
Revised Stable Models - a new semantics for logic programs

Luís Moniz Pereira and Alexandre Miguel Pinto

Centro de Inteligência Artificial, Universidade Nova de Lisboa
2829-516 Caparica, Portugal

{lmp|amp}@di.fct.unl.pt

Abstract
This paper introduces an original 2-valued semantics for Normal Logic
Programs (NLP), important on its own. Nevertheless, its name draws
attention to that it is inspired by and generalizes Stable Model semantics
(SM). The definitional distinction consists in the revision of one feature of
SM, namely its treatment of odd loops over default negation. This single
revised aspect, addressed by means of a Reductio ad Absurdum approach,
affords us a fruitful cornucopia of consequences, namely regarding
existence, relevance and top-down querying, cumulativity, and
implementation.

The paper motivates and then defines the Revised Stable Models semantics
(rSM), justifying the definition and providing examples. It also presents two
rSM semantics preserving program transformations into NLP without odd
loops. Properties of rSM are given and contrasted with those of SM.
Implementation is examined, and extensions of rSM are given with regard
to explicit negation, ‘not’s in heads, and contradiction removal.
Conclusions, further work, as well as potential use, terminate the paper.

Keywords: Logic Program semantics, Stable Models, Reductio ad
Absurdum.

Introduction

This paper introduces a new 2-valued semantics for Normal Logic Programs (NLP),
called Revised Stable Models semantics (rSM), cogent in its own original way.
Nevertheless, its name intends to draw attention to that it is both inspired by and
generalizes Stable Model semantics (SM) [4].And indeed SM models are just particular
rSM models, and the SM definition a particular case of the rSM one. But its name also
intends to draw attention to that the definitional distinction consists in the revision of one
feature of SM, namely its treatment of odd loops over default negation. This single
revised aspect affords us a fruitful cornucopia of consequences, not shared by SM, the
‘de facto’ standard two-valued semantics for NLP.

For one, rSM models are guaranteed to exist for every NLP, and this is important for
program composition and updating, with knowledge originating in several sources. Two,
rSM is relevant, meaning that there exist top-down, program call-graph based, query
driven methods to determine whether a literal belongs to a model. They can thus return
simply an extendable partial model, there being no need to compute all models or
complete models to answer a query. Relevance is also crucial for abduction, it being
query driven. Three, rSM is cumulative, so that lemmas may be stored and reused.

These and other properties, and their implementational impact, shall be examined in the
sequel. Moreover, two semantics-preserving transformations are provided for NLP, so
that the SMs of the transformed program correspond exactly to the rSMs of the original
one. Such transformations accrue additional insight into rSM. One of them offers a
vessel for immediate implementation in existing (though restrictive) SM systems.

However, another approach to implementation is possible: the top-down querying ability
means that no global computing of the model is needed, and thus that no prior program
grounding is required, as is the case in SM systems. Grounding is a problem in present
SM implementations for writing meta-interpreters, because all possible clause bodies
have to be grounded, a practical impossibility. Nevertheless, meta-interpreters are query
driven, and so do not need all possible bodies to be ground.

We shall discuss an implementation avenue relying on an adaptation of ABDUAL [3],
an XSB-Prolog implemented procedure that can compute Generalized Stable Models, by
viewing default negated literals as abducibles, and permitting top-down querying. This
bridge, fostered by rSM, brings closer together the SM based and the WFS based
research communities.

Odd Loops Over Negation
In SM, programs such a � ~a , where ‘~’ stands for default negation, do not have a
model. One can easily perceive that the Odd Loop Over Negation is the trouble-maker.
The single rSM model however is {a}. The reason is that if assuming ‘~a’ leads to an
inconsistency, namely by implying ‘a’, then in a 2-valued semantics ‘a’ should be true
instead.

Example 1: The president of Morelandia is considering invading another country. He
reasons thus: if I do not invade them they are sure to develop Weapons of Mass
Destruction (WMD); on the other hand, if they have WMD I should invade them. This is
coded by his analysts as:

WMD � ~ invade invade � WMD

Under the SM semantics this program has no models. Under the rSM semantics invasion
is warranted by the single model M={invade}, and no WMD exist.

In a NLP, we say we have a loop when there is a rule dependency call-graph path that
has the same literal in two different positions along the path – meaning that the literal
depends on itself. An Odd Loop Over Negation is one such that the number of default
negations in the rule dependency graph path connecting the same literal at both ends is
odd.

It is an apparently a counter-intuitive idea to permit such loops to support a literal’s
value of true, because it means that the truth of a literal is being supported on its
negation, which seems self-inconsistent. SM does not go a long way in treating odd
loops. It simply decrees there is no model (throwing out the baby along with the bath
water), instead of opting for taking the next logical step: reasoning by absurdity or
Reduction ad Absurdum (RAA). That is, if assuming a literal false (i.e. its default is true)
leads to an inconsistency, then, in a 2-valued semantics, the literal must be true if that’s
consistent. SM does not do this because it requires every true literal to be supported by
its rules. The solution proffered by rSM is to extend the notion of support to include
reasoning by absurdity for this specific case, which reasoning is supported on the rules
creating the odd loop. That is why the single rSM of a � ~a is {a}.

It may be argued that SM employs odd loops as integrity constraints (ICs), but the
problem remains that in program composition unforeseen odd loops may appear. rSM
instead treats ICs specifically, by means of odd loops but involving for the purpose a
reserved literal ‘falsum’, thereby separating the two issues, and so having it both ways,
i.e. dealing with odd loops and ICs.

SM envisages default literals as assumptions that should be maximally true (the Closed
World Assumption or CWA), on the proviso of stability. That is, that the conclusions
following from the assumptions do not go against these. To the contrary, the whole
model is confirmed by them, through the support of program rules. rSM takes this
reasoning all the way, but relies on RAA to lend support to the model atoms introduced
to resolve odd loops.

Whereas in the Well-Founded Semantics (WFS) the truth of literals, be they positive or
default, may be interpreted as provability justified by a well-founded derivation, the lack
of provability does not result in their falsity, because a third logical value, ‘undefined’, is
available. In SM, though 2-valued, there is no general notion of provability defined, and
one resorts to the interpretation of default negations as assumptions. The rSM view is
that assumptions be revised, in a 2-valued way, if they would otherwise lead to self-
inconsistency through odd loops.

