ae) def= FV(ae), (3.178)

27

and

α, form ` ae

α ` form = ae
(3.179)

form : β

` form = ae : β
(3.180)

If ρ : V , we define

DV(ρ) def= V, (3.181)

and

FV(ρ) def=
⋃

x∈V

FV
(
ρv(x)

)
, (3.182)

where FV(dval) is defined as follows:

FV(con) def= ∅, (3.183)

FV(l) def= ∅, (3.184)

FV(cl) def= ∅, (3.185)

FV
(
(l1, l2)

) def= ∅, (3.186)

FV
(
(lim, l)

) def= ∅, (3.187)

FV(λform.e : et) def= FV(e) \DV(form), (3.188)

FV(λform.c) def= FV(c) \DV(form). (3.189)

Finally, we define

FV(halt) def= ∅. (3.190)

We are now in position to define the predicates ` dval : dt and α ` dval.

Constants:

` m : int, α ` m, (3.191)
` b : bool, α ` b. (3.192)

Locations:

` l : t loc, if l ∈ Loc(t); (3.193)
α ` l (3.194)

28

Abstracts:

` λform.e : et : form → et (3.195)
form : β, α[β] ` e : et

if β : W ,
α ` λform.e : et

(3.196)

` λform.c : form proc (3.197)
form : β, α[β] ` c

if β : W .
α ` λform.c

(3.198)

Value-result parameters:

` (l1, l2) : t loc, if l1, l2 ∈ Loc(t); (3.199)
α ` (l1, l2). (3.200)

Arrays:

` (lim, l) : (lim, t) array, (3.201)

if, for each multi-index I respecting lim, we have l + offset(lim, I) ∈ Loc(t);

α ` (lim, l). (3.202)

Name expressions:

∅ ` cl : et

` cl : et
(3.203)

α ` cl. (3.204)

We can now define the rules for environments, for each ρ : V :

∀x ∈ V : ` ρv(x) : β(x)

` ρ : β
(3.205)

∀x ∈ V : α ` ρv(x)

α ` ρ
(3.206)

Let the sets Acon and ConL be defined as follows:

acon ∈ Acon, (3.207)

where

acon ::= .|con, acon|λform.e : et, acon|λform.c, acon|l, acon|cl, acon;
(3.208)

conl ∈ ConL, (3.209)

where

conl ::= .|con, conl. (3.210)

29

The configurations and relations of the transition system are as follows, for each
α ∈ TEnv and implicitly assuming σ ∈ Stores:

Γ(α, E) def=
{
〈e, σ〉

∣∣ e ∈ Exp,∃et ∈ ETypes . α ` e : et
}
, (3.211)

T (α, E) def=
{
〈con, σ〉

}
, (3.212)

ρ ` 〈e, σ〉 → 〈e′, σ′〉, (3.213)

Γ(α, Ae) def=
{
〈ae, σ〉

∣∣ ae ∈ ActExp,∃form ∈ Formals . α, form ` ae
}
,

(3.214)

T (α, Ae) def=
{
〈acon, σ〉

}
, (3.215)

ρ, form ` 〈ae, σ〉 → 〈ae′, σ′〉, (3.216)

Γ(α, El) def=
{
〈el, σ〉

∣∣ el ∈ ExpList,∃elt ∈ ELTypes . α ` el : elt
}
, (3.217)

T (α, El) def=
{
〈conl, σ〉

}
, (3.218)

ρ ` 〈el, σ〉 → 〈el′, σ′〉, (3.219)

Γ(α, D) def=
{
〈d, σ〉

∣∣ d ∈ Def, α ` d
}
, (3.220)

T (α, D) def=
{
〈ρ, σ〉

∣∣ ρ ∈ Env, α ` ρ
}
, (3.221)

ρ ` 〈d, σ〉 → 〈d′, σ′〉, (3.222)

Γ(α, C) def=
{
〈c, σ〉

∣∣ c ∈ Com, α ` c
}
, (3.223)

T (α, C) def=
{
〈halt, σ〉

}
, (3.224)

ρ ` 〈c, σ〉 → 〈c′, σ′〉. (3.225)

We will also define the predicate

acon ` form → ρ, σ. (3.226)

3.3.1 Declarations

Nil:

ρ ` 〈nil, σ〉 → 〈∅, σ〉. (3.227)

30

Constant:

ρ ` 〈e, σ〉 → 〈e′, σ′〉,

ρ ` 〈const x : et = e, σ〉 → 〈const x : et = e′, σ′〉
, (3.228)

ρ ` 〈const x : et = con, σ〉 → 〈{x = con}, σ〉
. (3.229)

Variable:

ρ ` 〈e, σ〉 → 〈e′, σ′〉

ρ ` 〈var x : et = e, σ〉 → 〈var x : et = e′, σ′〉
, (3.230)

σ : L l = NewLoc(et, L)

ρ ` 〈var x : et = con, σ〉 → 〈{x = l}, σ[l = con]〉
, (3.231)

ρ ` 〈e, σ〉 → 〈e′, σ′〉

ρ ` 〈var x : (lim, et) array= e, σ〉 → 〈var x : (lim, et) array= e′, σ′〉
,

(3.232)

ρ ` 〈var x : (lim, et) array= con, σ〉 → 〈{x = (lim,base)}, σ ∪ σ0〉
,

(3.233)

where σ0
def= {base = con,base+1 = con, . . . ,base+k−1 = con}, k is the number

of elements of the array, and, finally, σ : L and σ0 : L0 implies L ∩ L0 = ∅.

Sequential composition:

ρ ` 〈d0, σ〉 → 〈d′0, σ′〉

ρ ` 〈d0; d1, σ〉 → 〈d′0; d1, σ
′〉

, (3.234)

ρ[ρ0] ` 〈d1, σ〉 → 〈d′1, σ′〉 ρ0 : α0

ρ ` 〈ρ0; d1, σ〉 → 〈ρ0; d′1, σ
′〉

, (3.235)

ρ ` 〈ρ0; ρ1, σ〉 → 〈ρ0[ρ1], σ〉
. (3.236)

Private composition:

ρ ` 〈d0, σ〉 → 〈d′0, σ′〉

ρ ` 〈d0 private d1, σ〉 → 〈d′0 private d1, σ
′〉

, (3.237)

ρ[ρ0] ` 〈d1, σ〉 → 〈d′1, σ′〉 ρ0 : α0

ρ ` 〈ρ0 private d1, σ〉 → 〈ρ0 private d′1, σ
′〉

, (3.238)

ρ ` 〈ρ0 private ρ1, σ〉 → 〈ρ1, σ〉
. (3.239)

31

Parallel composition:

ρ ` 〈d0, σ〉 → 〈d′0, σ′〉

ρ ` 〈d0 parallel d1, σ〉 → 〈d′0 parallel d1, σ
′〉

, (3.240)

ρ ` 〈d1, σ〉 → 〈d′1, σ′〉

ρ ` 〈ρ0 parallel d1, σ〉 → 〈ρ0 parallel d′1, σ
′〉

, (3.241)

ρ ` 〈ρ0 parallel ρ1, σ〉 → 〈ρ0 ∪ ρ1, σ〉
. (3.242)

Procedure declaration:

I = FV(c) \DV(form)

ρ ` 〈procedure p(form)c, σ〉 → 〈{p = λform.ρ¶I; c}, σ〉
. (3.243)

Function declaration:

I = FV(e) \DV(form)

ρ ` 〈function f(form) : et = e, σ〉 → 〈{f = λform. let ρ¶I in e : et}, σ〉
.

