Ontological encapsulation of many-valued logic

Zoran Majkc

Dipartimento di Informatica e Sistemistica, University of Roma “La Sapienza”
Via Salaria 113, 1-00198 Rome, Italy
majkic@dis.uniromal.it
http://www.dis.uniromal.it~ majkic/

Abstract. Large databases obtained by the data integration of different source
databases can be incomplete and inconsistent in many ways. The classical logic
is not the appropriate formalism for reasoning about inconsistent databases. Cer-
tain local inconsistencies should not be allowed to significantly alter the intended
meaning of such logic programs. The variety of semantical approaches that have
been invented for logic programs is quite broad. In particular we are interested
for many-valued logics with negation, based on bilattices. We present a 2-valued
logic, based on an Ontological Encapsulation of Many-Valued Logic Program-
ming, which overcome some drawbacks of the previous research approaches in
many-valued logic programming. We defined a Model theory for Herbrand in-
terpretations of ontologically encapsulated logic programs, based on a semantic
reflection of the epistemic many-valued logic.

1 Introduction to Many-valued logic programming

Semantics of logic programs are generally based on a classical 2-valued logic by means
of stable models, [1,2]. Under these circumstances not every program has a stable
model. Three-valued, or partial model semantics had an extensive development for logic
programs generally, [3,4]. Przymusinski extended the notion of stable model to allow
3-valued, or partial, stable models, [5], and showed every program has at least one par-
tial stable model, and the well-founded model is the smallest among them, [6]. Once
one has made the transition from classical to partial models allowemnpletenfor-

mation, itis a small step to also allow models admitiimgpnsisteninformation. Doing

so provides a natural framework for the semantic understanding of logic programs that
are distributed over several sites, with possibly conflicting information coming from
different places. As classical logic semantics decrees that inconsistent theories have no
models, classical logic is not the appropriate formalism for reasoning about inconsistent
databases: certain "localizable” inconsistences should not be allowed to significantly al-
ter the intended meaning of such databases.

So far, research in many-valued logic programming has proceeded along different di-
rections:Signedlogics [7,8] andAnnotatedlogic programming [9,10] which can be
embedded into the firsBilattice-basedlogics, [11,12], andQuantitative rule-sets
[13,14]. Earlier studies of these approaches quickly identified various distinctions be-
tween these frameworks. For example, one of the key insights behind bilattices was
the interplay between the truth values assigned to sentences and the (nhon classic) no-
tion of implicationin the language under considerations. Thus, rules (implications) had

weights (or truth values) associated with them as a whole. The problem was to study
how truth values should be propagated "across” implications. Annotated logics, on the
other hand, appeared to associate truth values with each component of an implication
rather than the implication as a whole. Roughly, based on the way in which uncertainty
is associated with facts and rules of a program, these frameworks can be classified into
implication basedIB) andannotation base@AB).

In the IB approach a rule is of the for <—“ By, .., B,, , which says that the certainty
associated with the implication is8 Computationally, given an assignmdmf logical

values to theB;s, the logical value ofd is computed by taking the "conjunction” of
logical values! (B;) and then somehow "propagating” it to the rule hehd

In the AB approach a rule is of the form : f(51,..,8,) <« B1 : B1,..,Bn & Bn

which asserts "the certainty of the atofnis least (or is in)f (51, .., 8), whenever the
certainty of the atonB; is at least (or is in)3;, 1 < i < n”, where f is an n-ary com-
putable function and; is either constant or a variable ranging over many-valued logic
values.

The comparison in [15] shows:

1- while the way implication is treated on the AB approach is closer to the classical
logic, the way rules are fired in the IB approach has definite intuitive appeal.

2- the AB approach is strictly more expressive than IB. The down side is that query
processing in the AB approach is more complicated, e.g. the fixpoint operator is not
continuous in general, while it is in the IB approaches.

3- the Fitting fixpoint semantics for logic programs, based exclusively on a bilattice-
algebra operators, suffer two drawbacks: the lack of the notion of tautology (bilattice
negation operator is agpistemimegation) leads to difficulties in defining proof proce-
dures and to the need for additional complex truth-related notions as "formula closure™;
there is an unpleasant asymmetry in the semantics of implication (which is strictly 2-
valued) w.r.t. all other bilattice operators (which produce any truth value from the bi-
lattice) - it is a sign that strict bilattice language is not enough expressive for logic
programming, and we need some reacher (different) syntax for logical programming.
From the above points, it is believed that IB approach is easier to use and is more
amenable for efficient implementations, but also annotated syntax (but with IB seman-
tics) is useful to overcome two drawbacks above: the syntax of new encapsulated many-
valued logic (in some sense 'meta’-logic for a many-valued bilattice logic) will be 2-
valued and can be syntactically seen as a kind of very simple annotated syntax. Thus
the implication (and classical negation also), not present in a bilattice algebra operators,
will have a natural semantic interpretation in this enriched framework.

