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Abstract 
This paper introduces an original 2-valued semantics for Normal Logic 
Programs (NLP), important on its own. Nevertheless, its name draws 
attention to that it is inspired by and generalizes Stable Model semantics 
(SM). The definitional distinction consists in the revision of one feature of 
SM, namely its treatment of odd loops over default negation. This single 
revised aspect, addressed by means of a Reductio ad Absurdum approach, 
affords us a fruitful cornucopia of consequences, namely regarding 
existence, relevance and top-down querying, cumulativity, and 
implementation. 
 
The paper motivates and then defines the Revised Stable Models semantics 
(rSM), justifying the definition and providing examples. It also presents two 
rSM semantics preserving program transformations into NLP without odd 
loops. Properties of rSM are given and contrasted with those of SM. 
Implementation is examined, and extensions of rSM are given with regard 
to explicit negation, ‘not’s in heads, and contradiction removal. 
Conclusions, further work, as well as potential use, terminate the paper. 
 
Keywords: Logic Program semantics, Stable Models, Reductio ad 
Absurdum. 

 

Introduction 
 
This paper introduces a new 2-valued semantics for Normal Logic Programs (NLP), 
called Revised Stable Models semantics (rSM), cogent in its own original way. 
Nevertheless, its name intends to draw attention to that it is both inspired by and 
generalizes Stable Model semantics (SM) [4].And indeed SM models are just particular 
rSM models, and the SM definition a particular case of the rSM one. But its name also 
intends to draw attention to that the definitional distinction consists in the revision of one 
feature of SM, namely its treatment of odd loops over default negation. This single 
revised aspect affords us a fruitful cornucopia of consequences, not shared by SM, the 
‘de facto’ standard two-valued semantics for NLP. 
 



For one, rSM models are guaranteed to exist for every NLP, and this is important for 
program composition and updating, with knowledge originating in several sources. Two, 
rSM is relevant, meaning that there exist top-down, program call-graph based, query 
driven methods to determine whether a literal belongs to a model. They can thus return 
simply an extendable partial model, there being no need to compute all models or 
complete models to answer a query. Relevance is also crucial for abduction, it being 
query driven. Three, rSM is cumulative, so that lemmas may be stored and reused. 
 
These and other properties, and their implementational impact, shall be examined in the 
sequel. Moreover, two semantics-preserving transformations are provided for NLP, so 
that the SMs of the transformed program correspond exactly to the rSMs of the original 
one. Such transformations accrue additional insight into rSM. One of them offers a 
vessel for immediate implementation in existing (though restrictive) SM systems. 
 
However, another approach to implementation is possible: the top-down querying ability 
means that no global computing of the model is needed, and thus that no prior program 
grounding is required, as is the case in SM systems. Grounding is a problem in present 
SM implementations for writing meta-interpreters, because all possible clause bodies 
have to be grounded, a practical impossibility. Nevertheless, meta-interpreters are query 
driven, and so do not need all possible bodies to be ground. 
 
We shall discuss an implementation avenue relying on an adaptation of ABDUAL [3], 
an XSB-Prolog implemented procedure that can compute Generalized Stable Models, by 
viewing default negated literals as abducibles, and permitting top-down querying. This 
bridge, fostered by rSM, brings closer together the SM based and the WFS based 
research communities. 
 
Odd Loops Over Negation 
In SM, programs such a � ~a , where ‘~’ stands for default negation, do not have a 
model. One can easily perceive that the Odd Loop Over Negation is the trouble-maker. 
The single rSM model however is {a}. The reason is that if assuming ‘~a’ leads to an 
inconsistency, namely by implying ‘a’, then in a 2-valued semantics ‘a’ should be true 
instead. 
 
Example 1: The president of Morelandia is considering invading another country. He 
reasons thus: if I do not invade them they are sure to develop Weapons of Mass 
Destruction (WMD); on the other hand, if they have WMD I should invade them. This is 
coded by his analysts as: 

WMD � ~ invade  invade � WMD 
 
Under the SM semantics this program has no models. Under the rSM semantics invasion 
is warranted by the single model M={invade}, and no WMD exist. 
 
In a NLP, we say we have a loop when there is a rule dependency call-graph path that 
has the same literal in two different positions along the path – meaning that the literal 
depends on itself. An Odd Loop Over Negation is one such that the number of default 
negations in the rule dependency graph path connecting the same literal at both ends is 
odd. 
 



It is an apparently a counter-intuitive idea to permit such loops to support a literal’s 
value of true, because it means that the truth of a literal is being supported on its 
negation, which seems self-inconsistent. SM does not go a long way in treating odd 
loops. It simply decrees there is no model (throwing out the baby along with the bath 
water), instead of opting for taking the next logical step: reasoning by absurdity or 
Reduction ad Absurdum (RAA). That is, if assuming a literal false (i.e. its default is true) 
leads to an inconsistency, then, in a 2-valued semantics, the literal must be true if that’s 
consistent. SM does not do this because it requires every true literal to be supported by 
its rules. The solution proffered by rSM is to extend the notion of support to include 
reasoning by absurdity for this specific case, which reasoning is supported on the rules 
creating the odd loop. That is why the single rSM of a � ~a is {a}. 
 
It may be argued that SM employs odd loops as integrity constraints (ICs), but the 
problem remains that in program composition unforeseen odd loops may appear. rSM 
instead treats ICs specifically, by means of odd loops but involving for the purpose a 
reserved literal ‘falsum’, thereby separating the two issues, and so having it both ways, 
i.e. dealing with odd loops and ICs. 
 
SM envisages default literals as assumptions that should be maximally true (the Closed 
World Assumption or CWA), on the proviso of stability. That is, that the conclusions 
following from the assumptions do not go against these. To the contrary, the whole 
model is confirmed by them, through the support of program rules. rSM takes this 
reasoning all the way, but relies on RAA to lend support to the model atoms introduced 
to resolve odd loops. 
 
Whereas in the Well-Founded Semantics (WFS) the truth of literals, be they positive or 
default, may be interpreted as provability justified by a well-founded derivation, the lack 
of provability does not result in their falsity, because a third logical value, ‘undefined’, is 
available. In SM, though 2-valued, there is no general notion of provability defined, and 
one resorts to the interpretation of default negations as assumptions. The rSM view is 
that assumptions be revised, in a 2-valued way, if they would otherwise lead to self-
inconsistency through odd loops. 
 
