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Abstract. The paper discusses a formal framework for proving correctness and
completeness of ontologies during its life-cycle. We have adopted our framework
for the development of a case study drawn from the Semantic Web. In particular
we have developed an ontology for content-based retrieval of XML documents in
Peer-to-peer networks.

1 Introduction

Peer-to-peer (P2P) systems [10] have emerged as a promising new paradigm for dis-
tributed computing, as witnessed by the experience with Napster and Gnutella and
by the growing number of research events related to them. Current P2P systems fo-
cus strictly on handling semantic-free, large-granularity requests for objects by iden-
tifier (typical name), which both limits their usability and restricts the techniques that
might be employed to access data. Intelligent agents that exploit ontologies to perform
content-based information retrieval in P2P networks may represent a viable solution to
overcome the limitations of current P2P networks [11,1].

A recent proposal for a semantic, policy-based system for the retrieval of XML
documents in P2P networks comes from [9], where peers are organised into thematic
groups coordinated by a “super-peer agent” that exploits a “group ontology” to set the
concepts managed by the group. The focus of [9] is on the architecture of the system; the
engineering stages that a developer must follow in order to design, build and evaluate
the group ontology are not addressed at all.

Developing an ontology is akin to defining a set of data and their structure for other
programs to use. Problem-solving methods, domain-independent applications, and soft-
ware agents use ontologies and knowledge bases built from ontologies as data. The
engineering stages that an ontology undergoes during its life-cycle include its evalua-
tion with respect to general and domain-dependent requirements. In particular, prov-
ing the ontology completeness and consistency is a very important step to face in or-
der to develop correct, re-usable and maintainable ontologies. From a logical point of
view, completeness is a property associated with combining a procedure for construct-
ing well-formed formulas, a definition of truth that relates to interpretations and models
of logical systems, and a proof procedure that allows new well-formed formulas to be

? Parts of this document appear in [3].



derived from old ones. A logical system is logically complete if every true well-formed
formula can be derived. The other side to logical completeness is consistency. If fal-
sity can be derived, then any well-formed formula can be derived, so trivially all true
well-formed formulas can be derived.

When talking about ontologies, completeness and consistency assume a different
meaning, although the conceptual relation with their logical counterparts is usually re-
spected. While the meaning of consistency w.r.t. ontologies is pretty simple – the on-
tology should not contain conflicting information – there are different definitions of
ontological completeness.

According to Colomb and Weber [2], an information system has thepotentialof
being “ontologically complete” if it matches the social reality of the organisation in
which the system is embedded. The potential for completeness, which is analogous
to logical and computational completeness, has been called “ontological adequacy” by
Guarino [6]. Colomb and Weber propose a set of guidelines for checking the ontological
completeness of information systems. Fox and Grüninger [4] define the “functional
completeness” of an ontology as its ability to represent the information necessary for a
function to perform its task. They also propose a set of theorems that state under which
conditions an ontology is complete [5].

All the authors that deal with the problem of checking the completeness of an ontol-
ogy w.r.t. its requirements, agree that this check should be designed in such a way to be
easily automatised and computationally tractable. In this paper, we provide a notion of
completeness based on [5] but simpler than that, and whose check can be partially au-
tomatised. Both the notion we propose and the framework for proving the completeness
of ontology we have developed are based on computational logic.

We have adopted our framework for the development of a case study drawn from
the Semantic Web, where proving the completeness of an ontology can be crucial for
safety and security reasons.

The structure of the paper is the following: Section 2 introduces the case study
based on [9]. Section 3 introduces some techniques from the literature and then explains
our formal framework for proving completeness of ontologies. Section 4 shows the
development of the case study emphasising the ontology evaluation by means of our
framework. Conclusions follow.

2 The case study: describing and retrieving XML documents

To show how our formal framework for proving the completeness of ontologies works,
we consider a scenario simpler than that for which we need to develop the “real” ontol-
ogy, namely the P2P network described in [9]. There, peers are organised into thematic
groups, each one coordinated by a “super-peer agent”. The super-peer agent provides
an ontology (“group ontology”) that sets the concepts dealt with by the group and es-
tablishes the relationships among them. Each peer can dynamically enter and leave any
group inside the P2P network. When the peer joins a group for the first time, it is re-
quested to provide to the super-peer agent as much information as possible about the
concepts that are dealt with by the documents it is willing to share. This allows the
super-peer agent to know which peers are more likely to deal with which concepts.