In [10] it is shown how the Fitting’s 3-valued bilattice logic can be embedded into
an Annotated Logic Programming which is computationaly very complex. The aim of
this work is (1) to extend the Fittihg's fixpoint semantics to deal with inconsistencies
also, and (2) to define the notion of a model for such many-valued logic programs by
some kind of 'minimal’ (more simple and less computationally expensive than APC)
logic. In order to respond to these questions we (1) introdwidle-in predicatesn the

heads of clauses, and (Bhcapsulatehe 'object’ epistemic many-valued logic pro-
grams into 2-valued 'meta’ ontological logic programs. We argue that such logic will
be good framework for supporting the data integration systems with key and foreign

key integrity constraints with incomplete and inconsistent source databases, with less
computation complexity for certain answers to conjunctive queries [16,17].

The plan of this paper is the following: Section 2 introduce the Belnap’s bilattice con-
cepts and the particular 4-valued versidh, used in this paper. In Section 3 is pre-
sented an inference framework for a 4-valued bilattice based logic, particularly for
derivation ofpossiblefacts (w.r.t. true and false facts as in 3-valued strong Kleene’s
logic) and is given a representation theorem for this 4-valued logic. In Section 4 is
developed conceptual framework for encapsulation of this epistemic 'object’ 4-valued
logic into an ontological 'meta’ 2-valued logic by meansgfmantic reflectionMore-

over, is given the definition for a 4-valued implication useful for inconsistent databases
and an example where inconsistency is managed by clauses with built-in predicate in a
head. Finally, Section 5 defines the syntax andioelel theoretiterbrand semantics

for the ontological encapsulation of many-valued logic programs.

2 Many-valued epistemic logic based on a Bilattice

In [18], Belnap introduced a logic intended to deal in a useful way with inconsis-
tent or incomplete information. It is the simplest example of a non-trivial bilattice and
it illustrates many of the basic ideas concerning them. We denote the four values as
{t, f,1,L}, wheret is true, f is false 1 is inconsistent (both true and false) pos-
sible, and L is unknown As Belnap observed, these values can be given two natural
orders:truth order,<;, andknowledgeorder, <y, such thatf <, 1 <; t, f <;1<; ¢,
andL<p f <p T, L<k t < T. This two orderings define corresponding equivalences
=, and=y. Thus any two members, 5 in a bilattice are equaky = (, if and only if
(shortly ’iff") o =; fanda =, 3.

Meet and join operators undet; are denoted andv; they are natural generalizations
of the usual conjunction and disjunction notions. Meet and join urdeare denoted

® (consensudecause it produces the most information that two truth values can agree
on) andd (gullibility, it accepts anything it’s told), such that hold:
fet=1,fet=1,T1TN L= fandTVv L=*¢.

There is a natural notion of truth negation, denotedreverses the; ordering, while
preserving the<;, ordering): switchingf andt, leaving L and T, and corresponding
knowledge negation, denoted(reverses the;, ordering, while preserving the; or-
dering), switchingl and T, leaving f andt. These two kind of negation commute:

— ~ z =~ —z for every membetr: of a bilattice.

It turns out that the operations, v and~, restricted to{ f,¢, L} are exactly those of
Kleene’s strong 3-valued logic. Any bilattia®, <,, <;) is:

1. Interlaced if each of the operations, V, ® and® is monotone with respect to both
orderings (for instance; <; y impliesz®z <; yQz,x < yimpliesz Az < yAz).

2. Infinitarily interlaced if it is complete and four infinitary meet and join operations
are monotone with respect to both orderings.

3. Distributive, if all 12 distributive laws connecting, vV, ® and& are valid.

4. Infinitarily distributive, if it is complete and infinitary, as well as finitary, distributive
laws are valid. (Note that a bilattice c@mpleteif all meets and joins exist, w.r.t. both
orderings. We denote infinitary meet and join wt. by A and\/, and by[] and}

for the <, ordering; for example, the distributive law for and /A may be given by

z® N\ vi = N\i(z ®yi)).

A more general information about bilattice may be found in [19]: he also defxest
members of a bilattice, when = —x (they are 2-valued consistent), aodnsistent
members, whenr <; —x (they are 3-valued consistent), but a specific 4-valued consis-
tence will be analyzed in the following paragraphs.

The Belnap’s 4-valued bilattice is infinitary distributive. In the rest of this paper we de-
note byB, a special case of the Belnap’s bilattice. In this way we considepaissible

value as weak true value and not as inconsistent (that is true and false together). We
have more knowledge for ground atom with such value, w.r.t. the true ground atom,
because we know also that if we assign the true value to such atom we may obtain an
inconsistent database.

3 Representation theorem

Ginsberg [11] defined a world-based bilattices, considering a collection of widflds
where by world we mean some possible way of things might be, and vitietd is

a pair of subsets dfi” which express truth of some sentengevith <;, < truth and
knowledge preorders relatively, as follows:

1.U is a set of worlds whergis true,V is a set of worlds whergis false,P = U "V

is a set where is inconsistent (both true and false), did— (U |J V) is a set where

is unknown.