That rSM resolves the inconsistencies of odd loops of SM (and note they are not
contradictions, for there is no explicit negation) does not mean rSM should resolve
contradictions. That is an orthogonal problem, and whose solutions can be added to
different semantics, including rSM. Accordingly, in the “Extensions” section, we shall
mention solutions to contradictions in Extended Logic Programs (ELPs) and Generalized
Logic Programs (GLPs), inspired by the RAA approach. But these are optional, separate,
add-ons.

The paper’s remaining structure starts with a section on the definition of Revised Stable
Models, justification, and examples; then another section presents two rSM semantics-
preserving program transformations into NLP without odd loops; the next section
contemplates properties of rSM and contrasts them with SM’s; forthwith, comes a
section on implementation; subsequently we describe the extension of rSM to explicit
negation (ELPs) to produce Revised Answer Sets; the last section addresses conclusion
and future work, as well as potential use. For lack of space, an Appendix includes Proofs
of Theorems, and extensions to ‘not’s in heads (GLPs), and contradiction removal by
belief revision [1].

Revised Stable Models

A Normal Logic Program (NLP) is a finite set of rules of the form H �B1, B2, ..., Bn,
not C1, not C2, …, not Cm (n, m ≥ 0) comprising positive literals H, Bi, and Cj, and
default literals not Cj. Often we use ‘~’ for ‘not’.

Models are two-valued and represented as sets of the positive literals which hold in the
model. The set inclusion and set difference mentioned below are with respect to these
positive literals. Minimality and maximality too refer to this set inclusion.

Definition 1 (Gelfond-Lifschitz � operator [4]): Let P be a NLP and I a 2-valued
interpretation. The GL-transformation of P modulo I is the program P/I, obtained from P
by performing the following operations:

• remove from P all rules which contain a default literal not A such that A ∈ I
• remove from the remaining rules all default literals

Since P/I is a definite program, it has a unique least model J: Define �(I) = J. Stable
Models are the fixpoints of �.

Definition 2 (Revised Stable Models and Semantics): M is a Revised Stable Model of a
NLP P, where we let RAA(M) ≡ M – �(M), iff

• M is a minimal (classical) model
• RAA(M) is minimal not counting empty RAAs
• ∃ ω≥2 �ω(M) ⊇ RAA(M)

The Revised Stable Models semantics is the intersection of its models, just as the Stable
Model semantics is. Next we explain the function and justification of each condition
above.

M is a minimal (classical) model – A classical model of a NLP is one that satisfies all its
rules, where default negation is seen as classical negation. Satisfaction means that for
every rule body true in the model its head too must be true in the model. Minimality of
classical models is required to ensure maximal supportedeness (i.e., any true head is
supported on a true body), compatible with model existence.

Stable Models are supported minimal classical models, and we wish to keep them in
rSM as a special case. This condition includes them. In fact SM are the special case
when there are no odd loops over negation. However, not all rSM are SM since odd
loops of an atom over negation obtaining in a model are allowed in rSM to be resolved
for the positive value of the atom. Nevertheless, this is to be achieved in a minimal way,
i.e. resolving a minimal set of such atoms so that no odd loops obtain anymore. And
justified through its logical “support” on a specific Reductio Ad Absurdum (RAA)
application to that effect.

Example 2: Let P be {a � ~a ; b � ~a}. The only candidate minimal model is {a}, since
{} and {b} are not models in the classical sense and {a, b} is not minimal. The need for
Reductio ad Absurdum reasoning comes from the requirement to resolve odd loops over
negation – an issue not dealt with in the traditional Stable Model semantics. In P, �({a})
= {} ⊆ {a}. Only with model {a} do we have set inclusion. The truth-value of ‘a’ is
supported by a specific RAA on ‘~a’ just in case it leads inexorably to ‘a’. The first rule

forces ‘a’ to be in any possible model under the new semantics. I.e., assuming ‘a’ is not
in a model, i.e. ‘~a’ is true, then the first rule insists that ‘a’ is in the model – an
inconsistency. But if ‘~a’ cannot be true, and since the semantics is two-valued, then it
must be false, and therefore ‘a’ must be true. So, the only model of this program must be
{a}, since {b} is not a model, and {a, b} is not a minimal model with respect to the
model {a}.

The third condition, explained below, aims at testing the inexorability of a default literal
implying its positive counterpart, given the context of the remaining default literals
being assumed in the model. The �(M) ⊆ M property allows atoms to be minimally
added to M over and above those of SMs, since these are defined as �(SM) = SM. The
candidate additional atoms are specified in the next condition, namely those in
RAA(M)=M – �(M).

RAA(M) is minimal not counting empty RAAs – Indeed, we want the models which are
most supported on themselves – so the RAA(M) = M – �(M) should be minimal with
respect to each other. Keep in mind that M must be a minimal model in a classical sense,
which necessarily guarantees that M ⊇ �(M). The maximum �(M) can be is M. In the
case of Stable Models SM = �(SM), so �(SM) is maximum, and RAA(SM) empty. The
“not counting empty RAAs” part of this second condition serves the purpose of assuring
that any Stable Model is also accepted as a Revised Stable Model as far as this condition
is concerned. The minimality beyond empty RAAs lets us consider as rSM more
minimal models than just the Stable Models.

Indeed, it is too strong to impose just RAA(M) minimality, among all their kind, that is
including empty RAAs, because otherwise desirable rSMs may be thrown out when
some SM exists, as its RAA(SM) is empty (cf. Example 4 below).

Example 3: a � ~a b � ~a c � ~b

M1={a, c} is a minimal model. �(M1)={c} is maximal. RAA(M1)={a} is minimal.
M2={a, b} is a minimal model. �(M2)={} which is NOT maximal. RAA(M2)={a, b} is
NOT minimal (even not counting {}).

When a NLP has SMs, each verifies SM=�(SM) and RAA(SM)={}, which is minimal.
The minimality condition on RAA(M) ensures that every SM is a rSM in regard to this
condition. Furthermore, a NLP with SMs may have other rSMs which are not SMs, as
shown next.

