
Applications of Polyhedral Computations

to the Analysis and Verification

of Hardware and Software Systems

Roberto Bagnara
Department of Mathematics

University of Parma
Italy

Joint work with Patricia M. Hill and Enea Zaffanella
(Department of Mathematics, University of Parma, Italy)

Logic and Energy: A Visionary Inspirator. A tribute to Giorgio Levi, Pisa, October 23rd, 2009. 1

PART 1

HOW I GOT INVOLVED IN ALL THIS

HOW I GOT INVOLVED IN ALL THIS 2

BACK IN 1992. . .
➜ . . . Giorgio invited me to look at the analysis of CLP over numeric

domains: CLP(FD) and CLP(Q).

➜ I had read Cousot and Halbwachs, but developing an implemention of
generic polyhedra sounded scary at the time (and, most importantly, did

not fit the schedule for graduation).

➜ With Giorgio and Roberto Giacobazzi, we thus looked at constraint

networks and propagation procedures upon them.

➜ These originated in the field of artificial intelligence in the ’80s and, as

far as we could tell at the time, their use in static analysis and abstract
interpretation had not been investigated.

• Concerning static analysis we were wrong: see, e.g., Balasundaram

and Kennedy 1989.

➜ Back then, we reformulated these techniques as abstract domains.

Everything was implemented in my Prolog/CLP analyzer.

BACK IN 1992. . . 3

BEFORE POLYHEDRA

➜ These domains were syntactic, i.e., the obtained result depended on the
syntactic representation of constraints.

➜ Still, they were perfectly adequate for the detection of future redundant
constraints:mortgage(P, T, I,R, B) :− T = 1,

B = P ∗ (1 + I/1200) − R

� .mortgage(P, T, I,R, B) :− T > 1, T1 = T − 1, P ≥ 0,

P1 = P ∗ (1 + I/1200) − R

� mortgage(P1, T1, I, R, B).

BEFORE POLYHEDRA 4

FUTURE REDUNDANT CONSTRAINTS

➜ In the abstract model of mortgage/5 there are:

��
��

T ��
��

1-�
=

��
��
T − 1 ��

��
T1

��
��

T ��
��

1-

(>)
>

-
=

6

=

?

> @
@

@
@

@@R

>

�
�

�
�

���

=

��
��
T − 1 ��

��
T1

��
��

T ��
��

1-

(>)
>

-
=

6

>

?

> @
@

@
@

@@R

>
�

�
�

�
���

>

➜ The last two networks show the existence of the entailed constraint
T > 1, which does not depend on the textual constraint T > 1.

=⇒ T > 1 is future redundant!

FUTURE REDUNDANT CONSTRAINTS 5

JUST A TASTE OF POLYHEDRA

➜ Sometime in the ’90s (probably 1994–1995), we obtained the Polka

library (by Halbwachs et al.) in binary format.

➜ Unfortunately I could not use it, apparently due to some compiler

incompatibility.

➜ But the few tests I could run made me curious.

➜ Nonetheless, I kept doing other things for several years:

• I got interested into non-numerical properties of Prolog/CLP
computation;

• relatively few Prolog programs could benefit from sophisticated
numerical domains.

➜ Until the day where I decided to look at other programming

paradigms. . .

JUST A TASTE OF POLYHEDRA 6

PART 2

POLYHEDRAL COMPUTATION AND SOFTWARE/HARDWARE VERIFICATIO

POLYHEDRAL COMPUTATION AND SOFTWARE/HARDWARE VERIFICATION 7

VALIDATION OF ARRAY REFERENCES

Are these array accesses safe?pro
edure shellsort(n : integer, array [0..n-1℄ of integer)beginvar h, i, j, B : integer;h := 1;while (h*3 + 1) < n do h := 3*h + 1;while h > 0 doi := h-1;while i < n doB := a[i℄; j := i;while (j >= h) and (a[j-h℄ > B) doa[j℄ := a[j-h℄; j := j-h;a[j℄ := B;i := i+1;h := h div 3;
VALIDATION OF ARRAY REFERENCES 8

STRING CLEANNESS IN C/C++

Taken from Web2c: an implementation of TeX and friends that translates the original
WEB sources into C. See, http://www.tug.org/web2
/.

#define BUFSIZ 1024

char buf [BUFSIZ] ;

char * i n s e r t _ l o n g (char * cp) {

char temp [BUFSIZ] ;

i n t i ;

asser t (cp >= buf [0] && cp < buf [BUFSIZ]) ;

for (i = 0 ; &buf [i] < cp ; ++ i)

temp [i] = buf [i] ;

s t r cpy (&temp [i] , " (long) ") ; / * UNSAFE! * /

s t r cpy (&temp [i + 6] , cp) ; / * UNSAFE! * /

s t r cpy (buf , temp) ;

return cp + 6 ; / * UNSAFE! * /

}

STRING CLEANNESS IN C/C++ 9

OVERFLOW OF SIGNED INTEGERS C/C++

Did you know that. . .