(3.244)

Recursive declaration: 1

ρ \
(
DV(d) ∩ FV(d)

)
` 〈d, σ〉 → 〈d′, σ′〉

ρ ` 〈rec d, σ〉 → 〈rec d′, σ′〉
, (3.245)

ρ1 =
{

x = (t, con)
∣∣ x = (t, con) ∈ ρ0

}
∪

{
x = (t, cl)

∣∣ x = (t, cl) ∈ ρ0

}
∪

{
x = (t, l)

∣∣ x = (t, l) ∈ ρ0

}
∪

{
x = (t, (l1, l2))

∣∣ x = (t, (l1, l2)) ∈ ρ0

}
∪

{
x = (t, (lim,base))

∣∣ x = (t, (lim,base)) ∈ ρ0

}
∪

{
f = (t, letrec ρ \DV(form) in e)

∣∣∣ (
f = (t, λform.e : et)

)
∈ ρ0

}
∪

{
p = (t, rec ρ \DV(form); c)

∣∣∣ (
p = (t, λform.c)

)
∈ ρ0

}
ρ ` 〈rec ρ0, σ〉 → 〈ρ1, σ〉

.

(3.246)

Parameter passing:

ρ, form ` 〈ae, σ〉 → 〈ae′, σ′〉

ρ ` 〈form = ae, σ〉 → 〈form = ae′, σ′〉
, (3.247)

acon ` form → ρ0, σ0

ρ ` 〈form = acon, σ〉 → 〈ρ0, σ ∪ σ0〉
. (3.248)

Predicate ρ, form ` 〈ae, σ〉 → 〈ae′, σ′〉:

., . ` 〈., σ〉 → 〈., σ〉
. (3.249)

1FIXME: This rule must be checked very carefully.

32

Call by value:

ρ ` 〈e, σ〉 → 〈e′, σ′〉

ρ, (x : et, form) ` 〈(e, ae), σ〉 → 〈(e′, ae), σ′〉
, (3.250)

ρ, form ` 〈ae, σ〉 → 〈ae′, σ′〉

ρ, (x : et, form) ` 〈(con, ae), σ〉 → 〈(con, ae′), σ′〉
. (3.251)

Call by name:

V
def= FV(e) 6= ∅

ρ, (name x : et, form) ` 〈(e, ae), σ〉 → 〈(let ρ¶V in e, ae), σ〉
, (3.252)

ρ, form ` 〈ae, σ〉 → 〈ae′, σ′〉

ρ, (name x : et, form) ` 〈(cl, ae), σ〉 → 〈(cl, ae′), σ′〉
. (3.253)

Call by reference:

ρ, form ` 〈ae, σ〉 → 〈ae′, σ′〉

ρ, (ref x : et, form) ` 〈(l, ae), σ〉 → 〈(l, ae′), σ′〉
, (3.254)

ρv(y) = l

ρ, (ref x : et, form) ` 〈(y, ae), σ〉 → 〈(l, ae), σ〉
, (3.255)

ρ ` 〈el, σ〉 → 〈el′, σ′〉

ρ, (ref x : et, form) ` 〈(y[el], ae), σ〉 → 〈(y[el′], ae), σ′〉
, (3.256)

ρv(y) = (lim,base) l = base + offset(lim, conl)

ρ, (ref x : et, form) ` 〈(y[conl], ae), σ〉 → 〈(l, ae), σ〉
(3.257)

Call by constant:

ρ ` 〈e, σ〉 → 〈e′, σ′〉

ρ, (const x : et, form) ` 〈(e, ae), σ〉 → 〈(e′, ae), σ′〉
, (3.258)

ρ, form ` 〈ae, σ〉 → 〈ae′, σ′〉

ρ, (const x : et, form) ` 〈(con, ae), σ〉 → 〈(con, ae′), σ′〉
. (3.259)

Call by value-result:

ρ, form ` 〈ae, σ〉 → 〈ae′, σ′〉

ρ, (copy x : et, form) ` 〈(l, ae), σ〉 → 〈(l, ae′), σ′〉
, (3.260)

ρv(y) = l

ρ, (copy x : et, form) ` 〈(y, ae), σ〉 → 〈(l, ae), σ〉
, (3.261)

ρ ` 〈el, σ〉 → 〈el′, σ′〉

ρ, (copy x : et, form) ` 〈(y[el], ae), σ〉 → 〈(y[el′], ae), σ′〉
, (3.262)

ρv(y) = (lim,base) l = base + offset(lim, conl)

ρ, (copy x : et, form) ` 〈(y[conl], ae), σ〉 → 〈(l, ae), σ〉
. (3.263)

33

Functional parameter:

ρv(g) = λform2.e : et

ρ, (function f(form1) : et, form) ` 〈(g, ae), σ〉 → 〈(λform2.e : et, ae), σ〉
,

(3.264)

ρ, form ` 〈ae, σ〉 → 〈ae′, σ′〉

ρ, (function f(form1) : et, form) ` 〈(λform2.e : et, ae), σ〉 → 〈(λform2.e : et, ae′), σ′〉
.

(3.265)

Procedural parameter:

ρv(q) = λform2.c

ρ, (procedure p(form1), form) ` 〈(q, ae), σ〉 → 〈(λform2.c, ae), σ〉
,

(3.266)

ρ, form ` 〈ae, σ〉 → 〈ae′, σ′〉

ρ, (procedure p(form1), form) ` 〈(λform2.c, ae), σ〉 → 〈(λform2.c, ae′), σ′〉
.

(3.267)

Predicate acon ` form → ρ, σ:

. ` . → ∅, ∅
. (3.268)

Call by value:

acon ` form → ρ, σ σ : L l = NewLoc(et, L)

con, acon ` x : et, form → {x = l} ∪ ρ, σ ∪ {l = con}
. (3.269)

Call by name:

acon ` form → ρ, σ

cl, acon `name x : et, form → {x = cl} ∪ ρ, σ
. (3.270)

Call by reference:

acon ` form → ρ, σ

l, acon `ref x : et, form → {x = l} ∪ ρ, σ
. (3.271)

Call by constant:

acon ` form → ρ, σ

con, acon `const x : et, form → {x = con} ∪ ρ, σ
. (3.272)

Call by value-result:

acon ` form → ρ, σ σ : L l′ = NewLoc(et, L)

l, acon `copy x : et, form → {x = (l, l′)} ∪ ρ, σ ∪ {l′ = σ(l)}
. (3.273)

34

Functional parameter:

acon ` form → ρ, σ

λform1.e : et, acon `function f(form2), form → {f = λform1.e : et} ∪ ρ, σ
.

(3.274)

Procedural parameter:

acon ` form → ρ, σ

λform1.c, acon `procedure p(form2), form → {p = λform1.c} ∪ ρ, σ
.

(3.275)

3.3.2 Expressions

Identifier:

Constant:

ρv(x) = con

ρ ` 〈x, σ〉 → 〈con, σ〉
. (3.276)

Variable:

ρv(x) = l σ(l) = con

ρ ` 〈x, σ〉 → 〈con, σ〉
. (3.277)

Value-result parameter:

ρv(x) = (l1, l2) σ(l2) = con

ρ ` 〈x, σ〉 → 〈con, σ〉
. (3.278)

Name:

ρv(x) = cl

ρ ` 〈x, σ〉 → 〈cl, σ〉
. (3.279)

Not:

ρ ` 〈e, σ〉 → 〈e′, σ′〉

ρ ` 〈not e, σ〉 → 〈not e′, σ′〉
, (3.280)

ρ ` 〈not tt, σ〉 → 〈ff, σ〉
, (3.281)

ρ ` 〈not ff, σ〉 → 〈tt, σ〉
. (3.282)

35

Minus.