That rSM resolves the inconsistencies of odd loops of SM (and note they are not 
contradictions, for there is no explicit negation) does not mean rSM should resolve 
contradictions. That is an orthogonal problem, and whose solutions can be added to 
different semantics, including rSM. Accordingly, in the “Extensions” section, we shall 
mention solutions to contradictions in Extended Logic Programs (ELPs) and Generalized 
Logic Programs (GLPs), inspired by the RAA approach. But these are optional, separate, 
add-ons. 
 
The paper’s remaining structure starts with a section on the definition of Revised Stable 
Models, justification, and examples; then another section presents two rSM semantics-
preserving program transformations into NLP without odd loops; the next section 
contemplates properties of rSM and contrasts them with SM’s; forthwith, comes a 
section on implementation; subsequently we describe the extension of rSM to explicit 
negation (ELPs) to produce Revised Answer Sets; the last section addresses conclusion 
and future work, as well as potential use. For lack of space, an Appendix includes Proofs 
of Theorems, and extensions to ‘not’s in heads (GLPs), and contradiction removal by 
belief revision [1]. 



Revised Stable Models 
 
A Normal Logic Program (NLP) is a finite set of rules of the form H �B1, B2, ..., Bn, 
not C1, not C2, …, not Cm (n, m ≥ 0) comprising positive literals H, Bi, and Cj, and 
default literals not Cj. Often we use ‘~’ for ‘not’. 
 
Models are two-valued and represented as sets of the positive literals which hold in the 
model. The set inclusion and set difference mentioned below are with respect to these 
positive literals. Minimality and maximality too refer to this set inclusion. 
 
Definition 1 (Gelfond-Lifschitz � operator [4]): Let P be a NLP and I a 2-valued 
interpretation. The GL-transformation of P modulo I is the program P/I, obtained from P 
by performing the following operations: 

• remove from P all rules which contain a default literal not A such that A ∈ I 
• remove from the remaining rules all default literals 

Since P/I is a definite program, it has a unique least model J: Define �(I) = J. Stable 
Models are the fixpoints of �. 
 
Definition 2 (Revised Stable Models and Semantics): M is a Revised Stable Model of a 
NLP P, where we let RAA(M) ≡ M – �(M), iff 

• M is a minimal (classical) model 
• RAA(M) is minimal not counting empty RAAs 
• ∃ ω≥2 �ω(M) ⊇ RAA(M) 

 
The Revised Stable Models semantics is the intersection of its models, just as the Stable 
Model semantics is. Next we explain the function and justification of each condition 
above. 
 
 
M is a minimal (classical) model – A classical model of a NLP is one that satisfies all its 
rules, where default negation is seen as classical negation. Satisfaction means that for 
every rule body true in the model its head too must be true in the model. Minimality of 
classical models is required to ensure maximal supportedeness (i.e., any true head is 
supported on a true body), compatible with model existence. 
 
Stable Models are supported minimal classical models, and we wish to keep them in 
rSM as a special case. This condition includes them. In fact SM are the special case 
when there are no odd loops over negation. However, not all rSM are SM since odd 
loops of an atom over negation obtaining in a model are allowed in rSM to be resolved 
for the positive value of the atom. Nevertheless, this is to be achieved in a minimal way, 
i.e. resolving a minimal set of such atoms so that no odd loops obtain anymore. And 
justified through its logical “support” on a specific Reductio Ad Absurdum (RAA) 
application to that effect.  
 
Example 2: Let P be {a � ~a ; b � ~a}. The only candidate minimal model is {a}, since 
{} and {b} are not models in the classical sense and {a, b} is not minimal. The need for 
Reductio ad Absurdum reasoning comes from the requirement to resolve odd loops over 
negation – an issue not dealt with in the traditional Stable Model semantics. In P, �({a}) 
= {} ⊆ {a}. Only with model {a} do we have set inclusion. The truth-value of ‘a’ is 
supported by a specific RAA on ‘~a’ just in case it leads inexorably to ‘a’. The first rule 



forces ‘a’ to be in any possible model under the new semantics. I.e., assuming ‘a’ is not 
in a model, i.e. ‘~a’ is true, then the first rule insists that ‘a’ is in the model – an 
inconsistency. But if ‘~a’ cannot be true, and since the semantics is two-valued, then it 
must be false, and therefore ‘a’ must be true. So, the only model of this program must be 
{a}, since {b} is not a model, and {a, b} is not a minimal model with respect to the  
model {a}. 
 
The third condition, explained below, aims at testing the inexorability of a default literal 
implying its positive counterpart, given the context of the remaining default literals 
being assumed in the model. The �(M) ⊆ M property allows atoms to be minimally 
added to M over and above those of SMs, since these are defined as �(SM) = SM. The 
candidate additional atoms are specified in the next condition, namely those in 
RAA(M)=M – �(M). 
 
 
RAA(M) is minimal not counting empty RAAs – Indeed, we want the models which are 
most supported on themselves – so the RAA(M) = M – �(M) should be minimal with 
respect to each other. Keep in mind that M must be a minimal model in a classical sense, 
which necessarily guarantees that M ⊇ �(M). The maximum �(M) can be is M. In the 
case of Stable Models SM = �(SM), so �(SM) is maximum, and RAA(SM) empty. The 
“not counting empty RAAs” part of this second condition serves the purpose of assuring 
that any Stable Model is also accepted as a Revised Stable Model as far as this condition 
is concerned. The minimality beyond empty RAAs lets us consider as rSM more 
minimal models than just the Stable Models.  
 
Indeed, it is too strong to impose just RAA(M) minimality, among all their kind, that is 
including empty RAAs, because otherwise desirable rSMs may be thrown out when 
some SM exists, as its RAA(SM) is empty (cf. Example 4 below). 
 
Example 3:  a � ~a  b � ~a  c � ~b 
 
M1={a, c} is a minimal model. �(M1)={c} is maximal. RAA(M1)={a} is minimal. 
M2={a, b} is a minimal model. �(M2)={} which is NOT maximal. RAA(M2)={a, b} is 
NOT minimal (even not counting {}). 
 