Example 4: c � a, ~c a � ~b b � ~a

M1={b} is a minimal model. �(M1)={b} is maximal. RAA(M1)={} is minimal. M2={a,
c} is a minimal model. �(M2)={a} is maximal. RAA(M2)={c} is NOT minimal. We
have as rSMs {b}, its unique SM, and {a, c}, which has maximal supportedness of its
literals. Although RAA(M2) is not minimal, precisely because there exists a SM, it is
minimal not counting the empty RAA(M1) = {}..

Example 5: a � ~b b � ~a, c c � a

There is a single SM1={a, c}, �(SM1)={a, c}, RAA(SM1)={}. There are two rSM:
rSM1=SM1={a, c} and rSM2={b}. rSM2 respects all three rSM conditions; note how
the not counting {} proviso is essential for rSM2 because of SM1’s existence, given that
�(rSM2)={}, RAA(rSM2)={b}. �(�(rSM2)) = �({}) = {a, b, c} ⊇ RAA(rSM2).

Example 6: a � ~a, ~b d � ~a b � d, ~b

M1={a}, �(M1)={}, RAA{a}, and M2={b, d}, �(M2)={d}, RAA(M2)={b} are both
rSMs.

Conceivably, one might think a legitimate non-minimal RAA(M) could be obtained by
the union of maximal RAA literals from disjoint models of disjoint subprograms, for
some M that obeys the other conditions. And, in that case, that union might not be
minimal. Such RAA(M) might nevertheless be desirable, and so the minimality
condition could be considered too strict. Instead of allowing them as rSMs, we shall call
them the Combination Revised Stable Models (CrSMs). CrSMs are then an extension to
standard rSMs. The possible acceptance of non-minimal RAA(M) can then be justified
by the CrSMs obtained from the disjoint subprograms (cf. motivating Example 7 below).

Example 7: a � ~b b � ~a c � a, ~c

x � ~y y � ~x z � x, ~z

M1={b, y}, M2={a, c, y}, M3={b, x, z}, are its rSMs.
�(M1)={b, y}, �(M2)={a, y}, �(M3)={b, x}.
RAA(M1)={}, RAA(M2)={c}, RAA(M3)={z}.

If we take M4={a, c, x, z}, we can see that �(M4)={a, x}, RAA(M4)={c, z}, and
�(�({a,c,x,z})) = �({a,x}) = {a,c,x,z} ⊇ RAA(M4) = {c,z}. M4 respects all three
definition conditions except for the RAA(M4) minimality one, because it is greater than
RAA(M2), and also than RAA(M3). M4 is therefore not a rSM. However, it could be
interesting to consider it as a possible candidate model of the program. Such CrSMs
provide an extension to rSMs, of which M4 is an example.

The formal definition of Combination Revised Stable Models can be found in the
Extensions section of the paper. Note CrSMs are not really needed for top-down
querying, since they exist as a result of disjoint subprograms with separate rSMs, and
any goal will appeal to just one such subprogram. Moreover, a rSM can be extended to a
CrSM if desired.

∃ ω≥2 �ω(M) ⊇ RAA(M) – For the sake of the explanation let us first start with a more
verbose, but also more intuitive version of this condition:

∃ ω≥0 �ω(�(M-RAA(M))) ⊇ RAA(M) where �0(X) = X for any X

Since RAA(M)=M–Γ(M), it can be understood as the subset of literals of M whose
defaults are self-inconsistent, given the rule-supported literals in Γ(M), the SM part of
M. The RAA(M) are not obtainable by Γ(M). The condition states that successively
applying the Γ operator to M-RAA(M), i.e. to Γ(M), which is the “non-inconsistent” part
of the model or rule-supported context of M, we will get a set of literals which, after ω

iterations of � if needed, will get us the RAA(M). RAA(M) is thus verified as the set of
self-inconsistent literals, whose defaults RAA-support their positive counterpart.

This is intuitively correct: assuming the self-inconsistent literals as false they appear
later as true consequences. We can simplify this expression to ∃ ω≥0 �ω(Γ(�(M))) ⊇
RAA(M). And then to ∃ ω≥2 �ω(M) ⊇ RAA(M), to obtain the original one. Of course,
all SMs comply with this condition because in their case RAA(SM)={}. So, for SMs all
our three rSM conditions reduce back to their usual definition of Γ(SM)=SM.
The approach to the third condition is inspired by the use of � and �2, in one definition
of the Well-Founded Semantics (WFS), to determine the undefined literals. We want to
test that the atoms in RAA(M) introduced to resolve odd loops, actually lead to
themselves through repeated (at least 2) applications of �, noting that �2 is the
consequences operator appropriate for odd loop detection, as seen in the WFS, whereas
� is appropriate for even loop SM stability. Because odd loops can have an arbitrary
length, repeated applications are required. Because even loops are stable in just one
application of �, they do not need iteration, which is the case with SMs.

The non-monotonic character of �, when coupled with the existence of odd loops, may
produce temporary spurious elements not in M in the second application of � in �2, and
hence the use of set inclusion in the condition. No matter, because the test is just to
detect that introduced atoms additional to �(M) actually are supported by RAA. On the
other hand, such spurious atoms do not persist, for they disappear in the next application
of �.

Because odd loops over negation can have arbitrary length, we need the number of
iterations of Γ to be unlimited a priori.

Example 8: a � ~b t � a, b k � ~t

 b � ~a i � ~k

M1={a,k}, �(M1)= {a,k}, RAA(M1)={}, �(M1)⊇RAA(M1). M1 is a rSM.
M2={b,k}, �(M2)= {b,k}, RAA(M2)={}, �(M2)⊇RAA(M2). M2 is a rSM.
M3={a,t,i}, �(M3)= {a,i}, RAA(M3)={t}, ~∃ ω≥2 �ω(M3) ⊇ RAA(M3). M3 is not a
rSM.
M4={b,t,i}, �(M4)= {b,i}, RAA(M4)={t}, ~∃ ω≥2 �ω(M4) ⊇ RAA(M4). M4 is not a
rSM.