➜ . . . in C/C++ a signed integer overflow results in undefined behavior?

➜ Not to be confused with unspecified behavior.

➜ “Unspecified behavior” means that each combination of architecture,
operating system and compiler must consistently define what happens

on overflow:

• saturation? wrap 2’s (or 1’s) complement? exception? termination?

➜ “Undefined behavior” means that anything can happen:

• demons may fly out of your nose.

➜ Don’t laugh please: compilers are increasingly exploiting undefined

behavior in optimized compilation:

• see the recent exploitable bug in Linux 2.6.30.

OVERFLOW OF SIGNED INTEGERS C/C++ 10

EXAMPLE: THE CONCRETE SEMANTICSx := 0; y := 0;while x <= 100 do

(x, y) ∈ S ∈ ℘(R2)read(b);if b then x := x+2else x := x+1; y := y+1;endifendwhile

Concrete domain:

〈℘(R2),⊆, ∅, R2,∪,∩〉.

Concrete Semantics:

S
def
= lfpF = Fω(∅).

EXAMPLE: THE CONCRETE SEMANTICS 11

EXAMPLE: THE CONCRETE SEMANTICSx := 0; y := 0;while x <= 100 do

∅read(b);if b then x := x+2else x := x+1; y := y+1;endifendwhile
EXAMPLE: THE CONCRETE SEMANTICS 12

EXAMPLE: THE CONCRETE SEMANTICSx := 0; y := 0;

{(0, 0)}while x <= 100 do

∅read(b);if b then x := x+2else x := x+1; y := y+1;endifendwhile O x

y

EXAMPLE: THE CONCRETE SEMANTICS 13

EXAMPLE: THE CONCRETE SEMANTICSx := 0; y := 0;

{(0, 0)}while x <= 100 do

{(0, 0)}read(b);if b then x := x+2else x := x+1; y := y+1;endifendwhile O x

y

EXAMPLE: THE CONCRETE SEMANTICS 14

EXAMPLE: THE CONCRETE SEMANTICSx := 0; y := 0;

{(0, 0)}while x <= 100 do

{(0, 0)}read(b);if b then x := x+2
{(2, 0)}else x := x+1; y := y+1;endifendwhile O x

y

EXAMPLE: THE CONCRETE SEMANTICS 15

EXAMPLE: THE CONCRETE SEMANTICSx := 0; y := 0;

{(0, 0)}while x <= 100 do

{(0, 0)}read(b);if b then x := x+2
{(2, 0)}else x := x+1; y := y+1;
{(1, 1)}endifendwhile O x

y

EXAMPLE: THE CONCRETE SEMANTICS 16

EXAMPLE: THE CONCRETE SEMANTICSx := 0; y := 0;

{(0, 0)}while x <= 100 do

{(0, 0)}read(b);if b then x := x+2
{(2, 0)}else x := x+1; y := y+1;
{(1, 1)}endif

{(1, 1), (2, 0)}endwhile O x

y

EXAMPLE: THE CONCRETE SEMANTICS 17

EXAMPLE: THE CONCRETE SEMANTICSx := 0; y := 0;

{(0, 0)}while x <= 100 do

{(0, 0), (1, 1), (2, 0)}read(b);if b then x := x+2
{(2, 0)}else x := x+1; y := y+1;
{(1, 1)}endif

{(1, 1), (2, 0)}endwhile O x

y

EXAMPLE: THE CONCRETE SEMANTICS 18

EXAMPLE: THE CONCRETE SEMANTICSx := 0; y := 0;

{(0, 0)}while x <= 100 do

{(0, 0), (1, 1), (2, 0)}read(b);if b then x := x+2
{(2, 0), (3, 1), (4, 0)}else x := x+1; y := y+1;
{(1, 1)}endif

{(1, 1), (2, 0)}endwhile O x

y

EXAMPLE: THE CONCRETE SEMANTICS 19

EXAMPLE: THE CONCRETE SEMANTICSx := 0; y := 0;

{(0, 0)}while x <= 100 do

{(0, 0), (1, 1), (2, 0)}read(b);if b then x := x+2
{(2, 0), (3, 1), (4, 0)}else x := x+1; y := y+1;
{(1, 1), (2, 2), (3, 1)}endif

{(1, 1), (2, 0)}endwhile O x

y

EXAMPLE: THE CONCRETE SEMANTICS 20

EXAMPLE: THE CONCRETE SEMANTICSx := 0; y := 0;

{(0, 0)}while x <= 100 do

{(0, 0), (1, 1), (2, 0)}read(b);if b then x := x+2
{(2, 0), (3, 1), (4, 0)}else x := x+1; y := y+1;
{(1, 1), (2, 2), (3, 1)}endif