When a NLP has SMs, each verifies SM=�(SM) and RAA(SM)={}, which is minimal. 
The minimality condition on RAA(M) ensures that every SM is a rSM in regard to this 
condition. Furthermore, a NLP with SMs may have other rSMs which are not SMs, as 
shown next. 
 
Example 4:  c � a, ~c       a � ~b  b � ~a 
 
M1={b} is a minimal model. �(M1)={b} is maximal. RAA(M1)={} is minimal. M2={a, 
c} is a minimal model. �(M2)={a} is maximal. RAA(M2)={c} is NOT minimal. We 
have as rSMs {b}, its unique SM, and {a, c}, which has maximal supportedness of its 
literals. Although RAA(M2) is not minimal, precisely because there exists a SM, it is 
minimal not counting the empty RAA(M1) = {}.. 
 
Example 5: a � ~b  b � ~a, c  c � a 
 



There is a single SM1={a, c},  �(SM1)={a, c}, RAA(SM1)={}. There are two rSM: 
rSM1=SM1={a, c} and rSM2={b}. rSM2 respects all three rSM conditions; note how 
the not counting {} proviso is essential for rSM2 because of SM1’s existence, given that 
�(rSM2)={}, RAA(rSM2)={b}. �(�(rSM2)) = �({}) = {a, b, c} ⊇ RAA(rSM2). 
 
Example 6:  a � ~a, ~b d � ~a  b � d, ~b 
 
M1={a}, �(M1)={}, RAA{a}, and M2={b, d}, �(M2)={d}, RAA(M2)={b} are both 
rSMs. 
 
Conceivably, one might think a legitimate non-minimal RAA(M) could be obtained by 
the union of maximal RAA literals from disjoint models of disjoint subprograms, for 
some M that obeys the other conditions. And, in that case, that union might not be 
minimal. Such RAA(M) might nevertheless be desirable, and so the minimality 
condition could be considered too strict. Instead of allowing them as rSMs, we shall call 
them the Combination Revised Stable Models (CrSMs). CrSMs are then an extension to 
standard rSMs. The possible acceptance of non-minimal RAA(M) can then be justified 
by the CrSMs obtained from the disjoint subprograms (cf. motivating Example 7 below). 
 
Example 7: a � ~b  b � ~a  c � a, ~c 

x � ~y  y � ~x  z � x, ~z     
 

M1={b, y}, M2={a, c, y}, M3={b, x, z}, are its rSMs. 
�(M1)={b, y}, �(M2)={a, y}, �(M3)={b, x}. 
RAA(M1)={}, RAA(M2)={c}, RAA(M3)={z}. 

 
If we take M4={a, c, x, z}, we can see that �(M4)={a, x}, RAA(M4)={c, z}, and 
�(�({a,c,x,z})) = �({a,x}) = {a,c,x,z} ⊇ RAA(M4) = {c,z}. M4 respects all three 
definition conditions except for the RAA(M4) minimality one, because it is greater than 
RAA(M2), and also than RAA(M3). M4 is therefore not a rSM. However, it could be 
interesting to consider it as a possible candidate model of the program. Such CrSMs 
provide an extension to rSMs, of which M4 is an example. 
 
The formal definition of Combination Revised Stable Models can be found in the 
Extensions section of the paper. Note CrSMs are not really needed for top-down 
querying, since they exist as a result of disjoint subprograms with separate rSMs, and 
any goal will appeal to just one such subprogram. Moreover, a rSM can be extended to a 
CrSM if desired. 
 
 
∃ ω≥2 �ω(M) ⊇ RAA(M) – For the sake of the explanation let us first start with a more 
verbose, but also more intuitive version of this condition: 

∃ ω≥0 �ω(�(M-RAA(M))) ⊇ RAA(M)     where �0(X) = X for any X 
 
Since RAA(M)=M–Γ(M), it can be understood as the subset of literals of M whose 
defaults are self-inconsistent, given the rule-supported literals in Γ(M), the SM part of 
M. The RAA(M) are not obtainable by Γ(M). The condition states that successively 
applying the Γ operator to M-RAA(M), i.e. to Γ(M), which is the “non-inconsistent” part 
of the model or rule-supported context of M, we will get a set of literals which, after ω 



iterations of � if needed, will get us the RAA(M). RAA(M) is thus verified as the set of 
self-inconsistent literals, whose defaults RAA-support their positive counterpart. 
 
This is intuitively correct: assuming the self-inconsistent literals as false they appear 
later as true consequences. We can simplify this expression to ∃ ω≥0 �ω(Γ(�(M))) ⊇ 
RAA(M). And then to ∃ ω≥2 �ω(M) ⊇ RAA(M), to obtain the original one. Of course, 
all SMs comply with this condition because in their case RAA(SM)={}. So, for SMs all 
our three rSM conditions reduce back to their usual definition of Γ(SM)=SM. 
The approach to the third condition is inspired by the use of � and �2, in one definition 
of the Well-Founded Semantics (WFS), to determine the undefined literals. We want to 
test that the atoms in RAA(M) introduced to resolve odd loops, actually lead to 
themselves through repeated (at least 2) applications of �, noting that �2 is the 
consequences operator appropriate for odd loop detection, as seen in the WFS, whereas 
� is appropriate for even loop SM stability. Because odd loops can have an arbitrary 
length, repeated applications are required. Because even loops are stable in just one 
application of �, they do not need iteration, which is the case with SMs. 
 
The non-monotonic character of �, when coupled with the existence of odd loops, may 
produce temporary spurious elements not in M in the second application of � in �2, and 
hence the use of set inclusion in the condition. No matter, because the test is just to 
detect that introduced atoms additional to �(M) actually are supported by RAA. On the 
other hand, such spurious atoms do not persist, for they disappear in the next application 
of �. 
 
Because odd loops over negation can have arbitrary length, we need the number of 
iterations of Γ to be unlimited a priori. 
 