2. [U, V] <t [Ul,Vl] iff UC U, and ViCV

3.[U, V] <k [U,h] iff UCUyand VCV;

Such definition is well suited for the 3-valued Kleene logic, but for the 4-valued logic
used to overcome "localizable” inconsistencies it is not useful, mainly for two follow-
ing reasons:

1. Theinconsisten{both true and false) top knowledge value in the Belnap’s bilattice
can't be assigned to sentences, otherwise we will obtain an inconsistent logic theory;
because of that consistent logics in this interpretation can have only three remaining
values. Thus we interpret it g®ssiblevalue, which will be assigned to mutually incon-
sistent sentences, and we obtain possibility to have consistent 4-valued logic theories in
order to overcome such inconsistencies.

2. Letdenote byi' = U — P, FF = V — P, whereP is a set of worlds wherg has a
possible logic value. Then we obtain thét V] <, [Uy, V4] also wherll’ > T3, which

is in contrast with our intuition. Consequently, we adopt a triffleP, F] of mutually
disjoint subsets ofV to express truth of some sentenc@V — T'|J P |J F' are worlds
wherep is unknown), with the following definition for their truth and knowledge orders:
Zl[T, P7F] < [Tl,Pl,Fl] iff T C T andFl CF

22[T,P7F] <k [Tl,Pl,Fl] iff T cCT,,PCP andF C Fi.

Let us try now to rendemore rationalthese two intuitions described above. In order

to obtain a new bilattice abstraction rationality, useful to manage logic programs with
possible ’localizable’ inconsistencies, we need to consider more deegiyniti@mental
phenomenan such one framework. In the process of derivation of new facts, for a given
logic program, based on the 'immediate consequence operator’, we have the following

three truth transformations for ground atoms in a Herbrand base of such program:

1. When ground atom pass framknowrto true logic value, without generating incon-
sistence. Let denote this action by;: 1 — t. The preorder of this 2-valued sublattice

of B, Ly = {L,t}, defined by the direction of this transformation, 'truth increasing’,

is <1 = <;. The meet and join operators for this lattice are/ respectively. It is also
knowledge increasing.

2. When some ground atom, try to pass from unknown to true/false value, generating an
inconsistency, then is applied tirconsistency repairingthat is thetrue value of the

literal of this atom, in a body of a violated clause with built-in predicate, is replaced by
possiblevalue. Let denote this action by,: ¢ ~— 1. The preorder of this 2-valued sub-
lattice of B, Lo = {t, 1}, defined by the direction of this transformation, 'knowledge
increasing’. The meet and join operators for this lattice, w.r.t. this orderingpase
respectively. Notice that this transformatidoes not changthe truth ordering because

the ground atom pass from unknown to possible value.

3. When ground atom pass framknowrto falselogic value, without generating incon-
sistence. Let denote this action by;: L— f. The preorder of this 2-valued sublattice

of B, Ly = {L, f}, defined by the direction of this transformation, 'falsehood increas-
ing’ (inverse of 'truth increasing’), is<s = <; '. The meet and join operators for this
lattice arev, A respectively. It is also knowledge increasing.

Thus, any truth transformation in some multi-valued logic theory (program) can be seen
as composition of these three orthogonal dimensional transformations,i.e. by triples (or
multi-actiong, [a1, as, as], acting on the idle (default) stafe., ¢, L]; for instance the
multi-action [_, _, 73], composed by the singe actiofiz, applied to the default state
generates the "false” stafe , ¢, f]. The default stat¢ L, ¢, L] in this 3-dimensional
space has role as unknown value for single-dimensional bilattice transformations, that
is it is a "unknown” state. Consequently, we define this space of states by the cartesian
product of single-dimensional latticef; x Lo x L3, composed by triplege, y, 2],
xel={L,t},ye Ly ={t,Ttandz € Lz = {L, f}.

Definition 1. By L; ® L, ® L3 we mean the bilatticec L; x Ly x L3, <B, §k3>
where, given anyX = [z, y, 2], and X = [x1, y1, 21]:

1. Considering that the second transformation does not influence the truth ordering,
XStB X if <y xandz <32z e, if r <; X1 andz > 21

2. Considering that all three transformations are knowledge increasing, we have

X SkB X, if x<pxandy <p yy andz <i z;

3. XA X1 =aef [(x A1 x1, yAy1), 2 A 21) =[x Az, yAyr, 2V 2]

4.XVp X1 =ges [t V121, ([yV3y1, 2Vs21)]| =[x Va1, yAy1, 2 A 2]

5. X ®p X1 =def [tQ 21, yQy1, 2@ 21]

6. X ©p X1 =des [z D21, yD Y1, 2D 21]

These three bilattice transformations can be formally defined by lattice homomor-
phisms.

Proposition 1 The following three lattice homomorphisms defines the 3-dimensional
truth transformations:

1. Truth dimension, 6= v L: (B,AV,®,®) = (L1,A1,V1,8,®),

with A1 = A, Vi = V. This is a strong positive transformation, which transforms

falsehood into unknown and possibility in truth.