Although �(M3) and �(M4) are maximal, from neither is ‘t’ obtainable by iterations of
�. Simply because ‘~t’, implicit in both, is not conducive to ‘t’ through �. This is the
purpose of the third condition. The attempt to introduce ‘t’ into RAA(M) fails because
RAA cannot be employed to justify ‘t’.

Example 9: a � ~b b � ~c c � ~a

M1={a,b}, �(M1)={b}, RAA(M1)={a}, �2(M1) = {b,c}, �3(M1) = {c}, �4(M1)={a,c} ⊇
RAA(M1). The remaining Revised Stable Models, {a,c} and {b,c}, are similar to this
one, by symmetry.

It took us 4 iterations of � to get a superset of RAA(M) in a program with an odd loop of
length 3. In general, a NLP with odds loops of length N will require ω = N+1 iterations

of the � operator. Let us see why this is so. First we need to obtain the supported subset
of M, which is �(M). The RAA(M) set is precisely the subset of M that does not
intersect �(M), so under �(M) all literals in RAA(M) have truth-value ‘false’. Now we
start iterating the � operator over �(M). Since the odd loop has length N, we need N
iterations of � to finally make arise the set RAA(M). Hence we need the first iteration of
� to get �(M) and then N iterations over �(M) to get RAA(M) leading us to ω = N+1. In
general, if the odd loop lengths are decomposed into the primes {N1,…,Nm}, then the
required number of iterations, besides the initial one, is the product of all the Ni.

It may be argued that SM employs odd loops as integrity constraints (ICs), but the
problem remains that in program composition unforeseen odd loops may appear. rSM
treats ICs specifically, by means of odd loops involving a reserved literal ‘falsum’,
whose truth is disallowed in every model, thereby separating the two issues, and so
having it both ways.

Definition 3 (Integrity Constraints): Incorporating Integrity Constraints (ICs) in a NLP
under the Revised Stable Models semantics consists in adding a rule of the form

falsum � an_IC, ~falsum

for each IC. ‘falsum’ is a reserved atom, required to be false in all models. The ‘an_IC’
in the rule stands for a conjunction of literals, which must not be true, that form the IC.

From the odd loop introduced this way it results that, whenever ‘an_IC’ is true, ‘falsum’
must be in the model, a contradiction. Consequently only models where ‘an_IC’ is false
are allowed. Whereas in SM odd loops are used to express ICs, in rSM they are too, but
using the reserved ‘falsum’ predicate.

Transformations into normal programs

Two program transformations are provided next, such that the SMs of the transformed
program correspond exactly to the rSMs of the original one.

Definition 4 (The RAA transformation)
Consider M is some rSM of P. For each literal A in M – �(M) add to P the set O of rules
of the form

A � not_M

to obtain program Podd, where not_M stands for the conjunction of default negations of
each element NOT in M. The rules in O add to P, depending on context not_M, the
atoms A exactly required to resolve odd loops which would otherwise prevent P from
having a SM in that context. Since one can add to Podd the O rules for every context
not_M, the Stable Models of the transformed program Podd = P U O are the rSM of
Podd. Moreover, one can add to Podd all such rules for all its models M.

Example 10: Let P be a � b, ~a b � ~c c � ~b

M1={c}, O1={}, M2={a,b}, O2={a � ~c}. O=O1 U O2, and the SMs of P U O are the
rSMs of P.

Theorem 1 – Correctness of RAA transformation: The RAA transformation is correct.

Proof (sketch): (cf Appendix A – Theorems’ Proofs).

Consequently, if one knew all alternative RAA sets for P, one could implement the rSM
semantics via this transformation plus resorting to an implementation of SMs. But
detecting the RAAs is not immediate. Hence this transformation is more of a theoretical
interest, say for proving properties, namely that rSMs always exist (as there are no odd
loops in the transformed program) and that they are cumulative (for the same reason) , as
we shall do below.

Definition 5 (The EVEN transformation): Next we provide a program transformation,
EVEN: NLP � NLP, for a normal program P, so that M is a rSM of P iff M is a SM of
the transformed program Pf, in respect to the intersection of the languages of P and Pf,
and which maximizes new literals of the form L_f. Pf is the NLP resulting from the
application of the EVEN transformation to the NLP P, where Pf = EVEN(P) iff:
 EVEN(P) = Tf(P) ∪ Ct-tf(P)

and Tf(P) is the result of substituting, in each rule of P, each default literal ~L in P by a
new positive literal L_f not yet existent in P, and Ct-tf(P) is the set of pairs of
new rules of the form (creating even loops):

 L � ~L_f L_f � ~L

for each literal L with rules in P. Literals without rules in P are not translated into Ct-
tf(P) pairs. Instead, they are translated into L_f � , i.e. their correspondent negative
literals are always true. These are the default literals necessarily true by CWA in all
models.

The basic ideas of the transformation are:

1. No odd loops exist in Pf.
2. Literals can have true or false values, by means of the newly introduced even

loops between L and ~ L_f , but default literals without rules in P become true
L_f literals.

3. Odd loops in P prevent assuming ~L_f . Eg. c � ~c translates into c � c_f
which, together with the even loop c � ~c_f c_f � ~c , prevents assuming
c_f , which would be self-defeating, I.e. assuming ‘c_f’ one has ‘c' by
implication, but then ‘c_f’ is not supported by its only rule, c_f � ~c, and so
cannot belong to the SM.

4. Maximizing the L_f literals guarantees the CWA.

Example 11:
a � ~b EVEN(P) a �b_f a � ~a_f b � ~b_f c � ~c_f
b � ~a ========> b � a_f a_f � ~a b_f � ~b c_f � ~c
c � a, ~c, ~d c � a, c_f, d_f d_f �

Theorem 2 – Correctness of the EVEN transformation: The EVEN transformation is
correct.

Proof (sketch): (cf Appendix A – Theorems’ Proofs).

Example 12: Take now the program a � ~b , that translates into a � b_f plus the rule
b_f � , and the even loop for ‘a’ and ‘a_f’ (not shown). Note that no even loop between
‘b’ and ‘b_f’ is required. If introduced, instead of b_f �, then one would have to
maximize on L_f literals (for achieving the CWA) so the even loop would be resolved in
favour of ‘b_f’.

