Reachability Analysis of Piecewise Affine Systems Using Polytopes

F. D. Torrisi

torrisi@aut.ee.ethz.ch, http://control.ethz.ch/~torrisi Currenty with esmertec AG <u>http://www.esmertec.com</u>

Joint Work with A.Bemporad

A Motivating Example

Renault Clio 1.9 DTI RXE

Hybrid: Continuous (accelerator pedal, and brakes) and discrete (gear ratio) inputs

Cruise Control System

Gear selector:

Speed controller:

$$e(t+1) = e(t) + T_s(v_r(t) - v(t))$$

$$u_e(t) = \begin{cases} k_e(v_e(t) - v(t)) + i_e e(t) & \text{if } v(t) < v_r + 1 \\ 0 & \text{otherwise} \end{cases}$$

$$u_b(t) = \begin{cases} k_b(v_e(t) - v(t)) & \text{if } v(t) \ge v_r + 1 \\ 0 & \text{otherwise} \end{cases}$$

Problem: Verification

Question: Will the cruise control reach the desired speed reference within 10 s without exceeding the speed limit?

Safety $\mathcal{Z}_1 = \{v : v > v_r + r_{toll}\}$ Liveness $\mathcal{Z}_2 = \{v, t : v < v_r - 2r_{toll}, t > 10/T_s\}$ $r_{toll} = 5 \text{ km/h}$

Modeling Requirements

Model:

Detailed to capture the system behavior

Simple to efficiently solve problems

Discrete-time linear dynamics selected by

- Logic state
- Exogenous logic inputs
- Threshold conditions
- Time
- Any logic combination of the former

Discrete Hybrid Automata

Switched Affine Systems

Linear affine dynamics depends upon the mode selector i(t)

$$x'_{r}(k) = A_{i(k)}x_{r}(k) + B_{i(k)}u_{r}(k) + f_{i(k)}$$

$$y_r(k) = C_{i(k)} x_r(k) + D_{i(k)} u_r(k) + g_{i(k)}$$

Event Generator

Generates a logic signal according to the satisfaction of a linear affine constraint

$$\delta_e(k) = f_{\mathsf{H}}(x_r(k), u_r(k), k)$$

Finite State Machine

Discrete dynamic process Evolves according to a logic state update function

$$\begin{aligned} x'_b(k) &= f_{\mathsf{B}}(x_b(k), u_b(k), \delta_e(k)) \\ y_b(k) &= g_{\mathsf{B}}(x_b(k), u_b(k), \delta_e(k)) \end{aligned}$$

Mode Selector

A Boolean function selects the active mode i(k) of the SAS

 $i(k) = f_{\mathsf{M}}(x_b(k), u_b(k), \delta_e(k))$

DHA and Other Modeling Frameworks

Piecewise Affine Models (PWA) define an affine dynamics on each cell of a polyhedral partition

Piecewise Affine Systems

Approximates nonlinear dynamics arbitrarily well Automatic conversion from MLD (Bemporad-Ferrari 2000) Is Equivalent to DHA

$$\begin{aligned} x(k+1) &= A_{i(k)}x(k) + B_{i(k)}u(k) + f_{i(k)} \\ y(k) &= C_{i(k)}x(k) + D_{i(k)}u(k) + g_{i(k)} \\ i(k) \text{ s.t. } H_{i(k)}x(k) + J_{i(k)}u(k) \leq K_{i(k)} \\ x \in \mathcal{X} \subseteq \mathbb{R}^n, \ u \in \mathcal{U} \subseteq \mathbb{R}^m, \ y \in \mathcal{Y} \subseteq \mathbb{R}^p \end{aligned}$$

HYSDEL

HYSDEL (HYbrid Systems Description Language) compactly describes Discrete Hybrid Automata:

- Automata and http://control.ee.ethz.ch/~hybrid/hysdel/
 Propositional Logic
- ContinuousDynamics
- A/D and D/A converters
- Constraints

HYSDEL compiler generates MLD and PWA models

Verification

Given:

