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Abstract. Logic languages based on the theory of rational, possibly in-
finite, trees have much appeal in that rational trees allow for faster unifi-
cation (due to the omission of the occurs-check) and increased expressiv-
ity. Note that cyclic terms can provide a very efficient representation of
grammars and other useful objects. Unfortunately, the use of infinite ra-
tional trees has problems. For instance, many of the built-in and library
predicates are ill-defined for such trees and need to be supplemented by
run-time checks whose cost may be significant. Moreover, some widely-
used program analysis and manipulation techniques are only correct for
those parts of programs working over finite trees. It is thus important to
obtain, automatically, a knowledge of those program variables (the finite
variables) that, at the program points of interest, will always be bound
to finite terms. For these reasons, we propose here a new data-flow anal-
ysis that captures such information. We present a parametric domain
where a simple component for recording finite variables is coupled with
a generic domain (the parameter of the construction) providing sharing
information. The sharing domain is abstractly specified so as to guar-
antee the correctness of the combined domain and the generality of the
approach.

1 Introduction

The intended computation domain of most logic-based languages1 includes the
algebra (or structure) of finite trees. Other (constraint) logic-based languages,
such as Prolog II and its successors [9, 11], SICStus Prolog [34], and Oz [32], refer
to a computation domain of rational trees. A rational tree is a possibly infinite
tree with a finite number of distinct subtrees and, as is the case for finite trees,
? This work has been partly supported by MURST project “Certificazione automatica
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where each node has a finite number of immediate descendants. These properties
will ensure that rational trees, even though infinite in the sense that they admit
paths of infinite length, can be finitely represented. One possible representation
makes use of connected, rooted, directed and possibly cyclic graphs where nodes
are labeled with variable and function symbols as is the case of finite trees.

Applications of rational trees in logic programming include graphics [16],
parser generation and grammar manipulation [9, 19], and computing with finite-
state automata [9]. Other applications are described in [18] and [21]. Going from
Prolog to CLP, [29] combines constraints on rational trees and record structures,
while the logic-based language Oz allows constraints over rational and feature
trees [32]. The expressive power of rational trees is put to use, for instance, in
several areas of natural language processing. Rational trees are used in imple-
mentations of the HPSG formalism (Head-driven Phrase Structure Grammar)
[30], in the ALE system (Attribute Logic Engine) [7], and in the ProFIT system
(Prolog with Features, Inheritance and Templates) [17].

While rational trees allow for increased expressivity, they also come equipped
with a surprising number of problems. As we will see, some of these problems
are so serious that rational trees must be used in a very controlled way, disal-
lowing them in any context where they are “dangerous”. This, in turn, causes
a secondary problem: in order to disallow rational trees in selected contexts one
must first detect them, an operation that may be expensive.

The first thing to be aware of is that almost any semantics-based program
manipulation technique developed in the field of logic programming —whether
it be an analysis, a transformation, or an optimization— assumes a computation
domain of finite trees. Some of these techniques might work with the rational
trees but their correctness has only been proved in the case of finite trees. Others
are clearly inapplicable. Let us consider a very simple Prolog program:

list([]).
list([ |T]) :- list(T).

Most automatic and semi-automatic tools for proving program termination and
for complexity analysis agree on the fact that list/1 will terminate when in-
voked with a ground argument. Consider now the query

?- X = [a|X], list(X).

and note that, after the execution of the first rational unification, the variable
X will be bound to a rational term containing no variables, i.e., the predicate
list/1 will be invoked with X ground. However, if such a query is given to, say,
SICStus Prolog, then the only way to get the prompt back is by pressing ^C.
The problem stems from the fact that the analysis techniques employed by these
tools are only sound for finite trees: as soon as they are applied to a system
where the creation of cyclic terms is possible, their results are inapplicable. The
situation can be improved by combining these termination and/or complexity
analyses by a finiteness analysis providing the precondition for the applicability
of the other techniques.
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The implementation of built-in predicates is another problematic issue. In-
deed, it is widely acknowledged that, for the implementation of a system that
provides real support for the rational trees, the biggest effort concerns proper
handling of built-ins. Of course, the meaning of ‘proper’ depends on the actual
built-in. Built-ins such as copy_term/2 and ==/2 maintain a clear semantics
when passing from finite to rational trees. For others, like sort/2, the extension
can be questionable:2 both raising an exception and answering Y = [a] can be
argued to be “the right reaction” to the query

?- X = [a|X], sort(X, Y).

Other built-ins do not tolerate infinite trees in some argument positions. A good
implementation should check for finiteness of the corresponding arguments and
make sure “the right thing” —failing or raising an appropriate exception— al-
ways happens. However, such behavior appears to be uncommon. A small ex-
periment we conducted on six Prolog implementations with queries like

?- X = 1+X, Y is X.
?- X = [97|X], name(Y, X).
?- X = [X|X], Y =.. [f|X].

resulted in infinite loops, memory exhaustion and/or system thrashing, segmen-
tation faults or other fatal errors. One of the implementations tested, SICStus
Prolog, is a professional one and implements run-time checks to avoid most cases
where built-ins can have catastrophic effects.3 The remaining systems are a bit
more than research prototypes, but will clearly have to do the same if they evolve
to the stage of production tools. Again, a data-flow analysis aimed at the de-
tection of those variables that are definitely bound to finite terms would allow
to avoid a (possibly significant) fraction of the useless run-time checks. Note
that what has been said for built-in predicates applies to libraries as well. Even
though it may be argued that it is enough for programmers to know that they
should not use a particular library predicate with infinite terms, it is clear that
the use of a “safe” library, including automatic checks which ensure that such
predicates are never called with an illegal argument, will result in more robust
systems. With the appropriate data-flow analyses, safe libraries do not have to
be inefficient libraries.

Another serious problem is the following: the ISO Prolog standard term
ordering cannot be extended to rational trees [M. Carlsson, Personal commu-
nication, October 2000]. Consider the rational trees defined by A = f(B, a)
and B = f(A, b). Clearly, A == B does not hold. Since the standard term or-
dering is total, we must have either A @< B or B @< A. Assume A @< B. Then
f(A, b) @< f(B, a), since the ordering of terms having the same principal
functor is inherited by the ordering of subterms considered in a left-to-right
fashion. Thus B @< A must hold, which is a contradiction. A dual contradiction
2 Even though sort/2 is not required to be a built-in by the standard, it is offered as

such by several implementations.
3 SICStus 3.8.5 still loops on ?- X = [97|X], name(Y, X).
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is obtained by assuming B @< A. As a consequence, applying one of the Prolog
term-ordering predicates to one or two infinite terms may cause inconsistent
results, giving rise to bugs that are exceptionally difficult to diagnose. For this
reason, any system that extends ISO Prolog with rational trees ought to detect
such situations and make sure they are not ignored (e.g., by throwing an ex-
ception or aborting execution with a meaningful message). However, predicates
such as the term-ordering ones are likely to be called a significant number of
times, since they are often used to maintain structures implementing ordered
collections of terms. This is another instance of the efficiency issue mentioned
above.

In this paper, we present a parametric abstract domain for finite-tree analysis,
denoted by H × P . This domain combines a simple component H (the finite-
ness component), recording the set of definitely finite variables, with a generic
domain P (the parameter of the construction), providing sharing information.
The term “sharing information” is to be understood in its broader meaning,
which includes variable aliasing, groundness, linearity, freeness and any other
kind of information that can improve the precision on these components, such
as explicit structural information. Several domain combinations and abstract
operators, characterized by different precision/complexity trade-offs, have been
proposed to capture these properties (see [4] for an account of some of them).
By giving a generic specification for this parameter component, it is possible to
define and establish the correctness of the abstract operators on the finite-tree
domain independently from any particular domain for sharing analysis.

The paper is structured as follows. The required notations and preliminary
concepts are given in Section 2. The finite-tree domain is then introduced in
Section 3: Section 3.1 provides the specification of the parameter domain P ;
Section 3.2 defines the abstraction function for the finiteness component H ;
Section 3.3 defines the abstract unification operator for H×P . A brief description
of some ongoing work on the subject is given in Section 4. We conclude in
Section 5.

2 Preliminaries

2.1 Infinite Terms and Substitutions

For a set S, ℘(S) is the powerset of S, whereas ℘f(S) is the set of all the finite
subsets of S. Let Sig denote a possibly infinite set of function symbols, ranked
over the set of natural numbers. It is assumed that Sig contains at least two
distinct function symbols, one having rank 0 (so that there exist finite ground
terms) and one having rank greater than 0 (so that there exist infinite terms).
Let Vars denote a denumerable set of variables, disjoint from Sig . Then Terms
denotes the free algebra of all (possibly infinite) terms in the signature Sig having
variables in Vars. Thus a term can be seen as an ordered labeled tree, possibly
having some infinite paths and possibly containing variables: every inner node is
labeled with a function symbol in Sig with a rank matching the number of the
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node’s immediate descendants, whereas every leaf is labeled by either a variable
in Vars or a function symbol in Sig having rank 0 (a constant).

If t ∈ Terms then vars(t) and mvars(t) denote the set and the multiset of
variables occurring in t, respectively. We will also write vars(o) to denote the set
of variables occurring in an arbitrary syntactic object o. If a occurs more than
once in a multiset M we write a AM .

Suppose s, t ∈ Terms: s and t are independent if vars(s) ∩ vars(t) = ∅; if
y ∈ vars(t) and ¬

(
y A mvars(t)

)
we say that variable y occurs linearly in t,

more briefly written using the predication occ lin(y, t); t is said to be ground
if vars(t) = ∅; t is free if t ∈ Vars; t is linear if, for all y ∈ vars(t), we have
occ lin(y, t); finally, t is a finite term (or Herbrand term) if it contains a finite
number of occurrences of function symbols. The sets of all ground, linear and
finite terms are denoted by GTerms, LTerms and HTerms, respectively.

A substitution is a total function σ : Vars → HTerms that is the identity
almost everywhere; in other words, the domain of σ,

dom(σ) def=
{
x ∈ Vars

∣∣ σ(x) 6= x
}
,

is finite. Given a substitution σ : Vars → HTerms, we overload the symbol ‘σ’
so as to denote also the function σ : HTerms → HTerms defined as follows, for
each term t ∈ HTerms:

σ(t) def=


t, if t is a constant symbol;
σ(t), if t ∈ Vars;
f
(
σ(t1), . . . , σ(tn)

)
, if t = f(t1, . . . , tn).

If x ∈ Vars and t ∈ HTerms \ {x}, then x 7→ t is called a binding. The set
of all bindings is denoted by Bind . Substitutions are denoted by the set of their
bindings, thus a substitution σ is identified with the (finite) set{

x 7→ σ(x)
∣∣ x ∈ dom(σ)

}
.

We denote by vars(σ) the set of variables occurring in the bindings of σ.
A substitution is said to be circular if, for n > 1, it has the form

{x1 7→ x2, . . . , xn−1 7→ xn, xn 7→ x1},

where x1, . . . , xn are distinct variables. A substitution is in rational solved form
if it has no circular subset. The set of all substitutions in rational solved form is
denoted by RSubst .

If t ∈ HTerms, we write tσ to denote σ(t) and t[x/s] to denote t{x 7→ s}.
The composition of substitutions is defined in the usual way. Thus τ ◦ σ is

the substitution such that, for all terms t ∈ HTerms,

(τ ◦ σ)(t) = τ
(
σ(t)

)
and has the formulation

τ ◦σ =
{
x 7→ xστ

∣∣ x ∈ dom(σ), x 6= xστ
}
∪
{
x 7→ xτ

∣∣ x ∈ dom(τ) \dom(σ)
}
.
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As usual, σ0 denotes the identity function (i.e., the empty substitution) and,
when i > 0, σi denotes the substitution (σ ◦ σi−1).

For each σ ∈ RSubst , s ∈ HTerms, the sequence of finite terms

σ0(s), σ1(s), σ2(s), . . .

converges to a (possibly infinite) term, denoted σ∞(s) [23, 27]. Therefore, the
function rt : HTerms × RSubst → Terms such that

rt(s, σ) def= σ∞(s)

is well defined. Note that, in general, this function is not a substitution: while
having a finite domain, its “bindings” x 7→ t can map a domain variable x into
a term t ∈ Terms \HTerms.

2.2 Equations

An equation is of the form s = t where s, t ∈ HTerms. Eqs denotes the set of all
equations. A substitution σ may be regarded as a finite set of equations, that is,
as the set {x = t | x 7→ t ∈ σ }. We say that a set of equations e is in rational
solved form if

{
s 7→ t

∣∣ (s = t) ∈ e
}
∈ RSubst . In the rest of the paper, we will

often write a substitution σ ∈ RSubst to denote a set of equations in rational
solved form (and vice versa).

Some logic-based languages, such as Prolog II, SICStus and Oz, are based
on RT , the theory of rational trees [9, 10]. This is a syntactic equality theory
(i.e., a theory where the function symbols are uninterpreted), augmented with
a uniqueness axiom for each substitution in rational solved form. Informally
speaking these axioms state that, after assigning a ground rational tree to each
parameter variable, the substitution uniquely defines a ground rational tree for
each of its domain variables. Thus, any set of equations in rational solved form
is, by definition, satisfiable in RT . Note that being in rational solved form is a
very weak property. Indeed, unification algorithms returning a set of equations
in rational solved form are allowed to be much more “lazy” than one would
usually expect. We refer the interested reader to [25, 26, 28] for details on the
subject.

Given a set of equations e ∈ ℘f(Eqs) that is satisfiable in RT , a substitution
σ ∈ RSubst is called a solution for e in RT if RT ` ∀(σ → e). If in addition
vars(σ) ⊆ vars(e), then σ is said to be a relevant solution for e. Finally, σ is a
most general solution for e in RT if RT ` ∀(σ ↔ e). In this paper, the set of
all the relevant most general solution for e in RT will be denoted by mgs(e).

2.3 The Concrete Domain

Throughout the paper, we assume a knowledge of the basic concepts of abstract
interpretation theory [13, 14].

For the purpose of this paper, we assume a concrete domain constituted by
pairs of the form (Σ, V ), where V is a finite set of variables of interest and Σ is
a (possibly infinite) set of substitutions in rational solved form.
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Definition 1. (The concrete domain.) Let D[ def= ℘(RSubst) × ℘f(Vars).
If (Σ, V ) ∈ D[, then (Σ, V ) represents the (possibly infinite) set of first-order
formulas

{
∃∆ . σ

∣∣ σ ∈ Σ,∆ = vars(σ)\V
}

where σ is interpreted as the logical
conjunction of the equations corresponding to its bindings.

Concrete domains for constraint languages would be similar. If the analyzed
language allows the use of constraints on various domains to restrict the values
of the variable leaves of rational trees, the corresponding concrete domain would
have one or more extra components to account for the constraints (see [2] for an
example).

The concrete element
({
{x 7→ f(y)}

}
, {x, y}

)
expresses a dependency be-

tween x and y. In contrast,
({
{x 7→ f(y)}

}
, {x}

)
only constrains x. The same

concept can be expressed by saying that in the first case the variable name ‘y’
matters, but it does not in the second case. Thus, the set of variables of interest
is crucial for defining the meaning of the concrete and abstract descriptions.
Despite this, always specifying the set of variables of interest would significantly
clutter the presentation. Moreover, most of the needed functions on concrete and
abstract descriptions, preserve the set of variables of interest. For these reasons,
we assume the existence of a set VI ∈ ℘f(Vars) that contains, at each stage
of the analysis, the current variables of interest.4 As a consequence, when the
context makes it clear that Σ ∈ ℘(RSubst), we will write Σ ∈ D[ as a shorthand
for (Σ,VI ) ∈ D[.