Example 8:    a � ~b    t � a, b  k � ~t 

   b � ~a    i � ~k 
 
M1={a,k}, �(M1)= {a,k}, RAA(M1)={}, �(M1)⊇RAA(M1).  M1 is a rSM. 
M2={b,k}, �(M2)= {b,k}, RAA(M2)={}, �(M2)⊇RAA(M2).  M2 is a rSM. 
M3={a,t,i}, �(M3)= {a,i}, RAA(M3)={t}, ~∃ ω≥2 �ω(M3) ⊇ RAA(M3). M3 is not a 
rSM. 
M4={b,t,i}, �(M4)= {b,i}, RAA(M4)={t}, ~∃ ω≥2 �ω(M4) ⊇ RAA(M4).  M4 is not a 
rSM. 
 
Although �(M3) and �(M4) are maximal, from neither is ‘t’ obtainable by iterations of 
�. Simply because ‘~t’, implicit in both, is not conducive to ‘t’ through �. This is the 
purpose of the third condition. The attempt to introduce ‘t’ into RAA(M) fails because 
RAA cannot be employed to justify ‘t’. 
 
Example 9: a � ~b  b � ~c  c � ~a 
 
M1={a,b}, �(M1)={b}, RAA(M1)={a}, �2(M1) = {b,c}, �3(M1) = {c}, �4(M1)={a,c} ⊇ 
RAA(M1). The remaining Revised Stable Models, {a,c} and {b,c}, are similar to this 
one, by symmetry. 
 
It took us 4 iterations of � to get a superset of RAA(M) in a program with an odd loop of 
length 3. In general, a NLP with odds loops of length N will require ω = N+1 iterations 



of the � operator. Let us see why this is so. First we need to obtain the supported subset 
of M, which is �(M). The RAA(M) set is precisely the subset of M that does not 
intersect �(M), so under �(M) all literals in RAA(M) have truth-value ‘false’. Now we 
start iterating the � operator over �(M). Since the odd loop has length N, we need N 
iterations of � to finally make arise the set RAA(M). Hence we need the first iteration of 
� to get �(M) and then N iterations over �(M) to get RAA(M) leading us to ω = N+1. In 
general, if the odd loop lengths are decomposed into the primes {N1,…,Nm}, then the 
required number of iterations, besides the initial one, is the product of all the Ni. 
 
It may be argued that SM employs odd loops as integrity constraints (ICs), but the 
problem remains that in program composition unforeseen odd loops may appear. rSM 
treats ICs specifically, by means of odd loops involving a reserved literal ‘falsum’, 
whose truth is disallowed in every model, thereby separating the two issues, and so 
having it both ways. 
 
Definition 3 (Integrity Constraints): Incorporating Integrity Constraints (ICs) in a NLP 
under the Revised Stable Models semantics consists in adding a rule of the form 

falsum � an_IC, ~falsum 
 
for each IC. ‘falsum’ is a reserved atom, required to be false in all models. The ‘an_IC’ 
in the rule stands for a conjunction of literals, which must not be true, that form the IC. 
 
From the odd loop introduced this way it results that, whenever ‘an_IC’ is true, ‘falsum’ 
must be in the model, a contradiction. Consequently only models where ‘an_IC’ is false 
are allowed. Whereas in SM odd loops are used to express ICs, in rSM they are too, but 
using the reserved ‘falsum’ predicate. 
 
 
Transformations into normal programs 

Two program transformations are provided next, such that the SMs of the transformed 
program correspond exactly to the rSMs of the original one. 

Definition 4 (The RAA transformation) 
Consider M is some rSM of P. For each literal A in M – �(M) add to P the set O of rules 
of the form 

A � not_M 
 
to obtain program Podd, where not_M stands for the conjunction of default negations of 
each element NOT in M. The rules in O add to P, depending on context not_M, the 
atoms A exactly required to resolve odd loops which would otherwise prevent P from 
having a SM in that context. Since one can add to Podd the O rules for every context 
not_M, the Stable Models of the transformed program Podd = P U O are the rSM of 
Podd.  Moreover, one can add to Podd all such rules for all its models M. 
 
Example 10: Let P be a � b, ~a  b � ~c  c � ~b 
 
M1={c}, O1={}, M2={a,b}, O2={a � ~c}. O=O1 U O2, and the SMs of P U O are the 
rSMs of P. 
 



 
Theorem 1 – Correctness of RAA transformation: The RAA transformation is correct. 
 
Proof (sketch): (cf Appendix A – Theorems’ Proofs). 
 
Consequently, if one knew all alternative RAA sets for P, one could implement the rSM 
semantics via this transformation plus resorting to an implementation of SMs. But 
detecting the RAAs is not immediate. Hence this transformation is more of a theoretical 
interest, say for proving properties, namely that rSMs always exist (as there are no odd 
loops in the transformed program) and that they are cumulative (for the same reason) , as 
we shall do below. 
 
Definition 5 (The EVEN transformation): Next we provide a program transformation, 
EVEN: NLP � NLP, for a normal program P, so that M is a rSM of P iff M is a SM of 
the transformed program Pf, in respect to the intersection of the languages of P and Pf, 
and which maximizes new literals of the form L_f. Pf is the NLP resulting from the 
application of the EVEN transformation to the NLP P, where Pf  = EVEN(P)  iff: 
   EVEN(P) = Tf(P) ∪ Ct-tf(P) 
 
and Tf(P) is the result of substituting, in each rule of P, each default literal ~L in P by a 
new positive literal L_f not yet existent in P, and Ct-tf(P) is the  set of pairs of 
new rules of the form (creating even loops): 

  L � ~L_f L_f � ~L 
 
for each literal L with rules in P. Literals without rules in P are not translated into Ct-
tf(P) pairs. Instead, they are translated into L_f � , i.e. their correspondent negative 
literals are always true. These are the default literals necessarily true by CWA in all 
models. 
 
The basic ideas of the transformation are: 
 

1. No odd loops exist in Pf. 
2. Literals can have true or false values, by means of the newly introduced even 

loops between L and ~ L_f , but default literals without rules in P become true 
L_f  literals. 

3. Odd loops in P prevent assuming ~L_f . Eg. c � ~c translates into c � c_f 
which, together with the even loop  c � ~c_f    c_f � ~c , prevents assuming 
c_f , which would be self-defeating, I.e. assuming ‘c_f’ one has ‘c' by 
implication, but then ‘c_f’ is not supported by its only rule, c_f � ~c, and so 
cannot belong to the SM. 