{(1, 1), (2, 0), (2, 2), (3, 1), (4, 0)}endwhile O x

y

EXAMPLE: THE CONCRETE SEMANTICS 21

EXAMPLE: . . . AND SO ON . . .x := 0; y := 0;

{(0, 0)}while x <= 100 do

{(0, 0), (1, 1), (2, 0), (2, 2), (3, 1), (4, 0)}read(b);if b then x := x+2
{(2, 0), (3, 1), (4, 0)}else x := x+1; y := y+1;
{(1, 1), (2, 2), (3, 1)}endif

{(1, 1), (2, 0), (2, 2), (3, 1), (4, 0)}endwhile O x

y

EXAMPLE: . . . AND SO ON . . . 22

EXAMPLE: THE ABSTRACT SEMANTICSx := 0; y := 0;while x <= 100 do

(x, y) ∈ Q ∈ CP2read(b);if b then x := x+2else x := x+1; y := y+1;endifendwhile

Abstract domain:

〈CP2,⊆, ∅, R2,⊎,∩〉.

Correctness:

X ⊆ P =⇒ F(X) ⊆ F ♯(P).

Abstract Semantics:

Q ∈ postfp(F ♯).

EXAMPLE: THE ABSTRACT SEMANTICS 23

EXAMPLE: THE ABSTRACT SEMANTICSx := 0; y := 0;while x <= 100 do

{1 = 0}read(b);if b then x := x+2else x := x+1; y := y+1;endifendwhile
EXAMPLE: THE ABSTRACT SEMANTICS 24

EXAMPLE: THE ABSTRACT SEMANTICSx := 0; y := 0;

{x = 0, y = 0}while x <= 100 do

{1 = 0}read(b);if b then x := x+2else x := x+1; y := y+1;endifendwhile O x

y

EXAMPLE: THE ABSTRACT SEMANTICS 25

EXAMPLE: THE ABSTRACT SEMANTICSx := 0; y := 0;

{x = 0, y = 0}while x <= 100 do

{x = 0, y = 0}read(b);if b then x := x+2else x := x+1; y := y+1;endifendwhile O x

y

EXAMPLE: THE ABSTRACT SEMANTICS 26

EXAMPLE: THE ABSTRACT SEMANTICSx := 0; y := 0;

{x = 0, y = 0}while x <= 100 do

{x = 0, y = 0}read(b);if b then x := x+2
{x = 2, y = 0}else x := x+1; y := y+1;endifendwhile O x

y

EXAMPLE: THE ABSTRACT SEMANTICS 27

EXAMPLE: THE ABSTRACT SEMANTICSx := 0; y := 0;

{x = 0, y = 0}while x <= 100 do

{x = 0, y = 0}read(b);if b then x := x+2
{x = 2, y = 0}else x := x+1; y := y+1;
{x = 1, y = 1}endifendwhile O x

y

EXAMPLE: THE ABSTRACT SEMANTICS 28

EXAMPLE: THE ABSTRACT SEMANTICSx := 0; y := 0;

{x = 0, y = 0}while x <= 100 do

{x = 0, y = 0}read(b);if b then x := x+2
{x = 2, y = 0}else x := x+1; y := y+1;
{x = 1, y = 1}endif

{x = 2, y = 0} ⊎ {x = 1, y = 1}endwhile O x

y

EXAMPLE: THE ABSTRACT SEMANTICS 29

EXAMPLE: THE ABSTRACT SEMANTICSx := 0; y := 0;

{x = 0, y = 0}while x <= 100 do

{x = 0, y = 0}read(b);if b then x := x+2
{x = 2, y = 0}else x := x+1; y := y+1;
{x = 1, y = 1}endif

{1 ≤ x ≤ 2, x + y = 2}endwhile O x

y

EXAMPLE: THE ABSTRACT SEMANTICS 30

EXAMPLE: THE ABSTRACT SEMANTICSx := 0; y := 0;

{x = 0, y = 0}while x <= 100 do

{x = 0, y = 0}

⊎ {1 ≤ x ≤ 2, x + y = 2}read(b);if b then x := x+2
{x = 2, y = 0}else x := x+1; y := y+1;
{x = 1, y = 1}endif

{1 ≤ x ≤ 2, x + y = 2}endwhile

O x

y

EXAMPLE: THE ABSTRACT SEMANTICS 31

EXAMPLE: THE ABSTRACT SEMANTICSx := 0; y := 0;

{x = 0, y = 0}while x <= 100 do

{0 ≤ y ≤ x, x + y ≤ 2}read(b);if b then x := x+2
{x = 2, y = 0}else x := x+1; y := y+1;
{x = 1, y = 1}endif