When a query is submitted to a peer, the peer forwards it to the super-peer which can
understand the meaning of the terms appearing in the query by exploiting the group on-
tology. Since the super-peer knows which peers deal with which concepts, it identifies
the peers in the group that can contain an answer for the query and forwards the query
only to them, in order to minimise the number of messages exchanged inside the group.

The simplified scenario that we consider involves the development of a system able
to support the automatic classification of XML documents retrieved from the network
(just a binary classification: “is the XML document talking about a given topic or not?”).
In particular the case study faces the development of an ontology for structuring the
knowledge about XML documents talking about movies. In this simplified scenario,
formally demonstrating the completeness of the ontology is not a very critical issue and
we perform this demonstration mainly for illustrative purposes. Nevertheless, there are
many real situations drawn from the Semantic Web domain where this formal proof
mustbe carried out for safety and security reasons.

The knowledge about XML documents talking about movies is based on:

1. the semantics of tags that appear in the XML document, and
2. the XML document structure.

For example, both documents in Table 1 describe a movie, even if they are charac-
terised by different structure and different tags.

<movie> <film>
<title>Title1<title> <title>Title2<title>
<actors><actor>Act1</actor> <actors>Act3, Act4</actors>

<actor>Act2</actor> <director>Dir</director>
</actors> </film>
<directed_by><name>Name</name>

<surname>Surn</surname>
</directed_by>

</movie>

Table 1.Two XML documents dealing with movies

As far as tags are concerned, the first document uses<movie> to refer to a movie,
while the second document uses<film> . In this context, the semantics of “movie”
and “film” is the same. The director is identified by the tag<directed by> in the
first document, and by the tag<director> in the second one. Again, despite to their
syntactic difference, these two tags have the same semantics.

As far as the structure is concerned, the tag<actors> is structured into a list of
<actor> and the tag<directed by> is composed by<name> and<surname>
in the first document, while the corresponding tags in the second document contain
strings.

The prototypical ontology must contain all the information needed to classify XML
documents talking about movies. In particular, it must contain the information that:



– the tags<film> and<movie> , and<director> and<directed by> rep-
resent the same concepts in the movie context;

– <actors> can contain a string or a list of<actor> tags;
– the director, be it identified by<directed by> or by <director> , may con-

tain a string or a structure including<name> and<surname> .

In order to build the ontology, we retrieved a set of existing XML documents deal-
ing with movies from the web and we manually analysed each of them in order to iden-
tify the structural and the semantic rules exemplified above. Some documents we used
for our purposes arehttp://catcode.com/cit041x/assignment4a.html ,
http://www-db.stanford.edu/pub/movies/mains218.xml , andhttp:
//www.flixml.org/flixml/detour.xml .

The purpose was to build an ontology which could tell that a document starting with
the tag<film> or <movie> (and others, that we do not discuss here), and containing
somewhere a tag<director> or <directed by> , possibly with different content,
is likely to talk about movies. Given a new XML document, the ontology should allow
to answer “yes, it talks about movies because it matches the semantic and structural
rules” or “no, it does not talk about movies”.

3 A formal framework for proving completeness of ontologies

Our formal framework is based on the work on TOVE by Grüninger and Fox [5]. TOVE
is a methodology based on experiences in the development of TOVE (Toronto Virtual
Enterprise).

The TOVE approach to ontology development starts with the definition of the mo-
tivating scenarios that arise in the applications. Such scenarios may be presented by in-
dustrial partners as problems which they encounter in their enterprises. The motivating
scenarios often have the form of story problems or examples which are not adequately
addressed by existing ontologies.

Given the motivating scenarios, a set of queries will arise which place demands on
an underlying ontology. These queries can be considered as the requirements that are
in the form of questions that an ontology must be able to answer. These are called the
informal competency questions, since they are not yet expressed in the formal language
of the ontology.

Once informal competency questions have been defined, they should be restated
using some formal language suitable for expressing the ontology terminology. This
activity is carried out manually. The ontology terminology must be able to correctly
and easily represent the objects in the domain of discourse as constants and variables in
the language. Attributes of objects may be defined by unary predicates; relations among
objects may be defined using n-ary predicates. The two languages that Grüninger and
Fox suggest for expressing both the ontology terminology and the formal competency
questions are first-order logic and KIF [13].