3 An Abstract Domain for Finiteness Analysis

Finite-tree analysis applies to logic-based languages computing over a domain
of rational trees where cyclic structures are allowed. In contrast, analyses aimed
at occurs-check reduction [15, 33] apply to programs that are meant to compute
on a domain of finite trees only, but have to be executed over systems that are
either designed for rational trees or intended just for the finite trees but omit the
occurs-check for efficiency reasons. Despite their different objectives, finite-tree
and occurs-check analyses have much in common: in both cases, it is important
to detect all program points where cyclic structures can be generated.

Note however that, when performing occurs-check reduction, one can take
advantage of the following invariant: all data structures generated so far are
finite. This property is maintained by transforming the program so as to force
finiteness whenever it is possible that a cyclic structure could have been built.5

4 This parallels what happens in the efficient implementation of data-flow analyzers.
In fact, almost all the abstract domains currently in use do not need to represent
explicitly the set of variables of interest. In contrast, this set is maintained externally
and in a unique copy, typically by the fixpoint computation engine.

5 Such a requirement is typically obtained by replacing the unification with a call to
unify with occur check/2. As an alternative, in some systems based on rational
trees it is possible to insert, after each problematic unification, a finiteness test for
the generated term.
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In contrast, a finite-tree analysis has to deal with the more general case when
some of the data structures computed so far may be cyclic. It is therefore natural
to consider an abstract domain made up of two components. The first one simply
represents the set of variables that are guaranteed not to be bound to infinite
terms. We will denote this finiteness component by H (from Herbrand).

Definition 2. (The finiteness component.) The finiteness component is the
set H def= ℘(VI ) partially ordered by reverse subset inclusion.

The second component of the finite-tree domain should maintain any kind of
information that may be useful for computing and possibly propagating finiteness
information.

It is well-known that sharing information as a whole, therefore including
possible variable aliasing, definite linearity, and definite freeness, has a crucial
role in occurs-check reduction so that, as observed before, it can be exploited
for finite-tree analysis too. Thus, a first choice for the second component of the
finite-tree domain would be to consider one of the standard combinations of
sharing, freeness and linearity as defined, e.g., in [4, 5, 20]. However, this would
tie our specification to a particular sharing analysis domain, whereas the overall
approach seems to be inherently more general. For this reason, we will define
a finite-term analysis based on the abstract domain schema H × P , where the
generic sharing component P is a parameter of the abstract domain construction.

3.1 The parameter component P

Elements of P can encode any kind of information. We only require that substi-
tutions that are equivalent in the theory RT are identified in P .

Definition 3. (The parameter component.) The parameter component P
is an abstract domain related to the concrete domain D[ by means of the con-
cretization function γP : P → ℘(RSubst) such that, for all p ∈ P,(

σ ∈ γP (p) ∧
(
RT ` ∀(σ ↔ τ)

))
=⇒ τ ∈ γP (p).

The interface between H and P is provided by a set of predicates and func-
tions that satisfy suitable correctness criteria. Note that, for space limitations,
we will only specify those abstract operations that are useful to define abstract
unification on the combined domain H × P . The other operations needed for a
full description of the analysis, such as renamings, upper bound operators and
projections, are very simple and, as usual, do not pose any problems.

Definition 4. (Abstract operators on P .) Let s, t ∈ HTerms be finite terms.
For each p ∈ P, we define the following predicates:
s and t are independent in p if and only if indp : HTerms2 → Bool holds for
(s, t), where

indp(s, t) =⇒ ∀σ ∈ γP (p) : vars
(
rt(s, σ)

)
∩ vars

(
rt(t, σ)

)
= ∅;

8



s and t share linearly in p if and only if share linp : HTerms2 → Bool holds for
(s, t), where

share linp(s, t) =⇒ ∀σ ∈ γP (p) :

∀y ∈ vars
(
rt(s, σ)

)
∩ vars

(
rt(t, σ)

)
:

occ lin
(
y, rt(s, σ)

)
∧ occ lin

(
y, rt(t, σ)

)
;

t is ground in p if and only if groundp : HTerms → Bool holds for t, where

groundp(t) =⇒ ∀σ ∈ γP (p) : rt(t, σ) ∈ GTerms;

t is ground-or-free in p if and only if gfreep : HTerms → Bool holds for t, where

gfreep(t) =⇒ ∀σ ∈ γP (p) : rt(t, σ) ∈ GTerms ∨ rt(t, σ) ∈ Vars;

s and t are or-linear in p if and only if or linp : HTerms2 → Bool holds for (s, t),
where

or linp(s, t) =⇒ ∀σ ∈ γP (p) : rt(s, σ) ∈ LTerms ∨ rt(t, σ) ∈ LTerms;

s is linear in p if and only if linp : HTerms → Bool holds for s, where

linp(s) def⇐⇒ or linp(s, s).

For each p ∈ P, the following functions compute subsets of the set of variables
of interest:
the function share same varp : HTerms × HTerms → ℘(VI ) returns a set of
variables that may share with the given terms via the same variable. For each
s, t ∈ HTerms,

share same varp(s, t) ⊇

 y ∈ VI

∣∣∣∣∣∣∣
∃σ ∈ γP (p) .
∃z ∈ vars

(
rt(y, σ)

)
.

z ∈ vars
(
rt(s, σ)

)
∩ vars

(
rt(t, σ)

)
;

the function share withp : HTerms → ℘(VI ) yields a set of variables that may
share with the given term. For each t ∈ HTerms,

share withp(t) def=
{
y ∈ VI

∣∣ y ∈ share same varp(y, t)
}
.

The function amguP : P×Bind → P correctly captures the effects of a binding
on an element of P. For each (x 7→ t) ∈ Bind and p ∈ P, let

p′ def= amguP
(
p, x 7→ t

)
.

For all σ ∈ γP (p), if τ ∈ mgs
(
σ ∪ {x = t}

)
, then τ ∈ γP (p′).
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Some of these generic operators can be directly mapped into the correspond-
ing abstract operators defined for well-known sharing analysis domains (e.g., see
those defined in [5]). However, the specification given in Definition 4, besides
being more general than a particular implementation, also allows for a modular
approach when proving correctness results.

3.2 The abstraction function for H

When the concrete domain is based on the theory of finite trees, idempotent
substitutions provide a finitely computable strong normal form for domain ele-
ments, meaning that different substitutions describe different sets of finite trees.6

In contrast, when working on a concrete domain based on the theory of ratio-
nal trees, substitutions in rational solved form, while being finitely computable,
no longer satisfy this property: there can be an infinite set of substitutions in
rational solved form all describing the same set of rational trees (i.e., the same
element in the “intended” semantics). For instance, the substitutions

σn = {x 7→
n︷ ︸︸ ︷

f(· · · f(x) · · · )}

for n = 1, 2, . . . , all map the variable x into the same rational tree (which is
usually denoted by fω).

Ideally, a strong normal form for the set of rational trees described by a sub-
stitution σ ∈ RSubst can be obtained by computing the limit σ∞. The problem
is that we may end up with σ∞ /∈ RSubst , as σ∞ can map domain variables to
infinite rational terms.

This poses a non-trivial problem when trying to define a “good” abstraction
function, since it would be really desirable for this function to map any two
equivalent concrete elements to the same abstract element. As shown in [22], the
classical abstraction function for set-sharing analysis [12, 24], which was defined
for idempotent substitutions only, does not enjoy this property when applied,
as it is, to arbitrary substitutions in rational solved form. A possibility is to
look for a more general abstraction function that allows to obtain the desired
property. For example, in [22] the sharing-group operator sg of [24] is replaced
by an occurrence operator, occ, defined by means of a fixpoint computation. We
now provide a similar fixpoint construction defining the finiteness operator.

Definition 5. (Finiteness functions.) For each n ∈ N, the finiteness function
hvarsn : RSubst → ℘(Vars) is defined, for each σ ∈ RSubst, by

hvars0(σ) def= Vars \ dom(σ)

and, for n > 0, by

hvarsn(σ) def= hvarsn−1(σ) ∪
{
y ∈ dom(σ)

∣∣ vars(yσ) ⊆ hvarsn−1(σ)
}
.

6 As usual, this is to be intended modulo the possible renaming of variables.
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For each σ ∈ RSubst and each i > 0, we have hvarsi(σ) ⊆ hvarsi+1(σ). Note
also that Vars \ hvarsi(σ) ⊆ dom(σ) is a finite set. By these two properties, the
following fixpoint computation is well defined and finitely computable.

Definition 6. (Finiteness operator.) For each σ ∈ RSubst, the finiteness
operator hvars : RSubst → ℘(Vars) is given by

hvars(σ) def= hvars`(σ)

where ` def= `(σ) ∈ N is such that hvars`(σ) = hvarsn(σ) for all n ≥ `.

The following proposition shows that the hvars operator precisely captures
the intended property.

Proposition 1. If σ ∈ RSubst and x ∈ Vars then

x ∈ hvars(σ) ⇐⇒ rt(x, σ) ∈ HTerms.

Example 1. Consider σ ∈ RSubst , where

σ =
{
x1 7→ f(x2), x2 7→ g(x5), x3 7→ f(x4), x4 7→ g(x3)

}
.

Then,

hvars0(σ) = Vars \ {x1, x2, x3, x4},
hvars1(σ) = Vars \ {x1, x3, x4},
hvars2(σ) = Vars \ {x3, x4}

= hvars(σ).

Thus, x1 ∈ hvars(σ), even if vars(x1σ) ⊆ dom(σ).

The abstraction function for H can then be defined in the obvious way.

Definition 7. (The abstraction function for H .) The abstraction function
αH : RSubst → H is defined, for each σ ∈ RSubst, by

αH(σ) def= VI ∩ hvars(σ).

The concrete domain D[ is related to H by means of the abstraction function
αH : D[ → H such that, for each Σ ∈ ℘(RSubst),

αH(Σ) def=
⋂{

αH(σ)
∣∣ σ ∈ Σ }.

Since the abstraction function αH is additive, the concretization function is given
by its adjoint [13]:

γH(h) def=
{
σ ∈ RSubst

∣∣ αH(σ) ⊇ h
}
.

With these definitions, we have the desired result: equivalent substitutions
in rational solved form have the same finiteness abstraction.

Theorem 1. If σ, σ′ ∈ RSubst and RT ` ∀(σ ↔ σ′), then αH(σ) = αH(σ′).
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3.3 Abstract unification on H × P

The abstract unification for the combined domain H ×P is defined by using the
abstract predicates and functions as specified for P as well as a new finiteness
predicate for the domain H .

Definition 8. (Abstract unification on H × P .) A term t ∈ HTerms is a
finite tree in h if and only if the predicate htermh : HTerms → Bool holds for t,
where htermh(t) def= vars(t) ⊆ h.

The function amguH : (H ×P)×Bind → H captures the effects of a binding
on an H element. Let 〈h, p〉 ∈ H × P and (x 7→ t) ∈ Bind. Then

amguH
(
〈h, p〉, x 7→ t

) def= h ′,

where

h ′ def=



h ∪ vars(t), if htermh(x) ∧ groundp(x);
h ∪ {x}, if htermh(t) ∧ groundp(t);
h, if htermh(x) ∧ htermh(t)

∧ indp(x, t) ∧ or linp(x, t);
h, if htermh(x) ∧ htermh(t)

∧ gfreep(x) ∧ gfreep(t);
h \ share same varp(x, t), if htermh(x) ∧ htermh(t)

∧ share linp(x, t)
∧ or linp(x, t);

h \ share withp(x), if htermh(x) ∧ linp(x);
h \ share withp(t), if htermh(t) ∧ linp(t);
h \
(
share withp(x) ∪ share withp(t)

)
, otherwise.

The abstract unification function amgu: (H × P) × Bind → H × P, for any
〈h, p〉 ∈ H × P and (x 7→ t) ∈ Bind, is given by

amgu
(
〈h, p〉, x 7→ t

) def=
〈

amguH
(
〈h, p〉, x 7→ t

)
, amguP (p, x 7→ t)

〉
.

In the computation of h ′ (the new finiteness component resulting from the
abstract evaluation of a binding) there are eight cases based on properties holding
for the concrete terms described by x and t.

1. In the first case, the concrete term described by x is both finite and ground.
Thus, after a successful execution of the binding, any concrete term described
by t will be finite. Note that t could have contained possibly cyclic variables
just before the execution of the binding.

2. The second case is symmetric to the first one. Note that these are the only
cases when a “positive” propagation of finiteness information is correct. In
contrast, in all the remaining cases, the goal is to limit as much as possible the
propagation of “negative” information, i.e., the possible cyclicity of terms.

12



3. The third case exploits the classical results proved in research work on occurs-
check reduction [15, 33]. Accordingly, it is required that both x and t describe
finite terms. The use of the implicitly disjunctive predicate or linp allows for
the application of this case even when neither x nor t are known to be
definitely linear. For instance, as observed in [15], this may happen when
the component P embeds the domain Pos for groundness analysis.7

4. The fourth case exploits the observation that cyclic terms cannot be created
when unifying two finite terms that are either ground or free. Ground-or-
freeness has been identified in [4] as a safe and inexpensive replacement for
the classical freeness property when combining sharing analysis domains.

5. The fifth case applies when unifying a linear and finite term with another
finite term possibly sharing with it, provided they can only share linearly
(namely, all the shared variables occur linearly in the considered terms). In
such a context, cycles could have been introduced by means of the shared
variables only. This case shows that, when observing the term finiteness
property, set-sharing is strictly more precise than pair-sharing, since a set-
sharing domain can be strictly more precise when computing the functions
share same varp and share linp .8 This is true regardless of the pair-sharing
variant considered, including ASub [33, 8], PSD [1, 3] and ShPSh [31].

6. In the sixth case, we drop the assumption about the finiteness of the term
described by t. As a consequence, all variables sharing with x become possi-
bly cyclic. However, provided x describes a finite and linear term, all finite
variables independent from x preserve their finiteness.

7. The seventh case is symmetric to the sixth one.
8. The last case states that term finiteness is preserved for all variables that

are independent from both x and t. Note that this case is only used when
none of the other cases apply.

The following result, together with the assumption on amguP as specified in
Definition 4, ensures that abstract unification on the combined domain H × P
is correct.

Theorem 2. Let 〈h, p〉 ∈ H ×P and (x 7→ t) ∈ Bind, where {x}∪vars(t) ⊆ VI .
Let also σ ∈ γH(h) ∩ γP (p) and h ′ = amguH

(
〈h, p〉, x 7→ t

)
. Then

τ ∈ mgs
(
σ ∪ {x = t}

)
=⇒ τ ∈ γH(h ′).

7 Take t = y. From the Pos formula φ
def
= (x ∨ y), both indφ(x, y) and or linφ(x, y)

can be correctly inferred. Note that from φ we cannot infer that x is definitely linear
and neither that y is definitely linear.