ρ ` 〈e, σ〉 → 〈e′, σ′〉

ρ ` 〈−e, σ〉 → 〈−e′, σ′〉
, (3.283)

n = −m

ρ ` 〈−m,σ〉 → 〈n, σ〉
. (3.284)

Array reference:

ρ ` 〈el, σ〉 → 〈el′, σ′〉

ρ ` 〈x[el], σ〉 → 〈x[el′], σ′〉
, (3.285)

ρv(x) = (lim, base) σ(base + offset(lim, conl)) = con

ρ ` 〈x[conl], σ〉 → 〈con, σ〉
. (3.286)

Binary operators:

ρ ` 〈e0, σ〉 → 〈e′0, σ′〉

ρ ` 〈e0 bop e1, σ〉 → 〈e′0 bop e1, σ
′〉

, (3.287)

ρ ` 〈e1, σ〉 → 〈e′1, σ′〉

ρ ` 〈con bop e1, σ〉 → 〈con bop e′1, σ
′〉

, (3.288)

con = con1 bop con2

ρ ` 〈con1 bop con2, σ〉 → 〈con, σ〉
. (3.289)

Conditional expression:

ρ ` 〈e, σ〉 → 〈e′, σ′〉

ρ ` 〈if e then e1 else e2, σ〉 → 〈if e′ then e1 else e2, σ
′〉

, (3.290)

ρ ` 〈if tt then e1 else e2, σ〉 → 〈e1, σ〉
, (3.291)

ρ ` 〈if ff then e1 else e2, σ〉 → 〈e2, σ〉
. (3.292)

Input.

the user digits repr(m)

ρ ` 〈input int, σ〉 → 〈m,σ〉
, (3.293)

the user digits repr(b)

ρ ` 〈input bool, σ〉 → 〈b, σ〉
. (3.294)

36

Expressions with side-effects:

ρ ` 〈d, σ〉 → 〈d′, σ′〉

ρ ` 〈expr d; c result e, σ〉 → 〈expr d′; c result e, σ′〉
, (3.295)

ρ[ρ0] ` 〈c, σ〉 → 〈c′, σ′〉

ρ ` 〈expr ρ0; c result e, σ〉 → 〈expr ρ0; c′ result e, σ′〉
, (3.296)

ρ[ρ0] ` 〈e, σ〉 → 〈e′, σ′〉

ρ ` 〈expr ρ0;haltresult e, σ〉 → 〈expr ρ0;haltresult e′, σ′〉
, (3.297)

ρ ` 〈expr ρ0;haltresult m,σ〉 → 〈m,σ〉
. (3.298)

Function call:

ρv(f) = λform.e : et

ρ ` 〈f(ae), σ〉 → 〈let form = ae in e, σ〉
. (3.299)

Block:

ρ ` 〈d, σ〉 → 〈d′, σ′〉

ρ ` 〈let d in e, σ〉 → 〈let d′ in e, σ′〉
, (3.300)

ρ[ρ0] ` 〈e, σ〉 → 〈e′, σ′〉 ρ0 : α0

ρ ` 〈let ρ0 in e, σ〉 → 〈let ρ0 in e′, σ′〉
, (3.301)

(the following realizes the final phase of parameter passing by value-result)

∀(l′i, l′′i) ∈ cod(ρ0) : σ′ = σ
[
l′1 = σ(l′′1), ..., l′k = σ(l′′k)

]
ρ ` 〈let ρ0 in m,σ〉 → 〈m,σ′〉

. (3.302)

3.3.3 Lists of Expressions

ρ ` 〈., σ〉 → 〈., σ〉
, (3.303)

ρ ` 〈e, σ〉 → 〈e′, σ′〉

ρ ` 〈(e, el), σ〉 → 〈(e′, el), σ′〉
, (3.304)

ρ ` 〈el, σ〉 → 〈el′, σ′〉

ρ ` 〈(con, el), σ〉 → 〈(con, el′), σ′〉
. (3.305)

3.3.4 Commands

Nop:

ρ ` 〈nop, σ〉 → 〈halt, σ〉
. (3.306)

37

Assignment:

ρ ` 〈e, σ〉 → 〈e′, σ′〉

ρ ` 〈x := e, σ〉 → 〈x := e′, σ′〉
, (3.307)

ρv(x) = l

ρ ` 〈x := con, σ〉 → 〈halt, σ[l = con]〉
, (3.308)

ρ ` 〈el, σ〉 → 〈el′, σ′〉

ρ ` 〈x[el] := e, σ〉 → 〈x[el′] := e, σ′〉
, (3.309)

ρ ` 〈e, σ〉 → 〈e′, σ′〉

ρ ` 〈x[conl] := e, σ〉 → 〈x[conl] := e′, σ′〉
, (3.310)

ρv(x) = (lim,base) l = base + offset(lim, conl)

ρ ` 〈x[conl] := con, σ〉 → 〈halt, σ[l = con]〉
. (3.311)

Command sequence:

ρ ` 〈c0, σ〉 → 〈c′0, σ′〉

ρ ` 〈c0; c1, σ〉 → 〈c′0; c1, σ
′〉

, (3.312)

ρ ` 〈halt; c1, σ〉 → 〈c1, σ〉
. (3.313)

Conditional command:

ρ ` 〈e, σ〉 → 〈e′, σ′〉

ρ ` 〈if e then c1 else c2, σ〉 → 〈if e′ then c1 else c2, σ
′〉

, (3.314)

ρ ` 〈if tt then c1 else c2, σ〉 → 〈c1, σ〉
, (3.315)

ρ ` 〈if ff then c1 else c2, σ〉 → 〈c2, σ〉
. (3.316)

While command:

ρ ` 〈while e do c, σ〉 → 〈if e then c;while e do c elsehalt, σ〉
. (3.317)

Block:

ρ ` 〈d, σ〉 → 〈d′, σ′〉

ρ ` 〈d; c, σ〉 → 〈d′; c, σ′〉
, (3.318)

ρ[ρ0] ` 〈c, σ〉 → 〈c′, σ′〉 ρ0 : α0

ρ ` 〈ρ0; c, σ〉 → 〈ρ0; c′, σ′〉
, (3.319)

(the following realizes the final phase of parameter passing by value-result)

∀(l′i, l′′i) ∈ cod(ρ0) : σ′ = σ
[
l′1 = σ(l′′1), ..., l′k = σ(l′′k)

]
ρ ` 〈ρ0;halt, σ〉 → 〈halt, σ′〉

. (3.320)

38

Print:

ρ ` 〈el, σ〉 → 〈el′, σ′〉

ρ ` 〈print el, σ〉 → 〈print el′, σ′〉
, (3.321)

ρ ` 〈print conl, σ〉 → 〈halt, σ〉
. (3.322)

Procedure call:

ρv(p) = λform.c

ρ ` 〈p(ae), σ〉 → 〈form = ae; c, σ〉
. (3.323)

39

Chapter 4

Concrete Syntax

In this chapter we describe the concrete syntax of the SFL and SIL languages.

4.1 Identifiers

An identifier is constituted by any sequence of letters, digits and the underscore
character ‘_’ whose first character is a letter or underscore.

Some identifiers are reserved as keywords of the language and, consequently,
cannot be used to denote variables, constants, functions and so forth. The
following identifiers are reserved both in SFL and SIL:

integer boolean input name
rec and or mod
div if then else
true false not function

The following identifiers are reserved only in SFL:

let in

The following identifiers are reserved only in SIL:

const var array of
begin end expr result
ref copy while do
for to downto procedure
print

4.2 Operators

The priorities and the type of associativity of the arithmetic, logic and compo-
sition operators are summarized in Table 4.1.