In [4], the concepts of competency and completeness of an ontology are informally
stated:



Given a properly instantiated model of an enterprise and an accompanying
theorem prover (perhaps Prolog or a deductive database), the competence of
an ontology is the set of queries that it can answer. [. . . ]
The Functional Completeness of an ontology is determined by its competency,
i.e., the set of queries it can answer with a properly instantiated model. Given
a particular function (application), its enterprise modelling needs can be spec-
ified as a set of queries. If these queries can be “reduced to”1 the set of compe-
tency questions specified for the chosen ontology, then the ontology is sufficient
to meet the modelling needs of the application.

This informal statement corresponds to the formal definition provided by the com-
pleteness theorems discussed in [5]. These theorems have one of the following forms,
whereTontology is the set of axioms in the ontology,Tground is a set of ground literals
(instances),Q is a first-order sentence specifying the query in the competency question,
andΦ is a set of first-order sentences defining the set of conditions under which the
solutions to the problem are complete:

– Tontology ∪ Tground � Φ if and only if Tontology ∪ Tground � Q.
– Tontology ∪ Tground � Φ if and only if Tontology ∪ Tground ∪Q is consistent.
– Tontology ∪ Tground ∪ Φ � Q or Tontology ∪ Tground ∪ Φ � ¬Q.
– All models ofTontology ∪ Tground agree on the extension of some predicateP .

Completeness theorems can also provide a means of determining the extendibility of
an ontology, by making explicit the role that each axiom plays in proving the theorem.
Any extension to the ontology must be able to preserve the completeness theorems.

Starting from Gr̈uninger and Fox’s definitions, and integrating suggestions com-
ing from other methodologies such as EXPLODE [7], “A Guide to Creating your First
Ontology” [12] (in the following identified byOD101 for readability), and Uschold’s
“Unified Method” [14] (in the following identified byUniMeth), we define our guide-
lines for developing a complete ontology. UniMeth embraces TOVE and the Enterprise
methodology [15] in a unique framework. For this reason, in the following we will refer
to UniMeth instead of specifically referring to TOVE.

The engineering stages that an ontology developer should follow according to our
integrated approach, fully discussed in [3], are:

– Domain analysis.This development stage can be faced by answering the questions
that EXPLODE, OD101 and UniMeth suggest, such as which are the expected users
of the methodology and which are the ontology domain and extended purpose.
UniMeth also suggests to identify fairly general scenarios and use them to help
clarify specific uses of the ontology.

– Requirement definition. EXPLODE, OD101 and UniMeth all suggest to iden-
tify the competency questions. Besides competency questions, UniMeth allows the
developer to use other techniques for the extraction of the ontology requirements
such as defining the detailed motivating scenarios, brainstorming and trimming.

1 By reducible, Fox and Grüninger mean that the questions can be re-written using the objects
provided by the chosen ontology.



EXPLODE also suggests to clearly identify the specific constraints from the hard-
ware/software system that come from other modules in the system that interact with
the ontology.

– Informal specification of the ontology.This step can be faced by identifying the
most important terms of the ontology and using an ontology-editing environment
to graphically represent the ontology concepts and the relations among them.

– Formal specification of the ontology.Following UniMeth, in this step we suggest
to use definite Horn Clauses as the formal language for defining the ontology. We
refer to the set of Horn Clauses specifying the ontology asProgrontology.

– Testing, validation, verification. The primary validation technique that all the
methodologies support consists of informally checking the ontology against the
competency questions. By performing this check, it may be realised for example
that some motivating scenarios were not correctly addressed. Previous choices can
then be adjusted and corrected.

– Completeness check.According to UniMeth and to our suggestion for formally
specifying the ontology, the developer should manually restate the informal com-
petency questions as goals (negative Horn clauses) and should demonstrate that for
each competency question restated as a goal,QGoal, there exists a refutation for
Progrontology ∪ QGoal [8]. Obviously, this can be automatised by using any Pro-
log interpreter or compiler to demonstrate that the goalQGoal succeeds if called
within the Prolog programProgrontology. In this sense, the approach to complete-
ness check that we propose is “partially automatised”: once the ontology and the
informal competency questions have been manually restated as Prolog programs
and goals, the completeness check can be performed in a completely automatic
way.