2. Possibility dimension,f; = .V ~ _V 1: (B,®,8) — (L2, ®,®). This is a weak
knowledge transformation which transform unknown into possibility.

3. Falsehood dimension,fs = _A 1: (B,V,A,®,®) — (L3, A3, V3, ®,D),

with A3 = V, V3 = A. This is a strong negative transformation, which transforms truth
into unknown and possibility into falsehood.

We define the following two mappings between Belnap’s and its derived bilattice:
Dimensional partitioning: 6 =< 61,605,035 >: B — L1 ® L, ® Lz and

CO”apSing:ﬁ L1 O Ly® Ly — B, such thatﬁ(xl, (EQ,LEg) =def ([L‘l D 1’3) N Zo.

These three lattice homomorphisms preserves the bilattice structGrimtaf the space

of statesl,; ® Ly ® L3. That is we have that'(’ represents no action)

0(L) =1, J([L,¢t L]) =[L,¢, L], unknown state

e(f) = [*7 - T3]([J-a L, J—]) = [J-a L, f]' false state

0(t) =11, J([L, ¢, 1]) = [t, t, L], true state

0(1) = [11, T2, Tsl([L, ¢, L]) = [t, 7, f], possible state.

Notice that the multi-action[11, 12, T3] represents two cases for repairing inconsis-
tencies: first, when unknown value of some ground atom tries to become true (action
T1) but makes inconsistency, thus is applied also actigmo transform it into possible
value; second, when unknown value of some ground atom tries to become false (action
13) but makes inconsistency, thus is applied also actigho transform it into possible
value. Notice that the isomorphism between the set of states and the set of multi-actions
{la1,a2,a3] | a1 € {11,-}, a2 € {12,-}, as € {13,-}} defines thesemanticgo the
bilattice L1 ® Lo ® Lg.

Proposition 2 Let I'mf# C L; ® Ly ® L3 be the bilattice obtained by image of Di-
mensional partitioning. It has also unary operators:
Negation, ~g = 6 ~ ¢ , and conflation, —g = 6 — 9.

It is easy to verify that) o § = idg is an identity on3, and thaty is surjective with

0 o ¢ = idrme. The negationvp preserves knowledge and inverts truth ordering and
~pg~p X = X, the conflation—g preserves truth and inverts knowledge ordering
and—p —p X = X; and holds the commutativity g —g = —p ~p. (for example,
~g—p=0~90-9=0r~idg—9=0~—-0=0—~3=0-90 ~9=—p ~p).
So, we obtain that, for anX = [z,y,z2], hold ~p X =4 [~ 2, y,~ z] and
—BX =dey [01(—2), O2(—0(X)), b3(—x)].

Theorem 1. (Representation theorem)is a 4-valued distributive lattice then there
are its distributive sublatticed,;, Lo, L3, such that3 is isomorphic to the sublattice
of Ly ® Ly ® L3 defined by image of Dimensional partitioningmé . Moreover the
following diagram (on the left) of bilattice homomorphisms commute

09 - -
Li®Ly® Ly — Imf —™ [, ® L Lo (possibility)

=4 02

0 0
B (falsehood)Ls < 2 B 5 Ly (truth)

where~_, ... iS a projection isomorphismy; is the isomorphism (restriction af to

the projectionl; ® L3) of Fitting’s representation Th. [20] valid for a 3-valued logics,
and~, is new 4-valued isomorphism (restriction®fo Imé6 , and inverse td@).

If B has negation and conflation operators that commute with each other, they are pre-
served by all isomorphisms of the right commutative triangle.

Proof. It is easy to verify that all arrows are homomorphisms (w.r.t. binary bilattice
operators). The following table represents the correspondence of elements of these bi-
lattices defined by homomorphisms:

Multi — actions | Ly ® Ly ©® Ly | Im0 Li®oLs | B
[-] [L,t, L] [L,¢, L] [L,1] | L
[*7 T?v*] [J-vTvJ-]
[—, - T&] [J-7t=f] [J-vt7f] [J-mf] f
[*? T2aT3} [J*vTaf]
T1,-] [t,t, L] [¢,t, L] ¢, 1] t
HlaT%*} [taTvL]
[T17T27T3] [t’va] [t’Taf] [t’ f] T
”17—; T3} [tat7f]

Let prove, for example, that the isomorphigm B — Im6 preserves negation and
conflation: ~p 0(z) =0 ~¥0(x) =0 ~ idg(z) = 0(~ z) , and
—pb(x) =0 —90(z) = 6 —idp(x) = O(—x).

