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November 1987: [ was looking for a subject....

Gilorgio gave me 2 papers:

<= Abstract Interpretation or Partial Foaluation?
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1. Introduction

A program denotes computations in some universe of
objects. Abstract interpretation of programs con-
s i i ng that denotation to describe comou-
5 her universe of abstract uh]OLES,
‘u) ‘iT\‘-l‘;'{h': results of abstract exec ution nge
5 mations on the actual computations. An
- intuitive eéxample (which we borrow from Sintzoff
721) is the rule of signs. The text -1515%17
may be understood to denote computations on the
abstract universe {(+), (=), (%)} where the se-
mantics of arithmetic overators is defined by the
rule of signs. The abstract execution =I515+17
=> =(+) x (+) => (=) * (+) => (-), onroves that
-1515* 17 is a negative number. Abstract interpre-
tation is concerned by a rarticular r underlying “
structure of the usual _universe of computations 7
(the sign, in our cxample) It gives a summary of
some facets of the stu1l executions of a program.
In general this summary is simple to obtain but
inaccurate (e.g. =1515+ 17 => =(4) + (+) =>
(=) + (+) ==> (%)). Despite its fundamentally in=_
complete results abstract interpretation allows
the programmer or the compiler to answer ques=
tions which do not need full knowledge of program
executions or which tolerate an imprecise answer,
(e.g. partial correctness proofs of programs igno-
ring the temmination problems, type checking, pro-
gram optxmlzatlnns which are not carried in the
absence of certainty about their feasibility, ...).

2. Swmmary

Section 3 describes the syntax and mathematical
semantics of a simple flowchart language, Scott

and Stracheyl 71]. This mathematical semantics is
used in section 4 to built a more abstract model of
the semantics of programs, in that it ignores the
sequencing of control flow. This model is taken to

of programs. Section 5 gives the formal definition
of the abstract interpretations of a program.
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OF PROGRAMS BY CONSTRUCTION
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be the most concrete of the abstract interpretations

ABSTRACT INTERPRETATION : A UNIFIED LATTICE MODEL FOR STATIC ANALYSIS
OR APPROXIMATION OF FIXPOINTS

S *
Radhia Cousot

Laboratoire d'Informatique, U.S.M.G., BP.
redex

Abstract program properties are modeled by a com-

plete semilattice, Birkhoff(61]. Elementary pro-
gram constructs are locally interpreted by order
preserving functions which are used to associate
a system of recursive equations with a program. The
program global properties are then defined as one
of the extreme fixpoints of that system, Tarski(55L
The abstraction process is defined in section 6. It
is shown that the program pronerties obtained by
an abstract interpretation of a program are consis-=
tent with those obtained by a more refined inter=
pretation of that program. In particular, an ab-
stract interpretation may be shown to be consistent
with the formal semantics of the lanquage. Levels
of abstraction are formalized by showing tha? con=
Sistent abstract interpretations form a lattice
(section 7). Section 8 aives a constructive defi-
tion of Ju:tragt nropcrclca “of programs based on
N ixpoints. [t shows
that various cla al algorithms such as Kildall
f73], Yegbreit/ 751 compute program properties as
limits of finite Kleene!52]'s sequences. Section
9 introduces finite fixpoint approximation methods
to be used when Kleene'ssequences are infinite,
Cousot[76]1. They are shown to be consistent with
the abstraction process. Practical examples illus-
trate the various sections. The conclusion points
out that abstract interpretation of programs is a
unified approach to apparently unrelated program
analysis techniques.

3. Syntax and Semantics of Programs

We will use finite flowcharts as a language inde-
pendent renresentation of progrems.