8 For the expert: on the classical set-sharing domain by Jacobs and Langen [24], we can

define share same varsh(x, t)
def
= vars

(
rel
(
{x}, sh

)
∩ rel

(
vars(t), sh

))
. For instance,

taking t = y and sh =
{
{x, y}, {x, z}, {y, z}

}
, we have z /∈ share same varsh(x, y). In

contrast, when using a pair-sharing domain such as PSD , the element sh is equivalent
to sh ′ = sh ∪

{
{x, y, z}

}
, so that we have z ∈ share same varsh′(x, y). The point is

that, in sh, the information provided by the lack of the sharing group {x, y, z} is
redundant when observing pair-sharing and groundness, but it is not redundant
when observing term finiteness.
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4 Ongoing and Further Work

The parametric domain H × P basically captures the negative aspect of term-
finiteness, that is, the circumstances under which finiteness can be lost. When
a binding has the potential for creating one or more rational terms, the oper-
ator amguH removes from h all the variables that may be bound to non-finite
terms. However, term-finiteness has also a positive aspect: there are cases where
a variable is guaranteed to be bound to a finite term and this knowledge can be
propagated to other variables. Guarantees of finiteness are provided by several
built-ins like unify_with_occurs_check/2, var/1, name/2, all the arithmetic
predicates, and so forth. SICStus Prolog also provides an explicit acyclic/1
predicate.

The term-finiteness information provided by the h component of H ×P does
not capture the information concerning how finiteness of one variable affects the
finiteness of other variables. This kind of information, usually termed relational
information, is very important as it allows the propagation of positive finiteness
information. An important source of relational information comes from depen-
dencies. Consider the terms t1

def= f(x), t2
def= g(y), and t3

def= h(x, y): it is clear
that, for each assignment of rational terms to x and y, t3 is finite if and only if
t1 and t2 are so. We can capture this by the Boolean formula t3 ↔ (t1 ∧ t2). The
reasoning is based on the following facts:

1. t1, t2, and t3 are finite terms, so that the finiteness of their instances depends
only on the finiteness of the terms that take the place of x and y.

2. t3 covers both t1 and t2, that is, vars(t3) ⊇ vars(t1) ∪ vars(t2); this means
that, if an assignment to the variables of t3 produces a finite instance of t3,
that very same assignment will necessarily result in finite instances of t1 and
t2. Conversely, an assignment producing non-finite instances of t1 or t2 will
forcibly result in a non-finite instance of t3.

3. Similarly, t1 and t2, taken together, cover t3.

The important point to notice is that the indicated dependency will continue to
hold for any further simultaneous instantiation of t1, t2, and t3. In other words,
such dependencies are preserved by forward computations (since they proceed
by consistently instantiating program variables).

Consider the abstract binding x 7→ t where t is a finite term such that
vars(t) = {y1, . . . , yn}. After this binding has been successfully performed, the
destinies of x and t concerning term-finiteness are tied together forever. This tie
can be described by the dependency formula

x↔ (y1 ∧ · · · ∧ yn), (1)

meaning that x will be bound to a finite term if and only if, for each i = 1,
. . . , n, yi is bound to a finite term. While the dependency expressed by (1) is
a correct description of any computation state following the application of the
binding x 7→ t, it is not as precise as it could be. Suppose that x and yk are
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indeed the same variable. Then (1) is logically equivalent to

x→ (y1 ∧ · · · ∧ yk−1 ∧ yk+1 ∧ · · · ∧ yn). (2)

Correct: whenever x is bound to a finite term, all the other variables will be
bound to finite terms. The point is that x has just been bound to a non-finite
term, irrevocably: no forward computation can change this. Thus, the implication
(2) holds vacuously. The precise and correct description for the state of affairs
caused by the cyclic binding is, instead, the negated atom ¬x, whose intuitive
reading is “x is not (and never will be) finite.”

Following the intuition outlined above, we are studying a domain, whose car-
rier is the set of all Boolean functions, for representing and propagating finiteness
dependencies. We believe that coupling this new domain with H ×P can greatly
improve the precision of the analysis.

An implementation of the finite-tree domain, where the parametric compo-
nent P will be instantiated to the sharing domain SFL as presented in [4], is
currently under development. We also plan to work on the correctness, with re-
spect to rational unification, of the abstract operators defined on the domain
SFL, therefore generalizing and extending the results proved in [22] for the set-
sharing domain of Jacobs and Langen.

We believe that information about the actual structure of terms can have a
key role in improving the precision of finite-tree analysis, since it allows to bet-
ter identify where cyclic structures may appear. As soon as the implementation
of H × SFL will be finished, it will be possible to experiment with the inte-
gration of the explicit structural information provided by the generic Pattern(·)
construction [2].

5 Conclusion

Several modern logic-based languages offer a computation domain based on ra-
tional trees. On the one hand, the use of such trees is encouraged by the possi-
bility of using efficient and correct unification algorithms and by an increase in
expressivity. On the other hand, these gains are countered by the extra problems
rational trees bring with themselves and that can be summarized as follows: sev-
eral built-ins, library predicates, program analysis and manipulation techniques
are only well-defined for program fragments working with finite trees.

In this paper we propose an abstract-interpretation based solution to the
problem of detecting program variables that can only be bound to finite terms.
The rationale behind this is that applications exploiting rational trees tend to
do so in a very controlled way. If the analysis we propose proves to be precise
enough, then we will have a practical way of taking advantage of rational trees
while minimizing the impact of their disadvantages.
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Appendices

Appendix A provides a candidate implementation of the domain parameter P ,
showing how the functions and predicates specified in Definition 4 can be actually
mapped into finitely computable operations over a well-known abstract domain
for sharing analysis.

Appendix B provides the proofs of the results stated in the paper. Section B.1
introduces the notations and preliminary concepts that are subsequently used
in the proofs; Section B.2 recalls a few general results holding for (syntactic)
equality theories; the definition of (strongly) variable idempotent substitutions
is given in Section B.3, together with some properties holding for them; these
are then used in Section B.4 to prove Proposition 1 and Theorem 1; finally, in
Section B.5 we provide the proof of Theorem 2.

This appendix has a separate bibliography on page 48.

A An implementation for the parameter domain P

As discussed in Section 3, several abstract domains for sharing analysis can be
used to implement the parameter component P . As a basic implementation, one
could consider the well-known set-sharing domain of Jacobs and Langen [JL89].
In such a case, all the non-trivial correctness results have already been estab-
lished in [HBZ01]: in particular, the abstraction function provided in [HBZ01]
satisfies the requirement of Definition 3 and the abstract unification operator has
been proven correct with respect to rational-tree unification. Note however that,
since no freeness and linearity information is recorded in the plain set-sharing
domain, some of the predicates of Definition 4 need to be grossly approximated.
For instance, the predicate gfreep will provide useful information only when ap-
plied to an argument that is known to be definitely ground.

Therefore, in order to better highlight the generality of our specification of the
sharing component P , we now instantiate it to the abstract domain SFL [BZH00]
(see also [BCM94]). The domain SFL represents sharing, freeness and linearity
information. Possible sharing is encoded by the set-sharing domain of Jacobs
and Langen. Definite freeness and linearity information are each encoded by the
set of variables of interest that enjoy the corresponding property.

Definition 9. (The set-sharing domain SH .) The set SH is defined by
SH def= ℘(SG), where the set of sharing groups SG is defined as

SG def= ℘(VI ) \ {∅}.

SH is ordered by subset inclusion.

Definition 10. (The domain SFL.) Let F def= ℘(VI ) and L
def= ℘(VI ) be

partially ordered by reverse subset inclusion. The domain SFL is defined by the
Cartesian product

SFL def= SH × F × L
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ordered by ‘≤S’, the component-wise extension of the orderings defined on the
sub-domains.

A complete definition, besides explicitly dealing with the set of relevant vari-
ables VI , would require the addition of a bottom element ⊥ representing the
semantics of those program fragments that have no successful computations. We
could also define an equivalence relation identifying the bottom element with
all the elements in SFL corresponding to an impossible concrete computation
state: for example, elements 〈sh, f, l〉 ∈ SFL such that f * vars(sh) (because
a free variable does share with itself) or VI \ vars(sh) * l (because variables
that cannot share are also linear). Note however that these spurious elements
are never generated during the analysis process.

In the next definition we introduce a few well-known operations on the set-
sharing domain SH . These will be used to define the operations on the domain
SFL.

Definition 11. (Abstract operators on SH .) For each sh ∈ SH and each
V ⊆ VI , the extraction of the relevant component of sh with respect to V is
given by the function rel : ℘(VI )× SH → SH defined as

rel(V, sh) def= {S ∈ sh | S ∩ V 6= ∅ }.

For each sh ∈ SH and each V ⊆ VI , the function rel : ℘(VI ) × SH → SH
gives the irrelevant component of sh with respect to V . It is defined as

rel(V, sh) def= sh \ rel(V, sh).

The function (·)? : SH → SH , called star-union, is given, for each sh ∈ SH ,
by

sh? def=
{
S ∈ SG

∣∣∣∣ ∃n ≥ 1 . ∃T1, . . . , Tn ∈ sh . S =
n⋃
i=1

Ti

}
.

For each sh1, sh2 ∈ SH , the function bin: SH × SH → SH , called binary
union, is given by

bin(sh1, sh2) def= {S1 ∪ S2 | S1 ∈ sh1, S2 ∈ sh2 }.

It is now possible to define the implementation, on the domain SFL, of all
the predicates and functions specified in Definition 4.

Definition 12. (Abstract operators on SFL.) For each d = 〈sh, f, l〉 ∈ SFL,
for each s, t ∈ HTerms, where vars(s) ∪ vars(t) ⊆ VI , let Rs = rel

(
vars(s), sh

)
19



and Rt = rel
(
vars(t), sh

)
. Then

indd(s, t) def=
(
Rs ∩Rt = ∅

)
;

share lind(s, t) def= ∀y, z ∈ vars(Rs ∩Rt) :
(y ∈ l) ∧ occ lin(y, s) ∧ occ lin(y, t)

∧
(
y 6= z =⇒ indd(y, z)

)
;

groundd(t) def=
(
vars(t) ⊆ VI \ vars(sh)

)
;

freed(t) def= ∃y ∈ VI . (y = t) ∧ (y ∈ f);

gfreed(t) def= groundd(t) ∨ freed(t);

lind(t) def= ∀y, z ∈ vars(t) :

(y ∈ l) ∧
(
y 6= z =⇒ indd(y, z)

)
∧
(
¬groundd(y) =⇒ occ lin(y, t)

)
;

or lind(s, t) def= lind(s) ∨ lind(t);

share same vard(s, t) def= vars(Rs ∩Rt);

share withd(t) def= vars(Rt).

The function amguS : SFL × Bind → SFL captures the effects of a binding
on an element of SFL. Let d = 〈sh, f, l〉 ∈ SFL and (x 7→ t) ∈ Bind, where
Vxt = {x} ∪ vars(t) ⊆ VI . Let Rx = rel

(
{x}, sh

)
and Rt = rel

(
vars(t), sh

)
. Let

also

sh ′ def= rel(Vxt, sh) ∪ bin
(
Sx, St

)
,

Sx
def=

{
Rx, if freed(x) ∨ freed(t) ∨

(
lind(t) ∧ indd(x, t)

)
;

R?x, otherwise;

St
def=

{
Rt, if freed(x) ∨ freed(t) ∨

(
lind(x) ∧ indd(x, t)

)
;

R?t , otherwise;

f ′
def=


f, if freed(x) ∧ freed(t);
f \ vars(Rx), if freed(x);
f \ vars(Rt), if freed(t);
f \ vars(Rx ∪Rt), otherwise;

l′
def=
(
VI \ vars(sh ′)

)
∪ f ′ ∪ l′′;

l′′
def=


l \
(
vars(Rx) ∩ vars(Rt)

)
, if lind(x) ∧ lind(t);

l \ vars(Rx), if lind(x);
l \ vars(Rt), if lind(t);
l \ vars(Rx ∪Rt), otherwise.
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Then

amguS
(
d , x 7→ t

) def= 〈sh ′, f ′, l′〉.

As said in Section 4, further work includes proving that these definitions
satisfy all the requirements of Definitions 3 and 4. Note however that the generic
specification we have provided is not targeted at SFL. For instance, it can be
seen that the above implementations of the predicates gfreed and or lind cannot
fully exploit the disjunctive nature of their specification as given in Definition 4.
Thus, even more powerful sharing domains can fit in this schema, including all
the enhanced combinations considered in [BZH00].

B Proofs

B.1 Notations and preliminaries for the proofs

To simplify the expressions in the paper, any variable in a formula that is not
in the scope of a quantifier is assumed to be universally quantified.

The function size : HTerms → N is defined, for each t ∈ HTerms, by

size(t) def=

{
1, if t ∈ Vars;
1 +

∑n
i=1 size(ti), if t = f(t1, . . . , tn), where n ≥ 0.

A substitution σ is idempotent if, for all t ∈ HTerms, we have tσσ = tσ. The
set of all idempotent substitutions is denoted by ISubst and ISubst ⊂ RSubst .

If t ∈ HTerms, we denote the set of variables that occur more than once in
t by: nlvars(t) def=

{
y ∈ vars(t)

∣∣ ¬occ lin(y, t)
}
.

If s̄ = (s1, . . . , sn) ∈ HTermsn and t̄ = (t1, . . . , tn) ∈ HTermsn are two
tuples of finite terms, then we let s̄ = t̄ denote the set of equations between
corresponding components of s̄ and t̄. Namely,

(s̄ = t̄) def= {si = ti | 1 ≤ i ≤ n}.

Moreover, we overload the functions mvars, occ lin and nlvars to work on tuples
of terms; thus, we will say that s̄ is linear if and only if nlvars(s̄) = ∅.

Equality theories Let {s, t, s1, . . . , sn, t1, . . . , tm} ⊆ HTerms. We assume that
any equality theory T over Terms includes the congruence axioms denoted by
the following schemata:

s = s, (3)
s = t↔ t = s, (4)

r = s ∧ s = t→ r = t, (5)
s1 = t1 ∧ · · · ∧ sn = tn → f(s1, . . . , sn) = f(t1, . . . , tn). (6)
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In logic programming and most implementations of Prolog it is usual to
assume an equality theory based on syntactic identity. This consists of the
congruence axioms together with the identity axioms denoted by the following
schemata, where f and g are distinct function symbols or n 6= m:

f(s1, . . . , sn) = f(t1, . . . , tn)→ s1 = t1 ∧ · · · ∧ sn = tn, (7)

¬
(
f(s1, . . . , sn) = g(t1, . . . , tm)

)
. (8)

The axioms characterized by schemata (7) and (8) ensure the equality theory
depends only on the syntax. The equality theory for a non-syntactic domain
replaces these axioms by ones that depend instead on the semantics of the domain
and, in particular, on the interpretation given to functor symbols.

The equality theory of Clark [Cla78] on which pure logic programming is
based, usually called the Herbrand equality theory and denoted FT , is given by
the congruence axioms, the identity axioms, and the axiom schema

∀z ∈ Vars : ∀t ∈ (HTerms \Vars) : z ∈ vars(t)→ ¬(z = t). (9)

Axioms characterized by the schema (9) are called the occur-check axioms and
are an essential part of the standard unification procedure in SLD-resolution.

An alternative approach used in some implementations of Prolog, does not
require the occur-check axioms. This approach is based on the theory of rational
trees RT [Col82, Col84]. It assumes the congruence axioms and the identity
axioms together with a uniqueness axiom for each substitution in rational solved
form. Informally speaking these state that, after assigning a ground rational tree
to each parameter variable, the substitution uniquely defines a ground rational
tree for each of its domain variables.

In the sequel we will use the expression “equality theory” to denote any
consistent, decidable theory T satisfying the congruence axioms. We will also
use the expression “syntactic equality theory” to denote any equality theory T
also satisfying the identity axioms.9 Note that both FT and RT are syntactic
equality theories. When the equality theory T is clear from the context, it is
convenient to adopt the notations σ =⇒ τ and σ ⇐⇒ τ , where σ, τ are sets
of equations, to denote T ` ∀(σ → τ) and T ` ∀(σ ↔ τ), respectively.