4. Maximizing the L_f  literals guarantees the CWA.  
 
 
Example 11: 
a � ~b     EVEN(P) a �b_f              a � ~a_f     b � ~b_f       c � ~c_f 
b � ~a   ========> b � a_f              a_f � ~a     b_f � ~b       c_f � ~c 
c � a, ~c, ~d   c � a, c_f, d_f       d_f  � 
 
 



Theorem 2 – Correctness of the EVEN transformation: The EVEN transformation is 
correct. 
 
Proof (sketch): (cf Appendix A – Theorems’ Proofs). 
 
Example 12: Take now the program a � ~b , that translates into  a � b_f   plus the rule  
b_f �  , and the even loop for ‘a’ and ‘a_f’ (not shown). Note that no even loop between 
‘b’ and ‘b_f’ is required. If introduced, instead of b_f �, then one would have to 
maximize on L_f literals (for achieving the CWA) so the even loop would be resolved in 
favour of ‘b_f’. 

 

Properties 
 
Theorem 3 – Existence:  Every NLP has at least one Revised Stable Model. 
 
Proof (sketch): (cf Appendix A – Theorems’ Proofs). 
 
 
Theorem 4 – Stable Models extension:  Every Stable Model of an NLP is also a Revised 
Stable Model of it. 
 
Proof (sketch): (cf Appendix A – Theorems’ Proofs). 
 
SM does not deal with Odd Loops Over Negation, except to prohibit them, and that 
unfortunately ensures it does not enjoy desired properties such as Relevance. For 
example, take a program such as: 

c � a, ~c  a � ~b  b � ~a 
 
Although it has an SM={b} it is non-relevant, e.g. in order to find out the truth-value of 
the literal ‘a’ we cannot just to look below the rule dependency call graph for ‘a’, but 
need also to look at all other rules that depend on ‘a’, namely the first rule for ‘c’. This 
rule in effect prohibits any SM containing ‘a’ because of the odd loop in ‘c’ arising when 
‘a’ is true, i.e. ‘c � ~c’. Hence, as the example illustrates, no top down call graph based 
query method can exist for SM, because the truth of a literal potentially depends on all of 
a program’s rules. 
 
Relevance is the property that makes it possible to implement a top-down call-directed 
query-derivation proof-procedure – a highly desirable feature if one wants an efficient 
theorem-proving system that does not need to compute a whole model to answer a query. 
The non-relevance of Stable Models, however, is caused exclusively by the presence of 
odd loops over default negation, as these are the ones that may render unacceptable a 
partial model compatible with the call-graph below a literal. Even loops can 
accommodate the partial solution by veering one direction or the other. 
 
rSMs, by resolving odd loops in  favour of their heads, effectively preventing their 
constraining hold on literals permitting the loop, enjoys relevance, and is thus potentially 
amenable to top-down call-graph based query methods (and we shall touch upon one in 
the implementation section). These methods are designed to try and identify whether a 



query literal belongs to some rSM, and to produce the partial rSM supporting a positive 
answer, which can be potentially extended, because of relevance, to a full rSM. 
 
 
Theorem 5 – Relevance: The Revised Stable Models semantics is Relevant. 
 
Proof (sketch): (cf Appendix A – Theorems’ Proofs). 
 
 
Theorem 6 – Cumulativity: The Revised Stable Models semantics is Cumulative. 
 
Proof (sketch): (cf Appendix A – Theorems’ Proofs). 
 
 
Example 13: a � ~b  b � ~a, c  c � a 
 
There is a single SM1={a, c}. If ‘c �’ is added, then there is an additional SM2={b, c}, 
and cumulativity for SM fails because ‘a’ no longer belongs to the intersection of SMs. 
There are two rSM: rSM1=SM1={a, c} and rSM2={b}; ‘c �’ cannot be added. 
 
Cumulativity pertains to the intersection of models, which defines the SM and the rSM 
semantics. But seldom is this intersection used in practice, and SM implementations are 
focused on computing the set of models. 
 
Another but similar notion of cumulativity pertains to storing lemmas as a proof 
develops, giving rise to the techniques of memoizing and tabling in some Prolog and 
WFS systems. This is a nice property which ensures one can use old computation results 
from previous steps in a query-oriented derivation to speed up the computation of the 
rest of the query by avoiding redundant computations. This cumulativity presupposes a 
top-down call-graph oriented query derivation method exists, which is the case for rSM 
because it affords relevance, but not for SM. 
 
For this second type of cumulativity relevance is again essential because it guarantees 
that the truth of a literal depends only on the derivational context provided by the partial 
rSM supporting the derivation, namely the default literals which are true in it. 
Consequently, if a positive literal A is found true in context not_C standing for the 
conjunction of default literals true in it, then a rule may be added to that effect, namely A 
� not_C or, better still for efficiency, entered into a table. 
 
 
Implementation 
 
Since the Revised Stable Models semantics is Relevant (see proof sketch of Theorem 5 
above) it is possible to have a top-down call-directed query-derivation proof-procedure 
that implements it. 
 
One such procedure to find out (querying) if a literal A belongs to a Revised Stable 
Model M of a NLP P can be viewed as finding a derivational context, i.e. the truth-value, 
of the required default literals in the Herbrand base of P under that model M, such that A 
follows, plus the required literals true by RAA in that derivation. The first requirement is 



simply finding an abductive solution, considering all default negated literals as 
abducibles, that forms a default literal context which supports A. 
 
An already implemented system, tested, and with proven desirable properties – such as 
soundness and completeness –that can be adapted to provide both requirements is 
ABDUAL [3]. ABDUAL defines and implements abduction over the Well-Founded 
Semantics for extended logic programs (i.e.. normal programs plus explicit negation) 
with integrity constraints (ICs), by means of a query driven procedure. This proof 
procedure is also defined for computing Generalized Stable Models (GSM), i.e. NLPs 
plus ICs, by considering as abducibles all default literals, and imposing that each one 
must be abduced either true or false, in order to produce a 2-valued model.  
 
