
Constrained CP-nets

Steve Prestwich1, Francesca Rossi2, Kristen Brent Venable2, Toby Walsh1

1: Cork Constraint Computation Centre, University College Cork, Ireland. Email:
s.prestwich@cs.ucc.ie, tw@4c.ucc.ie

2: Department of Pure and Applied Mathematics, University of Padova, Italy. Email:
{frossi,kvenable}@math.unipd.it.

Abstract. We present a novel approach to deal with preferences expressed as a
mixture of hard constraints, soft constraints, and CP-nets. We construct a set of
hard constraints whose solutions are the optimal solutions of the set of prefer-
ences, where optimal is defined differently w.r.t. other approaches [2, 7]. The new
definition of optimality introduced in this paper, allows us to avoid dominance
testing (is one outcome better than another?) which is a very expensive opera-
tion often used when finding optimal solutions or testing optimality, while being
reasonable and intuitive. We also show how hard constraints can sometimes elim-
inate cycles in the preference ordering. Finally, we extend this approach to deal
with the preferences of multiple agents. This simple and elegant technique per-
mits conventional constraint and SAT solvers to solve problems involving both
preferences and constraints.

1 Introduction

Preferences and constraints are ubiquitous in real-life scenarios. We often have hard
constraints (as “I must be at the office before 9am”) as well as some preferences (as
“I would prefer to be at the office around 8:30am” or “I would prefer to go to work
by bicycle rather than by car”). Whilst formalisms to represent and reason about hard
constraints are relatively stable, having been studied for over 20 years [5], preferences
have not received as much attention until more recent times. Among the many existing
approaches to represent preferences, we will consider CP-nets [6, 3], which is a quali-
tative approach where preferences are given by ordering outcomes (as in “I like meat
over fish”) and soft constraints [1], which is a quantitative approach where preferences
are given to each statement in absolute terms (as in “My preference for fish is 0.5 and
for meat is 0.9”).

It is easy to reason with hard and soft constraints at the same time, since hard con-
straints are just a special case of soft constraints. Much less is understood about rea-
soning with CP-nets and (hard or soft) constraints. One of our aims is to tackle this
problem. We will define a structure called a constrained CP-net. This is just a CP-net
plus a set of hard constraints. We will give a semantics for this structure (based on the
original flipping semantics of CP-nets) which gives priority to the hard constraints. We
will show how to obtain the optimal solutions of such a constrained CP-net by com-
piling the preferences into a set of hard constraints whose solutions are exactly the
optimal solutions of the constrained CP-net. This allows us to test optimality in linear

time, even if the CP-net is not acyclic. Finding an optimal solution of a constrained CP
net is NP-hard1 (as it is in CP-nets and in hard constraints).

Prior to this work, to test optimality of a CP-net plus a set of constraints, we had
to find all solutions of the constraints (which is NP-hard) and then test if any of them
dominate the solution in question [2]. Unfortunately dominance testing is not known
to be in NP even for acyclic CP-nets, as we may have to explore chains of worsening
flips that are exponentially long. By comparison, we do not need to perform dominance
testing in our approach. Our semantics is also useful when the CP-net defines a prefer-
ence ordering that contains cycles, since the hard constraints can eliminate these cycles.
Lastly, since we compile preferences down into hard constraints, we can use standard
constraint solving algorithms (or SAT algorithms if the variables have just two values)
to reason about preferences and constraints, rather than develop special purpose algo-
rithms for constrained CP-nets (as in [2]). We also consider when a CP-net is paired
with a set of soft constraints, and when there are several CP-nets, and sets of hard or
soft constraints. In all these cases, optimal solutions can be found by solving a set of
hard or soft constraints, avoiding dominance testing.

2 Background

2.1 CP-nets

In many applications, it is natural to express preferences via generic qualitative (usually
partial) preference relations over variable assignments. For example, it is often more
intuitive to say “I prefer red wine to white wine”, rather than “Red wine has preference
0.7 and white wine has preference 0.4”. The former statement provides less information,
but does not require careful selection of preference values. Moreover, we often wish to
represent conditional preferences, as in “If it is meat, then I prefer red wine to white”.
Qualitative and conditional preference statements are thus useful components of many
applications.

CP-nets [6, 3] are a graphical model for compactly representing conditional and
qualitative preference relations. They exploit conditional preferential independence by
structuring an agent’s preferences under theceteris paribusassumption. Informally, CP-
nets are sets ofconditional ceteris paribus (CP)preference statements. For instance,
the statement“I prefer red wine to white wine if meat is served.”asserts that, given two
meals that differonly in the kind of wine servedand both containing meat, the meal
with a red wine is preferable to the meal with a white wine. Many users’ preferences
appear to be of this type.

CP-nets bear some similarity to Bayesian networks. Both utilize directed graphs
where each node stands for a domain variable, and assume a set of featuresF =
{X1, . . . , Xn} with finite domainsD(X1), . . . ,D(Xn). For each featureXi, each user
specifies a set ofparent featuresPa(Xi) that can affect her preferences over the val-
ues ofXi. This defines a dependency graph in which each nodeXi hasPa(Xi) as

1 More precisely it is in FNP-hard, since it is not a decision problem. In the rest of the paper we
will write NP meaning FNP when not related to decision problems.

its immediate predecessors. Given this structural information, the user explicitly speci-
fies her preference over the values ofXi for each complete outcomeonPa(Xi). This
preference is assumed to take the form of total or partial order overD(X) [6, 3].

For example, consider a CP-net whose features areA, B, C, andD, with binary
domains containingf andf if F is the name of the feature, and with the preference
statements as follows:a � a, b � b, (a∧ b)∨ (a∧ b) : c � c, (a∧ b)∨ (a∧ b) : c � c,
c : d � d, c : d � d. Here, statementa � a represents the unconditional preference for
A = a overA = a, while statementc : d � d states thatD = d is preferred toD = d,
given thatC = c.