Properties

Theorem 3 – Existence: Every NLP has at least one Revised Stable Model.

Proof (sketch): (cf Appendix A – Theorems’ Proofs).

Theorem 4 – Stable Models extension: Every Stable Model of an NLP is also a Revised
Stable Model of it.

Proof (sketch): (cf Appendix A – Theorems’ Proofs).

SM does not deal with Odd Loops Over Negation, except to prohibit them, and that
unfortunately ensures it does not enjoy desired properties such as Relevance. For
example, take a program such as:

c � a, ~c a � ~b b � ~a

Although it has an SM={b} it is non-relevant, e.g. in order to find out the truth-value of
the literal ‘a’ we cannot just to look below the rule dependency call graph for ‘a’, but
need also to look at all other rules that depend on ‘a’, namely the first rule for ‘c’. This
rule in effect prohibits any SM containing ‘a’ because of the odd loop in ‘c’ arising when
‘a’ is true, i.e. ‘c � ~c’. Hence, as the example illustrates, no top down call graph based
query method can exist for SM, because the truth of a literal potentially depends on all of
a program’s rules.

Relevance is the property that makes it possible to implement a top-down call-directed
query-derivation proof-procedure – a highly desirable feature if one wants an efficient
theorem-proving system that does not need to compute a whole model to answer a query.
The non-relevance of Stable Models, however, is caused exclusively by the presence of
odd loops over default negation, as these are the ones that may render unacceptable a
partial model compatible with the call-graph below a literal. Even loops can
accommodate the partial solution by veering one direction or the other.

rSMs, by resolving odd loops in favour of their heads, effectively preventing their
constraining hold on literals permitting the loop, enjoys relevance, and is thus potentially
amenable to top-down call-graph based query methods (and we shall touch upon one in
the implementation section). These methods are designed to try and identify whether a

query literal belongs to some rSM, and to produce the partial rSM supporting a positive
answer, which can be potentially extended, because of relevance, to a full rSM.

Theorem 5 – Relevance: The Revised Stable Models semantics is Relevant.

Proof (sketch): (cf Appendix A – Theorems’ Proofs).

Theorem 6 – Cumulativity: The Revised Stable Models semantics is Cumulative.

Proof (sketch): (cf Appendix A – Theorems’ Proofs).

Example 13: a � ~b b � ~a, c c � a

There is a single SM1={a, c}. If ‘c �’ is added, then there is an additional SM2={b, c},
and cumulativity for SM fails because ‘a’ no longer belongs to the intersection of SMs.
There are two rSM: rSM1=SM1={a, c} and rSM2={b}; ‘c �’ cannot be added.

Cumulativity pertains to the intersection of models, which defines the SM and the rSM
semantics. But seldom is this intersection used in practice, and SM implementations are
focused on computing the set of models.

Another but similar notion of cumulativity pertains to storing lemmas as a proof
develops, giving rise to the techniques of memoizing and tabling in some Prolog and
WFS systems. This is a nice property which ensures one can use old computation results
from previous steps in a query-oriented derivation to speed up the computation of the
rest of the query by avoiding redundant computations. This cumulativity presupposes a
top-down call-graph oriented query derivation method exists, which is the case for rSM
because it affords relevance, but not for SM.

For this second type of cumulativity relevance is again essential because it guarantees
that the truth of a literal depends only on the derivational context provided by the partial
rSM supporting the derivation, namely the default literals which are true in it.
Consequently, if a positive literal A is found true in context not_C standing for the
conjunction of default literals true in it, then a rule may be added to that effect, namely A
� not_C or, better still for efficiency, entered into a table.

Implementation

Since the Revised Stable Models semantics is Relevant (see proof sketch of Theorem 5
above) it is possible to have a top-down call-directed query-derivation proof-procedure
that implements it.

One such procedure to find out (querying) if a literal A belongs to a Revised Stable
Model M of a NLP P can be viewed as finding a derivational context, i.e. the truth-value,
of the required default literals in the Herbrand base of P under that model M, such that A
follows, plus the required literals true by RAA in that derivation. The first requirement is

simply finding an abductive solution, considering all default negated literals as
abducibles, that forms a default literal context which supports A.

An already implemented system, tested, and with proven desirable properties – such as
soundness and completeness –that can be adapted to provide both requirements is
ABDUAL [3]. ABDUAL defines and implements abduction over the Well-Founded
Semantics for extended logic programs (i.e.. normal programs plus explicit negation)
with integrity constraints (ICs), by means of a query driven procedure. This proof
procedure is also defined for computing Generalized Stable Models (GSM), i.e. NLPs
plus ICs, by considering as abducibles all default literals, and imposing that each one
must be abduced either true or false, in order to produce a 2-valued model.

This is so because the ABDUAL procedure also accounts for the Generalized Stable
Models (GSM) semantics and can evaluate abductive queries over GSM programs.
ABDUAL needs to be adapted in two ways to compute partial rSMs in response to a
query. First, the 2-valued ICs must be relaxed so that only default literals visited by a
relevant query driven derivation are imposed 2-valuedness. Literals not visited remain
unspecified, because the partial rSM obtained can always be extended to all default
literals because of relevance. Second, ABDUAL must be adapted to detect literals
involved in an odd loop with themselves, so that RAA can then be applied, thereby
including such literals in the (consistent) set of abduced ones. The reserved ‘falsum’
literal is the exception to this, so that ICs can be implemented as explained before,
including the ICs imposing 2-valuedness on rSMs.

The publicly available interpreter for ABDUAL for XSB-Prolog is modifiable to comply
with these requirements. A more efficient solution involves adapting XSB-Prolog to
enforce the two requirements at a lower code level. (cf. [3] for the details). These
alterations correspond, in a nutshell, to small changes in the ABDUAL meta-interpreter.

The EVEN transformation given can readily be used to implement rSM by resorting to
some implementation of SM, such as the SMODELS or DLV systems. In that case full
models are obtained and no query relevance can be enacted, of course. L_f are maximize
by resorting to commands in these systems.