- PWA system Σ
- Set of initial conditions $\mathcal{X}(0)$
- Target sets Z_1 , ..., Z_L (disjoint)
- Time horizon $t < T_{max}$

Problem:

- Is \mathcal{Z}_i reachable from $\mathcal{X}(0)$ in t steps?
- If yes, from which subset $\mathcal{X}_{\mathcal{Z}i}(0)$ of $\mathcal{X}(0)$?
- \circ Disturbance/inputs driving $\mathcal{X}_{\mathcal{Z}_i}(0)$ to \mathcal{Z}_i

Reach-Set Computation

$T_{\rm max}$ < ∞ , discrete-time \Rightarrow Decidable but $\mathcal{NP}\text{-hard}$

Algorithm:

- Compute the polyhedral reach set $\mathcal{X}(t)$
- Detect switching
- Describe new intersections $\mathcal{X}(t) \cap \mathcal{C}_{i}$
- Stopping criteria for a single exploration

Reach Set Computation

Reach set implicitly defined by linear inequalities

$$\begin{cases} x(t) = A_i^t x(0) + \sum_{k=0}^{t-1} A_i^k [B_i u(t-1-k) + f_i], \\ x(0) \in \mathcal{X}(0), \\ u(k) \in \mathcal{U}(0), \quad k = 0, \dots, t-1. \end{cases}$$

Simple to compute

Number of constraints grows linearly with time Explicit form also possible via projection methods (e.g. CDD, Fukuda 1997)

Approximation

- Simple to compute via Linear Programming (LP)
- Can approximate with arbitrary precision
- Trade-off between quality and complexity of the approximation
- Both inner and outer approximations in one shot
- Approximate computation of projections

Stopping Criteria

Switching Sequences

All switching sequences of the system are paths in the graph

The converse is not true in general

Car Model

Vehicle dynamics

$$m\ddot{x} = F_e - F_b - \beta \dot{x}$$

 F_e = traction force F_b = brake force

Transmission kinematics

$$\omega = \frac{k_g}{R_g(i)} \dot{x} \qquad F_e = \frac{k_g}{R_g(i)} M$$

 ω = engine speed M = engine torque i = gear

Constraints

 $M_{\min}(\omega) \leq M \leq M_{\max}(\omega)$

Car Model

Engine torque $M_{\min}(\omega) \leq M \leq M_{\max}(\omega)$

Piecewise-linearization: (PWL Toolbox, Julián 1999)

Gear selection:

 $F_e = k_g M/R_g(i)$ depends on gear *i*: IF $g_i = 1$ THEN $F_{ei} = k_g M/R_g(i)$ ELSE 0 and $F_e = F_{eR} + F_{e1} + F_{e2} + F_{e3} + F_{e4} + F_{e5}$

Hysdel Model

SYSTEM car (

```
INTERFACE (
```

```
STATE { REAL position, speed; }
INPUT { REAL torque, F_brake;
BOOL gear1, gear2, gear3, gear4, gear5, gearR; }
```

PARAMETER |

```
REAL mass = 1020; /* kg */
REAL beta_friction = 25; /* W/m*s */
REAL Rgear1 = 3.7271; REAL Rgear2 = 2.048;
REAL Rgear3 = 1.321; REAL Rgear4 = 0.971;
REAL Rgear5 = 0.756; REAL RgearR = -3.545;
REAL wheel_rim = 14; /* in */
```

```
} }
IMPLEMENTATION (
```

```
AUX (REAL Fel, Fe2, Fe3, Fe4, Fe5, FeR;
REAL w1, w2, w3, w4, w5, wR;
BOOL dPWL1,dPWL2,dPWL3,dPWL4;
REAL DCe1,DCe2,DCe3,DCe4; }
```

```
AD ( dPWL1 = wPWL1-(w1+w2+w3+w4+w5+wR) <=0;
    dPWL2 = wPWL2-(w1+w2+w3+w4+w5+wR) <=0;
    dPWL3 = wPWL3-(w1+w2+w3+w4+w5+wR) <=0;
    dPWL4 = wPWL4-(w1+w2+w3+w4+w5+wR) <=0; }</pre>
```

```
DA { Fel = {IF gear1 THEN torque/speed_factor*Rgear1;
Fe2 = {IF gear2 THEN torque/speed_factor*Rgear2;
Fe3 = {IF gear3 THEN torque/speed_factor*Rgear3;
Fe4 = {IF gear4 THEN torque/speed_factor*Rgear4;
Fe5 = {IF gear5 THEN torque/speed_factor*Rgear5;
FeR = {IF gear8 THEN torque/speed_factor*Rgear8;
w1 = {IF gear1 THEN speed/speed_factor*Rgear1;
w2 = {IF gear2 THEN speed/speed_factor*Rgear2;
```

```
w3 = {IF gear3 THEN speed/speed_factor*kgear3;
w4 = {IF gear4 THEN speed/speed_factor*kgear4;
w5 = {IF gear5 THEN speed/speed_factor*kgear5;
wk = {IF geark THEN speed/speed_factor*kgeark;
```