The semantics of CP-nets depends on the notion of a worsening flip. A worsening
flip is a change in the value of a variable to a value which is less preferred by the CP
statement for that variable. For example, in the CP-net above, passing fromabcd toabcd
is a worsening flip sincec is better thanc givena andb. We say that one outcomeα is
better than another outcomeβ (written α � β) iff there is a chain of worsening flips
fromα to β. This definition induces a strict partial order over the outcomes. In general,
there may be many optimal outcomes. However, in acyclic CP-nets (that is, CP-nets
with an acyclic dependency graph), there is only one.

Several types of queries can be asked about CP-nets. First, given a CP-net, what are
the optimal outcomes? For acyclic CP-nets, such a query is answerable in linear time [6,
3]: we forward sweep through the CP-net, starting with the unconditional variables, fol-
lowing the arrows in the dependency graph and assigning at each step the most preferred
value in the preference table. For instance, in the CP-net above, we would chooseA = a
andB = b, thenC = c and thenD = d. The optimal outcome is thereforeabcd. The
same complexity also holds for testing whether an outcome is optimal since an acyclic
CP-net has only one optimal outcome. We can find this optimal outcome (in linear time)
and then compare it to the given one (again in linear time). On the other hand, for cyclic
CP-nets, both finding and testing optimal outcomes is NP-hard.

The second type of query is a dominance query. Given two outcomes, is one better
than the other? Unfortunately, this query is NP-hard even for acyclic CP-nets. Whilst
tractable special cases exist, there are also acyclic CP-nets in which there are expo-
nentially long chains of worsening flips between two outcomes. In the CP-net of the
example,abcd is worse thanabcd.

2.2 Soft and hard constraints

There are several formalisms for describingsoft constraints. We use the c-semi-ring
formalism [1] as this generalizes most of the others. In brief, a soft constraint associates
each instantiation of its variables with a value from a partially ordered set. We also
supply operations for combining (×) and comparing (+) values. A semi-ring is a tuple
〈A,+,×,0,1〉 such that:A is a set and0,1 ∈ A; + is commutative, associative and
0 is its unit element;× is associative, distributes over+, 1 is its unit element and0
is its absorbing element. Ac-semi-ringis a semi-ring〈A,+,×,0,1〉 in which + is
idempotent,1 is its absorbing element and× is commutative.

Let us consider the relation≤ overA such thata ≤ b iff a + b = b. Then≤ is
a partial order,+ and× are monotone on≤, 0 is its minimum and1 its maximum,
〈A,≤〉 is a complete lattice and, for alla, b ∈ A, a + b = lub(a, b). Moreover, if× is

idempotent:+ distributes over×; 〈A,≤〉 is a complete distributive lattice and× its glb.
Informally, the relation≤ compares semi-ring values and constraints. Whena ≤ b, we
say thatb is better than a. Given a semi-ringS = 〈A,+,×,0,1〉, a finite setD (variable
domains) and an ordered set of variablesV , asoft constraintis a pair〈def , con〉 where
con ⊆ V anddef : D|con| → A. A constraint specifies a set of variables, and assigns
to each tuple of values of these variables an element of the semi-ring.

A soft constraint satisfaction problem(SCSP) is given by a set of soft constraints.
A solution to an SCSP is a complete assignment to its variables, and the preference
value associated with a solution is obtained by multiplying the preference values of
the projections of the solution to each constraint. A solution is better than another if
its preference value is higher in the partial order of the semi-ring. Finding an optimal
solution for an SCSP is NP-hard. On the other hand, given two solutions, checking
whether one is preferable to another is straightforward: compute the semi-ring values
of the two solutions and compare the resulting two values.

Each semiring identifies a class of soft constraints. For example, fuzzy CSPs are SC-
SPs over the semiringSFCSP = 〈[0, 1],max,min, 0, 1〉. This means that preferences
are over [0,1], and that we want to maximize the minimum preference over all the con-
straints. Another example is given by weighted CSPs, which are just SCSPs over the
semiringSweight = 〈R,min,+, 0,+∞〉, which means that preferences (better called
costs here) are real numbers, and that we want to minimize their sum.

Note that hard constraints are just a special class of soft constraints: those over the
semiringSCSP = 〈{false, true},∨,∧, false, true〉, which means that there are just
two preferences (false andtrue), that the preference of a solution is the logicaland
of the preferences of their subtuples in the constraints, and that true is better than false
(ordering induced by the logicalor operation∨).

3 Constrained CP-nets

We now define a structure which is a CP-net plus a set of hard constraints. In later sec-
tions we will relax this concept by allowing soft constraints rather than hard constraints.

Definition 1 (constrained CP-net).A Constrained CP-net is a CP-net plus some con-
straints on subsets of its variables. We will thus write a constrained CP-net as a pair
〈N,C〉, whereN is a set of conditional preference statements defining a CP-net andC
is a set of constraints.

The hard constraints can be expressed by generic relations on partial assignments
or, in the case of binary features, by a set of Boolean clauses. As with CP-nets, the basis
of the semantics of constrained CP-nets is the preference ordering,�, which is defined
by means of the notion of a worsening flip. A worsening flip is defined very similarly
to how it is defined in a regular (unconstrained) CP-net.

Definition 2 (O1 � O2). Given a constrained CP-net〈N,C〉, outcomeO1 is better
than outcomeO2 (writtenO1 � O2) iff there is a chain of flips fromO1 to O2, where
each flip is worsening forN and each outcome in the chain satisfiesC.