Extensions

Combination Revised Stable Models

When a Normal Logic Program can be divided into two disjoint subprograms – no atom
in one subprogram occurs in the other subprogram – it can make sense to consider as a
model of the whole combined program the union of the disjoint Revised Stable Models
of each of the subprograms. Combination Revised Stable Models (CrSMs) meet this
requirement.

Definition 6 (Combination Revised Stable Models):
Let P be a NLP and P1 and P2 subprograms (subsets of rules) of P such that their sets of
atoms are disjoint. Let M1 be a rSM of P1 and M2 one of P2. If there is a minimal model

CRM of P such that RAA(CRMM) = RAA(M1) U RAA(M2), and ∃ ω≥2 �ω(CRM) ⊇
RAA(CRM), then M is a Combination Revised Stable Model of P.
Now allow CrSMs to be used also, iteratively, for the “construction” of other CrSMs. in
the same way. The class of CrSMs is then forthwith defined.

Example 14: Let is consider P as a � ~b b � ~a, c c � a
 x � ~y y � ~x, z z � x

Its rSM are M1={a,c,x,z}, �(M1) = {a,c,x,z}, RAA(M1) = {} (M1 is the only SM)
 M2 = {a,c,y}, �(M2) = {a,c}, RAA(M2) = {y}
 M3 = {b,x,z}, �(M3) = {x,z}, RAA(M3) = {b}

Its CrSMs include all the rSMs and also M4, the only other CrSM:
 M4 = {b,y}, �(M4) = {}, RAA(M4) = {b,y} = RAA(M2) U RAA(M3)

M4 is a minimal model, and �(�(M4)) = �(�({b,y})) = �({}) = {b,y} ⊇ RAA(M4) =
{b,y}; so ∃ ω≥2 �ω(M4) ⊇ RAA(M4); ω = 2.

Extended Logic Programs

Extended LPs (ELPs) introduce explicit negation into the syntax of NLPs. Each positive
atom may be preceded by ‘-‘, standing for explicit negation, whether in heads, bodies, or
arguments of ‘nots’. Positive atoms and their explicit negations are collectively dubbed
“objective literals”. For ELPs, SM semantics is replaced by Answer-Set semantics (AS)
[6], coinciding with SM on NLPs. AS employs the same stability condition on the basis
of the � operator as in SM, treating all objective literals as positive, and default literals
as negative.

Furthermore, its models (the Answer-Sets) must be non-contradictory, in the sense of not
containing a positive atom and its explicit negation, otherwise a single model exists, and
it is comprised of all objective literals, that is, from a contradiction everything follows.
Note that Answer-Sets (ASs) need not contain an atom or its explicit negation, that is,
explicit negation does not comply with the Excluded Middle principle, like classical
negation does. Furthermore, it is a property of AS that, for any ‘L’ of the form ‘A’ or ‘-
A’ where ‘A’ is a positive atom, if ‘-L’ is true then ‘not L’ is true as well (Coherence).

Definition 7 (Extension to Answer-Sets – Revised Answer-Sets (rAS)): rSM can be
naturally applied to ELPs, by extending AS in a similar way as for SM, thereby
obtaining rAS (Revised Answer Sets), which does away with odd loops but not the
contradictions brought about by explicit negation. The same definition conditions apply
as for rSM, plus the same proviso on contradictory models as in AS (if a contradiction
exists there is a single rAS model comprised of the whole Herbrand base). The
consequences are therefore similar too.

Example 15: Under rSM, let P be a � ~b b � ~c c � ~a

The rSMs of P are {a, b}, {b, c}, and {a, c}. If we consider instead the rAS setting and a
slightly different version of the program with explicit negation (replacing ‘c’ with ‘-a’),
under rAS let P’ be

 a � ~b b � ~ -a -a � ~a

The rASs of P’ are {a, b} and {b,-a}; the correspondent {a,-a} from P is rejected under
rAS because it is contradictory.

Example 16: Under rSM, let P be a � ~a b � ~b

The rSM of P is just {a, b}. If we consider instead the rAS setting and a slightly
different version of the program with explicit negation (replacing ‘b’ with ‘-a’), under
rAS let P’ be
 a � ~a -a � ~-a

there will be no non-contradictory rASs since the only possible correspondent candidate
is {a,-a}.

Other extensions are described in the Appendix B.

Conclusions and future work

Having defined a new 2-valued semantics for normal logic programs, and having
proposed more general semantics for several language extensions, much remains to be
explored, in the way of properties, comparisons, implementations, and applications,
contrasting its use to other semantics employed heretofore for knowledge representation
and reasoning.

The fact that rSM includes SMs and the virtue that it always exists and admits top-down
querying is a novelty that may make us look anew at the use of 2-valued semantics of
normal programs for knowledge representation and reasoning [1].

Worth exploring is the integration of rSM with abduction, whose nature begs for
relevance, and seamlessly coupling 3-valued WFS (and extensions) implementation such
as XSB-Prolog, with 2-valued rSM implementations, such as the modified ABDUAL or
the EVEN transformation, so as to combine virtues of both bringing closer together the
2- and 3-valued logic programming communities.

Another avenue is in using rSM and its extensions, in contrast to SM based ones, as an
alternative base semantics for updatable and self-evolving programs [5, 2] so that model
inexistence after an update may be prevented in a variety of cases. This may be of
significance to semantic web reasoning, a context in which programs may be being
updated and combined dynamically from a variety of sources.
rSM implementation, in contrast to SM’s ones, because of its relevance property can
avoid the need to compute whole models and all models, and hence the need for
groundness and the difficulties it begets for problem representation. Naturally it raises
problems of constructive negation, but these are not specific to or begotten by it.
Because it can do without groundness, meta-interpreters become a usable tool and
enlarge the degree of freedom in problem solving.

In summary, rSM has to be put the test of becoming a usable and useful tool. And first of
all by persuading researchers that it is worth using, and worth pursuing its challenges.

Acknowledgements

For comments on work leading to the paper: J. Alferes, F. Banti, Pierangelo Dell’Acqua,
M. Gelfond, P. Hitzler, R. Kahle. For partial support: projects POCTI FLUX in
Portugal, DAAD IQN “Rational Mobile Agents” with Dresden, EU FP6 NoE
REWERSE, and, especially, sabbatical scholarships from FCT, Portugal, and Istituto di
Studi Avanzati, U. Bologna, Italy to the first author, without which enough peace of
mind would not have been had.