Given an equality theory T , and a set of equations in rational solved form σ,
we say that σ is satisfiable in T if T ` ∀Vars \ dom(σ) : ∃dom(σ) . σ.

Given a satisfiable set of equations e ∈ ℘f(Eqs) in an equality theory T , then
a substitution σ ∈ RSubst is called a solution for e in T if σ is satisfiable in T
and T ` ∀(σ → e). If vars(σ) ⊆ vars(e), then σ is said to be a relevant solution
for e. In addition, σ is a most general solution for e in T if T ` ∀(σ ↔ e). In
this paper, the set of all the relevant most general solution for e will be denoted
by mgs(e).
9 Note that, as a consequence of axiom (8) and the assumption that there are at least

two distinct function symbols in the language, one of which is a constant, there exist
two terms a1, a2 ∈ GTerms ∩ HTerms such that, for any syntactic equality theory
T , we have T ` a1 6= a2.
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Observe that, given an arbitrary equality theory T , a set of equations in
rational solved form may not be satisfiable in T . For example, ∃x .

{
x = f(x)

}
is false in the Clark equality theory. However, by the uniqueness axioms, any set
of equations in rational solved form is satisfiable in RT .

B.2 General properties of equality theories.

Lemma 1. Suppose T is an equality theory, σ ∈ RSubst is satisfiable in T ,
x ∈ Vars\dom(σ), and t ∈ HTerms∩GTerms. Then, τ def= σ∪{x 7→ t} ∈ RSubst
and τ is satisfiable in T .

Proof. Proven in [HBZ01, Lemma 1]. ut

Lemma 2. Assume T is an equality theory and σ ∈ RSubst. Then, for each
t ∈ HTerms,

T ` ∀
(
σ → (t = tσ)

)
.

Proof. Proven in [HBZ01, Lemma 2]. ut

Lemma 3. Assume T is an equality theory and σ ∈ RSubst. Then, for each
s, t ∈ HTerms,

T ` ∀
(
σ ∪ {s = t} ↔ σ ∪ {s = tσ}

)
.

Proof. First, note, using the congruence axioms (4) and (5), that, for any terms
p, q, r ∈ HTerms,

T ` ∀(p = q ∧ q = r)↔ ∀(p = r ∧ q = r). (10)

Secondly note that, using Lemma 2, for any substitution τ ∈ RSubst and
term r ∈ HTerms, T ` ∀

(
τ → (r = rτ)

)
. Thus

T ` ∀
(
τ ↔ τ ∪ {r = rτ}

)
. (11)

Using these results,

T `∀
(
σ ∪ {s = t} ↔ σ ∪ {s = t, t = tσ}

)
, [by (11)]

∀
(
σ ∪ {s = t} ↔ σ ∪ {s = tσ, t = tσ}

)
, [by (10)]

∀
(
σ ∪ {s = t} ↔ σ ∪ {s = tσ}

)
. [by (11)]

ut

Lemma 4. Let T be a syntactic equality theory. Let s ∈ HTerms ∩GTerms and
t ∈ HTerms be such that size(t) > size(s). Then T ` ∀(s 6= t).

Proof. By induction on m = size(s). For the base case, when m = 1, we have
that s is a term functor of arity 0. Since size(t) > 1, then t = f(t1, . . . , tn), where
n > 0. Then, by the identity axioms, we have T ` ∀(s 6= t).
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For the inductive case, when m > 1, assume that the result holds for all
m′ < m and let s = f(s1, . . . , sn), where n > 0. Since size(t) > m, we have
t = f ′(t1, . . . , tn′), where n′ > 0. If f 6= f ′ or n 6= n′ then, by the identity
axioms, we have T ` ∀(s 6= t). Otherwise, let f = f ′ and n = n′. Note that, for
all i ∈ {1, . . . , n}, we have size(si) < m. Also, there exists an index j ∈ {1, . . . , n}
such that size(tj) > size(sj). By the inductive hypothesis, T ` ∀(sj 6= tj) so that,
by the identity axioms, T ` ∀(s 6= t). ut

B.3 (Strong) variable idempotence.

In [HBZ01], (weak) variable-idempotent substitutions were introduced as a sub-
class of substitutions in rational solved form in order to allow a more convenient
reasoning about the sharing of variables for possibly non-idempotent substitu-
tions.

Definition 13. (Variable-idempotence.) A substitution σ ∈ RSubst is said
variable-idempotent if and only if for all t ∈ HTerms we have

vars(tσσ) \ dom(σ) = vars(tσ) \ dom(σ).

The set of variable-idempotent substitutions is denoted VSubst.

In [HBZ98] a stronger definition was used, taking into consideration also
the variables in the domain of the substitution. Strong variable-idempotence is
a useful concept when dealing with the finiteness of a rational term and the
multiplicity of variables occurring in it (i.e., its linearity).

Definition 14. (Strong variable-idempotence.) A substitution σ ∈ RSubst
is strongly variable-idempotent if and only if for all t ∈ HTerms we have

vars(tσσ) = vars(tσ).

The set of strongly variable-idempotent substitutions is denoted MSubst.

Note that we have ISubst ⊂ MSubst ⊂ VSubst ⊂ RSubst .

Definition 15. (S-transformation.) The relation S7−→ ⊆ RSubst × RSubst,
called S-step, is defined by

(x 7→ t) ∈ σ (y 7→ s) ∈ σ x 6= y

σ
S7−→
(
σ \ {y 7→ s}

)
∪ {y 7→ s[x/t]}

.

If we have a finite sequence of S-steps σ1
S7−→ · · · S7−→ σn mapping σ1 to σn, then

we write σ1
S7−→∗ σn and say that σ1 can be rewritten, by S-transformation, to

σn.

The following theorems show that considering substitutions in MSubst is not
a restrictive hypothesis.

24



Theorem 3. Suppose σ ∈ RSubst and σ
S7−→∗ σ′. Then we have σ′ ∈ RSubst,

dom(σ) = dom(σ′), vars(σ) = vars(σ′) and, if T is any equality theory, then
T ` ∀(σ ↔ σ′).

Proof. Proven in [HBZ01, Theorem 1]. ut

Theorem 4. Suppose σ ∈ RSubst. Then there exists σ′ ∈ MSubst such that
σ
S7−→∗ σ′ and, for all τ ⊆ σ′, τ ∈ MSubst.

Proof. The proof is the same given for [HBZ01, Theorem 2], where a weaker
result, using VSubst , was stated. ut

Theorem 5. Let T be an equality theory and σ ∈ RSubst. Then there exists
σ′ ∈ MSubst such that dom(σ) = dom(σ′), vars(σ) = vars(σ′), T ` ∀(σ ↔ σ′)
and for all τ ⊆ σ′, τ ∈ MSubst.

Proof. The result easily follows from Theorems 3 and 4. ut

B.4 Abstracting finiteness.

For a substitution σ ∈ MSubst , when computing the operator hvars the fixpoint
is reached after a single iteration.

Lemma 5. For each σ ∈ MSubst we have hvars(σ) = hvars1(σ).

Proof. We show that hvars2(σ) ⊆ hvars1(σ). Let y ∈ hvars2(σ). By Definition 5,
we have two cases:

1. if y ∈ hvars1(σ) then there is nothing to prove;
2. assume now y ∈ dom(σ) and vars(yσ) ⊆ hvars1(σ). By Definition 5, we have

two subcases:
(a) vars(yσ) ⊆ Vars \ dom(σ).

Then vars(yσ) ⊆ hvars0(σ), so that y ∈ hvars1(σ);
(b) V = vars(yσ) ∩ dom(σ) 6= ∅ and, for all z ∈ V , vars(zσ) ∩ V = ∅.

Let z ∈ V so that z ∈ vars(yσ). By hypothesis, we have σ ∈ MSubst
so that z ∈ vars(yσσ). As z ∈ dom(σ) and vars(zσ) ∩ dom(σ) = ∅,
z /∈ vars(zσ). This means that z /∈ vars(yσσ), which is a contradiction
since σ ∈ MSubst . ut

Proposition 2. For each σ ∈ MSubst, we have

hvars(σ) =
{
y ∈ Vars

∣∣ vars(yσ) ∩ dom(σ) = ∅

}
.

Proof. The result is obtained by applying Lemma 5 and then unfolding Defini-
tion 5. ut

The following proposition shows that, for a substitution σ ∈ MSubst , the
finiteness operator precisely captures the intended property.
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Proposition 3. Let σ ∈ MSubst and y ∈ Vars. Then

rt(y, σ) ∈ HTerms ⇐⇒ y ∈ hvars(σ).

Proof. Since σ ∈ MSubst , by Proposition 2 we have y ∈ hvars(σ) if and only if
vars(yσ) ∩ dom(σ) = ∅.

Let vars(yσ)∩dom(σ) = ∅. Then, for any i > 0, we have yσi = yσ ∈ HTerms.
Hence rt(y, σ) = yσ ∈ HTerms.

In order to prove the other inclusion, let now rt(y, σ) ∈ HTerms so that, by
definition, we have size

(
rt(y, σ)

)
= n < ω. We will prove by contradiction that

vars(yσ) ∩ dom(σ) = ∅. In fact, assume that there exists a variable

z ∈ vars(yσ) ∩ dom(σ),

so that (z 7→ zσ) ∈ σ. Since σ ∈ MSubst , we also have that z ∈ vars(yσσ),
hence z ∈ vars(zσ) and size(zσ) > 1. As a consequence, for all i > 0, we have
size(yσi+1) > size(yσi). Therefore we obtain a contradiction, since there exists
an index j < ω such that for all i ≥ j we have size(yσi) > n. ut

Proposition 4. Let σ ∈ MSubst and r ∈ HTerms such that vars(r) ⊆ hvars(σ).
Then

rt(r, σ) = rσ,

vars(rσ) ∩ dom(σ) = ∅.

Proof. Suppose y ∈ vars(r). Then, by Proposition 2, vars(yσ) ∩ dom(σ) = ∅.
Thus, for any i > 0, we have yσi = yσ ∈ HTerms. Thus rt(y, σ) = yσ. As this
holds for all y ∈ vars(r), it follows that rt(r, σ) = rσ and vars(rσ)∩dom(σ) = ∅.

ut

In order to prove Proposition 1, i.e., to show that the finiteness operator pre-
cisely captures the intended property even for arbitrary substitutions in RSubst ,
we now prove that this operator is invariant under the application of S-steps.

Lemma 6. For each m > 0, we have hvarsm−1(σ) ⊆ hvarsm(σ).

Proof. Straightforward by Definition 5. ut

Lemma 7. Let σ, σ′ ∈ RSubst where σ S7−→ σ′. Then hvars(σ) = hvars(σ′).

Proof. Let (x 7→ t), (y 7→ s) ∈ σ, where x 6= y, such that

σ′ =
(
σ \ {y 7→ s}

)
∪
{
y 7→ s[x/t]

}
.

If x /∈ vars(s) then we have σ = σ′ and the result trivially holds. Thus, we
assume x ∈ vars(s). We prove the two inclusions separately.

In order to prove hvars(σ) ⊆ hvars(σ′) we show, by induction on m ≥ 0, that
we have

hvarsm(σ) ⊆ hvarsm(σ′).
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For the base case, when m = 0, by Theorem 3 we have dom(σ) = dom(σ′) so
that

hvars0(σ) = Vars \ dom(σ)
= Vars \ dom(σ′)
= hvars0(σ′).

For the inductive step, when m > 0, assume hvarsm−1(σ) ⊆ hvarsm−1(σ′) and
let z ∈ hvarsm(σ). By Definition 5, we have two cases: if z ∈ hvarsm−1(σ) then
the result follows by a straight application of the inductive hypothesis; otherwise,
we have

z ∈ dom(σ) ∧ vars(zσ) ⊆ hvarsm−1(σ).

Now, if z 6= y we have zσ = zσ′, so that, by Theorem 3 and the inductive
hypothesis we have

z ∈ dom(σ′) ∧ vars(zσ′) ⊆ hvarsm−1(σ′),

so that, by Definition 5, z ∈ hvarsm(σ′). Otherwise, if z = y, then

vars(zσ) = vars(s)
⊆ hvarsm−1(σ).

Since x ∈ vars(s),

vars(zσ′) = vars
(
s[x/t]

)
=
(
vars(s) \ {x}

)
∪ vars(t),

and we need to show vars(zσ′) ⊆ hvarsm−1(σ′). By the inductive hypothesis we
have

vars(s) ⊆ hvarsm−1(σ′);

Note that, since x ∈ vars(s), it follows x ∈ hvarsm−1(σ′) so that, by Definition 5
and Lemma 6,

vars(t) ⊆ hvarsm−2(σ′)
⊆ hvarsm−1(σ′).

In order to prove hvars(σ) ⊇ hvars(σ′) we show, by induction on m ≥ 0, that
we have

hvarsm+1(σ) ⊇ hvarsm(σ′).
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For the base case, when m = 0, by Lemma 6 and Theorem 3 we have

hvars1(σ) ⊇ hvars0(σ)
= Vars \ dom(σ)
= Vars \ dom(σ′)
= hvars0(σ′).

For the inductive step, when m > 0, assume hvarsm(σ) ⊇ hvarsm−1(σ′) and let
z ∈ hvarsm(σ′). By Definition 5, we have two cases: if z ∈ hvarsm−1(σ′) then the
result follows by the inductive hypothesis and Lemma 6; otherwise, we have

z ∈ dom(σ′) ∧ vars(zσ′) ⊆ hvarsm−1(σ′).

Now, if z 6= y we have zσ = zσ′, so that, by Theorem 3 and the inductive
hypothesis we have

z ∈ dom(σ) ∧ vars(zσ) ⊆ hvarsm(σ),

so that, by Definition 5, z ∈ hvarsm+1(σ). Otherwise, if z = y, by definition of
σ′, the inductive hypothesis and Lemma 6, we have

vars(zσ′) = vars
(
s[x/t]

)
=
(
vars(s) \ {x}

)
∪ vars(t)

⊆ hvarsm−1(σ′)
⊆ hvarsm(σ)
⊆ hvarsm+1(σ).

Also note that we have

vars(xσ) = vars(t)
⊆ hvarsm(σ)

so that, by Definition 5 we have

x ∈ hvarsm+1(σ).

The result follows by observing that

vars(zσ) = vars(s) =
(
vars(s) \ {x}

)
∪ {x}.

ut

Lemma 8. Let σ, σ′ ∈ RSubst, where σ S7−→∗ σ′. Then hvars(σ) = hvars(σ′).
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Proof. By induction on the length n ≥ 0 of the derivation. For the base case,
when n = 0, there is nothing to prove. Suppose now that

σ = σ0
S7−→ · · · S7−→ σn−1

S7−→ σn = σ′,

where n > 1. By the inductive hypothesis, since the derivation σ
S7−→∗ σn−1

has length n − 1, we have hvars(σ) = hvars(σn−1). Then the thesis follows by
Lemma 7. ut

Proof (Proof of Proposition 1.). By Theorem 5, there exists σ′ ∈ MSubst such
that σ S7−→∗ σ′ and, for all equality theories T , T ` ∀(σ ↔ σ′). Thus, by Lemma 8,
we have hvars(σ) = hvars(σ′). The thesis then follows by applying Proposition 3.

ut

Lemma 9. Let σ, τ ∈ MSubst be satisfiable in a syntactic equality theory T and
suppose that T ` ∀(σ ↔ τ). Then hvars(σ) = hvars(τ).

Proof. We assume that the congruence and identity axioms hold. We will prove
the inclusion hvars(σ) ⊆ hvars(τ), while the other inclusion will follow by sym-
metry.