The only difference with the semantics of (unconstrained) CP-nets is that we now
restrict ourselves to chains offeasibleoutcomes. As we show shortly, this simple change
has some very beneficial effects. First, we observe that the� relation remains a strict
partial ordering as it was for CP-nets [6, 3]. Second, it is easy to see that checking if
an outcome is optimal is linear (we merely need to check it is feasible and any flip is
worsening). Third, if a set of hard constraints are satisfiable and a CP-net is acyclic,
then the constrained CP-net formed from putting the hard constraints and the CP-net
together must have at least one feasible and undominated outcome. In other words,
adding constraints to an acyclic CP-net does not eliminate all the optimal outcomes
(unless it eliminates all outcomes). Compare this to [2] where adding constraints to a
CP-net may make all the undominated outcomes infeasible while not allowing any new
outcomes to be optimal. For example, if we haveO1 � O2 � O3 in a CP-net, and
the hard constraints makeO1 infeasible, then according to our semanticsO2 is optimal,
while according to the semantics in [2] no feasible outcome is optimal.

Theorem 1. A constrained and acyclic CP-net either has no feasible outcomes or has
at least one feasible and undominated outcome.

Proof. Take an acyclic constrained CP-net〈N,C〉. N induces a preference ordering
that contains no cycles and has exactly one most preferred outcome, sayO. If O is
feasible, it is optimal for〈N,C〉. If O is infeasible, we move down the preference
ordering until at some point we hit the first feasible outcome. This is optimal for〈N,C〉.

ut

4 An example

We will illustrate constrained CP-nets by means of a simple example. This example
illustrates that adding constraints can eliminate cycles in the preference ordering defined
by the CP-net. This is not true for the semantics of [6], where adding hard constraints
cannot break cycles.

Suppose I want to fly to Australia. I can fly with British Airways (BA) or Singapore
Airlines, and I can choose between business or economy. If I fly Singapore, then I prefer
to save money and fly economy rather than business as there is good leg room even in
economy. However, if I fly BA, I prefer business to economy as there is insufficient
leg room in their economy cabin. If I fly business, then I prefer Singapore to BA as
Singapore’s inflight service is much better. Finally, if I have to fly economy, then I
prefer BA to Singapore as I collect BA’s airmiles. If we usea for British Airways,a
for Singapore Airlines,b for business, andb for economy then we have:a : b � b,
a : b � b, b : a � a, andb : a � a.

This CP-net has chains of worsening flips which contain cycles. For instance,ab �
ab � ab � ab � ab. That is, I prefer to fly BA in business (ab) than BA in economy
(ab) for the leg room, which I prefer to Singapore in economy (ab) for the airmiles,
which I prefer to Singapore in business (ab) to save money, which I prefer to BA in
business (ab) for the inflight service. According to the semantics of CP-nets, none of
the outcomes in the cycle is optimal, since there is always another outcome which is
better.

Suppose now that my travel budget is limited, and that whilst Singapore offers no
discounts on their business fares, I have enough airmiles with BA to upgrade from
economy. I therefore add the constraint that, whilst BA in business is feasible, Singapore
in business is not. That is,ab is not feasible. In this constrained CP-net, according to
our new semantics, there is no cycle of worsening flips as the hard constraints break the
chain by makingab infeasible. There is one feasible outcome that is undominated, that
is, ab. I fly BA in business using my airmiles to get the upgrade. I am certainly happy
with this outcome.

Notice that the notion of optimality introduced in this paper gives priority to the
constraints with respect to the CP-net. In fact, an outcome is optimal if it is feasible
and it is undominated in the constrained CP-net ordering. Therefore, while it is not
possible for an infeasible outcome to be optimal, it is possible for an outcome which is
dominated in the CP-net ordering to be optimal in the constrained CP-net.

5 Finding optimal outcomes

We now show how to map any constrained CP-net onto an equivalent constraint satis-
faction problem containing just hard constraints, such that the solutions of these hard
constraints corresponds to the optimal outcomes of the constrained CP-net. The ba-
sic idea is that each conditional preference statement of the given CP-net maps onto
a conditional hard constraint. For simplicity, we will first describe the construction for
Boolean variables. In the next section, we will pass to the more general case of variables
with more than two elements in their domain.

Consider a constrained CP-net〈N,C〉. Since we are dealing with Boolean variables,
the constraints inC can be seen as a set of Boolean clauses, which we will assume are in
conjunctive normal form. We now define theoptimality constraints for 〈N,C〉, written
asN⊕bC where the subscriptb stands for Boolean variables, asC∪{optC(p) | p ∈ N}.
The functionopt maps the conditional preference statementϕ : a � a onto the hard
constraint:

(ϕ ∧
∧

ψ∈C,a∈ψ

ψ|a=true) → a

whereψ|a=true is the clauseψ where we have deleteda. The purpose ofψ|a=true is
to model what has to be true so that we can safely assigna to true, its more preferred
value.

To return to our flying example, the hard constraints forbidb anda to be simulta-
neously true. This can be written as the clausea ∨ b. Hence, we have the constrained
CP-net〈N,C〉whereN = {a : b � b, a : b � b, b : a � a. b : a � a} andC = {a∨b}.
The optimality constraints corresponding to the given constrained CP-net are therefore
a ∨ b plus the following clauses:

(a ∧ a) → b (b ∧ b) → a

a→ b b→ a

The only satisfying assignment for these constraints isab. This is also the only optimal
outcome in the constrained CP-net. In general, the satisfying assignments of the opti-

mality constraints are exactly the feasible and undominated outcomes of the constrained
CP-net.

Theorem 2. Given a constrained CP-net〈N,C〉 over Boolean variables, an outcome is
optimal for〈N,C〉 iff it is a satisfying assignment of the optimality constraintsN⊕bC.