– Other engineering steps.Before the goal of developing an ontology can be con-
sidered achieved, other engineering steps must be faced besides the demonstration
of its completeness. EXPLODE, OD101 and UniMeth suggest to face:
• the development of intermediate prototypes;
• the iterative refinement of previous choices, according to the outcomes of the

completeness check and of the prototype execution;
• the implementation of a machine-readable ontology;
• the meetings with clients to perform an iterative check; and
• the production of documentation on the ontology and on its development pro-

cess.
These steps are not a central issue in this paper, so we will not face them. The reader
can refer to [3] for details.

4 Developing a complete ontology for the retrieval of XML
documents on movies

In this section we discuss the stages – from the domain analysis to the check of the
ontology completeness – that we followed to develop the ontology introduced in Section
2.



– Domain analysis.
Since the ontology under development is just a toy-example, the answers to the
questions suggested by OD101 and UniMeth for analysing the domain are not very
meaningful: there are no expected users of the methodology, the domain is the
one described in Section 2, and the intended purpose of the ontology is to provide
a test-bed for evaluating our approach to completeness check. UniMeth suggests
to identify fairly general scenarios and use them to help clarify specific uses of
the ontology. For example, being able to recognise both documents in Table 1 as
documents dealing with movies is a general motivating scenario for our ontology.

– Requirement definition.
We have identified the following competency questions for our ontology.
1. Competency Question:Should the ontology be able to separate the concepts

related to the document structure from those related to the document seman-
tics?
Expected answer:Yes, it should. This separation is very important because
it will allow re-using the ontology to classify documents in domains different
from movies, only requiring an extension to the ontology concepts related with
the document semantics.

2. Competency Question:What are the syntactic equivalent representations of
the tag “title” in the context of tag “heading”?
Expected answer: The representations of “title” in the context of “heading”
are ‘t’, ‘Title’, ‘title’, ‘TITLE’, ‘movieTitle’, ‘titleMovie’.

3. Competency Question:What is the meaning of the tag “title” in the context
of the tag “heading”?
Expected answer: The meaning is the “title” element (which is different from
the “title” tag).

4. Competency Question:Can the tag “actors” contain either a string or a list of
“actor” tags?
Expected answer: yes, it can.

5. Competency Question:Can the information about the title of the film be an
attribute of the tag “movie”?
Expected answer: yes, it can.

Besides using the competency questions, UniMeth suggests to define the detailed
motivating scenarios that include possible solutions to the problem addressed by the
ontology. A motivating scenario for our ontology is that it must be able to classify
the documents whose fragments are shown in Tables 2 and 3, as well as other doc-
uments that we downloaded fromhttp://www-db.stanford.edu/pub/
movies/ andhttp://catcode.com/cit041x/assignment4a.html ,
as movie documents.
EXPLODE suggests to clearly identify the specific constraints from the hardware/
software system that come from other modules in the system that interact with the
ontology. Our ontology will be used by intelligent agents that help the peers in a
P2P network in deciding which of the XML documents they are willing to share
deal with movies, and which do not. The modules that the ontology will interact
with are those described in [9]. Assuming that all the documents shared by peers
in a P2P network have a common structure is not realistic: peers share documents



<title role="main"> Detour </title>
<releaseyear role="initial"> 1945 </releaseyear>
<language> English </language>
<studio> PRC (Producers Releasing Corporation) </studio>
<cast> <leadcast>

<male id="TN"> T. Neal <role> Al </role> </male>
<female id="AS"> A. Savage <role> Vera </role> </female>

</leadcast>
<othercast> <male> .... </male> ....
</othercast> </cast>

<crew><director>Edgar G. Ulmer</director> ....

Table 2.A fragment ofhttp://www.flixml.org/flixml/detour.xml

<fid> SMg10 </fid>
<t> Bridget Jones’s Diary </t>
<year> 2001 </year>
<dirs> <dir> <dirk> R </dirk><dirn> NancyMeyer </dirn> </dir>

Table 3.A fragment ofhttp://www-db.stanford.edu/pub/movies/mains218.xml

characterised by very different structures and very different tags. An ontology that
tries to conciliate these differences can prove extremely useful in this context. In
order to be used in a real P2P application, our ontology should be extended to deal
with other subjects besides movies (hence, the requirement that the syntactic and
the semantic aspects are clearly separated in the ontology).