4.3 The Grammar of SFL

This grammar, as well as the one for SIL given in the next section, serves the
only purpose of showing the constructs that are recognized by CLAIR’s parser.

40

Operator(s) Priority Associativity
== <> < <= >= > 0 left

+ - or 1 left
* div mod and 2 left
+ - (unary) not 3 right

; 0 left
| 1 left
-> 2 left

Table 4.1: Priority and associativity of the operators.

Of course, the true grammar, which is implemented in the parse module, is
very different, since it cannot admit left-recursion (the parser being recursive–
descent), since it must impose the operators’ priority and so on.

〈Progr〉 ::= 〈Expr〉

〈Type〉 ::= ‘integer’
| ‘boolean’

〈Num〉 ::= 〈numeral〉

〈Const〉 ::= ‘true’
| ‘false’
| 〈Num〉

〈Decl〉 ::= 〈Id〉 ‘:’ 〈Type〉 ‘=’ 〈Expr〉
| ‘rec’ 〈Decl〉
| ‘function’ 〈Id〉 ‘(’ 〈FormList〉 ‘)’ ‘:’ 〈Type〉 ‘=’ 〈Expr〉
| ‘(’ 〈Decl〉 ‘)’
| 〈Decl〉 ‘;’ 〈Decl〉
| 〈Decl〉 ‘|’ 〈Decl〉
| 〈Decl〉 ‘->’ 〈Decl〉

〈FormList〉 ::= .
| 〈Form〉 ‘,’ 〈FormList〉

〈Form〉 ::= 〈Id〉 ‘:’ 〈Type〉
| ‘name’ 〈Id〉 ‘:’ 〈Type〉
| ‘function’ 〈Id〉 ‘(’ 〈FormList〉 ‘)’ ‘:’ 〈Type〉

〈Expr〉 ::= 〈Const〉
| 〈Id〉
| 〈Expr〉 ‘==’ 〈Expr〉
| 〈Expr〉 ‘<>’ 〈Expr〉
| 〈Expr〉 ‘< ’ 〈Expr〉
| 〈Expr〉 ‘<=’ 〈Expr〉
| 〈Expr〉 ‘>=’ 〈Expr〉
| 〈Expr〉 ‘> ’ 〈Expr〉
| 〈Expr〉 ‘+ ’ 〈Expr〉

41

| 〈Expr〉 ‘- ’ 〈Expr〉
| 〈Expr〉 ‘or’ 〈Expr〉
| 〈Expr〉 ‘* ’ 〈Expr〉
| 〈Expr〉 ‘div’ 〈Expr〉
| 〈Expr〉 ‘mod’ 〈Expr〉
| 〈Expr〉 ‘and’ 〈Expr〉
| ‘not’ 〈Expr〉
| ‘+’ 〈Expr〉
| ‘-’ 〈Expr〉
| ‘if’ 〈Expr〉 ‘then’ 〈Expr〉 ‘else’ 〈Expr〉
| ‘let’ 〈Decl〉 ‘in’ 〈Expr〉
| ‘input’ 〈Type〉
| 〈Id〉 ‘(’ 〈ExprList〉 ‘)’
| ‘(’ 〈Expr〉 ‘)’

〈ExprList〉 ::= .
| 〈Expr〉 ‘,’ 〈ExprList〉

4.4 The Grammar of SIL

〈Progr〉 ::= ‘program’ 〈Id〉 〈Comm〉

〈Type〉 ::= ‘integer’
| ‘boolean’

〈GType〉 ::= 〈Type〉
| ‘array’ ‘[’ 〈Limits〉 ‘]’ ‘of’ 〈Type〉

〈Limits〉 ::= .
| 〈Num〉 ‘..’ 〈Num〉 ‘,’ 〈Limits〉

〈Num〉 ::= 〈numerale〉

〈Const〉 ::= ‘true’
| ‘false’
| 〈Num〉

〈Decl〉 ::= ‘const’ 〈Id〉 ‘:’ 〈Type〉 ‘=’ 〈Expr〉
| ‘var’ 〈Id〉 ‘:’ 〈GType〉
| ‘var’ 〈Id〉 ‘:’ 〈GType〉 ‘=’ 〈Expr〉
| ‘rec’ 〈Decl〉
| ‘function’ 〈Id〉 ‘(’ 〈FormList〉 ‘)’ ‘:’ 〈Type〉 ‘=’ 〈Expr〉
| ‘procedure’ 〈Id〉 ‘(’ 〈FormList〉 ‘)’ 〈CompStat〉
| ‘(’ 〈Decl〉 ‘)’
| 〈Decl〉 ‘;’ 〈Decl〉
| 〈Decl〉 ‘|’ 〈Decl〉
| 〈Decl〉 ‘->’ 〈Decl〉

〈FormList〉 ::= .
| 〈Form〉 ‘,’ 〈FormList〉

42

〈Form〉 ::= 〈Id〉 ‘:’ 〈Type〉
| ‘name’ 〈Id〉 ‘:’ 〈Type〉
| ‘ref’ 〈Id〉 ‘:’ 〈Type〉
| ‘const’ 〈Id〉 ‘:’ 〈Type〉
| ‘copy’ 〈Id〉 ‘:’ 〈Type〉
| ‘function’ 〈Id〉 ‘(’ 〈FormList〉 ‘)’ ‘:’ 〈Type〉
| ‘procedure’ 〈Id〉 ‘(’ 〈FormList〉 ‘)’

〈Expr〉 ::= 〈Const〉
| 〈Id〉
| 〈Id〉 ‘[’ 〈ExprList〉 ‘]’
| 〈Expr〉 ‘==’ 〈Expr〉
| 〈Expr〉 ‘<>’ 〈Expr〉
| 〈Expr〉 ‘< ’ 〈Expr〉
| 〈Expr〉 ‘<=’ 〈Expr〉
| 〈Expr〉 ‘>=’ 〈Expr〉
| 〈Expr〉 ‘> ’ 〈Expr〉
| 〈Expr〉 ‘+ ’ 〈Expr〉
| 〈Expr〉 ‘- ’ 〈Expr〉
| 〈Expr〉 ‘or’ 〈Expr〉
| 〈Expr〉 ‘* ’ 〈Expr〉
| 〈Expr〉 ‘div’ 〈Expr〉
| 〈Expr〉 ‘mod’ 〈Expr〉
| 〈Expr〉 ‘and’ 〈Expr〉
| ‘not’ 〈Expr〉
| ‘+’ 〈Expr〉
| ‘-’ 〈Expr〉
| ‘if’ 〈Expr〉 ‘then’ 〈Expr〉 ‘else’ 〈Expr〉
| ‘input’ 〈Type〉
| 〈Id〉 ‘(’ 〈ExprList〉 ‘)’
| ‘expr’ 〈Decl〉 ‘;’ 〈Comm〉 ‘result’ 〈Expr〉
| ‘expr’ 〈Comm〉 ‘result’ 〈Expr〉
| ‘(’ 〈Expr〉 ‘)’

〈ExprList〉 ::= .
| 〈Expr〉 ‘,’ 〈ExprList〉

〈CompStat〉 ::= ‘begin’ 〈Decl〉 ‘;’ 〈Comm〉 ‘end’
| ‘begin’ 〈Comm〉 ‘end’