Let y ∈ hvars(σ). Then, by Proposition 2, vars(yσ) ∩ dom(σ) = ∅. We will
show that vars(yτ)∩ dom(τ) = ∅ so that, again by Proposition 2, y ∈ hvars(τ).

Take a1 ∈ HTerms ∩GTerms and let

σ′
def= σ ∪

{
z 7→ a1

∣∣ z ∈ vars(yσ)
}
.

Then, by Lemma 1, we have σ′ ∈ RSubst is satisfiable in T . By Lemma 2, we
have σ′ =⇒ {y = yσσ′} and, for all i ≥ 0,

σ′ =⇒ σ =⇒ τ =⇒ {y = yτ i},

so that, by the congruence axioms, σ′ =⇒ {yσσ′ = yτ i}.
Note that yσσ′ ∈ HTerms ∩GTerms, so that size(yσσ′) = n < ω.
Suppose that there exists z ∈ vars(yτ) ∩ dom(τ). Then, since τ ∈ MSubst ,

we have z ∈ vars(yττ), so that z ∈ vars(zτ) and size(zτ) > 1. As a consequence,
for all i > 0, we have size(yτ i+1) > size(yτ i) and therefore there exists an index
j < ω such that size(yτ j) > n. By Lemma 4, T ` ∀(yσσ′ 6= yτ j), therefore
obtaining a contradiction. Thus vars(yτ) ∩ dom(τ) = ∅. ut

Lemma 10. Suppose σ, τ ∈ RSubst such that T ` ∀(σ ↔ τ) for any syntactic
equality theory T . Then hvars(σ) = hvars(τ).

Proof. We assume that the congruence and the identity axioms hold. By The-
orem 4 and Lemma 8, there exists σ′, τ ′ ∈ MSubst such that σ ⇐⇒ σ′,
hvars(σ) = hvars(σ′), τ ⇐⇒ τ ′ and hvars(τ) = hvars(τ ′). By hypothesis,
σ ⇐⇒ τ so that σ′ ⇐⇒ τ ′. By Lemma 9, hvars(σ′) = hvars(τ ′). Therefore
hvars(σ) = hvars(τ). ut
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Corollary 1. Let e ⊆ Eqs be satisfiable in the syntactic equality theory T . If
σ, τ ∈ mgs(e), then hvars(σ) = hvars(τ).

Proof. By definition of mgs, we have σ, τ ∈ RSubst and σ ⇐⇒ e ⇐⇒ τ . Thus,
the result follows by Lemma 10. ut

Proof (Proof of Theorem 1). By Definition 7, we have αH(σ) = hvars(σ) ∩ VI
and αH(σ′) = hvars(σ′) ∩ VI . Since RT is a syntactic equality theory and
RT ` ∀(σ ↔ σ′), the result is a simple consequence of Lemma 10. ut

B.5 Correctness of abstract unification on H × P

Lemma 11. Let σ ∈ MSubst be satisfiable in a syntactic equality theory T . Let
s ∈ HTerms ∩ GTerms and t ∈ HTerms and suppose that T ` ∀(σ → s = t).
Then s = tσ.

Proof. Since s ∈ GTerms, we must have s = f(s1, . . . , sm) where m ≥ 0. More-
over, by the assumption of the existence of two different function symbols in the
signature Sig , there exists a term r ∈ HTerms∩GTerms whose top-level function
symbol is distinct from that in s. Thus, by the identity axioms, T ` ∀(r 6= s).
Note also that, by Lemma 2 and the congruence axioms, T ` ∀(σ → s = tσ).

We show that s = tσ by induction on the size of s.
First we show that tσ is not a variable. To prove this, we suppose that

tσ = y ∈ Vars and derive a contradiction. If y /∈ dom(σ) then, by Lemma 1,
σ′ = σ ∪ {y 7→ r} ∈ RSubst and σ′ is satisfiable in T . Therefore, using the
congruence axioms, T ` ∀(σ′ → r = s), which is a contradiction. If otherwise
y ∈ dom(σ) then, since σ ∈ MSubst , we have y ∈ vars(yσ) and size(yσ) > 1, so
that, for all i ≥ 0, size(tσi+1) > size(tσi). Thus, by Lemma 4, there exists an
index j > 0 such that T ` ∀(s 6= tσj). However, by the hypothesis and Lemma 2,
we have T ` ∀(σ → s = tσi) for all i ≥ 0, therefore obtaining a contradiction.
Thus tσ /∈ Vars.

Therefore, by the identity axioms, we can assume that tσ = f(t1, . . . , tm).
If size(s) = 1, then m = 0 so that, by the congruence axioms, s = tσ. If
size(s) > 1, then m > 0 and, by the identity axioms, we have, for each i = 1,
. . . , m, that T ` ∀(σ → si = ti). Note that, for each i = 1, . . . , m, we have
si ∈ HTerms∩GTerms, ti ∈ HTerms and size(si) < size(s), so that we can apply
the inductive hypothesis, obtaining si = tiσ. Thus, by the congruence axioms,
s = tσσ. Thus tσσ ∈ GTerms so that vars(tσσ) = ∅. As σ ∈ MSubst , we have
vars(tσ) = ∅ so that tσσ = tσ. Hence s = tσ. ut

Lemma 12. Let s̄ = (s1, . . . , sn) ∈ HTermsn be linear, and suppose the tuple
of terms t̄ = (t1, . . . , tn) ∈ HTermsn is such that vars(s̄) ∩ nlvars(t̄) = ∅ and
mgs(s̄ = t̄) 6= ∅. Then there exists µ ∈ mgs(s̄ = t̄) such that, for each variable
z ∈ dom(µ) \

(
vars(s̄) ∩ vars(t̄)

)
, we have vars(zµ) ∩ dom(µ) = ∅.

Proof. We assume that the congruence and identity axioms hold. The proof is
by induction on the number of variables in vars(s̄) ∪ vars(t̄).
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Suppose first that, for some i = 1, . . . , n, we have si = f(r1, . . . , rm) and
ti = f(u1, . . . , um) (with m ≥ 0). Let

s̄′
def= (s1, . . . , si−1, r1, . . . , rm, si+1, . . . , sn),

t̄′
def= (t1, . . . , ti−1, u1, . . . , um, ti+1, . . . , tn).

Then mvars(s̄′) = mvars(s̄) and mvars(t̄′) = mvars(t̄) so that, as s̄ is linear, s̄′

is linear, vars(s̄′) ∩ nlvars(t̄′) = ∅ and vars(s̄′) ∩ vars(t̄′) = vars(s̄) ∩ vars(t̄).
Moreover, by the congruence axiom (6), mgs(s̄′ = t̄′) = mgs(s̄ = t̄). (Note that
in the case that si and ti are identical constants, the equation si = ti is just
removed.) Thus, as s̄ and t̄ are finite sequences of finite terms, we can assume
that, for all i = 1, . . . , n, either si ∈ Vars or ti ∈ Vars.

Secondly, suppose that for some i = 1, . . . , n, si = ti. By the previous
paragraph, we can assume that si ∈ Vars. Let

s̄i
def= (s1, . . . , si−1, si+1, . . . , sn),

t̄i
def= (t1, . . . , ti−1, ti+1, . . . , tn).

Then mvars(s̄i) ∪ {si} = mvars(s̄) and mvars(t̄i) ∪ {si} = mvars(t̄) so that, as s̄
is linear, s̄i is linear, vars(s̄i) ∩ nlvars(t̄i) = ∅ and(

vars(s̄i) ∩ vars(t̄i)
)
∪ {si} = vars(s̄) ∩ vars(t̄).

As s̄ is linear and vars(s̄) ∩ nlvars(t̄) = ∅, si /∈ vars(s̄i) ∪ vars(t̄i) and hence
si /∈ dom(µ) for all µ ∈ mgs(s̄ = t̄). Therefore

dom(µ) \
(
vars(s̄) ∩ vars(t̄)

)
= dom(µ) \

(
vars(s̄i) ∩ vars(t̄i)

)
.

Furthermore, by the congruence axiom (3), mgs(s̄i = t̄i) = mgs(s̄ = t̄). Thus, as
s̄ and t̄ are sequences of finite length n, we can assume that si 6= ti, for all i = 1,
. . . , n.

Therefore, for the rest of the proof, we will assume that for each i = 1, . . . , n,
si 6= ti and either si ∈ Vars or ti ∈ Vars.

For the base case, we have vars(s̄) ∪ vars(t̄) = ∅ and the result holds.
For the inductive step, vars(s̄) ∪ vars(t̄) 6= ∅ so that n > 0. As the order

of the equations in s̄ = t̄ is not relevant to the hypothesis, we assume, without
loss of generality that if, for some i = 1, . . . , n, vars(si) ∩ vars(ti) = ∅, then
vars(s1) ∩ vars(t1) = ∅. There are three cases we consider separately:

a. for all i = 1, . . . , n, vars(si) ∩ vars(ti) 6= ∅;
b. s1 ∈ Vars \ vars(t1);
c. t1 ∈ Vars \ vars(s1).

Case a. For all i = 1, . . . , n, vars(si) ∩ vars(ti) 6= ∅.
For each i = 1, . . . , n, we are assuming that either si ∈ Vars or ti ∈ Vars,

Therefore, for each i = 1, . . . , n, si ∈ vars(ti) or ti ∈ vars(si) so that, without
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loss of generality, we can assume, for some k where 0 ≤ k ≤ n, si ∈ Vars if
1 ≤ i ≤ k and ti ∈ Vars if k + 1 ≤ i ≤ n.

Let
µ

def= {s1 = t1, . . . , sk = tk} ∪ {tk+1 = sk+1, . . . , tn = sn}.

We now show that µ ⊆ Eqs is in rational solved form. As s̄ is linear, (s1, . . . , sk)
is linear. As s̄ is linear and ti ∈ vars(si) if k + 1 ≤ i ≤ n, then (tk+1, . . . , tn)
is linear and {s1, . . . , sk} ∩ {tk+1, . . . , tn} = ∅. As we are assuming that, for all
i = 1, . . . , n, si 6= ti and vars(si) ∩ vars(ti) 6= ∅, it follows that ti /∈ Vars when
1 ≤ i ≤ k and si /∈ Vars when k + 1 ≤ i ≤ n, so that each equation in µ is
a binding and µ has no circular subsets. Thus µ ∈ RSubst and hence, by the
congruence axiom (4), µ ∈ mgs(s̄ = t̄).

As si ∈ vars(ti) when 1 ≤ i ≤ k and ti ∈ vars(si) when k + 1 ≤ i ≤ n,
dom(µ) \

(
vars(s̄) ∩ vars(t̄)

)
= ∅. Therefore the required result holds.

Case b. s1 ∈ Vars \ vars(t1).
Let

s̄1
def= (s2, . . . , sn),

t̄1
def=
(
t2[s1/t1], . . . , tn[s1/t1]

)
.

(12)

As s̄ is linear, s1 /∈ vars(s̄1). Also, all occurrences of s1 in t̄ are replaced in t̄1 by
t1 so that, as s1 /∈ vars(t1), s1 /∈ vars(t̄1). Thus

s1 /∈ vars(s̄1) ∪ vars(t̄1). (13)

Therefore vars(s̄1)∪vars(t̄1) ⊂ vars(s̄)∪vars(t̄). Now since s̄ is linear, s̄1 is linear.
Thus, to apply the inductive hypothesis to s̄1 and t̄1, we have to show that

vars(s̄1) ∩ nlvars(t̄1) = ∅. (14)

Suppose that u ∈ vars(s̄1) so that u ∈ vars(s̄). Now, by hypothesis, we have
vars(s̄) ∩ nlvars(t̄) = ∅. Thus s1, u /∈ nlvars(t̄). If u ∈ vars

(
(t2, . . . , tn)

)
so that

u /∈ vars(t1), then u /∈ nlvars(t̄1). On the other hand, if u /∈ vars
(
(t2, . . . , tn)

)
,

then, as s1 /∈ nlvars
(
(t2, . . . , tn)

)
and u /∈ nlvars(t1), u /∈ nlvars(t̄1). Thus, for

all u ∈ vars(s̄1), u /∈ nlvars(t̄1). Hence (14) holds. It follows that the inductive
hypothesis for s̄1 and t̄1 holds. Therefore there exists µ1 ∈ RSubst where

µ1 ∈ mgs(s̄1 = t̄1)

such that, for each z ∈ dom(µ1)\
(
vars(s̄1)∩vars(t̄1)

)
, vars(zµ1)∩dom(µ1) = ∅.

Let
µ

def= {s1 = t1µ1} ∪ µ1. (15)

We now show that µ ⊆ Eqs is in mgs(s̄ = t̄). First we show that µ is in rational
solved form. By (13),

s1 /∈ vars(µ1), (16)
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and, as s1 /∈ vars(t1), we have

s1 /∈ vars(t1µ1). (17)

Thus, as µ1 ∈ RSubst , µ has no identities or circular subsets so that µ ∈ RSubst .
By Lemma 3, µ ∈ mgs(s̄ = t̄).

Let
z ∈ dom(µ) \

(
vars(s̄) ∩ vars(t̄)

)
. (18)

Then we have to show that

vars(zµ) ∩ dom(µ) = ∅. (19)

It follows from (15) and (18) that either z ∈ dom(µ1) so that zµ = zµ1 or z = s1

and zµ = t1µ1. We consider these two cases separately.
Suppose first that z ∈ dom(µ1). By (12), we have vars(s̄1) ⊆ vars(s̄) and

vars(t̄1) ⊆ vars(t̄) so that vars(s̄1) ∩ vars(t̄1) ⊆ vars(s̄) ∩ vars(t̄). Therefore,
z ∈ dom(µ1) \

(
vars(s̄1) ∩ vars(t̄1)

)
. Thus, by the inductive hypothesis, we have

vars(zµ1) ∩ dom(µ1) = ∅. Now, as z ∈ dom(µ1) and (16) holds, s1 /∈ vars(zµ1).
Thus, as dom(µ) = dom(µ1)∪{s1}, vars(zµ1)∩dom(µ) = ∅. Hence, as zµ = zµ1,
(19) holds.

Secondly suppose that z = s1. Then we have that s1 /∈ vars(s̄) ∩ vars(t̄).
Hence t̄1 = (t2, . . . , tn). Let u be any variable in vars(t1). Then we have that
u /∈ vars(s̄1) ∩ vars(t̄1), since vars(s̄) ∩ nlvars(t̄) = ∅, If u ∈ dom(µ1), then we
can apply the inductive hypothesis to obtain vars(uµ1) ∩ dom(µ1) = ∅. On the
other hand, if u /∈ dom(µ1), we have u = uµ1 and vars(uµ1) ∩ dom(µ1) = ∅.
Hence vars(t1µ1) ∩ dom(µ1) = ∅. Thus, as dom(µ) = dom(µ1) ∪ {s1}, by (17),
vars(t1µ1) ∩ dom(µ) = ∅. Therefore, as zµ = t1µ1, (19) holds.

Case c. t1 ∈ Vars \ vars(s1).
Let

s̄1
def=
(
s2[t1/s1], . . . , sn[t1/s1]

)
,

t̄1
def=
(
t2[t1/s1], . . . , tn[t1/s1]

)
.