4 Semantic reflection of the epistemic logic

We assume that the Herbrand universéis = I'|J {2, whereI" is ordinary domain

of database constants, afidis an infinite enumerable set of marked null valu@s—=
{wo, w1,}, and for a given logic progran” composed by a set of predicate and
function symbols Ps, Fs respectively, we define a set of all ternT;, and its subset
of ground termg/y, then atoms are defined as:

As = {p(c1,...¢a) | p € Ps, n = arity(p) and ¢; € Ts}

The Herbrand basé] p, is the set of all ground (i.e., variable free) atoms. A (ordinary)
Herbrand interpretation is a many-valued mappingdp» — B. If P is a many-valued
logic program with the Herbrand baégs , then the ordering relations and operations
in a bilatticeB, are propagated to the function sp&/&”, that is the set of all Herbrand
interpretations (functions), = vg : Hp — B, as follows:

Definition 2. Ordering relations are defined on the Function sp&X& pointwise, as
follows: for any two Herbrand interpretationss, wp € Bff’

l.vg <, wp Iif UB(A) <t U)B(A) forall A € Hp.

2.vp <, wp if ’UB(A) <k ’LUB(A) forall A e Hp.

3.~ vp is the interpretation such thdt- vg)(A4) =~ (vp(A4)).

4. —vp is the interpretation such thadt-vp)(A) = —(vp(A)).

Itis straightforward [19] that this makes a function sp&¢€ itself a complete infini-
tary distributive bilattice.

One of the key insights behind bilattices [11,12] was the interplay between the truth
values assigned to sentences and the (non classic) notimpbéation The problem

was to study how truth values should be propagated "across” implications. In [21] is
proposed the following IB based approach to the 'object’ 4-valued logic programming,
which extends the definition given for a 3-valued logic programming [5]:

Definition 3. LetPg be the set of built-in predicates. The valuatiop,: Hp — By, is
extended to logic implication of a ground claugéc) < B, whereB = By A .. A By,
as follows:

vg(B —p(c))=t, iff vp(p(c)) >y vp(B)or (vp(B) = Tandp € Pg)

Inconsistency acceptandé p € Pg is a built-in predicate, this clause is satisfied also
when vg(p(c)) = f and vp(B) = 1. This principle extends the previous definition

of implication based only on truth ordering.

In order to obtain such many-valued definition, which generalize the 2-valued definition
given above we will consider the conservative extensions of Lukasiewicz's and Kleene’s
strong 3-valued matrices (where third logic values considered as unknown). So we
obtain the following matrix,f : B x B — B, for implication (x = ¢t anda =L for
Lukasiewicz’s and Kleene’s case, respectively):

-t L 1f
t| t L 1 f
1]t a 17 L
Tt ottt
fle ¢ttt

For our purpose we assume the Lukasiewicz’s extensionyi-e.t, in order to have

a tautologya < a for any formulaa, and also to guarantee the truth of a clause (im-
plication) p(c) « B, whenevervg(p(c)) >; vg(B) , as used in fixpoint semantics

for immediate consequence operators’. Such conservative extensions are based on the
following observation: the problem to study how the truth values should be propagated
"across” implications can be restricted onlyttae implications (in fact we don't use
implications when are not true, because the 'immediate consequence operator’ derives
new facts only fottrue clauses, i.e. when implication is true).

Example 1 The built-in predicates(ex, =, <, >,..) may be used for integrity con-
straints: letp(x, y) be a predicate and we define the key-constraint for attribute®in

(y = 2) < p(z,y),p(z, z), where the atony = z is based on the built-in predicate

" ='. Let consider a program : p(z,y) < r(x,y), (y=2z2) <« p(z,y), p(z,2)

wherer is a source database relation with two tuplesp), (a,c), p is a virtual rela-

tion of this database with key constraint, and,, ~ are object variables. The built-in
predicates have the same prefixed extensiailimodels of a logic program, and that
their ground atoms areue or false If we assume that;(a,b), r(a,c) are true, then
such facts are mutually inconsistent fobecause of key constraint & c is false).
Thus, only one of them may be true in any model of this logic program, for example
r(a, b) . S0, if we assign the 'possible’ valyeto r(a, ¢) (or to both of them), we obtain

that the clauséb = ¢) — p(a,b), p(a,c), thanks to thenconsistency acceptancis
satisfied.

EachHerbrand interpretatioris a valuation. Valuations can be extended to maps from
the set of all ground (variable free) formulasiian the following way:

Definition 4. LetPg be the set of all predicate symboB£ C Ps is a subset of built-
in predicates), e the special (error) singleton, anfl : Hp — B be a many-valued
Herbrand interpretation. A valuatiof determines:

1. A Generalized interpretation mappitg: Ps x |, 7¢ — BJ{e}, such that for
anyc = (c1,..,cn) € 70", Z(p,c) = I(p(c)) iff arity(p) =n ; e otherwise.

2. A unique valuation map, also denotegl: £ — B, on the set of all ground formulas
L, according to the following conditions:

2.1.UB(N X) = UB(X)

22.0(X ©Y) =vg(X) ®vp(Y), where® € {A,V,®,® «}

3. A truth assignmentp : £ — B will be called an extension of a truth assignment
vp if up(y) >, ve(Y) for all ¢ € L. If ug is an extension of g, we will write
UB >k VB.