〈Comm〉 ::= 〈CompStat〉
| ‘if’ 〈Expr〉 ‘then’ 〈Comm〉 ‘else’ 〈Comm〉
| ‘if’ 〈Expr〉 ‘then’ 〈Comm〉
| 〈Id〉 ‘:=’ 〈Expr〉
| 〈Id〉 ‘[’ 〈ExprList〉 ‘]’ ‘:=’ 〈Expr〉
| ‘while’ 〈Expr〉 ‘do’ 〈Comm〉
| 〈Id〉 ‘(’ 〈ExprList〉 ‘)’
| ‘print’ ‘(’ 〈Format〉 ‘)’
| ‘print’ ‘(’ 〈Format〉 ‘,’ 〈Exprlist〉 ‘)’
| ‘for’ 〈Id〉 ‘:=’ 〈Expr〉 ‘to’ 〈Expr〉 ‘do’ 〈Comm〉

43

| ‘for’ 〈Id〉 ‘:=’ 〈Expr〉 ‘downto’ 〈Expr〉 ‘do’ 〈Comm〉
| 〈Comm〉 ‘;’ 〈Comm〉

44

Chapter 5

Implementation

5.1 Short Guide to the Sources

CLAIR source is contained in several files. The sources are commented to some
extent and can be consulted for all the implementation details of the system.
Here we give a brief description of each source file:

statsem.pl Contains the predicates that implement all the checks and functions
pertaining to static semantics.

fdinsem.pl Contains the predicated implementing the interpreter of SFL.

idinsem.pl Contains the predicated implementing the interpreter of SIL.

tokenize.pl Contains CLAIR’s tokenizer.

parse.pl Contains CLAIR’s parser, written using DCGs (Definite Clause Gram-
mars). The parse accepts a list of tokens generated by the tokenizer and, if
the syntax is correct, produces an abstract tree for the program in the form
of a Prolog term. See Section 5.2 on the following page for information
about the encoding.

common.pl Contains predicates that are used both for the static semantics
and for the interpretation of CLAIR’s languages.

misc.pl Contains some utility predicates used here and there.

runtime.pl Contains the run-tim system support for SFL and SLI.

trace.pl Contains predicates implementing the “pretty printing” of the pro-
gram abstract tree. That tree is generated by the parser and subsequently
modified by the dynamic semantics predicates.

errors.pl Contains the predicates for handling the errors detected by the static
semantics checks.

commands.pl Contains the predicates implementing the interface with the
user and also the main predicate of CLAIR.

sysdep.pl Contiene the non-ISO, system dependent predicated of CLAIR. All
the other files should be written in pure ISO Prolog.

45

5.2 Syntax and Representation

In this section we review all the constructs of SFL and SIL. For each construct
we will give the following information:

1. concrete syntax (preceeded by the word Concrete);

2. abstract syntax (preceeded by the word Abstract);

3. representation of the abstract syntax as a Prolog term (preceeded by the
word Representation).

5.2.1 Type and GType

Simple Types

Concrete syntax:

〈Type〉 ::= ‘integer’
| ‘boolean’

Abstract syntax:

int|bool

Representation:

repr(int) def= int

repr(bool) def= bool

General Types (SIL only)

Concrete syntax:

〈GType〉 ::= 〈Type〉
| ‘array’ ‘[’ 〈Limits〉 ‘]’ ‘of’ 〈Type〉

〈Limits〉 ::= .
| 〈Num〉 ‘..’ 〈Num〉 ‘,’ 〈Limits〉

Abstract syntax:

t|(lim, t) array (5.1)
lim ::= .|n..m, lim (5.2)

Representation:

repr
(
(lim, t) array

) def= array
(
repr(lim), repr(t)

)
,

repr(.) def= [],

repr(n..m, lim) def= [b
(
repr(n), repr(m)

)
| repr(lim)].

46

5.2.2 Const, Num

Integer Numbers

Concrete syntax:

〈Num〉 ::= 〈numeral〉

Abstract syntax:

m

Representation:

repr(m) def= the Prolog term representing the integer m.

Integer and Boolean Constants

Concrete syntax:

〈Const〉 ::= ‘true’
| ‘false’
| 〈Num〉

Abstract syntax:

tt|ff|m

Representation:

repr(tt) def= tt,

repr(ff) def= ff,

repr(m) def= repr(m), (sic!).

5.2.3 Declarations

Simple Declaration (SFL only)

Concrete syntax:

〈Decl〉 ::= 〈Id〉 ‘:’ 〈Type〉 ‘=’ 〈Expr〉

Abstract syntax:

x : t = e

Representation:

repr(x : t = e) def= def
(
repr(x), repr(t), repr(e)

)
.

47

Constant Declaration (SIL only)

Concrete syntax:

〈Decl〉 ::= ‘const’ 〈Id〉 ‘:’ 〈Type〉 ‘=’ 〈Expr〉

Abstract syntax:

const x : t = e

Representation:

repr(const x : t = e) def= con
(
repr(x), repr(t), repr(e)

)
.

Variable Declaration (SIL only)

Concrete syntax:

〈Decl〉 ::= ‘var’ 〈Id〉 ‘:’ 〈GType〉 [‘=’ 〈Expr〉]

Abstract syntax:

var x : t = e

Representation:

repr(var x : t = e) def= var
(
repr(x), repr(t), repr(e)

)
.

Sequential Composition

Concrete syntax:

〈Decl〉 ::= 〈Decl〉 ‘;’ 〈Decl〉

Abstract syntax:

d1; d2

Representation:

repr(d1; d2)
def= seq

(
repr(d1), repr(d2)

)
.

Parallel Composition

Concrete syntax:

〈Decl〉 ::= 〈Decl〉 ‘|’ 〈Decl〉

Abstract syntax:

d1 parallel d2

Representation:

repr(d1 parallel d2)
def= parallel

(
repr(d1), repr(d2)

)
.

48

Private Composition

Concrete syntax:

〈Decl〉 ::= 〈Decl〉 ‘->’ 〈Decl〉

Abstract syntax:

d1 private d2

Representation:

repr(d1 private d2)
def= private

(
repr(d1), repr(d2)

)
.

Recursive Declaration

Concrete syntax:

〈Decl〉 ::= ‘rec’ 〈Decl〉

Abstract syntax:

rec d

Representation:

repr(rec d) def= rec
(
repr(d)

)
.

Function Declaration

Concrete syntax:

〈Decl〉 ::= ‘function’ 〈Id〉 ‘(’ 〈FormList〉 ‘)’ ‘:’ 〈Type〉 ‘=’ 〈Expr〉

Abstract syntax:

function f(form) : et = e

Representation:

repr
(
function f(form) : et = e

)
def= fundef

(
repr(f), repr(form), repr(et), repr(e)

)
.

Procedure Declaration (SIL only)

Concrete syntax:

〈Decl〉 ::= ‘procedure’ 〈Id〉 ‘(’ 〈FormList〉 ‘)’ 〈CompStat〉

Abstract syntax:

procedure p(form)c

Representation:

repr
(
procedure p(form)c

) def= procdef
(
repr(p), repr(form), repr(c)

)
.