This is so because the ABDUAL procedure also accounts for the Generalized Stable 
Models (GSM) semantics and can evaluate abductive queries over GSM programs. 
ABDUAL needs to be adapted in two ways to compute partial rSMs in response to a 
query. First, the 2-valued ICs must be relaxed so that only default literals visited by a 
relevant query driven derivation are imposed 2-valuedness. Literals not visited remain 
unspecified, because the partial rSM obtained can always be extended to all default 
literals because of relevance. Second, ABDUAL must be adapted to detect literals 
involved in an odd loop with themselves, so that RAA can then be applied, thereby 
including such literals in the (consistent) set of abduced ones. The reserved ‘falsum’ 
literal is the exception to this, so that ICs can be implemented as explained before, 
including the ICs imposing 2-valuedness on rSMs. 
 
The publicly available interpreter for ABDUAL for XSB-Prolog is modifiable to comply 
with these requirements. A more efficient solution involves adapting XSB-Prolog to 
enforce the two requirements at a lower code level. (cf. [3] for the details). These 
alterations correspond, in a nutshell, to  small changes in the ABDUAL meta-interpreter. 
 
The EVEN transformation given can readily be used to implement rSM by resorting to 
some implementation of SM, such as the SMODELS or DLV systems. In that case full 
models are obtained and no query relevance can be enacted, of course. L_f are maximize 
by resorting to commands in these systems. 
 
 
Extensions 
 
Combination Revised Stable Models  
 
When a Normal Logic Program can be divided into two disjoint subprograms – no atom 
in one subprogram occurs in the other subprogram – it can make sense to consider as a 
model of the whole combined program the union of the disjoint Revised Stable Models 
of each of the subprograms. Combination Revised Stable Models (CrSMs) meet this 
requirement.  
 
Definition 6 (Combination Revised Stable Models):  
Let P be a NLP and P1 and P2 subprograms (subsets of rules) of P such that their sets of 
atoms are disjoint. Let M1 be a rSM of P1 and M2 one of P2. If there is a minimal model 



CRM of P such that RAA(CRMM) = RAA(M1) U RAA(M2), and ∃ ω≥2 �ω(CRM) ⊇ 
RAA(CRM), then M is a Combination Revised Stable Model of P.  
Now allow  CrSMs to be used also, iteratively, for the “construction” of other CrSMs. in 
the same way. The class of CrSMs is then forthwith defined. 
 
Example 14: Let is consider P as a � ~b  b � ~a, c  c � a 
    x � ~y  y � ~x, z  z � x 
 
Its rSM are M1={a,c,x,z}, �(M1) = {a,c,x,z}, RAA(M1) =  {} (M1 is the only SM) 
     M2 = {a,c,y},  �(M2) = {a,c}, RAA(M2) = {y} 
     M3 = {b,x,z},  �(M3) = {x,z}, RAA(M3) = {b} 
 
Its CrSMs include all the rSMs and also M4, the only other CrSM: 
     M4 = {b,y}, �(M4) = {}, RAA(M4) = {b,y} = RAA(M2) U RAA(M3) 
 
M4 is a minimal model, and �(�(M4)) = �(�({b,y})) = �({}) = {b,y} ⊇ RAA(M4) = 
{b,y}; so ∃ ω≥2 �ω(M4) ⊇ RAA(M4); ω = 2. 
 
Extended Logic Programs 
 
Extended LPs (ELPs) introduce explicit negation into the syntax of NLPs. Each positive 
atom may be preceded by ‘-‘, standing for explicit negation, whether in heads, bodies, or 
arguments of ‘nots’. Positive atoms and their explicit negations are collectively dubbed 
“objective literals”. For ELPs, SM semantics is replaced by Answer-Set semantics (AS) 
[6], coinciding with SM on NLPs. AS employs the same stability condition on the basis 
of the � operator as in SM, treating all objective literals as positive, and default literals 
as negative. 
 
Furthermore, its models (the Answer-Sets) must be non-contradictory, in the sense of not 
containing a positive atom and its explicit negation, otherwise a single model exists, and 
it is comprised of all objective literals, that is, from a contradiction everything follows. 
Note that Answer-Sets (ASs) need not contain an atom or its explicit negation, that is, 
explicit negation does not comply with the Excluded Middle principle, like classical 
negation does. Furthermore, it is a property of AS that, for any ‘L’ of the form ‘A’ or ‘-
A’ where ‘A’ is a positive atom, if ‘-L’ is true then ‘not L’ is true as well (Coherence). 
 
Definition 7 (Extension to Answer-Sets – Revised Answer-Sets (rAS)): rSM can be 
naturally applied to ELPs, by extending AS in a similar way as for SM, thereby 
obtaining rAS (Revised Answer Sets), which does away with odd loops but not the 
contradictions brought about by explicit negation. The same definition conditions apply 
as for rSM, plus the same proviso on contradictory models as in AS (if a contradiction 
exists there is a single rAS model comprised of the whole Herbrand base). The 
consequences are therefore similar too.  
 
Example 15: Under rSM, let P be a � ~b  b � ~c  c � ~a 
 
The rSMs of P are {a, b}, {b, c}, and {a, c}.  If we consider instead the rAS setting and a 
slightly different version of the program with explicit negation (replacing ‘c’ with ‘-a’), 
under rAS let P’ be 



   a � ~b  b � ~ -a  -a � ~a 
 
The rASs of P’ are {a, b} and {b,-a}; the correspondent {a,-a} from P is rejected under 
rAS because it is contradictory. 
 
Example 16: Under rSM, let P be a � ~a  b � ~b 
 
The rSM of P is just {a, b}.  If we consider instead the rAS setting and a slightly 
different version of the program with explicit negation (replacing ‘b’ with ‘-a’), under 
rAS let P’ be 
   a � ~a  -a � ~-a 
 
there will be no non-contradictory rASs since the only possible correspondent candidate 
is {a,-a}.   
 
Other extensions are described in the Appendix B. 
 
 
Conclusions and future work 
 
Having defined a new 2-valued semantics for normal logic programs, and having 
proposed more general semantics for several language extensions, much remains to be 
explored, in the way of properties, comparisons, implementations, and applications, 
contrasting its use to other semantics employed heretofore for knowledge representation 
and reasoning. 
 