– Informal specification of the ontology.
Following OD101, we identified the most important terms of the ontology. For
example, the terms “tag”, “attribute”, “movie”, “title”, “year” must be represented.
Afterwards, we used an ontology-editing environment to graphically represent the
ontology concepts and the relations among them.
Figure 1 represents the hierarchy of concepts that belong to our ontology. The on-
tology was edited using Protéǵe 2.0, a drawing tool developed by the Stanford
University.
Note that semantic aspects are separated from syntactic ones. The former are col-
lected under the general concept “Element”, while the latter are collected under the
“Tag” concept. The relationship between tags and elements is that a tag has a con-
text, which may be the root of the document or another tag, and a meaning, which
is an element.
The hierarchy of concepts alone is not enough informative. In order to make the
ontology useful and complete with respect to its requirements, we had to describe
the internal structure of concepts. For example, Figure 2 shows the attributes of the
concept Movie.

– Formal specification of the ontology.
The ontology graphically represented in Figures 1 and 2 can be also represented
using definite Horn clauses.



Fig. 1.Concept hierarchy

Fig. 2.The attributes of the concept “Movie”



We can represent the hierarchy of concepts in a standard way by means of theisA
relation as shown in Table 4. We adopt a Prolog-like syntax for Horn clauses; text
preceded by one or more “%” is a comment.

%%% THING CONCEPT %%%
isA(tag, thing).
isA(element, thing).

%%% ELEMENT CONCEPT %%%%
isA(movie, element).
isA(title, element).
isA(actor, element).
isA(year, element).
.........

Table 4.Formal specification of the ontology: isA relation

The instances of a concept can be defined by means of aninstanceOf relation
which has an instance of a concept and the concept to which the instance belongs
as its arguments. Instances are represented by the functorinstance plus a set
of arguments which represents the attributes of the instance. For example, tags are
identified by an atom (the tag identifier), another atom (the identifier of the tag con-
text2), an element (the tag meaning) and a list of strings (all the possible syntactic
representations of the tag inside the XML document). As shown by the first clause
of Table 5, an instance of thetitle tag may have anheading context (2nd
argument, this argument must be an instance of a tag), thetitle meaning (3rd ar-
gument; this argument must be an element), and the list of[’t’, ’Title’,
’title’, ’TITLE’, ’movieTitle’, ’titleMovie’] syntactic rep-
resentations (4th argument).
Another instance of thetitle tag may have the same arguments as the previous
one except for the context, which may bemovie (second clause of Table 5). This
means that two XML documents where the tagtitle appears as a sub-element
or an attribute of either theheading tag or themovie tag can be both consid-
ered documents that represent movies. Other examples of instances are included in
Table 5.
Definite Horn clauses can be also used to express consistency constraints on the
structure of the ontology. For example, the clause shown in Table 6 is an axiom
stating that the context of a tag must be a tag and that the semantics of a tag must
be an element.

– Testing, validation, verification.
The primary validation technique that all the methodologies support consists of
checking the ontology against the informal competency questions. One of the com-

2 The tag A is in the context of the tag B if either A is an attribute of B or if it is a sub-element
of B.



%%% TAG TITLE %%%
instanceOf(instance(title, heading, title,
[’t’, ’Title’, ’title’, ’TITLE’,
’movieTitle’, ’titleMovie’]), tag).

instanceOf(instance(title, movie, title,
[’t’, ’Title’, ’title’, ’TITLE’,
’movieTitle’, ’titleMovie’]), tag).

%%% TAG ACTOR %%%
instanceOf(instance(actor, actors, actor,
[’actor’, ’ACTOR’, ’Actor’]), tag).

%%% TAG ACTORS %%%
instanceOf(instance(actors, credits, actor,
[’actors’, ’ACTOR’, ’Actor’, ’cast’, ’Cast’, ’CAST’]), tag).

.......

Table 5.Formal specification of the ontology:instanceOf relation

instanceOf(instance
(TagId, TagContext,

TagSemantics, TagSyntax),
tag) :-

instanceOf(instance(TagContext, _, _, _), tag),
isA(TagSemantics, element).

Table 6.Formal specification of the ontology: consistency axioms



petency questions we identified for the ontology is: “What are the syntactic repre-
sentations of the tagtitle in a document dealing with movies?” The expected an-
swer, based on the set of real XML documents we used as our training set, is: “The
syntactic representations of the tagtitle are: movieTitle , titleMovie ,
t , Title , TITLE .” Figure 3 shows that all these representations are considered
by the ontology. By checking the ontology, we realised that some motivating sce-

Fig. 3.One instance of the ontology

narios were not correctly addressed. In particular, the ontology did not include the
information thatdirn may be used as an alternative syntactic representation of
the concept ofdirector , which is indeed necessary to correctly classify the doc-
ument in Table 3. Thanks to this testing, verification and validation stage we got
feedback useful to refine the definition of the ontology.