49

5.2.4 Formal Parameters

Concrete syntax:

〈Form〉 ::= 〈Id〉 ‘:’ 〈Type〉
| 〈Id〉 ‘:’ 〈Type〉
| ‘name’ 〈Id〉 ‘:’ 〈Type〉
| ‘ref’ 〈Id〉 ‘:’ 〈Type〉
| ‘const’ 〈Id〉 ‘:’ 〈Type〉
| ‘copy’ 〈Id〉 ‘:’ 〈Type〉
| ‘function’ 〈Id〉 ‘(’ 〈FormList〉 ‘)’ ‘:’ 〈Type〉
| ‘procedure’ 〈Id〉 ‘(’ 〈FormList〉 ‘)’

〈FormList〉 ::= .
| 〈Form〉 ‘,’ 〈FormList〉

Abstract syntax:

parspec ::= x : t| name x : t| ref x : t| copy x : t| const x : t

| function f(form) → et| procedure p(form),
form ::= .|parspec, form

Representation:

repr(x : t) def= fval
(
repr(x), repr(t)

)
, (SFL only)

repr(x : t) def= ival
(
repr(x), repr(t)

)
, (SIL only)

repr(name x : t) def= name
(
repr(x), repr(t)

)
,

repr(ref x : t) def= ref
(
repr(x), repr(t)

)
,

repr(const x : t) def= const
(
repr(x), repr(t)

)
,

repr(copy x : t) def= copy
(
repr(x), repr(t)

)
,

repr
(
function f(form) → et

) def= funcpar
(
repr(f), repr(form), repr(t)

)
,

repr
(
procedure p(form)

) def= procpar
(
repr(p), repr(form)

)
,

repr(.) def= [],

repr(parspec, form) def= [repr(parspec)| repr(form)].

5.2.5 Expressions

Identifiers

Concrete syntax:

〈Expr〉 ::= 〈Id〉

Abstract syntax:

x

Representation:

repr(x) def= i
(
repr(x)

)
.

50

Array Reference (SIL only)

Concrete syntax:

〈Expr〉 ::= 〈Id〉 ‘[’ 〈ExprList〉 ‘]’

Abstract syntax:

x[el]

Representation:

repr
(
x[el]

) def= aref
(
repr(x), repr(el)

)
.

Constants

Concrete syntax:

〈Expr〉 ::= 〈Const〉

Abstract syntax:

con

Representation:

repr(con) def= repr(con).

Binary Operators

Concrete syntax:

〈Expr〉 ::= 〈Expr〉 ‘==’ 〈Expr〉
| 〈Expr〉 ‘<>’ 〈Expr〉
| 〈Expr〉 ‘< ’ 〈Expr〉
| 〈Expr〉 ‘<=’ 〈Expr〉
| 〈Expr〉 ‘>=’ 〈Expr〉
| 〈Expr〉 ‘> ’ 〈Expr〉
| 〈Expr〉 ‘+ ’ 〈Expr〉
| 〈Expr〉 ‘- ’ 〈Expr〉
| 〈Expr〉 ‘* ’ 〈Expr〉
| 〈Expr〉 ‘div’ 〈Expr〉
| 〈Expr〉 ‘mod’ 〈Expr〉
| 〈Expr〉 ‘and’ 〈Expr〉
| 〈Expr〉 ‘or’ 〈Expr〉 @end example

Abstract syntax:

e1 bop e2

51

Representation:

repr(e1 == e2)
def= eq

(
repr(e1), repr(e2)

)
,

repr(e1 <> e2)
def= ne

(
repr(e1), repr(e2)

)
,

repr(e1 < e2)
def= lt

(
repr(e1), repr(e2)

)
,

repr(e1 <= e2)
def= le

(
repr(e1), repr(e2)

)
,

repr(e1 >= e2)
def= ge

(
repr(e1), repr(e2)

)
,

repr(e1 > e2)
def= gt

(
repr(e1), repr(e2)

)
,

repr(e1 + e2)
def= plus

(
repr(e1), repr(e2)

)
,

repr(e1 − e2)
def= minus

(
repr(e1), repr(e2)

)
,

repr(e1 ∗ e2)
def= prod

(
repr(e1), repr(e2)

)
,

repr(e1 div e2)
def= div

(
repr(e1), repr(e2)

)
,

repr(e1 mod e2)
def= mod

(
repr(e1), repr(e2)

)
,

repr(e1 and e2)
def= and

(
repr(e1), repr(e2)

)
,

repr(e1 or e2)
def= or

(
repr(e1), repr(e2)

)
.

Not

Concrete syntax:

〈Expr〉 ::= ‘not’ 〈Expr〉

Abstract syntax:

not e

Representation:

repr(not e) def= not
(
repr(e)

)
.

Minus

Concrete syntax:

〈Expr〉 ::= ‘-’ 〈Expr〉

Abstract syntax:

−e

Representation:

repr(−e) def= uminus
(
repr(e)

)
.

52

Conditional Expression

Concrete syntax:

〈Expr〉 ::= ‘if’ 〈Expr〉 ‘then’ 〈Expr〉 ‘else’ 〈Expr〉

Abstract syntax:

if e then e0 else e1

Representation:

repr(if e then e0 else e1)
def= if

(
repr(e), repr(e1), repr(e2)

)
.

Expression Block (SFL only)

Concrete syntax:

〈Expr〉 ::= ‘let’ 〈Decl〉 ‘in’ 〈Expr〉

Abstract syntax:

let d in e

Representation:

repr(let d in e) def= let
(
repr(d), repr(e)

)
.

Input

Concrete syntax:

〈Expr〉 ::= ‘input’ 〈Type〉

Abstract syntax:

input et

Representation:

repr(input et) def= input
(
repr(et)

)
.

Function Call

Concrete syntax:

〈Expr〉 ::= 〈Id〉 ‘(’ 〈ExprList〉 ‘)’

Abstract syntax:

f(ae)

Representation:

repr
(
f(ae)

) def= funcall
(
repr(ae)

)
.

53

Expressions with Side-Effects (SIL only)

Concrete syntax:

〈Expr〉 ::= ‘expr’ 〈Decl〉 ‘;’ 〈Comm〉 ‘result’ 〈Expr〉
| 〈Expr〉 ::= ‘expr’ 〈Comm〉 ‘result’ 〈Expr〉

Abstract syntax:

expr d; c result e| exprnil; c result e

Representation:

repr(expr d; c result e) def= side
(
repr(d), repr(c), repr(e)

)
.

5.2.6 Lists of Expressions

Concrete syntax:

〈ExprList〉 ::= .
| 〈Expr〉 ‘,’ 〈ExprList〉

Abstract syntax:

ae ::= .|e, ae

Representation:

repr(.) def= [],

repr(e, ae) def= [repr(e)| repr(ae)].

5.2.7 Commands (SIL only)

Compound Statement

Concrete syntax:

〈CompStat〉 ::= ‘begin’ 〈Decl〉 ‘;’ 〈Comm〉 ‘end’

Abstract syntax:

d; c

Representation:

repr(d; c) def= block
(
repr(d), repr(c)

)
.

Sequence of Commands

Concrete syntax:

〈Comm〉 ::= 〈Comm〉 ‘;’ 〈Comm〉

Abstract syntax:

c1; c2

Representation:

repr(c1; c2)
def= seq

(
repr(c1), repr(c2)

)
.

54

Conditional Command

Concrete syntax:

〈Comm〉 ::= ‘if’ 〈Expr〉 ‘then’ 〈Comm〉 ‘else’ 〈Comm〉

Abstract syntax:

if e then c1 else c2

Representation:

repr(if e then c1 else c2)
def= if

(
repr(e), repr(c1), repr(c2)

)
.

Assignment

Concrete syntax:

〈Comm〉 ::= 〈Id〉 ‘:=’ 〈Expr〉
| 〈Id〉 ‘[’ 〈ExprList〉 ‘]’ ‘:=’ 〈Expr〉

Abstract syntax:

x := e|x[el] := e

Representation:

repr(x := e) def= ass
(
repr(x), repr(e)

)
,

repr(x[el] := e) def= ass
(
aref

(
repr(x), repr(el)

)
, repr(e)

)
.

While Command

Concrete syntax:

〈Comm〉 ::= ‘while’ 〈Expr〉 ‘do’ 〈Comm〉

Abstract syntax:

while e do c

Representation:

repr(while e do c) def= while
(
repr(e), repr(c)

)
.