(20)

All occurrences of t1 in s̄ and t̄ are replaced in s̄1 and t̄1 by s1 so that, as
t1 /∈ vars(s1),

t1 /∈ vars(s̄1) ∪ vars(t̄1). (21)

Therefore vars(s̄1)∪vars(t̄1) ⊂ vars(s̄)∪vars(t̄). Now, s̄1 is linear since s̄ is linear.
Thus, to apply the inductive hypothesis to s̄1 and t̄1, we have to show that

vars(s̄1) ∩ nlvars(t̄1) = ∅. (22)

Suppose u is any variable in vars(s̄1). Then either u ∈ vars
(
(s2, . . . , sn)

)
or

u ∈ vars(s1) and t1 ∈ vars
(
(s2, . . . , sn)

)
. By hypothesis, vars(s̄) ∩ nlvars(t̄) = ∅,

so that u /∈ nlvars(t̄). If u ∈ vars
(
(s2, . . . , sn)

)
, then, as s̄ is linear, u /∈ vars(s1).

Thus, it follows from (20) that u /∈ nlvars(t̄1). If t1 ∈ vars
(
(s2, . . . , sn)

)
, then
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t1 /∈ vars
(
(t2, . . . , tn)

)
so that, again by (20), t̄1 = (t2, . . . , tn). Thus, for all

u ∈ vars(s̄1), u /∈ nlvars(t̄1). Hence (22) holds. It follows that the inductive
hypothesis for s̄1 and t̄1 holds. Therefore there exists µ1 ∈ RSubst where

µ1 ∈ mgs(s̄1 = t̄1)

such that, for each z ∈ dom(µ1)\
(
vars(s̄1)∩vars(t̄1)

)
, vars(zµ1)∩dom(µ1) = ∅.

Let
µ

def= {t1 = s1µ1} ∪ µ1. (23)

We now show that µ ⊆ Eqs is in mgs(s̄ = t̄). First we show that µ is in rational
solved form. By (21),

t1 /∈ vars(µ1), (24)

and, as t1 /∈ vars(s1), we have

t1 /∈ vars(s1µ1). (25)

Thus, as µ1 ∈ RSubst , µ has no identities or circular subsets so that µ ∈ RSubst .
By Lemma 3, µ ∈ mgs(s̄ = t̄).

Let
z ∈ dom(µ) \

(
vars(s̄) ∩ vars(t̄)

)
. (26)

Then we have to show that

vars(zµ) ∩ dom(µ) = ∅. (27)

It follows from (23) and (26) that either z ∈ dom(µ1) so that zµ = zµ1 or z = t1
and zµ = s1µ1. We consider these two cases separately.

Suppose first that z ∈ dom(µ1). To apply the inductive hypothesis to z, we
need to show that,

vars(s̄1) ∩ vars(t̄1) ⊆ vars(s̄) ∩ vars(t̄).

To see this, let u ∈ vars(s̄1)∩vars(t̄1). Then, by (20), either u ∈ vars
(
(s2, . . . , sn)

)
or u ∈ vars(s1) and t1 ∈ vars

(
(s2, . . . , sn)

)
. If u ∈ vars

(
(s2, . . . , sn)

)
, then we

have u ∈ vars(s̄) so that, as s̄ is linear, we have also u /∈ vars(s1) and hence
u ∈ vars

(
(t2, . . . , tn)

)
. Alternatively, if u ∈ vars(s1) and t1 ∈ vars

(
(s2, . . . , sn)

)
,

then u, t1 ∈ vars(s̄). Moreover, by hypothesis, vars(s̄) ∩ nlvars(t̄) = ∅, so that
t1 /∈ vars

(
(t2, . . . , tn)

)
. Thus t̄1 = (t2, . . . , tn) and hence u ∈ vars(t̄). Therefore, in

both cases, u ∈ vars(s̄)∩vars(t̄). It follows that z ∈ dom(µ1)\
(
vars(s̄1)∩vars(t̄1)

)
.

Thus, by the inductive hypothesis, we have vars(zµ1) ∩ dom(µ1) = ∅. Now, as
z ∈ dom(µ1) and (24) holds, t1 /∈ vars(zµ1). Thus, as dom(µ) = dom(µ1)∪{t1},
vars(zµ1) ∩ dom(µ) = ∅. Hence, as zµ = zµ1, (27) holds.

Secondly, suppose that z = t1. Then t1 /∈ vars(s̄)∩vars(t̄) and, consequently,
s̄1 = (s2, . . . , sn). Let u be any variable in vars(s1). Then, as s̄ is linear, we
have u /∈ vars(s̄1) so that u /∈ vars(s̄1) ∩ vars(t̄1). Thus, if u ∈ dom(µ1), we
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can apply the inductive hypothesis to u and obtain vars(uµ1) ∩ dom(µ1) = ∅.
On the other hand, if u /∈ dom(µ1), u = uµ1 and vars(uµ1) ∩ dom(µ1) = ∅.
Hence vars(s1µ1) ∩ dom(µ1) = ∅. Thus, as dom(µ) = dom(µ1) ∪ {t1}, by (25),
vars(s1µ1) ∩ dom(µ) = ∅. Therefore, as zµ = s1µ1, (27) holds. ut

Lemma 13. Suppose that the tuple of terms s̄ = (s1, . . . , sn) ∈ HTermsn is
linear, t̄ = (t1, . . . , tn) ∈ HTermsn and mgs(s̄ = t̄) 6= ∅. Then there exists
µ ∈ mgs(s̄ = t̄) and, for each z ∈ dom(µ)\vars(s̄), the following properties hold:

1. vars(zµ) ⊆ vars(s̄);
2. vars(zµ) ∩ dom(µ) = ∅.

Proof. We assume that the congruence and identity axioms hold. The proof is
by induction on the number of variables in vars(s̄) ∪ vars(t̄).

Suppose first that, for some i = 1, . . . , n, we have si = f(r1, . . . , rm) and
ti = f(u1, . . . , um) (m ≥ 0). Let

s̄′
def= (s1, . . . , si−1, r1, . . . , rm, si+1, . . . , sn),

t̄′
def= (t1, . . . , ti−1, u1, . . . , um, ti+1, . . . , tn).

Then mvars(s̄′) = mvars(s̄) and mvars(t̄′) = mvars(t̄) so that, as s̄ is linear, s̄′

is linear. Moreover, by the congruence axiom (6), mgs(s̄′ = t̄′) = mgs(s̄ = t̄).
(Note that in the case that si and ti are identical constants, the equation si = ti
is just removed.) Thus, as s̄ and t̄ are finite sequences of finite terms, we can
assume that, for all i = 1, . . . , n, either si ∈ Vars or ti ∈ Vars.

Secondly, suppose that for some i = 1, . . . , n, si = ti. By the previous
paragraph, we can assume that si ∈ Vars. Let

s̄i
def= (s1, . . . , si−1, si+1, . . . , sn),

t̄i
def= (t1, . . . , ti−1, ti+1, . . . , tn).

Then mvars(s̄i) ∪ {si} = mvars(s̄) and mvars(t̄i) ∪ {si} = mvars(t̄) so that, as s̄
is linear, s̄i is linear. Therefore

dom(µ) \ vars(s̄) ⊆ dom(µ) \ vars(s̄i).

Furthermore, by the congruence axiom (3), mgs(s̄i = t̄i) = mgs(s̄ = t̄). Thus, as
s̄ and t̄ are sequences of finite length n, we can assume that si 6= ti, for all i = 1,
. . . , n.

Therefore, for the rest of the proof, we will assume that si 6= ti and either
si ∈ Vars or ti ∈ Vars, for all i = 1, . . . , n.

For the base case, we have vars(s̄) ∪ vars(t̄) = ∅ and the result holds.
For the inductive step, vars(s̄) ∪ vars(t̄) 6= ∅ so that n > 0. As the order of

the equations in s̄ = t̄ is not relevant to the hypothesis, we assume, without loss
of generality that if, for some i = 1, . . . , n, vars(si)∩ vars(ti) = ∅ then, we have
vars(s1) ∩ vars(t1) = ∅. There are four cases we consider separately:
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a. for all i = 1, . . . , n, vars(si) ∩ vars(ti) 6= ∅;
b. s1 ∈ Vars \ vars(t1);
c. t1 ∈ Vars \ vars(s̄) and s1 /∈ Vars;
d. t1 ∈ vars(s̄) \ vars(s1) and s1 /∈ Vars.

Case a. For all i = 1, . . . , n, vars(si) ∩ vars(ti) 6= ∅.
For each i = 1, . . . , n, we are assuming that either si ∈ Vars or ti ∈ Vars,

Therefore, for each i = 1, . . . , n, si ∈ vars(ti) or ti ∈ vars(si) so that, without
loss of generality, we can assume, for some k where 0 ≤ k ≤ n, si ∈ Vars if
1 ≤ i ≤ k and ti ∈ Vars if k + 1 ≤ i ≤ n.

Let
µ

def= {s1 = t1, . . . , sk = tk} ∪ {tk+1 = sk+1, . . . , tn = sn}.
We show that µ ⊆ Eqs is in mgs(s̄ = t̄). First we must show that µ ∈ RSubst . As
s̄ is linear, (s1, . . . , sk) is linear. As s̄ is linear and ti ∈ vars(si) if k + 1 ≤ i ≤ n,
then (tk+1, . . . , tn) is linear and {s1, . . . , sk} ∩ {tk+1, . . . , tn} = ∅. As we are
assuming that, for all i = 1, . . . , n, si 6= ti and vars(si)∩ vars(ti) 6= ∅, it follows
that ti /∈ Vars when 1 ≤ i ≤ k and si /∈ Vars when k + 1 ≤ i ≤ n, so that each
equation in µ is a binding and µ has no circular subsets. Thus µ ∈ RSubst and
hence, by the congruence axiom (4), µ ∈ mgs(s̄ = t̄).

As {tk+1, . . . , tn} ⊆ vars
(
(sk+1, . . . , sn)

)
, dom(µ) \ vars(s̄) = ∅. Therefore

the required result holds.
Case b. s1 ∈ Vars \ vars(t1).
Let

s̄1
def= (s2, . . . , sn),

t̄1
def=
(
t2[s1/t1], . . . , tn[s1/t1]

)
.

As s̄ is linear, s̄1 is linear and s1 /∈ vars(s̄1). Also, all occurrences of s1 in t̄ are
replaced in t̄1 by t1 so that, as s1 /∈ vars(t1) (by the assumption for this case),
s1 /∈ vars(t̄1). Thus

s1 /∈ vars(s̄1) ∪ vars(t̄1). (28)

It follows that vars(s̄1) ∪ vars(t̄1) ⊂ vars(s̄) ∪ vars(t̄) so that the inductive hy-
pothesis applies to s̄1 and t̄1. Thus there exists µ1 ∈ RSubst where

µ1 ∈ mgs(s̄1 = t̄1)

such that, for each z ∈ dom(µ1) \ vars(s̄1), properties 1 and 2 hold using µ1 and
s̄1.

Let
µ

def= {s1 = t1µ1} ∪ µ1.

We show that µ ⊆ Eqs is in mgs(s̄ = t̄). By (28), we have s1 /∈ vars(µ1) so that
s1 /∈ dom(µ1). Also, since µ1 ∈ RSubst , µ has no identities or circular subsets.
Thus we have µ ∈ RSubst . By Lemma 3, µ ∈ mgs(s̄ = t̄).

Suppose that z ∈ dom(µ) \ vars(s̄). As

vars(s̄1) ∪ {s1} = vars(s̄)
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and

dom(µ1) ∪ {s1} = dom(µ),

we have

dom(µ1) \ vars(s̄1) = dom(µ) \ vars(s̄). (29)

Therefore z ∈ dom(µ1) \ vars(s̄1) and zµ1 = zµ. Thus the inductive properties 1
and 2 using µ1 and s̄1 can be applied to z. We show that properties 1 and 2
using µ and s̄ can be applied to z.

1. By property 1, vars(zµ) ⊆ vars(s̄1) and hence, vars(zµ) ⊆ vars(s̄).
2. By property 2, we have vars(zµ)∩dom(µ1) = ∅. Now s1 /∈ vars(zµ) because
s1 /∈ vars(s̄1) (since s̄ is linear) and vars(zµ) ⊆ vars(s̄1) (by property 1).
Thus, as dom(µ) = dom(µ1) ∪ {s1}, we have vars(zµ) ∩ dom(µ) = ∅.

Case c. Assume that t1 ∈ Vars \ vars(s̄) and s1 /∈ Vars.
Let

s̄1
def= (s2, . . . , sn),

t̄1
def=
(
t2[t1/s1], . . . , tn[t1/s1]

)
.

As s̄ is linear, s̄1 is linear. By the assumption for this case, t1 /∈ vars(s̄1). Also,
all occurrences of t1 in t̄ are replaced in t̄1 by s1 so that t1 /∈ vars(t̄1). Thus

t1 /∈ vars(s̄1) ∪ vars(t̄1). (30)

It follows that vars(s̄1) ∪ vars(t̄1) ⊂ vars(s̄) ∪ vars(t̄) so that we can apply the
inductive hypothesis to s̄1 and t̄1. Thus there exists µ1 ∈ RSubst where

µ1 ∈ mgs(s̄1 = t̄1)

such that, for each z ∈ dom(µ1) \ vars(s̄1), properties 1 and 2 hold using µ1 and
s̄1. Note that, by (30), t1 /∈ vars(µ1) and, in particular, t1 /∈ dom(µ1).

Let
µ

def= {t1 = s1µ1} ∪ µ1. (31)

As s1 /∈ Vars and µ1 ∈ RSubst , µ ∈ Eqs has no identities or circular subsets so
that µ ∈ RSubst . By Lemma 3, µ ∈ mgs(s̄ = t̄).

As t1 ∈ dom(µ) (by (31)) and t1 /∈ vars(s̄) (by the assumption for this case),
we have

dom(µ1) \ vars(s̄1) ∪ {t1} = dom(µ) \ vars(s̄).

Suppose that z ∈ dom(µ) \ vars(s̄). Then either z 6= t1 so that zµ = zµ1 and the
inductive properties 1 and 2 using µ1 and s̄1 can be applied to z or z = t1 and
zµ = s1µ1. We show that properties 1 and 2 using µ and s̄ can be applied to z.
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1. Suppose z 6= t1 so that zµ = zµ1. Using property 1, vars(zµ1) ⊆ vars(s̄1).
As vars(s̄1) ⊆ vars(s̄), it follows that vars(zµ) ⊆ vars(s̄).
Suppose that z = t1 so that zµ = s1µ1. Let u be any variable in s1. As
s̄ is linear, u /∈ vars(s̄1). Thus, if u ∈ dom(µ1), we can use property 1 to
derive that vars(uµ1) ⊆ vars(s̄1). If u /∈ dom(µ1), then uµ1 = u so that
vars(uµ1) ⊆ vars(s1). Moreover vars(s1) ∪ vars(s̄1) = vars(s̄) so that

vars(s1µ1) ⊆ vars(s̄). (32)

Hence vars(zµ) ⊆ vars(s̄).
2. Suppose z 6= t1 so that zµ = zµ1. Then, as property 2 holds, we have

vars(zµ)∩dom(µ1) = ∅. Now t1 /∈ vars(zµ) because vars(zµ) ⊆ vars(s̄1) (by
property 1) and t1 /∈ vars(s̄1) (by (30)). Thus, as dom(µ) = dom(µ1)∪ {t1},
we have vars(zµ) ∩ dom(µ) = ∅.
Suppose that z = t1 so that zµ = s1µ1. Let u be any variable in vars(s1).
Then, as s̄ is linear, u /∈ vars(s̄1). Then either u ∈ dom(µ1), and we can
apply property 2 to u to obtain vars(uµ1) ∩ dom(µ1) = ∅, or u = uµ1, and
vars(uµ1) ∩ dom(µ1) = ∅. Hence we have vars(s1µ1) ∩ dom(µ1) = ∅. Now
t1 /∈ vars(s1µ1) because vars(s1µ1) ⊆ vars(s̄) (by (32)) and t1 /∈ vars(s̄) (by
the assumption for this case). Thus, as dom(µ) = dom(µ1) ∪ {t1}, we have
vars(zµ) ∩ dom(µ) = ∅.