{1 ≤ x ≤ 2, x + y = 2}endwhile O x

y

EXAMPLE: THE ABSTRACT SEMANTICS 32

EXAMPLE: THE ABSTRACT SEMANTICSx := 0; y := 0;

{x = 0, y = 0}while x <= 100 do

{0 ≤ y ≤ x, x + y ≤ 2}read(b);if b then x := x+2
{0 ≤ y ≤ x − 2, x + y ≤ 4}else x := x+1; y := y+1;
{x = 1, y = 1}endif

{1 ≤ x ≤ 2, x + y = 2}endwhile O x

y

EXAMPLE: THE ABSTRACT SEMANTICS 33

EXAMPLE: THE ABSTRACT SEMANTICSx := 0; y := 0;

{x = 0, y = 0}while x <= 100 do

{0 ≤ y ≤ x, x + y ≤ 2}read(b);if b then x := x+2
{0 ≤ y ≤ x − 2, x + y ≤ 4}else x := x+1; y := y+1;
{1 ≤ y ≤ x, x + y ≤ 4}endif

{1 ≤ x ≤ 2, x + y = 2}endwhile O x

y

EXAMPLE: THE ABSTRACT SEMANTICS 34

EXAMPLE: THE ABSTRACT SEMANTICSx := 0; y := 0;

{x = 0, y = 0}while x <= 100 do

{0 ≤ y ≤ x, x + y ≤ 2}read(b);if b then x := x+2

{0 ≤ y ≤ x − 2, x + y ≤ 4}else x := x+1; y := y+1;
{1 ≤ y ≤ x, x + y ≤ 4}endif

{0 ≤ y ≤ x − 2, x + y ≤ 4}

⊎ {1 ≤ x ≤ 2, x + y = 2}endwhile

O x

y

EXAMPLE: THE ABSTRACT SEMANTICS 35

EXAMPLE: THE ABSTRACT SEMANTICSx := 0; y := 0;

{x = 0, y = 0}while x <= 100 do

{0 ≤ y ≤ x, x + y ≤ 2}read(b);if b then x := x+2
{0 ≤ y ≤ x − 2, x + y ≤ 4}else x := x+1; y := y+1;
{1 ≤ y ≤ x, x + y ≤ 4}endif

{0 ≤ y ≤ x, 2 ≤ x + y ≤ 4}endwhile O x

y

EXAMPLE: THE ABSTRACT SEMANTICS 36

EXAMPLE: . . . AND SO ON . . . ?x := 0; y := 0;

{x = 0, y = 0}while x <= 100 do

{0 ≤ y ≤ x, x + y ≤ 4}read(b);if b then x := x+2
{0 ≤ y ≤ x − 2, x + y ≤ 4}else x := x+1; y := y+1;
{1 ≤ y ≤ x, x + y ≤ 4}endif

{0 ≤ y ≤ x, 2 ≤ x + y ≤ 4}endwhile O x

y

EXAMPLE: . . . AND SO ON . . . ? 37

EXAMPLE: FINITE CONVERGENCE USING WIDENINGx := 0; y := 0;

{x = 0, y = 0}while x <= 100 do

{0 ≤ y ≤ x, x + y ≤ 2}

∇{0 ≤ y ≤ x, x + y ≤ 4}read(b);if b then x := x+2
{0 ≤ y ≤ x − 2, x + y ≤ 4}else x := x+1; y := y+1;
{1 ≤ y ≤ x, x + y ≤ 4}endif

{0 ≤ y ≤ x, 2 ≤ x + y ≤ 4}endwhile

O x

y

EXAMPLE: FINITE CONVERGENCE USING WIDENING 38

EXAMPLE: FINITE CONVERGENCE USING WIDENINGx := 0; y := 0;

{x = 0, y = 0}while x <= 100 do

{0 ≤ y ≤ x, x + y ≤ 2}

∇{0 ≤ y ≤ x, x + y ≤ 4}read(b);if b then x := x+2
{0 ≤ y ≤ x − 2, x + y ≤ 4}else x := x+1; y := y+1;
{1 ≤ y ≤ x, x + y ≤ 4}endif

{0 ≤ y ≤ x, 2 ≤ x + y ≤ 4}endwhile

O x

y

EXAMPLE: FINITE CONVERGENCE USING WIDENING 39

EXAMPLE: AN ABSTRACT POST-FIXPOINTx := 0; y := 0;

{x = 0, y = 0}while x <= 100 do

{0 ≤ y ≤ x}read(b);if b then x := x+2
{0 ≤ y ≤ x − 2, x + y ≤ 4}else x := x+1; y := y+1;
{1 ≤ y ≤ x, x + y ≤ 4}endif

