Inner and Outer Approximations of Polytopes Using Boxes

F. D. Torrisi

torrisi@aut.ee.ethz.ch, http://control.ethz.ch/~torrisi Currenty with esmertec AG http://www.esmertec.com

Joint Work with
A.Bemporad and C. Filippi

Approximation

Given an H-polytope $\mathcal{P}:\{x: A x \leq b\}$ look for two collections \mathcal{I} and \mathcal{E} of adjacent boxes s. t.:

1. the union of all boxes in \mathcal{I} is contained in \mathcal{P}
2. the union of all boxes in \mathcal{E} contains \mathcal{P} minimize the volume error and minimize the total number of boxes

Single Inner Box

Main Idea: Maximize the volume of the box subj. to. all the vertices are in \mathcal{P}
$\mathcal{B}(x, x+y)=\left\{z \in \mathbb{R}^{d}: x \leq z \leq x+y\right\} ; \mathcal{P}=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\}$

$$
\begin{aligned}
\max _{x, y} & \prod_{j \in D} y_{j} \\
\text { subject to } & A x+A V(S) y \leq b \quad(\forall S \subseteq D) \\
& y>0
\end{aligned}
$$

where $D=\{1, \ldots, d\} ; V(S) \in\{0,1\}^{d}$ is the incidence vector of $S \subseteq D$

ETル 踊

Single Inner Box

Lemma 1 The constraints $A x+A V(S) y \leq b \forall S \subseteq D ; y \geq 0$ are equivalent to the set of constraints $A x+A^{+} y \leq b$, where A^{+}is the positive part of A.
Proof by lines, remembering that $y>0$.
Lemma $2 \max _{x, y} \prod_{j \in D} y_{j}$ is equivalent to $\max _{x, y} \sum_{j \in D} \ln y_{j}$. Therefore the problem is convex and polynomially solvable.

Single Inner Constrained Box

$$
\mathcal{B}(x, x+\lambda r)=\{z: z \leq z \leq x+\lambda r\} ; \mathcal{P}=\{x: A x \leq b\}
$$

Main Idea: If the edges of the box are constrained, maximizing the volume amount to maximizing one edge

$$
\begin{array}{cc}
\max _{x, \lambda} & \lambda \\
\text { subject to } & A x+A^{+}{ }_{r \lambda} \leq b,
\end{array}
$$

Complexity: $O(\mathbf{I p}(d+1, m))$
How to choose r ? e ($\mathbf{1}$ vector), Inner Diameters, Outer Box

ETH ifa

Single Greedy Inner Box

Assume that $0 \in \mathcal{P}$
How to find the max τ s.t. $\mathcal{B}(-e \tau, e \tau) \subseteq \mathcal{P}$?

$$
\mathcal{B}(-e \tau, e \tau)=\left\{x \in \mathbb{R}^{d}:-e \tau \leq x \leq e \tau\right\}, \tau \in \mathbb{R} ;
$$

$\mathcal{P}=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\}, a_{i j}$ is the j-th element in the i-th row of A

$$
\tau(\mathcal{P})=\max \{\tau: \mathcal{B}(-\tau e, \tau e) \subseteq \mathcal{P}\}=\min \left\{\tau_{i}: i=1, \ldots, m\right\} \text { where }
$$

$$
\tau_{i}=\left\{\begin{array}{ll}
\frac{b_{i}}{\sum_{j \in D}\left|a_{i j}\right|} & \text { if } \sum_{j \in D}\left|a_{i j}\right|>0, \\
+\infty & \text { otherwise. }
\end{array} \quad \text { because } z_{i}(\tau)=\max \left\{\sum_{j \in D} a_{i j} x_{j}: x \in \mathcal{B}\right\}\right.
$$

ETH ifa

Single Greedy Inner Box

Main Idea: Starting from a point x_{0} in \mathcal{P}, grow \mathcal{B} until it bridges one of the constraints of \mathcal{P}. Then, fix a vertex, remove the active constraints and continue, until all the verices are fixed

Complexity $O\left(m d^{2}\right), m=\#$ rows of A

Single Outer Box

$$
\mathcal{P}=\{x: A x \leq b\}
$$

Main Idea: Find the point $u_{j}\left(l_{j}\right)$ in \mathcal{P} with the biggest (smallest) j-th coordinate

$$
\begin{aligned}
l_{j} & =\min \left\{x_{j}: A x \leq b\right\} \\
u_{j} & =\max \left\{x_{j}: A x \leq b\right\}
\end{aligned}
$$

Complexity: $O(d \mathbf{I p}(m, d))$

ETH ifa

Recursive Inner Approximation

Main Idea: Partition $\mathcal{P} \backslash \mathcal{B}$ in $2 d$ polyhedra and compute the inner approximation of the rests

Stopping Condition: Prune a branch of the approximation if $\operatorname{vol}(\mathcal{B})<\epsilon$
Lemma 3 The total number of recursive calls is bounded by $2 d\left\lfloor\frac{\operatorname{vol}(\mathcal{P})}{\epsilon}\right\rfloor$.
Theorem 1 Let $\mathcal{I}_{\epsilon}=\left\{\mathcal{B}_{t}\right\}_{t=1}^{S(\epsilon)}$ be the inner approximation of the polytope \mathcal{P} for a given $\epsilon>0$. Then,

$$
\lim _{\epsilon \rightarrow 0} \cup_{t=1}^{S(\epsilon)} \mathcal{B}_{t}=\mathcal{P} .
$$

Recursive Outer Approximation

Main Idea: Partition \mathcal{P} in 2 polyhedra along the longest edge and compute the outer approximation of the two polyhedra

Stopping Condition: Prune a branch of the approximation if $\operatorname{vol}(\mathcal{B})<\epsilon$
Lemma 4 Let V denote the volume of the minimum volume outer box of \mathcal{P}. The total number of boxes is bounded by $\left\lceil\frac{4 V}{\epsilon}\right\rceil$.

Theorem 1 Let $\mathcal{E}_{\epsilon}=\left\{\mathcal{B}_{t}\right\}_{t=1}^{T(\epsilon)}$ be the outer approximation of the polytope \mathcal{P} for a given $\epsilon>0$. Then

$$
\lim _{\epsilon \rightarrow 0} \cup_{t=1}^{T(\epsilon)} \mathcal{B}_{t}=\mathcal{P}
$$

Fragmentation

The multiple box outer approximation might generate too many polyhedra

Solution: Stop the approximation if \mathcal{B} is in the interior of Pi.e. $\mathcal{B} \cap \delta \mathcal{P}=\emptyset$

Alternative: Combine inner and outer approximation

Recursive Inner-Outer Approximation

Main Idea: First perform an inner approximation, then compute the outer approximation of the rests

Computes in one shot both the inner and outer approximation

ETHN ifa

Extension: Approximate Projections

Main Idea: First perform an inner approximation, then compute the outer approximation of the rests

Computes in one shot both the inner and outer approximation

ETル 话

Conclusions

Algorithms to compute an inner and an outer approximation of a polytope

- Minimal volume error and number of boxes
- Alternative to the exact computation of the projection
- Good performance

Open Question: determine the projection of \mathcal{P} (or a polyhedral approximation) using the approximation
Possible Extension: Use arbitrary polytopes (i.e. octagons) as approximant shapes