Case d. Assume that t1 ∈ vars(s̄) \ vars(s1) and s1 /∈ Vars.
Let

s̄1
def=
(
s2[t1/s1], . . . , sn[t1/s1]

)
,

t̄1
def=
(
t2[t1/s1], . . . , tn[t1/s1]

)
.

As s̄ is linear, there is only one occurrence of t1 in {s2, . . . , sn}, and, in s̄1, this
is replaced by s1 which is also linear. Thus s̄1 is linear, s̄1 ⊆ s̄ and t1 /∈ vars(s̄1).
Also, all occurrences of t1 in t̄ are replaced in t̄1 by s1 so that t1 /∈ vars(t̄1). Thus

t1 /∈ vars(s̄1) ∪ vars(t̄1). (33)

It follows that vars(s̄1) ∪ vars(t̄1) ⊂ vars(s̄) ∪ vars(t̄) so that we can apply the
inductive hypothesis to s̄1 and t̄1. Thus, there exists µ1 ∈ RSubst where

µ1 ∈ mgs(s̄1 = t̄1)

such that, for each z ∈ dom(µ1) \ vars(s̄1), properties 1 and 2 hold using µ1 and
s̄1.

Let
µ

def= {t1 = s1µ1} ∪ µ1.

By (33), t1 /∈ vars(µ1). Moreover µ1 ∈ RSubst and s1 /∈ Vars so that µ ∈ Eqs has
no identities or circular subset. Thus µ ∈ RSubst . By Lemma 3, µ ∈ mgs(s̄ = t̄).

As vars(s̄1) ∪ {t1} = vars(s̄) and dom(µ1) ∪ {t1} = dom(µ), we have

dom(µ1) \ vars(s̄1) = dom(µ) \ vars(s̄).
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Suppose z ∈ dom(µ) \ vars(s̄). Then z 6= t1, zµ = zµ1 and the inductive proper-
ties 1 and 2 using µ1 and s̄1 can be applied to z. We show that the properties 1
and 2 using µ and s̄ can be applied to z.

1. By property 1, vars(zµ) ⊆ vars(s̄1) and hence, as s̄1 ⊆ s̄, vars(zµ) ⊆ vars(s̄).
2. By property 2, we have vars(zµ) ∩ dom(µ1) = ∅. Now t1 /∈ vars(zµ) be-

cause t1 /∈ vars(s̄1) (by (33)) and vars(zµ) ⊆ vars(s̄1) (by property 1). As
dom(µ1) ∪ {t1} = dom(µ), it follows that vars(zµ) ∩ dom(µ) = ∅. ut

Proposition 5. Let p ∈ P and (x 7→ t) ∈ Bind, where {x} ∪ vars(t) ⊆ VI . Let
also σ ∈ γP (p) ∩MSubst and suppose that {r, r′} = {x, t}, vars(r) ⊆ hvars(σ)
and rt(r, σ) ∈ GTerms. Then, for all τ ∈ mgs

(
σ∪{x = t}

)
in a syntactic equality

theory T , we have
hvars(σ) ∪ vars(r′) ⊆ hvars(τ). (34)

Proof. We assume that the congruence and identity axioms hold. If σ ∪ {x = t}
is not satisfiable, the result is trivial. We therefore assume, for the rest of the
proof, that σ ∪ {x = t} is satisfiable in T . It follows from Corollary 1 that we
just have to show that

a vars(r′) ⊆ hvars(τ), for some τ ∈ mgs
(
σ ∪ {x = t}

)
;

b hvars(σ) ⊆ hvars(τ), for some τ ∈ mgs
(
σ ∪ {x = t}

)
.

From these, we can then conclude that, for all τ ∈ mgs
(
σ∪{x = t}

)
, (34) holds.

Note that, in both cases, since σ ∈ MSubst and vars(r) ⊆ hvars(σ), by
Proposition 4 we have rt(r, σ) = rσ, so that rσ ∈ HTerms ∩GTerms.

Case a. We must show that there exists τ ∈ mgs
(
σ ∪ {x = t}

)
such that

vars(r′) ⊆ hvars(τ).
As mgs

(
σ ∪ {x = t}

)
6= ∅, by Theorem 5 and the definition of mgs we can

assume that there exists τ ∈ MSubst ∩mgs
(
σ ∪ {x = t}

)
. Thus

τ =⇒
(
σ ∪ {r = r′}

)
.

By Lemma 2 and the congruence axioms, we have τ =⇒ {rσ = r′}. Since
τ ∈ MSubst and rσ ∈ HTerms ∩ GTerms, Lemma 11 applies (with s = rσ) so
that rσ = r′τ ∈ HTerms∩GTerms. Thus, by Proposition 2, vars(r′) ⊆ hvars(τ).

Case b. In this case, we show that there exists τ ∈ mgs
(
σ ∪ {x = t}

)
such

that hvars(σ) ⊆ hvars(τ).
Let

{u1, . . . , ul}
def= dom(σ) ∩ vars(r′σ),

s̄
def= (u1, . . . , ul, rσ),

t̄
def= (u1σ, . . . , ulσ, r

′σ).

By Lemma 3 and the congruence axioms, σ ∪ {x = t} =⇒ s̄ = t̄. Thus,
as σ ∪ {x = t} is satisfiable, mgs(s̄ = t̄) 6= ∅. Then, by Theorem 5, there
exists µ ∈ MSubst ∩ mgs(s̄ = t̄). Therefore, since rσ ∈ HTerms ∩ GTerms
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and µ =⇒ {rσ = r′σ}, Lemma 11 applies (with s = rσ) so that we have
rσ = r′σµ ∈ HTerms ∩GTerms. Hence, for all w ∈ dom(µ),

vars(wµ) = ∅. (35)

Let

ν
def=
{
z = zσµ

∣∣z ∈ dom(σ) \ vars(r′σ)
}
,

τ
def= ν ∪ µ.

Then, as σ, µ ∈ RSubst , it follows from (35) that ν, τ ∈ Eqs have no identities
or circular subsets so that ν, τ ∈ RSubst . By Lemma 3, τ ∈ mgs

(
σ ∪ {x = t}

)
.

Suppose that y ∈ hvars(σ). Then we show that y ∈ hvars(τ). Using Proposi-
tion 4, rt(y, σ) = yσ and

vars(yσ) ∩ dom(σ) = ∅. (36)

We show that vars(yτ) ∩ dom(τ) = ∅. Now, if y /∈ dom(τ), the result holds
trivially. Suppose that y ∈ dom(ν), then yτ = yσµ and y ∈ dom(σ). Let w be
any variable in vars(yσ) so that, by (36), w /∈ dom(σ). If w /∈ dom(µ), then
w = wµ /∈ dom(τ). If w ∈ dom(µ), then, by (35), vars(wµ) = ∅. Therefore,
vars(wµ)∩dom(τ) = ∅. It follows that vars(yν)∩dom(τ) = ∅. Finally, suppose
y ∈ dom(µ). Then, by (35), vars(yµ) = ∅. Therefore vars(yµ) ∩ dom(τ) = ∅.

Therefore, using Definition 6, we have that y ∈ hvars(τ) as required. ut

Proposition 6. Let p ∈ P and (x 7→ t) ∈ Bind, where {x} ∪ vars(t) ⊆ VI .
Let also σ ∈ γP (p) ∩ MSubst and suppose that x ∈ hvars(σ) and vars(t) ⊆
hvars(σ). Suppose also that indp(x, t) and that or linp(x, t) hold. Then, for all
τ ∈ mgs

(
σ ∪ {x = t}

)
in a syntactic equality theory T , we have

hvars(σ) ⊆ hvars(τ). (37)

Proof. We assume that the congruence and identity axioms hold. If σ ∪ {x = t}
is not satisfiable, the result is trivial. We therefore assume, for the rest of the
proof, that σ ∪ {x = t} is satisfiable in T . It follows from Corollary 1 that we
just have to show that there exists τ ∈ mgs

(
σ ∪ {x = t}

)
such that (37) holds.

As x ∈ hvars(σ) and vars(t) ⊆ hvars(σ), we have, using Proposition 4,
rt(x, σ) = xσ and rt(t, σ) = tσ. Also

vars(xσ) ∩ dom(σ) = ∅, vars(tσ) ∩ dom(σ) = ∅. (38)

As indp(x, t) holds,
vars(xσ) ∩ vars(tσ) = ∅. (39)

By hypothesis, or lin(x, t) holds so that, by Definition 4, for some r ∈ {x, t}, rσ
is linear. Let r′ def= {x, t} \ {r}.

By Lemma 3 and the congruence axioms, σ∪{x = t} =⇒ {rσ = r′σ}. Thus,
as σ ∪ {x = t} is satisfiable, mgs(rσ = r′σ) 6= ∅. Thus we can apply Lemma 12
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(where s̄ = rσ and t̄ = r′σ) so that, using (39), there exists µ ∈ mgs(xσ = tσ)
such that, for all w ∈ dom(µ),

vars(wµ) ∩ dom(µ) = ∅. (40)

Note that, by (38),
dom(σ) ∩ vars(µ) = ∅. (41)

Let

ν
def=
{
z = zσµ

∣∣z ∈ dom(σ)
}
,

τ
def= ν ∪ µ.

Then, as σ, µ ∈ RSubst , it follows from (41) that ν, τ ∈ Eqs have no identities
or circular subsets so that ν, τ ∈ RSubst . By Lemma 3, τ ∈ mgs

(
σ ∪ {x = t}

)
.

Suppose y ∈ hvars(σ). Then we show that y ∈ hvars(τ). As y ∈ HTerms, we
have, using Proposition 4, rt(y, σ) = yσ and

vars(yσ) ∩ dom(σ) = ∅. (42)

We show that vars(yτ) ∩ dom(τ) = ∅. Now, if y /∈ dom(τ), the result holds
trivially. Suppose that y ∈ dom(ν), then yτ = yσµ. Let w be any variable in
vars(yσ). Then, by (42), w /∈ dom(σ). If w /∈ dom(µ), then w = wµ /∈ dom(τ).
If w ∈ dom(µ), then vars(wµ) ⊆ vars(µ) so that, by (41), vars(wµ) ∩ dom(ν) =
∅. Moreover (40) applies so that vars(wµ) ∩ dom(µ) = ∅. Therefore we have
vars(wµ)∩dom(τ) = ∅. It follows that vars(yν)∩dom(τ) = ∅. Finally, suppose
y ∈ dom(µ). Then yτ = yµ and, by (41), wehave vars(yµ) ∩ dom(ν) = ∅. Also
(40) applies where w is replaced by y so that vars(yµ) ∩ dom(µ) = ∅. Thus
vars(yµ) ∩ dom(τ) = ∅.

Therefore, using Definition 6, we have that y ∈ hvars(τ) as required. ut

Proposition 7. Let p ∈ P and (x 7→ t) ∈ Bind, where {x} ∪ vars(t) ⊆ VI . Let
also σ ∈ γP (p) ∩MSubst and suppose that x ∈ hvars(σ) and vars(t) ⊆ hvars(σ).
Suppose also that gfreep(x) and gfreep(t) hold. Then, for all τ ∈ mgs

(
σ∪{x = t}

)
in a syntactic equality theory T , we have

hvars(σ) ⊆ hvars(τ). (43)

Proof. We assume that the congruence and identity axioms hold. If σ ∪ {x = t}
is not satisfiable, the result is trivial. We therefore assume, for the rest of the
proof, that σ ∪ {x = t} is satisfiable in T . It follows from Corollary 1 that we
just have to show that there exists τ ∈ mgs

(
σ ∪ {x = t}

)
such that (43) holds.

By Definition 4, gfreep(x) and gfreep(t) imply that rt(x, σ) ∈ GTerms or
rt(x, σ) ∈ Vars, and that rt(t, σ) ∈ GTerms or rt(t, σ) ∈ Vars. Since we have
rt(x, σ), rt(t, σ) ∈ HTerms and σ ∈ MSubst , as a consequence of Proposition 4,
we have rt(x, σ) = xσ, rt(t, σ) = tσ and xσ, tσ /∈ dom(σ). There are three cases:

– vars(xσ) = ∅ ∨ vars(tσ) = ∅. Then the result follows from Proposition 5.
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– xσ = tσ ∈ Vars. Then letting τ = σ gives the required result.
– xσ, tσ ∈ Vars are distinct variables. Let τ = σ ∪ {xσ = tσ}. Then, as
xσ, tσ /∈ dom(σ), τ ∈ RSubst . Hence, by Lemma 3, τ ∈ mgs

(
σ ∪ {x = t}

)
.

Let y be any variable in hvars(σ). We show that y ∈ hvars(τ).
Suppose first that y 6= xσ. Then yτ = yσ. Thus using Proposition 4,
rt(y, σ) = yτ and vars(yτ) ∩ dom(σ) = ∅. Thus vars(yτ) ∩ dom(τ) ⊆ {rσ}.
However, rστ = tσ /∈ dom(τ) so that, by Definition 5, vars(yτ) ⊆ hvars1(τ)
and hence y ∈ hvars2(τ). Therefore, by Lemma 6 and Definition 6, we have
y ∈ hvars(τ).
Secondly, suppose that y = xσ. Then yτ = tσ. So that, as tσ ∈ Vars\dom(σ)
and xσ 6= tσ, vars(yτ)∩ dom(τ) = ∅. Therefore, using Definition 6, we have
that y ∈ hvars(τ) as required. ut

Proposition 8. Let p ∈ P and (x 7→ t) ∈ Bind, where {x} ∪ vars(t) ⊆ VI .
Let σ ∈ γP (p) ∩MSubst and suppose that x ∈ hvars(σ) and vars(t) ⊆ hvars(σ).
Furthermore, suppose that or linp(x, t) and share linp(x, t) hold. Then, for all
τ ∈ mgs

(
σ ∪ {x = t}

)
in a syntactic equality theory T , we have

hvars(σ) \ share same varp(x, t) ⊆ hvars(τ). (44)

Proof. We assume that the congruence and identity axioms hold. If σ ∪ {x = t}
is not satisfiable, the result is trivial. We therefore assume, for the rest of the
proof, that σ∪{x = t} is satisfiable in T . It follows from Corollary1 that we just
have to show that there exists τ ∈ mgs

(
σ ∪ {x = t}

)
such that (44) holds.

As x ∈ hvars(σ) and vars(t) ⊆ hvars(σ), we have, using Proposition 4,
rt(x, σ) = xσ and rt(t, σ) = tσ. Also

vars(xσ) ∩ dom(σ) = ∅, vars(tσ) ∩ dom(σ) = ∅. (45)

By hypothesis, or linp(x, t) holds so that, by Definition 4, for some r ∈ {x, t},
rσ is linear. Also by hypothesis, share linp(x, t) holds so that, by Definition 4, if
r′ = {x, t} \ {r}, for all z ∈ vars(rσ)∩ vars(r′σ), occ lin(z, r′σ) holds. Therefore,

vars(rσ) ∩ nlvars(r′σ) = ∅. (46)

By Lemma 3 and the congruence axioms, σ ∪ {x = t} =⇒ {rσ = r′σ}.
Thus, as σ ∪{x = t} is satisfiable, mgs(rσ = r′σ) 6= ∅. Thus, as rσ is linear and
(46) holds, we can apply Lemma 12 (where s̄ = rσ and t̄ = r′σ) so that there
exists µ ∈ mgs(xσ = tσ) such that, for all w ∈ dom(µ) \

(
vars(xσ) ∩ vars(tσ)

)
,

vars(wµ) ∩ dom(µ) = ∅. (47)

Note that, by (45),
dom(σ) ∩ vars(µ) = ∅. (48)

Let

ν
def=
{
z = zσµ

∣∣z ∈ dom(σ)
}
,

τ
def= ν ∪ µ.
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Then, as σ, µ ∈ RSubst , it follows from (48) that ν, τ ∈ Eqs have no identities
or circular subsets so that ν, τ ∈ RSubst . By Lemma 3, τ ∈ mgs

(
σ ∪ {x = t}

)
.