{0 ≤ y ≤ x, 2 ≤ x + y ≤ 4}endwhile O x

y

EXAMPLE: AN ABSTRACT POST-FIXPOINT 40

EXAMPLE: ABSTRACT DOWNWARD ITERATIONx := 0; y := 0;

{x = 0, y = 0}while x <= 100 do

{0 ≤ y ≤ x}read(b);if b then x := x+2
{0 ≤ y ≤ x − 2}else x := x+1; y := y+1;
{1 ≤ y ≤ x, x + y ≤ 4}endif

{0 ≤ y ≤ x, 2 ≤ x + y ≤ 4}endwhile O x

y

EXAMPLE: ABSTRACT DOWNWARD ITERATION 41

EXAMPLE: ABSTRACT DOWNWARD ITERATIONx := 0; y := 0;

{x = 0, y = 0}while x <= 100 do

{0 ≤ y ≤ x}read(b);if b then x := x+2
{0 ≤ y ≤ x − 2}else x := x+1; y := y+1;
{1 ≤ y ≤ x}endif

{0 ≤ y ≤ x, 2 ≤ x + y ≤ 4}endwhile O x

y

EXAMPLE: ABSTRACT DOWNWARD ITERATION 42

EXAMPLE: ABSTRACT DOWNWARD ITERATIONx := 0; y := 0;

{x = 0, y = 0}while x <= 100 do

{0 ≤ y ≤ x}read(b);if b then x := x+2
{0 ≤ y ≤ x − 2}else x := x+1; y := y+1;
{1 ≤ y ≤ x}endif

{0 ≤ y ≤ x, 2 ≤ x + y}endwhile O x

y

EXAMPLE: ABSTRACT DOWNWARD ITERATION 43

EXAMPLE: ABSTRACT FIXPOINTx := 0; y := 0;

{x = 0, y = 0}while x <= 100 do

{0 ≤ y ≤ x ≤ 100}read(b);if b then x := x+2
{0 ≤ y ≤ x − 2}else x := x+1; y := y+1;
{1 ≤ y ≤ x}endif

{0 ≤ y ≤ x, 2 ≤ x + y}endwhile O x

y

EXAMPLE: ABSTRACT FIXPOINT 44

EXAMPLE: ABSTRACT FIXPOINTx := 0; y := 0;

{x = 0, y = 0}while x <= 100 do

{0 ≤ y ≤ x ≤ 100}read(b);if b then x := x+2

{0 ≤ y ≤ x − 2 ≤ 100}else x := x+1; y := y+1;
{1 ≤ y ≤ x ≤ 101}endif

{0 ≤ y ≤ x ≤ 102, 2 ≤ x + y ≤ 202}endwhile
{100 < x ≤ 102, 0 ≤ y ≤ x, x + y ≤ 202}

EXAMPLE: ABSTRACT FIXPOINT 45

VERIFICATION OF ANALOG CIRCUITS: CYCLIC INVARIANTS

Vin

R LIL

Id

Vd C
Id

Vd

The system is described by the second-order state equations

V̇d = 1/C
(

−Id(Vd) + IL

)

,

İL = 1/L(−Vd − RIL + Vin).

VERIFICATION OF ANALOG CIRCUITS: CYCLIC INVARIANTS 46

VERIFICATION OF ANALOG CIRCUITS (CONT’D)
➜ Frehse shows how a cyclic invariant can be obtained for this circuit

using the PHAVer system.

➜ First, a piecewise affine envelope is constructed for the tunnel diode

characteristic Id(Vd): sufficient precision is obtained by subdividing the
range Vd ∈ [−0.1V, 0.6V] into 64 intervals.

➜ Forward reachability computation allows to prove that the set of initial

states corresponding to Vd ∈ [0.42V, 0.52V] and IL = 0.6mA gives rise
to a cycle.

VERIFICATION OF ANALOG CIRCUITS (CONT’D) 47

VERIFICATION OF ANALOG CIRCUITS (CONT’D)

−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Voltage Vd [V]

C
ur

re
nt

 I L
 [m

A
]

−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Voltage Vd [V]

C
ur

re
nt

 I L
 [m

A
]

VERIFICATION OF ANALOG CIRCUITS (CONT’D) 48

NUMERICAL DOMAINS AND SOFTWARE/HARDWARE VERIFICATION

➜ The complexity/precision tradeoff is particularly acute in the verification
of software/hardware.

➜ Different domains (e.g., different classes of polyhedra) are required to
face different situations.

➜ Conservative approximation preserves soundness, but may prevent the

derivation of the properties of interest.