The 'object’ many-valued logic is based on four bilattice values whichegistemic
Sentences are to be marked with some of these bilattice logic values, according as to
what the computer has been told; or, with only a slight metaphor, according to what it
believes or knowOf course these sentendesvealso Frege’s ontological truth-values
(true and false), independently of what the computer has been told: we want that the
computer can use also these ontological ‘'meta’ knowledge. Let, for example, the com-
puter believes that the sentencéas a valuer (possible); then the 'meta’ sentence,’|
(computer) believe that has a possible value” sntologically true The many-valued
encapsulation, defined as follows, is just the way to pass from the epistemic (‘object’)
many-valued logic into ontological ('meta’) 2-valued logic.

Such encapsulation is characterized by having capabilitgdarantic-reflectionintu-

itively, for each predicate symbol we need some function whaflectsits logic seman-

tic over adomainl ;. Let introduce also the set of functional symbejsover a domain

I'y in our logical language in order to obtain an enriched logical language where we
can encapsulate the 'object’ (ordinary) many-valued logic programming. Such set of
functional symbols will be derived from the following Bilattice-semantic mapging

Definition 5. A semantic-reflection is a mappirkg : Ps — (B U{e})UiSw T” and

we denote shortlys, = K(p) : U;«, 7¢ — BlU{e}, p € Ps, such that for any
c=(c1,..,cn) € T3, holds: k,(c) =e iff arity(p) # n.

If p is a built-in predicate, then a mapping, is uniquely defined by: for ang <

17", n = arity(p), holds thatx,,(c) =t if p(c) istrue; f otherwise.

5 Ontological encapsulation programming language

The many-valued ground atoms of a bilattice-based logical langdgg=an be trans-
formed in ’encapsulated’ atoms of a 2-valued logic in the following simple way: the
original (many-valued) fact that the ground atoim= p(c4, .., ¢,), of the n-ary pred-
icate p, has an epistemic value = r,(c1,..,¢c,) In By, we transform in encapsu-
lated atomp?(cy, .., c,, @) with meaning "it istrue that A has a valuex”. Indeed,

what we do is taeplacethe original n-ary predicatg(z1, .., x,,) with n+1-ary predi-
catep” (z1, .., z,,, @), with the added logic-attribute. It is easy to verify that for any
given many-valued valuations, every ground atomp“ (cy, .., ¢,, @) is ontologically
true (whena = vp(p(c, .., cp,))) or false. Let EMV denote this new 2-valued encap-
sulation of many-valued logifor logic programming

5.1 Syntax

We distinguish between what the reasoner believes in (abhifect (epistemic many-
valued sublanguage) level), and what is actually true or false in the real world (at the
EMYV ontological ‘'meta’ level), thus, roughly, the 'meta’ level is an (classic) encapsu-
lation of the object level. Thus, we introduce the modal operator of encapsufation
follows:

Definition 6. Let P be an 'object’ many-valued logic program with the set of predicate
symbolsPs. The translation in the encapsulated syntax versioR+his as follows:

1. Each positive literal il?, £(p(z1, .., zn)) = pA (1, o, Ty ip (T2, 0 T0));

2. Each negative literal itP?, E(~ p(x1,..,25)) = DA (1, 00y Ty ~ Kp(T1, 00y T0));
3.E(o N p) =E(0) AE(g);

4.8(pV @) =E(d) VE(P);

5.£(¢ «—) = E(p) —* E(p) , where— is a new syntax symbol for the implication
at the encapsulated 2-valued 'meta’ level.

Thus, the obtained 'meta’ program is equal B = {£(¢) | ¢ is a clause inP},
with the 2-valued Herbrand base Hj = { p4(c1, .., cn, @) | plei, .., ¢,) € Hp and

a € B}

This embedding of the many-valued 'object’ logic progré&trinto a 2-valued 'meta’
logic programP“ is anontologicalembedding: views formulae d? as beliefs and
interprets negation~ p(z1, .., ,,) in rather restricted sense - as belief in the falsehood
of p(x1,..,x,), rather as not believing thai(z1, .., z,,) is true (like in an ontological
embedding for classical negation).

Like for Moore’s autoepistemic operator, for the encapsulation modal opefatop
is intended to capture the notion of, "I know thathas a valuez(¢) ", for a given
valuationvg of the 'object’ logic program.

Let £ be the set of all ground well-formed formulae defined by this Herbrand Hase
and bilattice operations (included many-valued implicatioralso), with'3 C £. We
define the set of all well-formed encapsulated formulae by:

LA =4.r {E@) | € L}, sothatHs C L£A4, thus, we can extend operatfrto all
formulas inL (also to bilattice logic values, such thét B — 2), so, we obtain

Proposition 3 The encapsulation operatéris :

1. Nondeductive modal operator, such that, for ang B, (o) = tifa =t f
otherwise. It cannot be written in terms of the bilattice operations, ®, & and~.

2. Homomorphism between the 'object’ algehig, A, Vv, <) with carrier set of
(positive and negative) literals, and 'meta’ algelid?, A4, v4, «4), wherea4, vA4
are 2-valued reductions of bilattice meet and join, respectively, denoted\bwlso.