Proof. (⇒) Consider any outcomeO that is optimal. Suppose thatO does not satisfy
N⊕C. ClearlyO satisfiesC, since to be optimal it must be feasible (and undominated).
ThereforeO must not satisfy someoptC(p) wherep ∈ N . The only way an implication
is not satisfied is when the hypothesis istrueand the conclusion isfalse. That is,O ` ϕ,
O ` ψ|a=true andO ` a wherep = ϕ : a � a. In this situation, flipping froma to a
would give us a new outcomeO′ such thatO′ ` a and this would be an improvement
according top. However, by doing so, we have to make sure that the clauses inC
containinga may now not be satisfied, since nowa is false. However, we also have that
O ` ψ|a=true, meaning that ifa is false these clauses are satisfied. Hence, there is an
improving flip to another feasible outcomeO′. ButO was supposed to be undominated.
Thus it is not possible thatO does not satisfyN⊕bC. ThereforeO satisfies alloptC(p)
wherep ∈ N . Since it is also feasible,O is a satisfying assignment ofN ⊕b C.

(⇐) Consider any assignmentO which satisfiesN ⊕b C. Clearly it is feasible as
N ⊕b C includesC. Suppose we perform an improving flip inO. Without loss of
generality, consider the improving flip froma to a. There are two cases. Suppose that
this new outcome is not feasible. Then this new outcome does not dominate the old one
in our semantics. ThusO is optimal. Suppose, on the other hand, that this new outcome
is feasible. If this is an improving flip, there must exist a statementϕ : a � a in N
such thatO ` ϕ. By assumption,O is a satisfying assignment ofN ⊕b C. Therefore
O ` opt(ϕ : a � a). SinceO ` ϕ andO ` a, and true is not allowed to imply
false, at least oneψ|a=true is not implied byO whereψ ∈ C anda ∈ ψ. However,
as the new outcome is feasible,ψ has to be satisfied independent of how we seta.
Hence,O ` ψ|a=true. As this is a contradiction, this cannot be an improving flip. The
satisfying assignment is therefore feasible and undominated. ut

It immediately follows that we can test for feasible and undominated outcomes in
linear time in the size of〈N,C〉: we just need to test the satisfiability of the optimality
constraints, which are as many as the constraints inC and the conditional statements
in N . Notice that this construction works also for regular CP-nets without any hard
constraints. In this case, the optimality constraints are of the formϕ → a for each
conditional preference statementϕ : a � a.

It was already known that optimality testing in acyclic CP-nets is linear [6]. How-
ever, our construction also works with cyclic CP-nets. Therefore optimality testing for
cyclic CP-nets has now become an easy problem, even if the CP-nets are not con-
strained. On the other hand, determining if a constrained CP-net has any feasible and
undominated outcomes is NP-complete (to show completeness, we map any SAT prob-
lem directly onto a constrained CP-net with no preferences). Notice that this holds also
for acyclic CP-nets, and finding an optimal outcome in an acyclic constrained CP-net is
NP-hard.

6 Non-Boolean variables

The construction in the previous section can be extended to handle variables whose
domain contains more than 2 values. Notice that in this case the constraints are no
longer clauses but regular hard constraints over a set of variables with a certain domain.
Given a constrained CP-net〈N,C〉, consider any conditional preference statementp
for featurex in N of the formϕ : a1 � a2 � a3. For simplicity, we consider just
3 values. However, all the constructions and arguments extend easily to more values.
The optimality constraints corresponding to this preference statement (let us call them
optC(p)) are:

ϕ ∧ (Cx ∧ x = a1) ↓var(Cx)−{x}→ x = a1

ϕ ∧ (Cx ∧ x = a2) ↓var(Cx)−{x}→ x = a1 ∨ x = a2

whereCx is the subset of constraints inC which involve variablex 2, and↓ X projects
onto the variables inX. The optimality constraints corresponding to〈N,C〉 are again
N ⊕ C = C ∪ {optC(p) | p ∈ N}. We can again show that this construction gives a
new problem whose solutions are all the optimal outcomes of the constrained CP-net.

Theorem 3. Given a constrained CP-net〈N,C〉, an outcome is optimal for〈N,C〉 iff
it is a satisfying assignment of the optimality constraintsN ⊕ C.

Proof. (⇒) Consider any outcomeO that is optimal. Suppose thatO does not satisfy
N ⊕ C. ClearlyO satisfiesC, since to be optimal it must be feasible (and undomi-
nated). ThereforeO must not satisfy someoptC(p) wherep preference statement inN .
Without loss of generality, let us consider the optimality constraintsϕ ∧ (Cx ∧ x =
a1) ↓var(Cx)−{x}→ x = a1 andϕ ∧ (Cx ∧ x = a2) ↓var(Cx)−{x}→ x = a1 ∨ x = a2

corresponding to the preference statementϕ : a1 � a2 � a3. The only way an im-
plication is not satisfied is when the hypothesis istrue and the conclusion isfalse.
Let us take the first implication:O ` ϕ, O ` (Cx ∧ x = a1) ↓var(Cx)−{x} and
O ` (x = a2 ∨ x = a3). In this situation, flipping from(x = a2 ∨ x = a3) to x = a1

would give us a new outcomeO′ such thatO′ ` x = a1 and this would be an improve-
ment according top. However, by doing so, we have to make sure that the constraints in
C containingx = a2 orx = a3 may now not be satisfied, since now(x = a2∨x = a3)
is false. However, we also have thatO ` (Cx ∧ x = a1) ↓var(Cx)−{x}, meaning that
if x = a1 these constraints are satisfied. Hence, there is an improving flip to another
feasible outcomeO′. ButO was supposed to be undominated. ThereforeO satisfies the
first of the two implications above.