A program is built from a set "Nodes". Each node
has successor and predecessor nodes

Nodes

n-succ, n-pred : Nodes ~ 2 (m e n=succ(n))

=>(ne n-pred(m))
Hereafter, we note !S t cardinality of a set S.
Yhen |S| = 1 so that S X' we sometimes use S to
denote x.
The node subsets "Entries”, "Assignments", "Tests',
"Junctions” and "Exits" partition the set Nodes.
- An entry node (n Entries) has no predecessors
and one successor, ((n-nred(n) = @) and
(In=suze(n)| = 1)).

PARTIAL EVALUATION AS A MEANS FOR INFERENCING DATA STRUCTURES IN AN
APPLICATIVE LANGUAGE: A THEORY AND IMPLEMENTATION IN THE CASE OF PROLOG

H. Jan Komorowski
Software Systems Research Center
Linktping University
S-581 83 Linkuping, Sweden

ABSTRACT

An operational semantics of the Prolog programming
language is introduced. Meta-IV is used to specify the
semantics. One purpose of the work is to provide a
specification of an implementation of a Prolog
interpreter. Another one is an application of this
specification to a formal description of program optimization
techniques based on the principle of partial evaluation.

Transformations which account for pruning, forward data
structure propagation and opening (which also provides
backward data structure propagation) are formally
introduced and proved to preserve meaning of programs.
The so defined transformations provide means to inference
data structures in an applicative language. The theoretical
investigation is then shortly related to research in
rule-based systems and logic.

An efficient well-integrated partial evaluation system is
available in Qlog - a Lisp programming environment for

Prolog.

1.0 INTRCDUCTION

It is very likely that a large part of future programming will
be programming in increasingly higher level languages. In
such languages more attention will be paid to efficient
problem solving, whereas this efficiency need not reflect
the requirements of an efficient computation. In these
cir program transfor C tools will play the

I role in making the effici realistic. It is also felt
that the tecols should be Interactive. One reason is that
they are to support the user in the immanently interactive
activities of programming. The other one is that due to the
complexity of some transformations the user's support
might be indispensable in some points.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advanuge, the ACM copyti;hi notice and the title of the
publication and its date appear, and notice is gmn that copying is by
permission of the Association for Computi i yTooopy
otherwise, or to republish, requires a fee and/or specific permission.
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The growing interest in applicative | progr

has also given much impulse to research concerned wml
Prolog (which is a good example of an applicative and
rather high level programming language). At the same time
the percelved Iinefficiency Iin execution of many
applicative languages has been an obstacle to their
wide-spread acceptance. Consequently, algorithms are
often coded for efficient e tion at the of
clarity. This compromises the applicative style which s the
prime advantage of such languages.

We argue, that high-level program transformations can
relieve the programmer from concern for efficiency in many
cases. Several authors have considered the optimizing
transformations and their applications, while relatively little
attention has been paid to the so called partial evaluation
transformations. Unfortunately, even If partial evaluation
seems to be a very powerful and useful tool it has not
been given any precise definition.

In this paper we investigate partial evaluation of Prolog
programs as a part of a theory of interactive, incremental
programming. The goal of this investigation is to provide
formally correct, interactive programming tools for program
transformation. Moreover, partial evaluation as introduced
in the paper is not only a means to improve program
efficiency but also a means for inferencing data structures
in an applicative language.

The rest of this paper is organized as follows. First, an
informal introduction of partial evaluation and a short
discussion of related research is presented. Second, after
the preliminaries which tablish the col ns  and
notatlon, an abstract Prolog machine is introduced. The
machine is then extended to account for partial evaluation
transformations. A partial evaluation system is implomented
in the Qlog system according to the specification. Finally, a
brief di of relati between logic, partial
evaluation and research in rule-based systems follows.

2.0 PARTIAL EVALUATION: AN INTRODUCTION

An informal introduction to partial evaiuation is presented
here and illustrated with a simple example,

The goal of partial evaluation is to transform programs inte
more efficient ones. The improved efficiency is obtained at
the expense of the generality of the programs. The
restrictions on generality are usually introduced by setting
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HEDREM  6.4.C.7

(1) -Lst I be a principal ideal and J be a gual 3?«11-
igeal of a complete lattice LI(E,1,7.U, g
In) is nonvoid then In) is e complete and convex
sub-join-semilattice of L.