The fact that rSM includes SMs and the virtue that it always exists and admits top-down 
querying is a novelty that may make us look anew at the use of 2-valued semantics of 
normal programs for knowledge representation and reasoning [1]. 
 
Worth exploring is the integration of rSM with abduction, whose nature begs for 
relevance, and seamlessly coupling 3-valued WFS (and extensions) implementation such 
as XSB-Prolog, with 2-valued rSM implementations, such as the modified ABDUAL or 
the EVEN transformation, so as to combine virtues of both bringing closer together the 
2- and 3-valued logic programming communities. 
 
Another avenue is in using rSM and its extensions, in contrast to SM based ones, as an 
alternative base semantics for updatable and self-evolving programs [5, 2] so that model 
inexistence after an update may be prevented in a variety of cases. This may be of 
significance to semantic web reasoning, a context in which programs may be being 
updated and combined dynamically from a variety of sources. 
rSM implementation, in contrast to SM’s ones, because of its relevance property can 
avoid the need to compute whole models and all models, and hence the need for 
groundness and the difficulties it begets for problem representation. Naturally it raises 
problems of constructive negation, but these are not specific to or begotten by it. 
Because it can do without groundness, meta-interpreters become a usable tool and 
enlarge the degree of freedom in problem solving. 
 
In summary, rSM has to be put the test of becoming a usable and useful tool. And first of 
all by persuading researchers that it is worth using, and worth pursuing its challenges. 
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Appendixes 
 
Appendix A – Theorems’ Proofs 
 
Theorem 1 – Correctness of RAA transformation: The RAA transformation is correct. 
 
Proof (sketch): The RAA atoms A introduced by set of rules O, are so introduced just in 
case its corresponding context not_M is in force. Thus if there exists a SM model of 
Podd containing not_M it will be exactly one, M. The reason it exists is that all odd 
loops appearing in context not_M in P are resolved by definition, by including in M the 
corresponding RAA literals provided by the rules O. The truth of these literals justifies 
the non-inclusion in M of their corresponding defaults. Since there are no odd loops in 
context not_M, and all RAA literals are now supported, just like the others, M will be a 
SM of Podd. This being valid for any context not_M, the SMs of Podd coincide with the 
rSMs of P. QED 
 
Theorem 2 – Correctness of the EVEN transformation: The EVEN transformation is 
correct. 
 
Proof (sketch): The EVEN transformation retains all candidate model possibilities, by 
introducing an even loop between every literal with rules and its default negation, the 
latter now expressed as a positive literal. It is these independent even loops that, by 
themselves alone, allow for all oscillation combinations of such literals and their 
defaults. When they are joined to the remaining rules of the transformation, two issues 
have to be taken care of. One is that CWA be achieved by the simpler transformation for 
literals without rules. Defaults of literals with rules, are either made false by their 
positive counterparts, or else participate in even or odd loops. The even loops will allow 
them to oscillate. The odd loops constitute the second issue. By the nature of the 
transformation, an odd loop actually obtaining between a literal and its default gives rise 
to a choice on how the even loop between their translations is broken because L_f will 
imply L (cf example above). If L is true anyway by other rules, no harm is done; 
otherwise the RAA duly takes place. And this occurs only on a by need basis. 
Consequently, the SMs of the transformed program will correspond to the rSMs of the 
original program, once the vocabulary translation is reversed. Because of the CWA 
transformation rule, only those SMs maximizing the L_f are retained. QED 
 
Theorem 3 – Existence:  Every NLP has at least one Revised Stable Model. 
 
Proof (sketch): We visit in turn the three defining conditions of rSM. Every NLP has at 
least one minimal classical model M, with its corresponding Γ(M). And at least one such 
Γ(M) will be maximal. If for some or all M M=Γ(M) then RAA(M)={}, and the third 
conditions is trivially satisfied. Otherwise, if M=Γ(M) for no M then there are no SMs. 
And so there exists at least one odd loop over default negation justifying this, for even 
loops alone cannot prevent the existence of SMs, as even loops can always go one way 
or the other or both, as proven in [8]. Accordingly, there exists at least one non-empty 
RAA(M) which is the head of an odd loop. For all such elements in RAA(M) the third 
condition is satisfied, for it detects whether such heads are supported on their defaults, in 
the context of the remaining model. QED 



 
Theorem 4 – Stable Models extension:  Every Stable Model of an NLP is also a Revised 
Stable Model of it. 
 
Proof (sketch): The three defining conditions of rSM are satisfied by all SMs. Every SM 
is a minimal classical model. No SM is a subset of another, hence all are maximal with 
respect to one another. No SM is a subset of a non-SM rSM, and hence all are maximal 
with respect to them, the reason being as follows: for any non-SM rSM its RAA(M) is 
non-empty, corresponding to least one resolved odd loop; but in any SM this loop is 
broken, otherwise the SM would not exist; consequently, no SM is compatible with a 
non-SM rSM. For SMs RAA(M) is empty, and so for them the third condition is trivially 
true. QED 
 
Theorem 5 – Relevance: The Revised Stable Models semantics is Relevant. 
 
Proof (sketch): The semantically equivalent and correct RAA program transformation 
above does away with odd loops over negation. This is so because any context ‘not_M’ 
where such a loop occurs, for say head ‘A’, gives rise to a new rule ‘A � not_M’ which 
makes ‘A’ true in that context, thereby sidetracking the loop. Consequently, only even 
loops above a query might remain active. But these, as we have remarked, can adapt to 
the constraints imposed on them by the query result. QED 
 
Theorem 6 – Cumulativity: The Revised Stable Models semantics is Cumulative. 
 
Proof (sketch): First recall some formal property definitions that will be used, where T |= 
A signifies that A belongs to all SMs of T, i.e. their intersection. 
 

Monotonicity: T |= A => T U {B} |= A 
Weak or Cautious Monotonicity: T |= A and T |= B => T U {B} |= A 
Cumulativity: T |= B => ( T |= A <=> T U {B} |= A ) 
Cut: T |= B and T U {B} |= A => T |= A 
Cautious Monotonicity plus Cut equals Cumulativity. SM semantics enjoy Cut. 
[7]. 
 