Let us now consider the second implication:O ` ϕ,O ` (Cx∧x = a2) ↓var(Cx)−{x}
andO ` x = a3. In this situation, flipping fromx = a3 to x = a2 would give us a
new outcomeO′ such thatO′ ` x = a2 and this would be an improvement according
to p. However, by doing so, we have to make sure that the constraints inC containing
x = a3 may now not be satisfied, since nowx = a3 is false. However, we also have
thatO ` (Cx ∧ x = a2) ↓var(Cx)−{x}, meaning that ifx = a2 these constraints are
satisfied.

2 More precisely,Cx = {c ∈ C|x ∈ conc}.

Hence, there is an improving flip to another feasible outcomeO′. ButO was sup-
posed to be undominated. ThereforeO satisfies the second implication above. Thus
O must satisfy all constraintsoptC(p) wherep ∈ N . Since it is also feasible,O is a
satisfying assignment ofN ⊕ C.

(⇐) Consider any assignmentO which satisfiesN ⊕ C. Clearly it is feasible as
N ⊕ C includesC. Suppose we perform an improving flip inO. There are two cases.
Suppose that the outcomes obtained by performing any improving flip are not feasible.
Then such new outcomes do not dominate the old one in our semantics. ThusO is
optimal.

Suppose, on the other hand, that there is at least one new outcome, obtained via an
improving flip, which is feasible. Assume the flips passes fromx = a3 to x = a2. If
this is an improving flip, without loss of generality, there must exist a statementϕ :
. . . � x = a2 � x = a3 � . . . in N such thatO ` ϕ. By hypothesis,O is a satisfying
assignment ofN ⊕ C. ThereforeO ` opt(ϕ : . . . � x = a2 � . . . � x = a3 � . . .)
= ϕ ∧ (Cx ∧ x = a2) ↓var(Cx)−{x}→ . . . ∨ x = a2. SinceO ` ϕ andO ` x = a3,
andtrue is not allowed to implyfalse, O cannot satisfy(Cx ∧ x = a2) ↓var(Cx)−{x}.
But, as the new outcome, which containsx = a2, is feasible, such constraints have to
be satisfied independent of how we setx. Hence,O ` (Cx ∧ x = a2) ↓var(Cx)−{x}.
As this is a contradiction, this cannot be an improving flip to a feasible outcome. The
satisfying assignment is therefore feasible and undominated. ut

Notice that the constructionN ⊕C for variables with more than two values in their
domains is a generalization of the one for Boolean variables. That is,N ⊕ C = N ⊕b
C if N andC are over Boolean variables. Similar complexity results hold also now.
However, while for Boolean variables one constraint is generated for each preference
statement, now we generate as many constraints as the size of the domain minus 1.
Therefore the optimality constraints corresponding to a constrained CP-net〈N,C〉 are
|C|+ | N | × | D |, whereD is the domain of the variables. Testing optimality is still
linear in the size of〈N,C〉, if we assumeD bounded. Finding an optimal outcome as
usual requires us to find a solution of the constraints inN ⊕C, which is NP-hard in the
size of〈N,C〉.

7 CP-nets and soft constraints

It may be that we have soft and not hard constraints to add to our CP-net. For example,
we may have soft constraints representing other quantitative preferences. In the rest of
this section, a constrained CP-net will be a pair〈N,C〉, whereN is a CP-net andC is
a set of soft constraints. Notice that this definition generalizes the one given in Section
6 since hard constraints can be seen as a special case of soft constraints (see Section 2).

The construction of the optimality constraints for constrained CP-nets can be adapted
to work with soft constraints. To be as general as possible, variables can again have more
than two values in their domains. The constraints we obtain are very similar to those
of the previous sections, except that now we have to reason about optimization as soft
constraints define an optimization problem rather than a satisfaction problem.

Consider any CP statementp of the formϕ : x = a1 � x = a2 � x = a3.
For simplicity, we again consider just 3 values. However, all the constructions and ar-

guments extend easily to more values. The optimality constraints corresponding top,
calledoptsoft(p), are the following hard constraints:

ϕ ∧ cutbest(C)((ϕ ∧ Cx ∧ x = a1) ↓var(Cx)−{x}) → x = a1

ϕ ∧ cutbest(C)((ϕ ∧ Cx ∧ x = a2) ↓var(Cx)−{x}) → x = a1orx = a2

whereCx is the subset of soft constraints inC which involve variablex, best(S) is
the highest preference value for a complete assignment of the variables in the set of
soft constraintsS, andcutαS is a hard constraint obtained from the soft constraintS
by forbidding all tuples which have preference value less thanα in S. The optimality
constraints corresponding to〈N,C〉 areCopt(〈N,C〉) = {optsoft(p) | p ∈ N}.

Consider a CP-net with two features,X andY , such that the domain ofY contains
y1 and y2, while the domain ofX containsx1, x2, andx3. Moreover, we have the
following CP-net preference statements:y1 � y2, y1 : x1 � x2 � x3, y2 : x2 � x1 �
x3. We also have a soft (fuzzy) unary constraint overX, which gives the following
preferences over the domain ofX: 0.1 tox1, 0.9 tox2, and 0.5 tox3. By looking at the
CP-net alone, the ordering over the outcomes is given byy1x1 � y1x2 � y1x3 � y2x3

andy1x2 � y2x2 � y2x1 � y2x3. Thusy1x1 is the only optimal outcome of the CP-
net. On the other hand, by taking the soft constraint alone, the optimal outcomes are all
those withX = x2 (thusy1x2 andy2x2).