Suppose y ∈ hvars(σ)\ share same varp(x, t). We show that y ∈ hvars(τ). As
y ∈ hvars(σ), using Proposition 4, rt(y, σ) = yσ and

vars(yσ) ∩ dom(σ) = ∅. (49)

As y /∈ share same varp(x, t), by Definition 4,

vars(yσ) ∩ vars(xσ) ∩ vars(tσ) = ∅. (50)

Therefore, using (50) if y /∈ dom(σ) and (45) if y ∈ dom(σ), it follows that

y /∈ vars(xσ) ∩ vars(tσ). (51)

We show that vars(yτ) ∩ dom(τ) = ∅. Now, if y /∈ dom(τ), the result holds
trivially. Suppose that y ∈ dom(ν), then yτ = yσµ. Let w be any variable in
vars(yσ). Then, by (50), w /∈

(
vars(xσ)∩ vars(tσ)

)
and, by (49), w /∈ dom(σ). If

w /∈ dom(µ), then w = wµ /∈ dom(τ). If w ∈ dom(µ), then vars(wµ) ⊆ vars(µ)
so that, by (48), we also have vars(wµ)∩ dom(ν) = ∅. Moreover (47) applies so
that vars(wµ)∩ dom(µ) = ∅. Therefore, vars(wµ)∩ dom(τ) = ∅. It follows that
vars(yν) ∩ dom(τ) = ∅. Finally, suppose y ∈ dom(µ). Then yτ = yµ and, by
(48), vars(yµ)∩ dom(ν) = ∅. As (51) holds, (47) applies where w is replaced by
y so that vars(yµ) ∩ dom(µ) = ∅. Thus vars(yµ) ∩ dom(τ) = ∅.

Therefore, using Definition 6, we have that y ∈ hvars(τ) as required. ut

Proposition 9. Let p ∈ P and (x 7→ t) ∈ Bind, where {x} ∪ vars(t) ⊆ VI . Let
also σ ∈ γP (p) ∩MSubst and suppose that {r, r′} = {x, t}, vars(r) ⊆ hvars(σ)
and linp(r) holds. Then, for all τ ∈ mgs

(
σ ∪ {x = t}

)
in a syntactic equality

theory T , we have

hvars(σ) \ share withp(r) ⊆ hvars(τ). (52)

Proof. We assume that the congruence and identity axioms hold. If σ ∪ {x = t}
is not satisfiable, the result is trivial. We therefore assume, for the rest of the
proof, that σ ∪ {x = t} is satisfiable in T . It follows from Corollary 1 that we
just have to show that there exists τ ∈ mgs

(
σ ∪ {x = t}

)
such that (52) holds.

By hypothesis, vars(r) ⊆ hvars(σ). Hence, by Proposition 4, rt(r, σ) = rσ
and

vars(rσ) ∩ dom(σ) = ∅. (53)

By hypothesis, linp(r) holds, so that, by Definition 4, rσ is linear.
Let

{u1, . . . , ul}
def= dom(σ) ∩

(
vars(xσ) ∪ vars(tσ)

)
,

s̄
def= (u1, . . . , ul, rσ),

t̄
def= (u1σ, . . . , ulσ, r

′σ).
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Since rσ is linear, it follows from (53) that s̄ is linear. By Lemma 3 and the
congruence axioms, σ ∪ {x = t} =⇒ s̄ = t̄. Thus, as σ ∪ {x = t} is satisfiable,
we have mgs(s̄ = t̄) 6= ∅. Therefore, we can apply Lemma 13 so that there exists
µ ∈ mgs(s̄ = t̄) such that, for all w ∈ dom(µ) \ vars(s̄),

vars(wµ) ∩ dom(µ) = ∅. (54)

Note that, since σ ∈ MSubst , for each i = 1, . . . , l, we have

vars(uiσ) ⊆ vars(xσ) ∪ vars(tσ).

Thus

vars(µ) ⊆ vars(xσ) ∪ vars(tσ). (55)

Let

ν
def=
{
z = zσµ

∣∣∣z ∈ dom(σ) \
(
vars(xσ) ∪ vars(tσ)

)}
,

τ
def= ν ∪ µ.

Then, as σ, µ ∈ RSubst , it follows from (55) that ν, τ ∈ Eqs have no identities
or circular subsets so that ν, τ ∈ RSubst . By Lemma 3, τ ∈ mgs

(
σ ∪ {x = t}

)
.

Suppose y ∈ hvars(σ) \ share withp(r). Then we show that y ∈ hvars(τ). As
y ∈ hvars(σ), by Proposition 4, rt(y, σ) = yσ and

vars(yσ) ∩ dom(σ) = ∅. (56)

As y /∈ share withp(r), by Definition 4, y /∈ share same varp(y, r) so that, using
the same definition,

vars(yσ) ∩ vars(rσ) = ∅. (57)

Therefore using (57) if y /∈ dom(σ) and (53) if y ∈ dom(σ), it follows that

y /∈ vars(rσ). (58)

We show that vars(yτ) ∩ dom(τ) = ∅. Now, if y /∈ dom(τ), the result holds
trivially. Suppose that y ∈ dom(ν). Then yτ = yσµ and y ∈ dom(σ). It fol-
lows from (56) and (57) that vars(yσ) ∩ vars(s̄) = ∅. Let w be any variable in
vars(yσ) so that w /∈ vars(s̄). By (56), we have w /∈ dom(σ). If w /∈ dom(µ), then
w = wµ /∈ dom(τ). If w ∈ dom(µ), then vars(wµ) ⊆ vars(µ) so that, by (55),
vars(wµ) ∩ dom(ν) = ∅. Moreover (54) applies so that vars(wµ) ∩ dom(µ) = ∅.
Therefore, vars(wµ) ∩ dom(τ) = ∅. It follows that vars(yν) ∩ dom(τ) = ∅. Fi-
nally, suppose y ∈ dom(µ). Then yτ = yµ and, by (55), vars(yµ)∩ dom(ν) = ∅.
As σ ∈ MSubst and y ∈ hvars(σ), y /∈ dom(σ) ∩

(
vars(rσ) ∪ vars(r′σ)

)
and

hence y /∈ vars(s̄). Therefore (54) applies and vars(yµ) ∩ dom(µ) = ∅. Thus
vars(yµ) ∩ dom(τ) = ∅.

Therefore, using Definition 6, we have that y ∈ hvars(τ) as required. ut
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Proposition 10. Let p ∈ P and (x 7→ t) ∈ Bind, where {x} ∪ vars(t) ⊆ VI .
Let also σ ∈ γP (p) ∩MSubst. Then, for all τ ∈ mgs

(
σ ∪ {x = t}

)
in a syntactic

equality theory T ,

hvars(σ) \
(
share withp(x) ∪ share withp(t)

)
⊆ hvars(τ). (59)

Proof. We assume that the congruence and identity axioms hold. If σ ∪ {x = t}
is not satisfiable, the result is trivial. We therefore assume, for the rest of the
proof, that σ ∪ {x = t} is satisfiable in T . It follows from Corollary 1 that we
just have to show that there exists τ ∈ mgs

(
σ ∪ {x = t}

)
such that (59) holds.

Let

{u1, . . . , ul}
def= dom(σ) ∩

(
vars(xσ) ∪ vars(tσ)

)
,

s̄
def= (u1, . . . , ul, xσ),

t̄
def= (u1σ, . . . , ulσ, tσ).

Note that, since σ ∈ MSubst , for each i = 1, . . . , l, we have

vars(uiσ) ⊆ vars(xσ) ∪ vars(tσ).

Thus, for any µ ∈ mgs(s̄ = t̄), we have

vars(µ) ⊆ vars(xσ) ∪ vars(tσ). (60)

Let

ν
def=
{
z = zσµ

∣∣∣ z ∈ dom(σ) \
(
vars(xσ) ∪ vars(tσ)

)}
,

τ
def= ν ∪ µ.

Then, as σ, µ ∈ RSubst , it follows from (60) that ν, τ ∈ Eqs have no identities or
circular subsets so that ν, τ ∈ RSubst . Thus, using Lemma 3 and the assumption
that σ ∪ {x = t} is satisfiable, τ ∈ mgs

(
σ ∪ {x = t}

)
.

Suppose y ∈ hvars(σ) \
(
share withp(x) ∪ share withp(t)

)
. We show that

y ∈ hvars(τ). As y ∈ hvars(σ), by Proposition 4, rt(y, σ) = yσ and

vars(yσ) ∩ dom(σ) = ∅. (61)

As y /∈ share withp(x) ∪ share withp(t), it follows from Definition 4 that

y /∈ share same varp(y, x) ∪ share same varp(y, t)

so that, using the same definition with the result that rt(y, σ) = yσ, we obtain

vars(yσ) ∩
(
vars(xσ) ∪ vars(tσ)

)
= ∅. (62)

Therefore, using (62) if y /∈ dom(σ) and using the fact that σ ∈ MSubst , if
y ∈ dom(σ), it follows that

y /∈ vars(xσ) ∪ vars(tσ). (63)
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We show that vars(yτ) ∩ dom(τ) = ∅. Now, if y /∈ dom(τ), the result holds
trivially. Suppose that y ∈ dom(τ). Then, by (60) and (63), y /∈ vars(µ) so that
y /∈ dom(µ) and vars(yµ) ∩ dom(µ) = ∅. Thus we must have y ∈ dom(ν) and
yτ = yσ. Then, by (60) and (62), vars(yσ) ∩ dom(µ) = ∅. Moreover, by (61),
vars(yσ) ∩ dom(σ) = ∅. It follows that vars(yσ) ∩ dom(τ) = ∅ and hence, as
yσ = yτ , vars(yτ) ∩ dom(τ) = ∅.

Therefore, using Definition 6, we have that y ∈ hvars(τ) as required. ut

Proof (Proof of Theorem 2).
By hypothesis, σ ∈ γP (p). By Theorem 5, there exists σ′ ∈ MSubst such

that σ ⇐⇒ σ′. By Lemma 10, we have hvars(σ) = hvars(σ′). By Definition 3,
σ ∈ γP (p) if and only if σ′ ∈ γP (p). We therefore safely assume that σ ∈ MSubst .

By hypothesis, we have σ ∈ γH(h). Therefore, it follows from Definition 7
that h ⊆ hvars(σ). Similarly, by Definition 7, in order to prove τ ∈ γH(h ′), we
just need to show that h ′ ⊆ hvars(τ) where h ′ is as defined in Definition 8. There
are eight cases that have to be considered.

1. htermh(x) ∧ groundp(x) holds.
As htermh(x) holds, by Definition 8, x ∈ h. Hence, by Definition 7, we have
x ∈ hvars(σ). As groundp(x) holds, by Definition 4, rt(x, σ) ∈ GTerms.
Therefore we can apply Proposition 5, where r is replaced by x and r′ by t,
to conclude that

hvars(σ) ∪ vars(t) ⊆ hvars(τ).
2. htermh(t) ∧ groundp(t) holds.

As htermh(t) holds, by Definition 8, vars(t) ⊆ h. Hence, by Definition 7,
vars(t) ⊆ hvars(σ). As groundp(t) holds, by Definition 4, rt(t, σ) ∈ GTerms.
Therefore we can apply Proposition 5, where r is replaced by t and r′ by x,
to conclude that

hvars(σ) ∪ {x} ⊆ hvars(τ).
3. htermh(x) ∧ htermh(t) ∧ indp(x, t) ∧ or linp(x, t) holds.

As htermh(x) and htermh(t) hold, by Definition 8, x ∈ h and vars(t) ⊆ h.
Hence, by Definition 7, x ∈ hvars(σ) and vars(t) ⊆ hvars(σ). Therefore we
can apply Proposition 6 to conclude that

hvars(σ) ⊆ hvars(τ).

4. htermh(x) ∧ htermh(t) ∧ gfreep(x) ∧ gfreep(t) holds.
As htermh(x) and htermh(t) hold, by Definition 8, x ∈ h and vars(t) ⊆ h.
Hence, by Definition 7, x ∈ hvars(σ) and vars(t) ⊆ hvars(σ). Therefore we
can apply Proposition 7 to conclude that

hvars(σ) ⊆ hvars(τ).

5. htermh(x) ∧ htermh(t) ∧ share linp(x, t) ∧ or linp(x, t) holds.
As htermh(x) and htermh(t) hold, by Definition 8, x ∈ h and vars(t) ⊆ h.
Hence, by Definition 7, x ∈ hvars(σ) and vars(t) ⊆ hvars(σ). Therefore we
can apply Proposition 8 to conclude that

hvars(σ) \ share same varp(x, t) ⊆ hvars(τ).

46



6. htermh(x) ∧ linp(x) holds.
As htermh(x) holds, by Definition 8, x ∈ h. Hence, by Definition 7, we have
x ∈ hvars(σ). Therefore we can apply Proposition 9 where r is replaced by
x and r′ by t, to conclude that

hvars(σ) \ share withp(x) ⊆ hvars(τ).

7. htermh(t) ∧ linp(t) holds.
As htermh(t) holds, by Definition 8, vars(t) ⊆ h. Hence, by Definition 7,
vars(t) ⊆ hvars(σ). Therefore we can apply Proposition 9 where r is replaced
by t and r′ by x, to conclude that

hvars(σ) \ share withp(t) ⊆ hvars(τ).

8. For all (x 7→ t) ∈ Bind where {x} ∪ vars(t) ⊆ VI , Proposition 10 applies so
that

hvars(σ) \
(
share withp(x) ∪ share withp(t)

)
⊆ hvars(τ).

ut

47



Appendix References

[BCM94] M. Bruynooghe, M. Codish, and A. Mulkers, Abstract unification for a
composite domain deriving sharing and freeness properties of program vari-
ables, Verification and Analysis of Logic Languages, Proceedings of the W2
Post-Conference Workshop, International Conference on Logic Programming
(Santa Margherita Ligure, Italy) (F. S. de Boer and M. Gabbrielli, eds.),
1994, pp. 213–230.

[BZH00] R. Bagnara, E. Zaffanella, and P. M. Hill, Enhanced sharing analysis tech-
niques: A comprehensive evaluation, Proceedings of the 2nd International
ACM SIGPLAN Conference on Principles and Practice of Declarative Pro-
gramming (Montreal, Canada) (M. Gabbrielli and F. Pfenning, eds.), Asso-
ciation for Computing Machinery, 2000, pp. 103–114.

[Cla78] K. L. Clark, Negation as failure, Logic and Databases (Toulouse, France)
(H. Gallaire and J. Minker, eds.), Plenum Press, 1978, pp. 293–322.

[Col82] A. Colmerauer, Prolog and infinite trees, Logic Programming, APIC Studies
in Data Processing (K. L. Clark and S. Å. Tärnlund, eds.), vol. 16, Academic
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