NUMERICAL DOMAINS AND SOFTWARE/HARDWARE VERIFICATION 49

NUMERICAL ABSTRACTIONS: NO ABSTRACTION

O x

y

{

. . . , (2, 9), . . . , (12, 21) . . . ,
}

NUMERICAL ABSTRACTIONS: NO ABSTRACTION 50

NUMERICAL ABSTRACTIONS: SIGNS

O x

y







x ≥ 0

y ≥ 0

NUMERICAL ABSTRACTIONS: SIGNS 51

NUMERICAL ABSTRACTIONS: BOUNDING BOXES

O x

y







2 ≤ x ≤ 18

3 ≤ y ≤ 21

NUMERICAL ABSTRACTIONS: BOUNDING BOXES 52

NUMERICAL ABSTRACTIONS: BOUNDED DIFFERENCES

O x

y















2 ≤ x ≤ 18

3 ≤ y ≤ 21

−10 ≤ x − y

NUMERICAL ABSTRACTIONS: BOUNDED DIFFERENCES 53

NUMERICAL ABSTRACTIONS: OCTAGONS

O x

y



























2 ≤ x ≤ 18

3 ≤ y ≤ 21

−10 ≤ x − y

11 ≤ x + y ≤ 33

NUMERICAL ABSTRACTIONS: OCTAGONS 54

NUMERICAL ABSTRACTIONS: CONVEX POLYHEDRA

O x

y



















































6x + y ≤ 111

3x + 2y ≤ 78

x + y ≥ 11

2x − y ≥ −5

y ≥ 3

y ≤ 21

NUMERICAL ABSTRACTIONS: CONVEX POLYHEDRA 55

NUMERICAL ABSTRACTIONS: POWERSETS OF BOUNDING BOXES

O x

y







2 ≤ x ≤ 8

3 ≤ y ≤ 9






10 ≤ x ≤ 18

3 ≤ y ≤ 9






8 ≤ x ≤ 18

15 ≤ y ≤ 21

NUMERICAL ABSTRACTIONS: POWERSETS OF BOUNDING BOXES 56

NUMERICAL ABSTRACTIONS: POWERSETS OF POLYHEDRA

O x

y



























6x − y ≥ 51

3x − y ≥ 27

3x + y ≤ 57

y ≥ 9














x + y ≥ 11

2x − y ≥ −5

x ≤ 8














6x + y ≤ 111

3x − y ≥ 33

y ≥ 3

NUMERICAL ABSTRACTIONS: POWERSETS OF POLYHEDRA 57

NUMERICAL ABSTRACTIONS: NON-RELATIONAL GRIDS

O x

y







x = 0 mod 2

y = 0 mod 3

NUMERICAL ABSTRACTIONS: NON-RELATIONAL GRIDS 58

NUMERICAL ABSTRACTIONS: RELATIONAL GRIDS

O x

y







x + y = 1 mod 2

y = 0 mod 3

NUMERICAL ABSTRACTIONS: RELATIONAL GRIDS 59

NUMERICAL ABSTRACTIONS: GRID-POLYHEDRA (I)

O x

y






































































x = 0 mod 2

y = 0 mod 3

6x + y ≤ 111

3x + 2y ≤ 78

x + y ≥ 11

2x − y ≥ −5

y ≥ 3

y ≤ 21

NUMERICAL ABSTRACTIONS: GRID-POLYHEDRA (I) 60

NUMERICAL ABSTRACTIONS: GRID-POLYHEDRA (II)

O x

y






































































x + y = 1 mod 2

y = 0 mod 3

6x + y ≤ 111

3x + 2y ≤ 78

x + y ≥ 11

2x − y ≥ −5

y ≥ 3

y ≤ 21

NUMERICAL ABSTRACTIONS: GRID-POLYHEDRA (II) 61

NUMERICAL ABSTRACTIONS: TRAPEZOIDAL CONGRUENCES

O x

y







x + 3y ∈ [4, 10] mod 11

5x − y ∈ [0, 11] mod 16

NUMERICAL ABSTRACTIONS: TRAPEZOIDAL CONGRUENCES 62

NUMERICAL ABSTRACTIONS: POLYNOMIAL CONES (I)

O x

y
8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

−1773x − 1176y + 45x
2 + 57xy + 20y

2 ≥ −17604

−342x − 348y + 9x
2 + 24xy + 7y

2 ≥ −2925

−333x − 216y + 9x
2 + 9xy + 4y

2 ≥ −3348

−315x + 156y + 18x
2 − 15xy + 2y

2 ≥ −1242

−315x + 228y + 18x
2 − 15xy − 2y

2 ≥ −1062

−81x − 32y + 3x
2 + 7xy − y

2 ≥ −393

−72x − 32y + 3x
2 + 4xy ≥ −384

−63x − 8y + 3x
2 + xy ≥ −312

−57x + 12y + 3x
2 − xy ≥ −252

−54x − 168y + 6xy + 5y
2 ≥ −1107

. . .