Let us now consider the CP-net and the soft constraints together. To generate the
optimality constraints, we first compute best(C), which is 0.9. Then, we have:

– for statementy1 � y2: Y = y1;
– for statementy1 : x1 � x2 � x3: we generate the constraintsY = y1 ∧ false →
X = x1 andY = y1 ∧ Y = y1 → X = x1 ∨ X = x2. Notice that we have
false in the condition of the first implication becausecut0.9(Y = y1 ∧ Cx ∧X =
x1) ↓Y = false. On the other hand, in the condition of the second implication we
havecut0.9(Y = y1 ∧Cx ∧X = x2) ↓Y = (Y = y1). Thus, by removing false, we
have just one constraint:Y = y1 → X = x1 ∨X = x2;

– for statementy2 : x2 � x1 � x3: similarly to above, we have the constraint
Y = y2 → X = x2.

Let us now compute the optimal solutions of the soft constraint overX which are
also feasible for the following set of constraints:Y = y1,Y = y1 → X = x1∨X = x2,
Y = y2 → X = x2. The only solution which is optimal for the soft constraints and
feasible for the optimality constraints isy1x2. Thus this solution is optimal for the
constrained CP-net.

Notice that the optimal outcome for the constrained CP-net of the above example
is not optimal for the CP-net alone. In general, an optimal outcome for a constrained
CP-net has to be optimal for the soft constraints, and such that there is no other out-
come which can be reached from it in the ordering of the CP-net with an improving
chain of optimal outcomes. Thus, in the case of CP-nets constrained by soft constraints,
Definition 2 is replaced by the following one:

Definition 3 (O1 �soft O2). Given a constrained CP-net〈N,C〉, whereC is a set of
soft constraints, outcomeO1 is better than outcomeO2 (writtenO1 �soft O2) iff there

is a chain of flips fromO1 toO2, where each flip is worsening forN and each outcome
in the chain is optimal forC.

Notice that this definition is just a generalization of Def. 2, since optimality in hard
constraints is simply feasibility. Thus�=�soft whenC is a set of hard constraints.

Consider the same CP-net as in the previous example, and a binary fuzzy constraint
overX andY which gives preference 0.9 tox2y1 andx1y2, and preference 0.1 to
all other pairs. According to the above definition, bothx2y1 andx1y2 are optimal for
the constrained CP-net, since they are optimal for the soft constraints and there are no
improving path of optimal outcomes between them in the CP-net ordering. Let us check
that the construction of the optimality constraints obtains the same result:

– for y1 � y2 we getcut0.9(Cy ∧ Y = y1) ↓X→ Y = y1. Sincecut0.9(Cy ∧ Y =
y1) ↓X= (X = x2), we getX = x2 → Y = y1.

– for statementy1 : x1 � x2 � x3: Y = y1 ∧ cut0.9(Y = y1 ∧ Cx ∧ X =
x1) ↓Y→ X = x1. Sincecut0.9(Y = y1 ∧ Cx ∧X = x1) ↓Y = false, we get a
constraint which is always true. Also, we have the constraintY = y1 ∧ cut0.9(Y =
y1 ∧ Cx ∧X = x2) ↓Y→ X = x1 ∨X = x2. Sincecut0.9(Y = y1 ∧ Cx ∧X =
x2) ↓Y = (Y − y1), we getY = y1 ∧ Y = y1 → X = x1 ∨X = x2.

– for statementy2 : x2 � x1 � x3: similarly to above, we have the constraint
Y = y2 → X = x2 ∨X = x1.

Thus the set of optimality constraints is the following one:X = x2 → Y = y1,
Y = y1 → X = x1 ∨ X = x2, andY = y2 → X = x2 ∨ X = x1. The feasible
solutions of this set of constraints arex2y1, x1y1, andx1y2. Of these constraints, the
optimal outcomes for the soft constraint arex2y1 andx1y2. Notice that, in the ordering
induced by the CP-net over the outcomes, these two outcomes are not linked by a path
of improving flips through optimal outcomes for the soft constraints. Thus they are both
optimal for the constrained CP-net.

Theorem 4. Given a constrained CP-net〈N,C〉, whereC is a set of soft constraints,
an outcome is optimal for〈N,C〉 iff it is an optimal assignment forC and if it satisfies
Copt(〈N,C〉).

Proof. (⇒) Consider an outcomeO that is optimal for〈N,C〉. Then by definition it
must be optimal forC. Suppose the outcome does not satisfyCopt. ThereforeO must
not satisfy some constraintoptC(p) wherep preference statement inN . Without loss
of generality, let us consider the optimality constraints

ϕ ∧ cutbest(C)((ϕ ∧ Cx ∧ x = a1) ↓var(Cx)−{x}) → x = a1

ϕ ∧ cutbest(C)((ϕ ∧ Cx ∧ x = a2) ↓var(Cx)−{x}) → x = a1orx = a2

corresponding to the preference statementϕ : a1 � a2 � a3.
The only way an implication is not satisfied is when the hypothesis istrue and the

conclusion isfalse. Let us take the first implication:O ` ϕ, O ` cutbest(C)((ϕ ∧
Cx ∧ x = a1) ↓var(Cx)−{x}) andO ` (x = a2 ∨ x = a3). In this situation, flipping
from (x = a2 ∨ x = a3) to x = a1 would give us a new outcomeO′ such that

O′ ` x = a1 and this would be an improvement according top. However, by doing
so, we have to make sure that the soft constraints inC containingx = a2 or x = a3

may now still be satisfied optimally, since now(x = a2 ∨ x = a3) is false. We also
have thatO ` cutbest(C)((ϕ ∧ Cx ∧ x = a1) ↓var(Cx)−{x}), meaning that ifx = a1

these constraints are satisfied optimally. Hence, there is an improving flip to another
outcomeO′ which is optimal forC and which satisfiesCopt. ButO was supposed to be
undominated. ThereforeO satisfies the first of the two implications above.