(2) -Every complete anc convex sub-join-semilattice
C of L can be expressed in this form with
I={xeL : x€ (UC)} and {xeL : {}yeC:yE x}}sJ.

~—$> THEOREM 6.4.0.3

1s of

t {Is¢A} be a family of principal idea
—>|the o ce L(E,1,T,U,/1) containing L. Then
> Ax.u{n11 : deA A xely) is_an upper closure opera or

‘>m-l—

— Y Ezaple 6.4.0.4
The following lattice can be used for static
analysis of the signs of vahie’sgf'nmrical varia-
analysis ot e 8 8 ——— pical verlec
bles :

T 3, v raspectively stand for
(where 1 550 %

A:.falu: X;.x:(!, Axex>0, Axexs0, Ax.xx0, Axox20,
Ax.true). A furth n be defined by
the following family of principal ideals.:

I Iz 3 Iy
which induces an upper closure operator p :
> et e/t I e s

and the space of approximate assertions:_v(_used in ex-

SOTNCAZ sl P B
N
> 3
0
Tt

End of Ezample.

INDUCED BY A SPACE OF APPROXIMATE ASSERTIONS

In addition to A and Y the specification of &

program analysis Framework 8180 Tncludes the choice

- \
of an approximate predicate transformer tell -~ Ii\ _A) (TP)
(or a monoid of maps on A or es;uc):
ting maps to _program statements (e.g. Rose 8 . —

now show that in fac s is n N
:ince 5 est correct choice of T wh A
{s induced by A and the formal semantics of the con- ———

sidered grogreming language.

7.1 A Reasonable pefinition of Correct Approximate
Predicate Transformers

At_paragraph 3, given (V,A, 1) the minimal asser-
is invariant at Roint i of a program ™
= wnic; sg €A _was defined as :

with entry specification

= v F(p)(d)
p epath(i)

Therefore the minimal approximate invariant assertior‘\
{s the Jeast upper approximation of Py in R that is :
p(P,) = ol \/ T(p) ($))
: p epath(i)

&1

e _paths _the
hen path
S\;:nu:tion of T(p)(¢) is hardly mchine-iwlaﬂhntab_ig
since for each path p = 8ys,e«+:8m the cogg. :::t(:o;\)(:: ;
A~A)s (L+(X~+7)) a
(A=A Therefore using ®¢A and te(b > (A )=
machine representable sequence Xp*o» X,-t(C(A,))(:o).
vees X C(C(amN(¥mey) 48 used instead of Xeseees?m
which leads to the expression @
Oidban Gl il T (DV(9))
e p epath(i)
T ? ¢ only if Oy
The choice of t end ¢ s correct if_en
15 an upper epproximation of Py in A thot is if end
only if @ “ A ¥
( 0 T(p)($)) == ol b t(p)(d))
p cpath(1) p e path(4)
In perticuler for the entry point we must have ¢ -
0(3)=6 so that we xan state the following :
o
DEFINITION 7.1.0.1 ( 'ori‘(?j(-j‘ffrr--‘:
former
1) - An approximate predicate trens
o Tc(L~ (A+A)) is said to be & correct wpper
approzimation of Te(l+(A=A)) in A=p(A) uz
and only if for all ¢cA, FeR such that 0:’3
and program T we have : MOPx(T,9) = MOPr(t, )
(2) - Similarly if AP<a,Y> A, te(L> (A+A)) is seid —
Similerly 1% A1 =
fo be a correct upper approximation OF i
e (L= TA=A)) in A=a(A) if and only if vé, :
6= (&), ¥m, a(MoPy(T,0))_E_MOPr(t,)),
(1.e. MOPq(T,$) = Y(MOPq(t, 0