NUMERICAL ABSTRACTIONS: POLYNOMIAL CONES (I) 63

NUMERICAL ABSTRACTIONS: POLYNOMIAL CONES (II)

O x

y
8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

−1773x − 1176y + 45x
2 + 57xy + 20y

2 ≥ −17604

−342x − 348y + 9x
2 + 24xy + 7y

2 ≥ −2925

−333x − 216y + 9x
2 + 9xy + 4y

2 ≥ −3348

−315x + 156y + 18x
2 − 15xy + 2y

2 ≥ −1242

−315x + 228y + 18x
2 − 15xy − 2y

2 ≥ −1062

−81x − 32y + 3x
2 + 7xy − y

2 ≥ −393

−72x − 32y + 3x
2 + 4xy ≥ −384

−63x − 8y + 3x
2 + xy ≥ −312

−57x + 12y + 3x
2 − xy ≥ −252

−54x − 168y + 6xy + 5y
2 ≥ −1107

. . .

NUMERICAL ABSTRACTIONS: POLYNOMIAL CONES (II) 64

PARMA POLYHEDRA LIBRARY

➜ Starting from 2001, we have developed a library for polyhedral
computations especially targeting analysis and verification tasks.

➜ This line of work resulted in several innovations: new domains, new
algorithms, new widenings. . .

➜ It is now used, among others, by GCC (the GNU Compiler Collection): if
you use a system that comes with GCC, you probably have the PPL
already installed.

➜ Still under very active development:

• support for the approximation of floating point computations;

• support for the approximation of bounded arithmetic;

• parametric integer programming (thanks to UVSQ);

• . . .

➜ For more information:http://www.
s.unipr.it/ppl/

PARMA POLYHEDRA LIBRARY 65

PART 3

RECENT AND ONGOING WORK

RECENT AND ONGOING WORK 66

DETECTING EXACT JOINS

➜ When using a numerical abstract domain, the computation of joins is a

major source of precision losses. Possible workarounds include:
➜ delay the computation of joins (e.g., trace partitioning);
➜ avoid the computation of joins (e.g., disjunctive domains).

➜ Sometimes no precision loss is allowed (e.g., loop parallelizations).

➜ Disjunctive sets of domain elements: the fewer elements, the better.

➜ For {D1, . . . ,Dk} ⊆ Dn, decide whether
Uk

i=1
Di =

Sk

i=1
Di.

➜ Too hard! But the binary case is doable: decide whether

D1 ⊎ D2 = D1 ∪ D2.

R. Bagnara, P. M. Hill, E. Zaffanella.
Exact Join Detection for Convex Polyhedra and Other Numerical Abstractions

To appear in Computational Geometry: Theory and Applications.

DETECTING EXACT JOINS 67

EXACT JOINS FOR CONVEX POLYHEDRA

➜ Problem already studied by (among others) Bemporad, Fukuda and

Torrisi in 2001. Three variants considered:
➜ algorithm for H-polyhedra (constraint representation);
➜ algorithm for V-polyhedra (generator representation);
➜ algorithm for VH-polyhedra (double description) in

O
`

n(l1 + l2)m1m2)
´

.

➜ A new algorithm for VH-polyhedra:

P1 ⊎ P2 6= P1 ∪ P2 iff ∃ constraint β1 and generator g1 of P1 s.t.
➀ g1 saturates β1,
➁ P2 violates β1, and
➂ P2 does not subsume g1.

➜ (Asymmetric) complexity bound in O
`

n(l1m1 + l1m2 + l2m1)
´

.

EXACT JOINS FOR CONVEX POLYHEDRA 68

EXACT JOINS FOR NNC POLYHEDRA (I)
➜ To our knowledge, the problem has never before been considered.

➜ Several awkward cases lead to a more complex result. (No technical

details here, just a few examples.)

O x1

x2

A B

CD

EQ1

Q2

(a) Not Exact
O x1

x2

A B

CD

Q1

Q
′

2

(b) Exact
O x1

x2

A B

CD

(c) Join

EXACT JOINS FOR NNC POLYHEDRA (I) 69

EXACT JOINS FOR NNC POLYHEDRA (II)

O x1

x2

A B

CD

E

F

Q3 Q4

(d) Not Exact
O x1

x2

A B

CD

E

F

G

Q3 ⊎ Q4

(e) Join

EXACT JOINS FOR NNC POLYHEDRA (II) 70

EXACT JOINS FOR NNC POLYHEDRA (III)

O x1

x2

A BE

C

D

F

G
Q5 Q6

(f) Exact
O x1

x2

A

C

D

F

G
Q5 ⊎ Q6

(g) Join

EXACT JOINS FOR NNC POLYHEDRA (III) 71

EXACT JOINS FOR OTHER ABSTRACTIONS

➜ A domain of convex polyehdra is just one among several possibilities.