Procedure Call

Concrete syntax:

〈Comm〉 ::= 〈Id〉 ‘(’ 〈ExprList〉 ‘)’

Abstract syntax:

p(ae)

Representation:

repr
(
p(ae)

) def= proccall
(
repr(p), repr(ae)

)
.

55

Output Command

Concrete syntax:

〈Comm〉 ::= ‘print’ ‘(’ 〈Format〉 ‘,’ 〈Exprlist〉] ‘)’
| ‘print’ ‘(’ 〈Format〉 ‘)’

Abstract syntax:

print el

Representation:1

repr(print el) ' print
(
<Format>, repr(el)

)
.

Comando for

Concrete syntax:

〈Comm〉 ::= ‘for’ 〈Id〉 ‘:=’ 〈Expr〉 ‘to’ 〈Expr〉 ‘do’ 〈Comm〉
| ‘for’ 〈Id〉 ‘:=’ 〈Expr〉 ‘downto’ 〈Expr〉 ‘do’ 〈Comm〉

The for command has no corresponding abstract syntax, since the parser
module immediately expands it into a while cycle as follows:

for X := E1 to (downto) E2 do C

is translated to

X := E1;
begin
const $limit : integer = E2;
while X <= (>=) $limit do begin
begin
const X : integer = X;
C

end;
X := X + (-) 1

end
end

Notice that C (the command) is executed in an environment where X (the for
index) is a constant, and this not modifiable. The for command of SIL is this
syntactically and semantically identical to the for command of Pascal.

5.2.8 Program (SIL only)

Concrete syntax:

〈Progr〉 ::= ‘program’ 〈Id〉 〈Comm〉

Every SIL program is preceded by the program keyword followed by an
identifier. This construct has no correspondence in the abstract syntax.

1Kludge: yes, this is a representation of the concrete syntax and not of the abstract one.

56

5.3 Correspondence Between Theory and Im-
plementation

Table 5.1 relates the most important predicates used in the definition of the
static and dynamic semantics with the Prolog predicates the implement them
and the source files that contain the corresponding implementation.

Predicate Prolog Source file
α ` con : t essem/3 statsem.pl
α ` e : et essem/3 statsem.pl
α ` d wfd/3 statsem.pl
` d : β dssem/2 statsem.pl
α ` c wfc/2 statsem.pl
α ` el : elt elssem/3 statsem.pl
α, form ` ae aeMatchForm/3 statsem.pl
form : β fEnv/2 statsem.pl
match(form, form) formMatchForm/2 statsem.pl
ρ ` e → e′ e1t/3 fdinsem.pl
ρ ` d → d′ d1t/3 fdinsem.pl
acon ` form → ρ makeEnv/3 runtime.pl
ρ, form ` ae → ae′ ae1t/4 fdinsem.pl
ρ ` 〈e, σ〉 → 〈e′, σ′〉 e1t/5 idinsem.pl
ρ ` 〈d, σ〉 → 〈d′, σ′〉 d1t/5 idinsem.pl
ρ ` 〈c, σ〉 → 〈c′, σ′〉 c1t/5 idinsem.pl
acon ` form → ρ, σ makeEnvStore/4 runtime.pl
ρ, form ` 〈ae, σ〉 → 〈ae′, σ′〉 ae1t/6 idinsem.pl

Table 5.1: Correspondence between the predicates used in the theory and their
implementation.

57

Chapter 6

A Session with CLAIR

The following is the transcription of what could be a typical work session with
CLAIR. Of course, this is not the same thing as providing proper documenta-
tion for users of the program. On the other hand, the environment privided by
CLAIR is rather self-explanatory: there is an ‘help’ command, the error mes-
sages should be understandable and so forth. Notive that the static semantics
checks give a quite detailed explanation of the semantic errors they may find.

This is CLAIR, the Combined Language and Abstract Interpretation Resource
Copyright (C) 2002-2005 Roberto Bagnara <bagnara@cs.unipr.it>
Type ‘help’ for advice, ‘quit’ to exit.
Default settings follows.

The language currently recognized is: imperative;
program file currently loaded is: *no file loaded*;

program name is: *no program loaded*;
and has been checked: no;

tracing is set: off;
tracing configurations: yes;

tracing store: yes;
tracing output goes to: user.

CLAIR> help

CLAIR provides you with the following commands:

help - the command you have just issued;
quit - leave CLAIR, back to the system;
info - display the current interpreter status;
list <f> - show file <fname> on the screen;
load <f> - load program from file <fname>;
edit <f> - edit file <f>;
run - run the currently loaded program, if any;
check - check static semantics of the currently

loaded program, if any;
trace ... - set trace status, possible formats are:

58

trace on/off - turn tracing on/off
trace config/store/both - what to trace
trace file <f> - where to trace

lang <l> - set the language type, possible values for <l>
are: ‘imperative’ (default), ‘functional’;

show - pretty print abstract syntax of program;
shell <c> - if <c> is omitted, open a nested shell session,

shell command <c> is executed otherwise;
dir - shows the current directory contents;
prolog - leave CLAIR, back to Prolog;
CLAIR> load ../tests/nprime
Loading program file ‘../tests/nprime’
Tokenising... done.
Parsing... syntax ok!
CLAIR> check
Static semantics ok.
CLAIR> run
enter n to find the n-th prime> 3
the 3th prime is 5
enter n to find the n-th prime> 12
the 12th prime is 37
enter n to find the n-th prime> -1
0.1 seconds to run.
CLAIR> l
Ambiguous command ‘l’: choose one of [list, load, language]
CLAIR> language functional
CLAIR> lo ../tests/apply
Loading program file ‘../tests/apply’
Tokenising... done.
Parsing... syntax ok!
CLAIR> info
The language currently recognized is: functional;

program file currently loaded is: ../tests/apply;
program name is: *no name*;

and has been checked: no;
tracing is set: off;

tracing configurations: yes;
tracing store: yes;

tracing output goes to: user.
CLAIR> check
Undeclared identifier: ‘nowaty’
Type mismatch: a value of type ‘function(integer) -> integer’

cannot be passed, being formal ‘limit’
of type ‘integer’

Static semantics check failed.
CLAIR> edit ../tests/apply

[edit session to correct errors]

CLAIR> load apply

59

Cannot find ‘apply’
CLAIR> load ../tests/apply
Loading program file ‘../tests/apply’
Tokenising... done.
Parsing... *bleach*, syntax error!
CLAIR> lang
Illegal command: ‘language’ requires 1 argument
CLAIR> lang fun
CLAIR> load ../tests/apply
Loading program file ‘../tests/apply’
Tokenising... done.
Parsing... syntax ok!
CLAIR> check
Static semantics ok, expression type is int.
CLAIR> trace on
CLAIR> trace file apply.trace
CLAIR> info
The language currently recognized is: functional;

program file currently loaded is: ../tests/apply;
program name is: *no name*;

and has been checked: yes;
tracing is set: on;

tracing configurations: yes;
tracing store: yes;

tracing output goes to: apply.trace.
CLAIR> run
7
0.24 seconds to run.
CLAIR> quit
Bye!

60

Bibliography

[1] G. D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Aarhus University, Department of Computer Science,
1981. 3

61

Appendix A

GNU GENERAL PUBLIC
LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change free software—to make sure the
software is free for all its users. This General Public License applies to most
of the Free Software Foundation’s software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is
covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom
to distribute copies of free software (and charge for this service if you wish),
that you receive source code or can get it if you want it, that you can change
the software or use pieces of it in new free programs; and that you know you
can do these things.

To protect your rights, we need to make restrictions that forbid anyone to
deny you these rights or to ask you to surrender the rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the soft-
ware, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or
for a fee, you must give the recipients all the rights that you have. You must
make sure that they, too, receive or can get the source code. And you must
show them these terms so they know their rights.