– Completeness check.

The last ontology development stage that we take under consideration in this paper
is the completeness check. In order to face this stage, we restate all the informal
competency questions as negative Horn clauses. Since we are going to use a Prolog
interpreter to check whether or not these goals can be demonstrated starting from
the Prolog programProgrontology partly shown in Tables 4, 5, and 6, we take
advantage of standard Prolog predicates to express conditions such asX is not a
variable(nonvar(X) ) andX cannot be unified with Y(X \= Y). An underscore
( ) is used for unnamed variables for which no binding is required.



Below, we show how each competency question introduced in the “Requirement
definition” stage can be expressed as a negative Horn clauseQGoal, and which
answer is computed by the Sicstus Prolog interpreter forProgrontology ∪QGoal.
It is easy to see that the answers we got are consistent with the answers we ex-
pected, thus demonstrating the completeness of our ontology with respect to its
requirements. By issuing a “; ” command to the Sicstus Prolog interpreter after it
returns one unification for the goal variables we force the interpreter to look for
more answers. Ano means that no more answers were found.
1. Competency Question:Should the ontology be able to separate the concepts

related to the document structure from those related to the document seman-
tics?
Corresponding negative Horn clause:
:- isA(tag, thing), isA(element, thing).
Answer provided by the Sicstus Prolog interpreter:
yes

2. Competency Question:What are the syntactic representations of tag “title” in
the context of tag “heading”?
Corresponding negative Horn clause:
:- instanceOf(instance(title, , , SyntRepr), tag).
Answer provided by the Sicstus Prolog interpreter:
SyntRepr = [t, ’Title’, title, ’TITLE’ , movieTitle,
titleMovie] ? ;
SyntRepr = [t, ’Title’, title, ’TITLE’, movieTitle,
titleMovie] ? ;
no
Here two answers are provided: one for the case the tag “title” is in the context
of the tag “heading”, and one for the case it is in the context of the tag “movie”.

3. Competency Question:What is the meaning of the tag “title” in the context
of the tag “heading”?
Corresponding negative Horn clause:
:- instanceOf(instance(title, heading, Meaning, ),
tag).
Answer provided by the Sicstus Prolog interpreter:
Meaning = title ? ;
no

4. Competency Question:Can the tag “actors” contain either a string or a list of
“actor” tags?
Corresponding negative Horn clause:
:- instanceOf(instance(actor, actors, actor, ), tag),
instanceOf(instance(actors, , actor, ), tag).
Answer provided by the Sicstus Prolog interpreter:
yes

5. Competency Question:Can the information about the title of the film be an
attribute of the tag “movie”?
Corresponding negative Horn clause:
:- instanceOf(instance(title, movie, , ), tag).



Answer provided by the Sicstus Prolog interpreter:
yes

In this way we have demonstrated that our ontology is able to answer all the compe-
tency questions, moreover these answers are consistent with the XML documents
retrieved from the web and used as motivating scenario during the development of
the ontology.

5 Conclusions and future directions

In this paper we have outlined a methodology for developing ontologies which takes in-
spiration from three existing methodologies, namely OD101, UniMeth and EXPLODE.
In particular, we have concentrated our efforts in the stage of checking the ontology
completeness. Consistently with the existing literature on the topic [5,4], we suggest
that the ontology developer performs the completeness check by formally defining the
ontology as a set of definite Horn clauses (a Prolog program) and by stating the com-
petency questions as negative Horn clauses (Prolog goals). The developer should then
check that, for each competency question restated as a negative Horn clause, a refuta-
tion exists for the defined ontology and the competency question. From a practical point
of view, this check can be carried out by means of any Prolog interpreter. We have used
an example taken from the Semantic Web domain to illustrate our approach.

The main future direction of our work consists of the extension of the ontology
for representing and retrieving XML documents in order to cope with other domains
besides to “movie” one. The integration of such extended ontology into a prototypical
peer-to-peer network implementing the ideas of [9] will demonstrate the suitability of
our approach in a real scenario.
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