5.2 Semantics

The modal operataf is more selective than Moore’s modal operatdr(which returs
the truth also when its argument has a possible value). Infa¢t) = E(aV L).
Notice, that with the transformation of the original 'object’ logic progrétinto its
annotated ‘meta’ version prograf¥! we obtainalways positiveconsistent logic pro-
gram.

A Herbrand interpretation aP4 is a 2-valued mapping” : H# — 2. We denote by

2H? the set of all a-interpretations (functions) fraify into 2, and by~ the set of

all consistentHerbrand many-valued interpretations, frdifip to the bilattice3. The
meaning of theencapsulatiorof this 'object’ logic programP into this 'meta’ logic
programP is fixed into the kind of interpretation to give to such new introduced func-
tional symbolsk, = K(p): in fact we want [21] that they reflect (encapsulate) the
semantics of the 'object’ level logic program

Definition 7. (Satisfaction) Thencapsulationof an epistemic 'object’ logic program
P into an 'meta’ programP“ means that, for angonsistenmany-valued Herbrand
interpretation/ € B and its extensioms : £ — B, the function symbols, =
K(p), p € Ps reflects this semantics (is compatible to it), i.e.

for any tuple ¢ e 73"""v®), kp(C) = I(p(cC)).

So, we obtain a mapping, © : BFr — 217 such tha4 = O(I) € 277 with: for
any ground atomp(c) , I4(E(p(c))) =t,if k,(c) = I(p(c)); f otherwise.

Let g be a variable assignment which assigns values fignto object variables. We
extent it to atoms with variables, so that(&(p(z1, .., 2x))) = EP(g(x1), .., g(zn))),
and to all formulas in the usual wayy /g denotes a ground formula obtained fram
by assignmeny, then

L I, E(plar, o wn)) i mp((9(x1), o 9(20))) = I(p(g(21), - g(2n))) -

Iy E(~ plan,omn)) W~ rp((9(21). s 9(20) = L(p(g(21), - g(0)) -

2. I E, E(pny) i TAE, E(¢) and T4 E, E(y).

IR, E(pVvy) iff TAE,E(¢) or TAE, E().

4. T4, E(p «—) iff vp(d/g — ¥/9) |strue

Notice that in this semantics the 'meta’ implicatien? , in £(¢) 4 E(v) =
E(¢p — 1) ,is based on the 'object’ epistemic many-valued implicatierfwhich is
not classicali.e.,¢ «— ¥ # ¢V ~ 1)) and determines how the logical value of a body
of clause "propagates” to its head.

Theorem 1 The semantics of encapsulatiéris obtained by identifying the semantic-
reflection with thex-abstraction of Generalized Herbrand interpretatio; = \Z , so
that the semantics of many-valued logic programs can be determin&d(ht/’object’
level) or, equivalently, by its reflectioiC (at encapsulated or 'meta’ level).

Proof. From K = A\Z we obtain that for any(c) € Hp holds I(p(c)) = Z(p,c) =
M (p)(c) = K(p)(c) = k,(c), what is the semantic of encapsulation.

We can consider tha-abstraction of Generalized Herbrand interpretation as an epis-
temic semantics, because, given a Herbrand (epistemic) interprefatiditp — B,

then for any predicate symbpland constant € 7;"""**'*) holds AZ(p)(c) = I(p(c)).
Then the semantic of encapsulation may be defined as follows:

" ontological semantic-reflection= epistemic semantics”, thatisiC = AZ .

Recently, in [22], this semantics is used to give a coalgebraic semantics for
logic programs. Notice that at 'meta’ (ontological) level (differently fromv, which

are classic 2-value boolean operators), the semantics for 'meta’ implication operator,
IA E, E(p — 1), is notdefined onf“ £, £(¢) and I4 F, E(y) . For example, let

I* Ey E(p(c)) and I F, £(q(d)) , with k,(c) = f andk,(d) = t: thenp(c) « g¢(d)

is false and, consequently, does not hdldi = £(p(c) — ¢(d)).

Proposition4 14 F, £(¢) «* E() implies I F, E(¢) and I F, E(¢),
but not viceversa. The truth of (¢/g) and £(y/g) are necessary but not sufficient
conditions for the truth of £(¢/g) «* E(v/g) .

More over —“ has aconstructivisticviewpoint (notice that the implication—* is
satisfied when the body and the head of such clausesgawhile in the "object’ logic
program such clause may be satisfied when their body and theaheadt truealso).
Thus, by encapsulation of a many-valued 'object’ logic program into a 2-valued 'meta’
logic program we obtain a constructive logic program: in each clause we derive from
the true facts in its body other new true facts.

Following the standard definitions, we say that an interpretatigrof a programP,

is amodelof a P4 if and only if every clause oP“ is satisfied in/“. In this way we
define amodel theoretisemantics for encapsulated logic programs.

A set of formulasS, of encapsulated logic EMVbgically entailsa formula¢, denoted

S E ¢, if and only if every model of5 is also a model 0.