References

1. J. J. Alferes, L. M. Pereira, Reasoning with Logic Programming, LNAI 1111,

Springer-Verlag, 1996.
2. J. J. Alferes, A. Brogi, J. A. Leite ,L. M. Pereira. Evolving Logic Programs. In S.

Flesca et al. (eds.), Procs. 8th European Conf. on Logics in AI (JELIA'02), pp. 50-61,
Spriger, LNCS 2424, 2002.

3. J. J. Alferes, L. M. Pereira, T. Swift, Abduction in Well-Founded Semantics and
Generalized Stable Models via Tabled Dual Programs, Theory and Practice of Logic
Programming, 4(4):383-428,July 2004.

4. M. Gelfond, V. Lifschitz. The stable model semantics for logic programming. In R.
Kowalski, K. A. Bowen (eds.), Fifth International Logic Programming Conference,
pp. 1070-1080. MIT Press, 1988.

5. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, T. C. Przymusinski,
Dynamic Updates of Non-Monotonic Knowledge Bases, The Journal of Logic
Programming 45(1-3):43-70, Sept/Oct 2000.

6. M. Gelfond, V. Lifschitz. Logic Programs with classical negation. In D.S.Warren,
P.Szeredi (eds.), 7th International Logic Programming Conference, pp. 579-597. MIT
Press, 1990.

7. J. Dix. A Classification Theory of Semantics of Normal Logic Programs: I. Strong
Properties, II. Weak Properties, Fundamenta Informaticae XXII(3)*227—255, 257–
288, 1995.

8. P. M. Dung, On the Relations between Stable and well-founded Semantics of Logic
Programs, Theoretical Computer Science, 1992, Vol 105, pp 7 - 25, Elsevier
Publishing B.V.

Appendixes

Appendix A – Theorems’ Proofs

Theorem 1 – Correctness of RAA transformation: The RAA transformation is correct.

Proof (sketch): The RAA atoms A introduced by set of rules O, are so introduced just in
case its corresponding context not_M is in force. Thus if there exists a SM model of
Podd containing not_M it will be exactly one, M. The reason it exists is that all odd
loops appearing in context not_M in P are resolved by definition, by including in M the
corresponding RAA literals provided by the rules O. The truth of these literals justifies
the non-inclusion in M of their corresponding defaults. Since there are no odd loops in
context not_M, and all RAA literals are now supported, just like the others, M will be a
SM of Podd. This being valid for any context not_M, the SMs of Podd coincide with the
rSMs of P. QED

Theorem 2 – Correctness of the EVEN transformation: The EVEN transformation is
correct.

Proof (sketch): The EVEN transformation retains all candidate model possibilities, by
introducing an even loop between every literal with rules and its default negation, the
latter now expressed as a positive literal. It is these independent even loops that, by
themselves alone, allow for all oscillation combinations of such literals and their
defaults. When they are joined to the remaining rules of the transformation, two issues
have to be taken care of. One is that CWA be achieved by the simpler transformation for
literals without rules. Defaults of literals with rules, are either made false by their
positive counterparts, or else participate in even or odd loops. The even loops will allow
them to oscillate. The odd loops constitute the second issue. By the nature of the
transformation, an odd loop actually obtaining between a literal and its default gives rise
to a choice on how the even loop between their translations is broken because L_f will
imply L (cf example above). If L is true anyway by other rules, no harm is done;
otherwise the RAA duly takes place. And this occurs only on a by need basis.
Consequently, the SMs of the transformed program will correspond to the rSMs of the
original program, once the vocabulary translation is reversed. Because of the CWA
transformation rule, only those SMs maximizing the L_f are retained. QED

Theorem 3 – Existence: Every NLP has at least one Revised Stable Model.

Proof (sketch): We visit in turn the three defining conditions of rSM. Every NLP has at
least one minimal classical model M, with its corresponding Γ(M). And at least one such
Γ(M) will be maximal. If for some or all M M=Γ(M) then RAA(M)={}, and the third
conditions is trivially satisfied. Otherwise, if M=Γ(M) for no M then there are no SMs.
And so there exists at least one odd loop over default negation justifying this, for even
loops alone cannot prevent the existence of SMs, as even loops can always go one way
or the other or both, as proven in [8]. Accordingly, there exists at least one non-empty
RAA(M) which is the head of an odd loop. For all such elements in RAA(M) the third
condition is satisfied, for it detects whether such heads are supported on their defaults, in
the context of the remaining model. QED

Theorem 4 – Stable Models extension: Every Stable Model of an NLP is also a Revised
Stable Model of it.

Proof (sketch): The three defining conditions of rSM are satisfied by all SMs. Every SM
is a minimal classical model. No SM is a subset of another, hence all are maximal with
respect to one another. No SM is a subset of a non-SM rSM, and hence all are maximal
with respect to them, the reason being as follows: for any non-SM rSM its RAA(M) is
non-empty, corresponding to least one resolved odd loop; but in any SM this loop is
broken, otherwise the SM would not exist; consequently, no SM is compatible with a
non-SM rSM. For SMs RAA(M) is empty, and so for them the third condition is trivially
true. QED

Theorem 5 – Relevance: The Revised Stable Models semantics is Relevant.

Proof (sketch): The semantically equivalent and correct RAA program transformation
above does away with odd loops over negation. This is so because any context ‘not_M’
where such a loop occurs, for say head ‘A’, gives rise to a new rule ‘A � not_M’ which
makes ‘A’ true in that context, thereby sidetracking the loop. Consequently, only even
loops above a query might remain active. But these, as we have remarked, can adapt to
the constraints imposed on them by the query result. QED

Theorem 6 – Cumulativity: The Revised Stable Models semantics is Cumulative.

Proof (sketch): First recall some formal property definitions that will be used, where T |=
A signifies that A belongs to all SMs of T, i.e. their intersection.

Monotonicity: T |= A => T U {B} |= A
Weak or Cautious Monotonicity: T |= A and T |= B => T U {B} |= A
Cumulativity: T |= B => (T |= A <=> T U {B} |= A)
Cut: T |= B and T U {B} |= A => T |= A
Cautious Monotonicity plus Cut equals Cumulativity. SM semantics enjoy Cut.
[7].