Let us now consider the second implication:O ` ϕ, O ` cutbest(C)((ϕ ∧ Cx ∧
x = a2) ↓var(Cx)−{x}), andO ` x = a3. In this situation, flipping fromx = a3

to x = a2 would give us a new outcomeO′ such thatO′ ` x = a2 and this would
be an improvement according top. However, by doing so, we have to make sure that
the constraints inC containingx = a3 may now still be satisfied optimally, since
now x = a3 is false. However, we also have thatO ` cutbest(C)((ϕ ∧ Cx ∧ x =
a2) ↓var(Cx)−{x}), meaning that ifx = a2 these constraints are satisfied optimally.
Hence, there is an improving flip to another feasible outcomeO′. ButO was supposed
to be undominated. ThereforeO satisfies the second implication above. ThusO must
satisfy all the optimality constraintsoptC(p) wherep ∈ N .

(⇐) Consider any assignmentO which is optimal forC and satisfiesCopt. Suppose
we perform a flip onO. There are two cases. Suppose that the new outcome is not
optimal forC. Then the new outcome does not dominate the old one in our semantics.
ThusO is optimal. Suppose, on the other hand, that there is at least one new outcome,
obtained via an improving flip, which is optimal forC and satisfiesCopt. Assume the
flip passes fromx = a3 tox = a2. If this is an improving flip, without loss of generality,
there must exist a statementϕ : . . . � x = a2 � x = a3 � . . . in N such that
O ` ϕ. By hypothesis,O is an optimal assignment ofC and satisfiesCopt. Therefore
O ` opt(ϕ : . . . � x = a2 � . . . � x = a3 � . . .) = ϕ ∧ cutbest(C)((ϕ ∧ Cx ∧ x =
a2) ↓var(Cx)−{x}) → . . . ∨ x = a2.

SinceO ` ϕ andO ` x = a3, andtrue is not allowed to implyfalse, O cannot
satisfycutbest(C)((ϕ∧Cx∧x = a2) ↓var(Cx)−{x}). ButO′, which containsx = a2, is
assumed to be optimal forC, socutbest(C)((ϕ∧Cx ∧x = a2) ↓var(Cx)−{x}) has to be
satisfied independently of how we setx. Hence,O ` (Cx ∧ x = a2) ↓var(Cx)−{x}. As
this is a contradiction, this cannot be an improving flip to an outcome which is optimal
for C and satisfiesCopt. ThusO is optimal for the constrained CP-net. ut

It is easy to see how the construction of this section can be used when a CP-net is
constrained by a set of both hard and soft constraints, or by several sets of hard and soft
constraints, since they can all be seen as just one set of soft constraints.

Let us now consider the complexity of constructing the optimality constraints and
of testing or finding optimal outcomes, in the case of CP-nets constrained by soft con-
straints. First, as with hard constraints, the number of optimality constraints we generate
is |N || × (|D| − 1), where|N | is the number of preference statements inN andD is
the domain of the variables. Thus we have|Copt(〈N,C〉)| = |N | × (|D| − 1). To test
if an outcomeO is optimal, we need to check ifO satisfiesCopt and if it is optimal for
C. Checking feasibility forCopt takes linear time in|N | × (|D| − 1). Then, we need
to check ifO is optimal forC. This is NP-hard the first time we do it, otherwise (if the
optimal preference value forC is known) is linear in the size ofC. To find an optimal

outcome, we need to find the optimals forC which are also feasible forCopt. Finding
optimals forC needs exponential time in the size ofC, and checking feasibility inCopt
is linear in the size ofCopt. Thus, with respect to the corresponding results for hard
constraints, we only need to do more work the first time we want to test an outcome for
optimality.

8 Multiple constrained CP-nets

There are situations when we need to represent the preferences of multiple agents. For
example, when we are scheduling workers, each will have a set of preferences concern-
ing the shifts. These ideas generalize to such a situation. Consider several CP-netsN1,
. . . ,Nk, and a set of hard or soft constraintsC. We will assume for now that all the
CP nets have the same features. To begin, we will say an outcome is optimal iff it is
optimal for each constrained CP net〈Ni, C〉. This is a specific choice but we will see
later that other choices can be considered as well. We will call this notion of optimality,
All-optimal.

Definition 4 (All-optimal). Given a multiple constrained CP netM = 〈(N1,. . . , Nk), C〉,
an outcomeO is All-optimal forM if O if it is optimal for each constrained CP net
〈Ni, C〉.

This definition, together with Theorem 4, implies that to find the all-optimal out-
comes forM we just need to generate the optimality constraints for each constrained
CP net〈Ni, C〉, and then take the outcomes which are optimal forC and satisfy all
optimality constraints.

Theorem 5. Given a multiple constrained CP netM = 〈(N1, . . . , Nk), C〉, an out-
comeO is All-optimal forM iff O is optimal forC and it satisfies the optimality con-
straints in

⋃
i Copt(〈Ni, C〉).

This semantics is one of consensus: all constrained CP nets must agree that an out-
come is optimal to declare it optimal for the multiple constrained CP net. Choosing this
semantics obviously satisfies all CP nets. However, there could be no outcome which is
optimal. In [8] a similar consensus semantics (although for multiple CP nets, with no
additional constraints) is called Pareto optimality, and it is one among several alterna-
tive to aggregate preferences expressed via several CP nets. This semantics, adapted to
our context, would be defined as follows:

Definition 5 (Pareto).Given a multiple constrained CP netM = 〈(N1, . . . , Nk), C〉,
an outcomeO is Pareto-better than an outcomeO′ iff it is better for each constrained
CP net. It is Pareto-optimal forM iff there is no other outcome which is Pareto-better.

If an outcome is all-optimal, it is also Pareto-optimal. However, the converse is not
true in general. These two semantics may seem equally reasonable. However, while all-
optimality can be computed via the approach of this paper, which avoids dominance
testing, Pareto optimality needs such tests, and therefore it is in general much more

expensive to compute. In particular, whilst optimality testing for Pareto optimality re-
quires exponential time, for All-optimality it just needs linear time (in the sum of the
sizes of the CP nets).