6 Conclusion

We have presented a programming logic capable of handling inconsistent beliefs and
based on the 4-valued Belnap’s bilattice, which has clear model theory. In the process
of the encapsulation we distinguish two levels: the 'object’ many-valued level of or-
dinary logic programs with epistemic negation based on a bilattice operators, and the
encapsulated or ‘'meta’ logic programs. In this approach, 'inconsistent’ logic program
(which minimal stable models contain at least an 'inconsistent’ ground atom) at object
level is classic consistent logic program at 'meta’ level also. In such abstraction we
obtained a kind of a minimal Constructivistic Logic where fixpoint 'immediate conse-
quence’ operator is always continuous, and whiatoisiputationally equivalerto the
standard Fitting’s fixpoint semantics. Following this approach we are able to define a
unique many-valued Herbrand model for databases with inconsistencies based on the
fixpoint of a monotonic (w.r.t. knowledge ordering) immediate consequence operator,
and the inference closure for many-valued logic programming also.

This research is partially supported by the project NoE INTEROP-IST-508011 and the
project SEWASIE-IST-2001-3425. The autor wishes to thank Tiziana Catarci and Mau-
rizio Lenzerini for their support.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

M.Gelfond and V.Lifshitz, “The stable model semantics for logic programmithg,Proc.
of the Fifth Logic Programming Symposium, Cambridge, MA. MIT Pnpegs1070-1080,
1988.

. K.Fine, “The justification of negation as failurefi Logic, Methodology and Philosophy of

Science VIII, Amsterdam, North-Hollangp. 263-301, 1989.

. M.C.Fitting, “A kripke/kleene semantics for logic program3gurnal of Logic Programming

2, pp. 295-312, 1985.

. K.Kunen, “Negation in logic programmingJournal of Logic Programming,4pp. 289-308,

1987.

. T.Przymusinski, “Every logic program has a natural stratification and an iterated fixed point

model,” In Eighth ACM Symposium on Principles of Databases Systgmd1-21, 1989.

. T.Przymusinski, “Well-founded semantics coincides with thre-valued stable-semantics,”

Fundamenta Informaticae 1®p. 445-463, 1990.

. G.Escalada Imaz and F.Mamy“The satisfiability problem for multiple-valued horn formu-

lae,” In Proc. International Symposium on Multiple-Valued Logics (ISMVL), Boston, IEEE
Press, Los Alamitqpp. 250-256, 1994.

. B.Beckert, R.Hanhle, and F.Maay “Transformations between signed and classical clause

logic,” In Proc. 29th Int.Symposium on Multiple-Valued Logics, Freiburg,Germpmy248—
255, 1999.

. M.Kifer and E.L.Lozinskii, “A logic for reasoning with inconsistencygurnal of Automated

reasoning 9(2)pp. 179-215, 1992.

M.Kifer and V.S.Subrahmanian, “Theory of generalized annotated logic programming and
its applications,"Journal of Logic Programming 12(4jpp. 335-368, 1992.

M.Ginsberg, “Multivalued logics: A uniform approach to reasoning in artificial intelligence,”
Computational Intelligence, vol.4p. 265-316, 1988.

M.C.Fitting, “Billatices and the semantics of logic programmingdgurnal of Logic Pro-
gramming,11pp. 91-116, 1991.

M.H.van Emden, “Quantitative deduction and its fixpoint theorygurnal of Logic Pro-
gramming,4,1pp. 37-53, 1986.

S.Morishita, “A unified approach to semantics of multi-valued logic prograiegh. Report

RT 5006, IBM Toky01990.

V.S.Laksmanan and N.Shiri, “A parametric approach to deductive databases with uncer-
tainty,” IEEE Transactions on Knowledge and Data Engineering,13{@d) 554-570, 2001.
A.Cali, D.Calvanese, G.De Giacomo, and M.Lenzerini, “Data integration under integrity
constraints,” inProc. of the 14th Conf. on Advanced Information Systems Engineering
(CAISE 2002)2002, pp. 262—-279.

Z. Majki¢, “Fixpoint semantic for query answering in data integration systelA§P03 -

8.th Joint Conference on Declarative Programming, Reggio Calalppa 135-146, 2003.
N.D.Belnap, “A useful four-valued logic,"In J-M.Dunn and G.Epstein, editors, Modern
Uses of Multiple-Valued Logic. D.Reigél977.

M.C.Fitting, “Billatices are nice things,”Proceedings of Conference on Self-Reference,
Copenhagen2002.

M.C.Fitting, “Kleene’s three valued logics and their childrefrindamenta Informaticae

vol. 26, pp. 113-131, 1994.

Z. Majkit, “Two-valued encapsulation of many-valued logic programmifggthnical Re-
port, University 'La Sapienza’, Roma, in http://www.dis.uniromalithajkic/, 2003.

Z. Majki¢, “Coalgebraic semantics for logic programmind8th Worshop on (Constraint)
Logic Programming, WLP 2004, March 04-06, Berlin, Germa2§04.