This global correctness condition fo: :nzsewny y
i3 for any program T
difficult to_ chec! e T

11 paths pepat
z;iirem :0125 5 e to use instead the

following eguivalent local condition which can be
y_type of statements :

checked for ever
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is modified while a new one is pushed on the stack (.15).
The explanation is that it must contain the “history" of
selecting a clause from the program, (And at the same time
such a solution was preferred to the use of a side-effect
which could be introduced by the is-uni procedure.) Should
a backtrack occur (ie popping an element from the stack)
then a new trial must be made in that very program. An
alternative approach which carries the history forward and
stores it in the top configuration requires popping two
configurations while backtracking, The reader is
encouraged to write such a version of apm.

The apm function can be simply made recursive as well.
Informally speaking, it is sufficient to encapsulate right
sides of the conditionals (except undefined (.6)) in a cali
to apm (and change its type definition) and add a check if
the stack Is not empty.

4.6 Semantics

Definition 1 Computation Sequence

Given the definition of apm, a computation (sequence) of
a literal A determined by a program P is defined recursively
as follows:

1° stt, = mk-State(mk-Conf(P, A, id), forward)
2 If apm, P. stt is defined then stt,, = apm. P. stt;

Bofore we proceed to the definition of the semantics, an
additional function sem® is introduced.

Definition 2
Sem® : Pro - Lit -+ State™

where sem®. P. A is the longest computation of A
determined by P.

Definition 3 Semantics
The semantics sem of A determined by P is defined in the
following way:

1° sem : Pro = Lit = Subst™

2°  Let A and P be given and established. From sem®. P.

A a subseg is 1 d which contains all the
elements such that:

sty = mk-State(mk-Conf(P, B, 6,)“stk, dir),
where B, = [], dir, = forward.

sem. P. A2 {8, 0, ...}

Such a subsequence is called a ful putati
sequence (for A determined by P) and abbreviated 5.c.s.

5.0 PARTIAL EVALUATION

Informally speaking, a partial evaluation machine Is an
extended abstract Prolog machine which, while computing,
labels those clauses (parts of a program) which
contributed to a successful computation. Those labelled
clauses form a subsequence P' of P such that the
denotation of A in P is preserved in the new program P'. P’
Is called a pruned version of P (with respect to A) and will
be subject to further transformations.

T
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in partial evaluation one also has to take a different
approach to the so called under-defined programs. The
partial evaluation machine should be total. However,
instead of popping the stack and switching to the
hackward state in the case of undefined procedures (ie.
backtracking, as It was the case in the regular interpreter)
we rather assume that a definition will be provided later,
and thus the forward state is preserved. These concepts
are formalized in the following way.

The essentlal change Is in the definition of configuration.
It is now defined as follows:

con : Cont = Pro Hody Subs Cla

The change induces the following natural modification in
the definition of /s-uni. (Tha is-def function's text remain
unchanged, although the function is defined on a new
domain).

8. is-uni. A. P 2

P=g — failmatch,
let mk-Cla(H, B) = first. P in
name. H = name. A =
(let a = uni (H, A) in
is-subs. a -
mk-Conf(tail. P, 8, A, mk-Cla(H, 8)),
is-uni. A, (tail. F) ),
6 is-uni. A. (tail. P)

The meia significant change is in the daefinition of apm. In
the case of partial evaluation this function is total.