As the SM semantics enjoys the Cut, and since the SMs of program Pood, in the RAA
program transformation, are equivalent to the rSMs of P, it suffices to prove that the
SMs of Pood also enjoy the Cautious Monotonicity, in order to prove the Cumulativity
of rSM. Let M be a Stable Model of Pood and A and B any elements of M. Pood has no
odd loops over negation, as argued in the proof about Relevance. But only odd loops can
prevent the appearance of models, or make new models appear because they are no
longer prevented. Consequently, adding literals in the intersection is not going to change
any of the existing models, or add or subtract to the set of models. Thus their intersection
remains the same and cumulativity is warranted. QED

Appendix B – Other Extensions

Revision Revised Answer Sets (rrAS)

An open issue is how to apply RAA to revise contradictions based on default
assumptions, not just removing odd loops, defining then what might be called rrAS
(Revision Revised AS). Thus instead of “exploding” a contradictory model into the
Herbrand base, one would like to minimally revise default assumptions so that no
contradiction appears in a model. Here is the definition, which needs only enhance the
first condition of rSM:

Definition 7 (Revision Revised Answer Sets): M is a Revision Revised Answer Set of an
Extended Logic Program P iff, where M= �(M) U RAA(M) RAA(M)=RAA1 U RAA2:

• M is a minimal (classical) model, with respect to objective literals, where no pair
<L, -L> is allowed)

• �(M) is maximal, or RAA(M) is minimal not counting any RAA(M)={}, within
their own kind

• ∃ RAA1, RAA2, L s.t. ∃ ω≥2 �ω(RAA1) ⊇ RAA1 and ∃ ω≥2 �ω(M-RAA2) ⊇ {L,
-L}

Example 16: Let P be {-a � ~b; a � ~b; c � ~c}. The only rrAS is {b,c}. How is ‘b’
supported? According to RAA, in general, when a set of assumptions leads to
contradiction, they should be revised. In our case, the assumptions are default literals,
and the revision is 2-valued. Since there is only one assumption in this example, ‘~b’, it
is revised to ‘b’. RAA(M)={b,c}, RAA1={c}, RAA2={b}.

In our case, one wants minimal revisions since defaults are to be maximized. Sure, one
revision may lead to a new contradiction, as in the case above if ‘b’ itself implied a
contradiction. In that case there would be no model, a definite possibility when one is
dealing with hard contradictions. But our definition already foresees that no
contradictions are allowed, whatever revisions are in force. How do we know which
literals were revised? Well those in RAA(M): they are the result of odd loop
inconsistency resolution, or non �-supported revision atoms, or both. But these must be
there by need, that is, they actually are necessary for some contradiction avoidance.

Generalized Logic Programs, their Stable Models semantics (GLP) and their Revised
Stable Models semantics (rGLP)

Generalized LPs (GLPs) introduce default negated heads into the syntax of NLPs. For
GLPs, SM semantics is replaced by GLP, coinciding with SM on NLPs [5]. It will be
convenient to syntactically represent generalized logic programs as propositional Horn
theories. In particular, we will represent default negation ‘not A’ as a standard
propositional variable (atom). Suppose that K is an arbitrary set of propositional
variables whose names do not begin with a ‘not‘. By the propositional language LK
generated by the set K we mean the language L whose set of propositional variables
consists of: {A : A ∈K} U {not A : A ∈ K}. Atoms A ∈ K, are called objective atoms

while the atoms ‘not A’ are called default atoms. From the definition it follows that the
two sets are disjoint.

By a generalized logic program P in the language LK we mean a finite or infinite set of
propositional Horn clauses of the form L � L1 , . . . , Ln where L and Li are atoms
from LK. If all the atoms L appearing in heads of clauses of P are objective atoms, then
we say that the logic program P is normal. Consequently, from a syntactic standpoint, a
logic program is simply viewed as a propositional Horn theory. However, its semantics
significantly differs from the semantics of classical propositional theories and is
determined by the class of stable models defined below.

By a (2-valued) interpretation M of LK we mean any set of atoms from LK that satisfies
the condition that, for any A in K, precisely one of the atoms A or not A belongs to M .
Given an interpretation M we define:

M+ = {A ∈ K : A ∈ M} M- = {not A : not A ∈ M} = {not A : A ∉M}.

By a (2-valued) model M= M+ U M- of a generalized logic program P we mean a
(2-valued) interpretation of P that satisfies all of its clauses. A program is called
consistent if it has a model. A model M is considered smaller than a model N if the set of
objective atoms of M is properly contained in the set of objective atoms of N. A model
of P is called minimal if there is no smaller model of P. A model of P is called least if it
is the smallest model of P. It is well-known that every consistent program P has the least
model M = {A : A is an atom and P |= A}.

Definition 8 (Stable models of generalized logic programs): We say that a (2-valued)
interpretation M of LK is a stable model of a generalized logic program P if M is the
least model of the Horn theory P U M- :

M = Least(P U M-) or, equivalently, if M = {A : A is an atom and P U M- |= A}
.

Revised GLP semantics (rGLP)

Definition 9 (Revised Generalized Logic Program models): M is a Revised SM model of
a GLP program P, where we let RAA(M) ≡ M – Least(P U M-), iff :

• M = M+ U M- is a minimal (classical) model, with respect to objective
literals (no inconsistent pair <L, not L> allowed)

• Least(P U M-) is maximal, or RAA(M) is minimal not counting any
RAA(M)={}, within their own kind

• [Least(M - RAA(M) U not RAA(M)] ⊇ RAA(M), where ‘not RAA(M)’
stands for the set of negated elements in RAA(M)

These conditions are just adaptations of the rSM conditions for the GLP syntax and
semantics. The third condition in particular states that the elements of RAA(M), those
essential to resolve odd loops, must be obtainable through a Least operation on the set

resulting from deleting them from M and adding instead their default negations, which
now the syntax allows. No matter that the resulting set is inconsistent, the test simply
aims at checking that the RAA(M) atoms are indeed supported on their negations.