DCel = (IF dPWL1 THEN (aPWL2-aPWL1)+(bPWL2-bPWL1)*(w1+w2+w3+) $DCe2 = \{IF dPWL2 THEN (aPWL3-aPWL2) + (bPWL3-bPWL2) * (w1+w2+w3+v)$ DCe3 = {IF dPWL3 THEN (aPWL4-aPWL3)+(bPWL4-bPWL3)*(w1+w2+w3+1) DCe4 = (IF dPWL4 THEN (aPWL5-aPWL4)+(bPWL5-bPWL4)*(w1+w2+w3+)CONTINUOUS (position = position+Ts*speed; speed = speed+Ts/mass*(Fel+Fe2+Fe3+Fe4+Fe5+FeR-F brake-beta friction*speed); (wemin <= w1+w2+w3+w4+w5+wR;</pre> BUST. w1+w2+w3+w4+w5+wR <= wemax: -F brake <=0: /* brakes cannot accelerate | */ F brake <= max brake force; -torque-(alphal+betal*(w1+w2+w3+w4+w5+wR)) <=0; torque-(aPWL1+bPWL1*(w1+w2+w3+w4+w5+wR)+DCe1+DCe2+DCe3+] -(gear1+gear2+gear3+gear4+gear5+gearR)<=-1; (gear1+gear2+gear3+gear4+gear5+gear8) <=1;</pre> Fel+Fe2+Fe3+Fe4+Fe5+FeR <= max force;

-Fel-Fe2-Fe3-Fe4-Fe5-FeR <= -max force;

dPWL4 -> dPWL3; dPWL4 -> dPWL2; dPWL4 -> dPWL1; dPWL3 -> dPWL2; dPWL3 -> dPWL1; dPWL2 -> dPWL1; }

Hybrid Model

$$\begin{aligned} x(k+1) &= A_{i(k)}x(k) + B_{i(k)}u(k) + f_{i(k)} \\ y(k) &= C_{i(k)}x(k) + D_{i(k)}u(k) + g_{i(k)} \\ i(k) \text{ s.t. } H_{i(k)}x(k) + J_{i(k)}u(k) \leq K_{i(k)} \\ x \in \mathcal{X} \subseteq \mathbb{R}^n, \ u \in \mathcal{U} \subseteq \mathbb{R}^m, \ y \in \mathcal{Y} \subseteq \mathbb{R}^p \end{aligned}$$

 $x \in \mathcal{X} \subseteq \mathbb{R}^8$, 150 regions.

Cruise Control: Verification Results

For all $v_r \in [30,70] \text{ km/h}$, the controller satisfies both liveness & safety properties (CPU time: 9109 s on Matlab5.3, PC 650 MHz)

For $v_r \in [30,120] \text{ km/h}$ the verification algorithm finds the first counterexample after 415 s.

Conclusions

Reachability Analisis of hybrid systems answers important safety and liveness questions

PWA models capture well the behavior of real systems

Polyhedral computation is a key tool for reachability analysis of hybrid systems