As the SM semantics enjoys the Cut, and since the SMs of program Pood, in the RAA 
program transformation, are equivalent to the rSMs of P, it suffices to prove that the 
SMs of Pood also enjoy the Cautious Monotonicity, in order to prove the Cumulativity 
of rSM. Let M be a Stable Model of Pood and A and B any elements of M. Pood has no 
odd loops over negation, as argued in the proof about Relevance. But only odd loops can 
prevent the appearance of models, or make new models appear because they are no 
longer prevented. Consequently, adding literals in the intersection is not going to change 
any of the existing models, or add or subtract to the set of models. Thus their intersection 
remains the same and cumulativity is warranted. QED 
 



Appendix B – Other Extensions 
 
Revision Revised Answer Sets (rrAS) 
 
An open issue is how to apply RAA to revise contradictions based on default 
assumptions, not just removing odd loops, defining then what might be called rrAS 
(Revision Revised AS). Thus instead of “exploding” a contradictory model into the 
Herbrand base, one would like to minimally revise default assumptions so that no 
contradiction appears in a model. Here is the definition, which needs only enhance the 
first condition of rSM: 
 
Definition 7 (Revision Revised Answer Sets): M is a Revision Revised Answer Set of an 
Extended Logic Program P iff, where M= �(M) U RAA(M) RAA(M)=RAA1 U RAA2: 
 

• M is a minimal (classical) model, with respect to objective literals, where no pair 
<L, -L> is allowed) 

• �(M) is maximal, or RAA(M) is minimal not counting any RAA(M)={}, within 
their own kind 

• ∃ RAA1, RAA2, L s.t. ∃ ω≥2 �ω(RAA1) ⊇ RAA1 and ∃ ω≥2 �ω(M-RAA2) ⊇ {L, 
-L} 

 
Example 16: Let P be {-a � ~b; a � ~b; c � ~c}. The only rrAS is {b,c}. How is ‘b’ 
supported? According to RAA, in general, when a set of assumptions leads to 
contradiction, they should be revised. In our case, the assumptions are default literals, 
and the revision is 2-valued. Since there is only one assumption in this example, ‘~b’, it 
is revised to ‘b’. RAA(M)={b,c}, RAA1={c}, RAA2={b}. 
 
In our case, one wants minimal revisions since defaults are to be maximized. Sure, one 
revision may lead to a new contradiction, as in the case above if ‘b’ itself implied a 
contradiction. In that case there would be no model, a definite possibility when one is 
dealing with hard contradictions. But our definition already foresees that no 
contradictions are allowed, whatever revisions are in force. How do we know which 
literals were revised? Well those in RAA(M): they are the result of odd loop 
inconsistency resolution, or non �-supported revision atoms, or both. But these must be 
there by need, that is, they actually are necessary for some contradiction avoidance. 
 
 
Generalized Logic Programs, their Stable Models semantics (GLP) and their Revised 
Stable Models semantics (rGLP) 
 
Generalized LPs (GLPs) introduce default negated heads into the syntax of NLPs. For 
GLPs, SM semantics is replaced by GLP, coinciding with SM on NLPs [5]. It will be 
convenient to syntactically represent generalized logic programs as propositional Horn 
theories. In particular, we will represent default negation ‘not A’ as a standard 
propositional variable (atom). Suppose that K is an arbitrary set of propositional 
variables whose names do not begin with a ‘not‘. By the propositional language LK 
generated by the set K we mean the language L whose set of propositional variables 
consists of: {A : A ∈K} U {not A : A ∈ K}.  Atoms A ∈ K, are called objective atoms 



while the atoms ‘not A’ are called default atoms. From the definition it follows that the 
two sets are disjoint. 
 
By a generalized logic program P in the language LK we mean a finite or infinite set of 
propositional Horn clauses of the form   L  � L1 , . . . , Ln  where L and Li are atoms 
from LK. If all the atoms L appearing in heads of clauses of P are objective atoms, then 
we say that the logic program P is normal. Consequently, from a syntactic standpoint, a 
logic program is simply viewed as a propositional Horn theory. However, its semantics 
significantly differs from the semantics of classical propositional theories and is 
determined by the class of stable models defined below.  
 
By a (2-valued) interpretation M of LK we mean any set of atoms from LK that satisfies 
the condition that, for any A in K, precisely one of the atoms A or not A belongs to M . 
Given an interpretation M we define: 
 

M+ = {A ∈ K : A ∈ M}   M- = {not A : not A ∈ M} = {not A : A ∉M}. 
 

By a (2-valued) model M= M+ U M- of a generalized logic program P we mean a 
(2-valued) interpretation of P that satisfies all of its clauses. A program is called 
consistent if it has a model. A model M is considered smaller than a model N if the set of 
objective atoms of M is properly contained in the set of objective atoms of N. A model 
of P is called minimal if there is no smaller model of P. A model of P is called least if it 
is the smallest model of P. It is well-known that every consistent program P has the least 
model M = {A : A is an atom and P |= A}.  
 
Definition 8 (Stable models of generalized logic programs): We say that a (2-valued) 
interpretation M of LK is a stable model of a generalized logic program P if M is the 
least model of the Horn theory P U M- : 
 

M = Least(P U M-) or, equivalently, if M = {A : A is an atom and P U M- |= A} 
. 
 
 
Revised GLP semantics (rGLP) 
 
Definition 9 (Revised Generalized Logic Program models): M is a Revised SM model of 
a GLP program P, where we let RAA(M) ≡ M – Least(P U M-), iff : 
 

• M = M+ U M-  is a minimal (classical) model, with respect to objective 
literals (no inconsistent pair <L, not L>  allowed) 

• Least(P U M-) is maximal, or RAA(M) is minimal not counting any 
RAA(M)={}, within their own kind 

• [Least(M - RAA(M) U not RAA(M)] ⊇ RAA(M), where ‘not RAA(M)’ 
stands for the set of negated elements in RAA(M) 

 
These conditions are just adaptations of the rSM conditions for the GLP syntax and 
semantics. The third condition in particular states that the elements of RAA(M), those 
essential to resolve odd loops, must be obtainable through a Least operation on the set 



resulting from deleting them from M and adding instead their default negations, which 
now the syntax allows. No matter that the resulting set is inconsistent, the test simply 
aims at checking that the RAA(M) atoms are indeed supported on their negations. 