➜ We provide efficient algorithms also for:
➜ attribute independent Cartesian products of simple domains such as

(rational or integer) intervals, congruence equations, modulo

intervals, circular linear progressions;
➜ (rational or integer) BD shapes (Bounded Differences);
➜ (rational or integer) octagonal shapes.

➜ Each algorithm is characterized by a worst-case complexity matching
the intrinsic complexity of the underlying domain.

EXACT JOINS FOR OTHER ABSTRACTIONS 72

EXAMPLE: EXACT JOIN FOR BD SHAPES

O x1

x2

p

P1 P2

(h) Rational Case: Not Exact
O x1

x2

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

P1 P2

(i) Integer Case: Exact

EXAMPLE: EXACT JOIN FOR BD SHAPES 73

EFFICIENT APPROXIMATION OF BOUNDED ARITHMETIC

➜ Suppose we want to approximate C/C++ unsigned integers, Java
integers, or machine code arithmetic.

➜ For a relational approach we could use the method of Simon and King.

➜ An alternative is to define a base, non-relational domain, and then to
enrich it with relational information:

• by combining it with Karr’s domain of affine spaces; or

• by building bounded differences on top of it, i.e., systems of
constraints of the form xi − xj ∈ dij , where the dij ’s are elements of

the base, non-relational domain.

EFFICIENT APPROXIMATION OF BOUNDED ARITHMETIC 74

CIRCULAR DELTA SEQUENCES (CDS)
➜ are for approximating w-bits signed or unsigned integer quantities;

➜ with more precision than both strided intervals (Reps et al.) and circular
linear progressions (Sen and Srikant);

➜ with low complexity operations;

➜ represented using 3 w-bits numbers:

{ s + δ ∗ k }u

w

CIRCULAR DELTA SEQUENCES (CDS) 75

WHAT IS A CDS?

{

s + δ ∗ k
}u

w
=

{

s, (s + δ) mod 2w, (s + 2δ) mod 2w, . . . , (s + kδ) mod 2

WHAT IS A CDS? 76

WHAT IS A CDS?

{

s + δ ∗ k
}u

w
=

{

s, (s + δ) mod 2w, (s + 2δ) mod 2w, . . . , (s + kδ) mod 2

For example:

{

3 + 5 ∗ 4
}u

3
=

{

3, (3 + 5) mod 8, (3 + 10) mod 8, . . . , (3 + 20) mod 8
}

WHAT IS A CDS? 77

WHAT IS A CDS?

{

s + δ ∗ k
}u

w
=

{

s, (s + δ) mod 2w, (s + 2δ) mod 2w, . . . , (s + kδ) mod 2

For example:

{

3 + 5 ∗ 4
}u

3
=

{

3, (3 + 5) mod 8, (3 + 10) mod 8, . . . , (3 + 20) mod 8
}

=
{

3, 0, 5, 2, 7
}

WHAT IS A CDS? 78

WHAT IS A CDS?

{

s + δ ∗ k
}u

w
=

{

s, (s + δ) mod 2w, (s + 2δ) mod 2w, . . . , (s + kδ) mod 2

For example:

{

3 + 5 ∗ 4
}u

3
=

{

3, (3 + 5) mod 8, (3 + 10) mod 8, . . . , (3 + 20) mod 8
}

=
{

3, 0, 5, 2, 7
}

=
{

0, 2, 3, 5, 7
}

WHAT IS A CDS? 79

THE CDS AS AN ABSTRACT DOMAIN

➜ Each cds has a unique normalized representation:
if

˘

s + δ ∗ k
¯u

w
is normalized, then, letting M = 2w,

1 ≤ δ ≤ M/2, k ≤ M/ gcd(δ,M) − 1;

➜ many operations on cds’s are based on the (extended) Euclidean
algorithm for finding the greatest common denominator (optimized to
exploit the modulus having the form 2w), such as:
➜ computing the upper bound and lower bound of a cds,
➜ checking if a value is a member of a cds,
➜ computing the meet and join of two cds’s.

➜ For any given cds, it is cheap to compute the best approximating circular
linear progression;

➜ work is on-going for both the theory of the CDS domain and its efficient
implementation.

➜ This work is joint with Abramo Bagnara and Alessandro Zaccagnini.

THE CDS AS AN ABSTRACT DOMAIN 80

CONCLUSION

➜ Numerical domains are very important in the field of the analysis and

verification of analog and digital systems.

➜ In this field, the complexity/precision tradeoff is particularly severe:

• on the one hand, giving up precision (e.g., by approximating a
polyhedron with a larger one) is allowed and is often necessary to be

able to complete the analysis/verification task;

• on the other hand, giving up too much precision can often prevent

the completion of the analysis/verification task.

➜ This is why it is important to have a variety of abstract domains and
approximate algorithms: even a single application can use a number of

them at the same time.

➜ Many things remain to be done. . .

CONCLUSION 81