62

We protect your rights with two steps: (1) copyright the software, and (2)
offer you this license which gives you legal permission to copy, distribute and/or
modify the software.

Also, for each author’s protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the
software is modified by someone else and passed on, we want its recipients to
know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will individually
obtain patent licenses, in effect making the program proprietary. To prevent
this, we have made it clear that any patent must be licensed for everyone’s free
use or not licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the
terms of this General Public License. The “Program”, below, refers to
any such program or work, and a “work based on the Program” means
either the Program or any derivative work under copyright law: that is to
say, a work containing the Program or a portion of it, either verbatim or
with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.)
Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not cov-
ered by this License; they are outside its scope. The act of running the
Program is not restricted, and the output from the Program is covered
only if its contents constitute a work based on the Program (independent
of having been made by running the Program). Whether that is true
depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source
code as you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients
of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that
you also meet all of these conditions:

63

(a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any part
thereof, to be licensed as a whole at no charge to all third parties
under the terms of this License.

(c) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive
use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there
is no warranty (or else, saying that you provide a warranty) and
that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if
the Program itself is interactive but does not normally print such an
announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be reason-
ably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution
of the whole must be on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise the
right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under the
scope of this License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections
1 and 2 above provided that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange;
or,

(b) Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of physically
performing source distribution, a complete machine-readable copy of
the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software
interchange; or,

64

(c) Accompany it with the information you received as to the offer to dis-
tribute corresponding source code. (This alternative is allowed only
for noncommercial distribution and only if you received the program
in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source code
means all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation and
installation of the executable. However, as a special exception, the source
code distributed need not include anything that is normally distributed
(in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to
copy from a designated place, then offering equivalent access to copy the
source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with
the object code.

4. You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will automati-
cally terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed
it. However, nothing else grants you permission to modify or distribute
the Program or its derivative works. These actions are prohibited by law
if you do not accept this License. Therefore, by modifying or distribut-
ing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Pro-
gram), the recipient automatically receives a license from the original li-
censor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the re-
cipients’ exercise of the rights granted herein. You are not responsible for
enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringe-
ment or for any other reason (not limited to patent issues), conditions are
imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the
conditions of this License. If you cannot distribute so as to satisfy si-
multaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at

65

all. For example, if a patent license would not permit royalty-free redistri-
bution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License
would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free soft-
ware distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of soft-
ware distributed through that system in reliance on consistent application
of that system; it is up to the author/donor to decide if he or she is will-
ing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be
a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain coun-
tries either by patents or by copyrighted interfaces, the original copyright
holder who places the Program under this License may add an explicit
geographical distribution limitation excluding those countries, so that dis-
tribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body
of this License.

9. The Free Software Foundation may publish revised and/or new versions of
the General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask
for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of preserv-
ing the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

66

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE
EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD
THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDIS-
TRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING REN-
DERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your
New Programs

If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software which
everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of
warranty; and each file should have at least the “copyright” line and a pointer
to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) <yyyy> <name of author>

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

67

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it

starts in an interactive mode:

Gnomovision version 69, Copyright (C) <yyyy> <name of author>

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appro-
priate parts of the General Public License. Of course, the commands you use
may be called something other than ‘show w’ and ‘show c’; they could even be
mouse-clicks or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a “copyright disclaimer” for the program, if necessary.
Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the li-
brary. If this is what you want to do, use the GNU Library General Public
License instead of this License.

68

Appendix B

GNU Free Documentation
License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place,
Suite 330, Boston, MA 02111-1307, USA
Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional
and useful document free in the sense of freedom: to assure everyone the effec-
tive freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the
author and publisher a way to get credit for their work, while not being consid-
ered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains
a notice placed by the copyright holder saying it can be distributed under the
terms of this License. Such a notice grants a world-wide, royalty-free license,
unlimited in duration, to use that work under the conditions stated herein.

69

The “Document”, below, refers to any such manual or work. Any member of
the public is a licensee, and is addressed as “you”. You accept the license if
you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and
a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public, that is
suitable for revising the document straightforwardly with generic text editors or
(for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters
or for automatic translation to a variety of formats suitable for input to text for-
matters. A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent
if used for any substantial amount of text. A copy that is not “Transparent” is
called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii with-
out markup, Texinfo input format, LATEX input format, sgml or xml using a
publicly available dtd, and standard-conforming simple html, PostScript or
pdf designed for human modification. Examples of transparent image formats
include png, xcf and jpg. Opaque formats include proprietary formats that
can be read and edited only by proprietary word processors, sgml or xml for
which the dtd and/or processing tools are not generally available, and the
machine-generated html, PostScript or pdf produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
page as such, “Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

70

A section “Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific section
name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorse-
ments”, or “History”.) To “Preserve the Title” of such a section when you mod-
ify the Document means that it remains a section “Entitled XYZ” according to
this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially
or noncommercially, provided that this License, the copyright notices, and the
license notice saying this License applies to the Document are reproduced in
all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy
of the Document, free of added material. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies

71

in quantity, to ensure that this Transparent copy will remain thus accessible at
the stated location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Doc-
ument well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it
an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

72

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Doc-
ument itself, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve
the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled “Endorsements”, provided it contains noth-
ing but endorsements of your Modified Version by various parties—for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this Li-
cense, under the terms defined in section 4 above for modified versions, provided

73

that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty
Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in
the various original documents, forming one section Entitled “History”; likewise
combine any sections Entitled “Acknowledgements”, and any sections Entitled
“Dedications”. You must delete all sections Entitled “Endorsements.”

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the copyright resulting from the compila-
tion is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included an aggregate,
this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate, the
Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket
the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute transla-
tions of the Document under the terms of section 4. Replacing Invariant Sections

74

with translations requires special permission from their copyright holders, but
you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation
of this License, and all the license notices in the Document, and any Warrany
Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or
a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedica-
tions”, or “History”, the requirement (section 4) to Preserve its Title (section
1) will typically require changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License “or
any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

75

http://www.gnu.org/copyleft/

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after
the title page:

Copyright (C) year your name. Permission is granted to copy, dis-
tribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.2 or any later version pub-
lished by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the li-
cense is included in the section entitled “GNU Free Documentation
License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with...Texts.” line with this:

with the Invariant Sections being list their titles, with the Front-
Cover Texts being list, and with the Back-Cover Texts being list.

If you have Invariant Sections without Cover Texts, or some other combina-
tion of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.

76

	Introduction
	The SFL Language
	Abstract Syntax
	Base Sets and Corresponding Syntactic Meta-Variables
	Derived Sets:

	Static Semantics
	Constants
	Expressions
	Declarations

	Dynamic Semantics
	Declarations
	Expressions

	The SIL Language
	Abstract Syntax
	Base Sets and Corresponding Syntactic Meta-Variables
	Derived Sets:

	Static Semantics
	Constants
	Expressions
	Declarations
	Commands

	Dynamic Semantics
	Declarations
	Expressions
	Lists of Expressions
	Commands

	Concrete Syntax
	Identifiers
	Operators
	The Grammar of SFL
	The Grammar of SIL

	Implementation
	Short Guide to the Sources
	Syntax and Representation
	Type and GType
	Const, Num
	Declarations
	Formal Parameters
	Expressions
	Lists of Expressions
	Commands (SIL only)
	Program (SIL only)

	Correspondence Between Theory and Implementation

	A Session with CLAIR
	GNU GENERAL PUBLIC LICENSE
	GNU Free Documentation License