Other possibilities proposed in [8] require optimals to be the best outcomes for a
majority of CP nets (this is called Majority), or for the highest number of CP nets (called
Max). Other semantics like Lex, associate each CP net with a priority, and then declare
optimal those outcomes which are optimal for the CP nets with highest priority, in a
lexicographical fashion. In principle, all these semantics can be adapted to work with
multiple constrained CP nets. However, as for Pareto optimality, whilst their definition
is possible, reasoning with them would require more than just satisfying a combination
of the optimality constraints, and would involve dominance testing.

Thus the main gain from our semantics (all-optimal and others that can be computed
via this approach) is that dominance testing is not required. This makes optimality test-
ing (after the first test) linear rather than exponential, although finding optimals remains
difficult (as it is when we find the optimals of the soft constraints and check the feasi-
bility of the optimality constraints).

9 Related work

The closest work is [2], where acyclic CP nets are constrained via hard constraints, and
an algorithm is proposed to find one or all the optimal outcomes of the constrained
CP net. However, there are several differences. First, the notion of optimality in this
previous approach is different from the one used here: in [2], an outcomeO is optimal
if satisfies the constraints and there is no other feasible outcome which is better than
it in the CP net ordering. Therefore, if two outcomes are both feasible and there is
an improving path from one to the other one in the CP net, but they are not linked
by a path of feasible outcomes, then in this previous approach only the highest one is
optimal, while in ours they are both optimal. For example, assume we have a CP net
with two Boolean features,A andB, and the following CP statements:a � a, a : b � b,
a : b � b, and the constrainta ∨ b which rules outab. Then, the CP net ordering on
outcomes isab � ab � ab � ab. In our approach, bothab andab are optimal, whilst in
in the previous approach onlyab is optimal. Thus we obtain a superset of the optimals
computed in the previous approach.

Reasoning about this superset is, however, computationally more attractive. To find
the first optimal outcome, the algorithm in [2] uses branch and bound and thus has
a complexity that is comparable to solving the set of constraints. Then, to find other
optimal outcomes, they need to perform dominance tests (as many as the number of
optimal outcomes already computed), which are very expensive. In our approach, to
find one optimal outcome we just need to solve a set of optimality constraints, which is
NP-hard.

Two issues that are not addressed in [2] are testing optimality efficiently and reason-
ing with cyclic CP nets. To test optimality, we must run the branch and bound algorithm
to find all optimals, and stop when the given outcome is generated or when all optimals
are found. In our approach, we check the feasibility of the given outcome with respect
to the optimality constraints. Thus it takes linear time. Our approach is based on the CP

statements and not on the topology of the dependency graph. Thus it works just as well
with cyclic CP nets.

Another related work is [7], where CP nets orderings are approximated via a set of
soft constraints. The approximation here is not needed, since we are not trying to model
the entire ordering over outcomes, but only the set of optimals.

Finally, our construction can be seen as a generalization of that given in Section 4
of [4], where they treat the case of mapping a CP net on Boolean features, without any
constraints, onto a SAT problem.

10 Conclusions

We have presented a novel approach to deal with preferences expressed as a mixture
of hard constraints, soft constraints, and CP nets. The main idea is to generate a set of
hard constraints whose solutions are optimal for the preferences. Our approach focuses
on finding and testing optimal solutions. It avoids the costly dominance tests previously
used to reason about CP nets. To represent the preferences of multiple agents, we have
also considered multiple CP nets. We have shown that it is possible to define semantics
for preference aggregation for multiple CP nets which also avoid dominance testing.
One of the main advantages of this simple and elegant technique is that it permits con-
ventional constraint and SAT solvers to solve problems involving both preferences and
constraints.

Acknowledgements.This work is partially supported by ASI (Italian Space Agency)
under project ARISCOM (Contract I/R/215/02).

References

1. S. Bistarelli, U. Montanari, F. Rossi. Semiring-based Constraint Solving and Optimization.
Journal of ACM, vol. 44, n. 2, pp. 201-236, March 1997.

2. C. Boutilier, R. Brafman, C. Domshlak, H. Hoos and D. Poole. Preference-based constraint
optimization with CP-nets. Computational Intelligence, vol. 20, n. 2, pp. 137-157, May 2004.

3. C. Boutilier, R. Brafman, H. Hoos, and D. Poole. Reasoning with conditional ceteris paribus
preference statements. InProceedings of 15th Annual Conference on Uncertainty in Artificial
Intelligence (UAI-99), pp. 71-80, Stockholm, Sweden, 1999.

4. R. Brafman and Y. Dimopoulos. Extended Semantics and Optimization Algorithms for CP-
Networks. Computational Intelligence, vol. 20, n. 2, pp. 218-245, May 2004.

5. R. Dechter. Constraint processing. Morgan Kaufmann, 2003.
6. C. Domshlak, R. I. Brafman. CP-nets - reasoning and consistency testing. InProceedings

of the Eighth International Conference on Principles of Knowledge Representation and Rea-
soning (KR-02), pages 121–132. Morgan Kaufmann, Toulose, France, 2002.

7. C. Domshlak, F. Rossi, K. B. Venable, T. Walsh. Reasoning about soft constraints and con-
ditional preferences: complexity results and approximation techniques. InProceedings of
the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI-03), Morgan
Kaufmann, Acapulco, Mexico, August 2003.

8. F. Rossi, K. B. Venable, T. Walsh. mCP nets: representing and reasoning with preferences
of multiple agents. InProceeding of the Nineteenth National Conference on Artificial Intel-
ligence (AAAI-04), San Jose, CA, USA, July 2004.