apm : Pro - State - State
Abstract p.e. Prolog Machine

9. apm. P. mk-State(stk, dir) £

A let mk-Conf(P,, B, 8,, C,) = first. stk in
2 cases dir:
3 forward =
4 (8, =[] - mk-State(tail. stk, backward),
5 cases is-def. (first. B)). P:
.6 break
6 mk-State(mk-Conf(P, tail. B, 8, £)"
mk-Conf(£, B,, 8,, C;)"tail. stk, forward)
failmatch -
mk-State(tail. stk, backward)
mik-Conf(P', B', 4, C') -
mk-Stata(mk-Conf(P, A. (B'"tail. B), 4. 6,, C')”~
mk-Corf(P', By, 8,, C,)"tail. stk, forward) )

backward =
cases is-def. (first. ). Py:
mis-Conf(P', B', A, C") -
mk-state(mik-Conf(P, A. (B' tail. B), 4. 0,, C')™
mi-Coni(P', By, 8, C;) tail. stk, forward)
T = mk-Staie(tal.stk, backward)

Annotations

We annotate below only the significantly modified part of
the apm's definition.

.6 break, then a new state is created such that the
elements of the top configurations are: the global
program P, the tail of previcus body, the previcus
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PROVING PROGRAM PROPERTIES, SYMBOLIC EVALUATION
AND LOGICAL PROCEDURAL SEMANTLCS

Glorgio was of course
already th@f@Sted in Istituto di Elzzzzz:;(s)::o;:i:'Informazione
semantics and correctness

ot symbolic interpreters!!!

Consiglio Nazionale delle Ricerche, Pisa, Italy

Introduction

The semantics of programming languages has received a good deal of

G207g20 Levz; FTdﬂCO SZTOUZC}L‘ concideration because it is an essential part of the definition of a

PTOUan PTOgTdm P?’OI{?BTL‘Z@S, Sj/??’tbOlZC progr.‘a.mming lénguag';e ar.ni provides a sound t.>asis for interpr.-eter des%gn.
] : The interest in this field has been emphasized because of its relation-

Fvaluation and Logical Procedural Ship to proving properties of programs. Some recent results (oyer

and Moore [1,2]|, Burstall [3] and Topor [4]) have shown that interpret-

S@ﬂldﬂtZCS. MFGS ]975.. 294’3 0] ers can be extended to cope with the task of proving properties of pro-

grams. This task requires the (symbolic) interpreter to be able to deal

with symbolic values (i.e. expressions containing quantified variable

symbols) and to make use of induction rules.

We are concerned with the problem of defining general methods for
generating symbolic interpreters for programming languages. Any such
method must depend on a description of the programming language seman—
tics providing a characterization of the language in terms of a suita-
ble symbolic logic. In the paper we will introduce a calculus (Term
Equation Language) and its symbolic interpreter, TEL has a straight-
Forward logical interpretation., Programming language semantics is given
by means of a set of TEL axioms which provide through the TEL interpret-

er a symbolic interpreter Ffor the programming language.
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...and Barbut1?
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A great paper: Roberto Barbut,
Alberto Martelli: A Structured
Approach to Static Semantics
Correctness. Sci. Comput. Program.

3(3): 279-311 (1983).

1 s 1s where I have understood
correctness of static semantics!

simple and clean!
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In Pisa: Roberto Barbuti, Roberto
Gracobazzi, Guorgio Levi: A General
Framework _for Semantics-Based Bottom-
Up Abstract Interpretation of Logic
Programs. I'TCS 1989 and later in ACM
TOPLAS.

In Padova: Christian Codognet, Philippe
Codognet, Gilberto Filé: Yet Another
Intelligent Backtracking Method. ICLP/
SLP 1988: 447-46).

The big (theological) deal: bottom-

up or top-down?
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[CLP°91: ajownt workshop on
Abstract Interpretation in Logic

Programming
... in Paris!

and then: WSA, SAS, ete..




T'he Abstract Interpretation slice

Abstract Diagnosis

Dependence analysis Abstract Debugging

Verification and Types

Sharing & Freeness

Modellig Prolog Control Groundness

| —

CC & Concurrency

CLP & Numeric domains Numeric domains

Bottom-up Analysis

Compositional Analysis

Abstract Domain Theory

1989 1992 1993 1994 1995 1996 1997 1998 1999
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T'he chance ot being in Pisa
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