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Abstract. We present a technique for the optimization of (partially)
bound queries over disjunctive datalog programs enriched with aggre-
gate functions (Datalog∨A programs). This class of programs has been
recently proved to be well-suited for declaratively formalizing repair se-
mantics in data integration systems. Indeed, even though disjunctive
programs provide a natural way for encoding the possible repairs (i.e.,
insertions or deletions of tuples) of an inconsistent database, they do
not suffice for applications in real scenarios, where users usually want to
build summary views of data residing in different databases.
The technique exploits the propagation of query bindings, and ex-
tends the Magic-Set optimization technique (originally defined for non-
disjunctive programs without aggregate functions) to Datalog∨A pro-
grams. All the algorithms presented in the paper have been fully inte-
grated and implemented in the DLV system – the state-of-the-art imple-
mentation of disjunctive datalog.

1 Introduction

Disjunctive datalog (Datalog∨) programs are logic programs where disjunction
may occur in the heads of rules [12, 11]. Disjunctive datalog is very expressive in a
precise mathematical sense: it allows to express every property of finite ordered
structures that is decidable in the complexity class ΣP

2 (NPNP) [11]. There-
fore, under widely believed assumptions, Datalog∨ is strictly more expressive
than normal (disjunction-free) datalog which can express only problems of lower
complexity. Importantly, besides enlarging the class of applications which can
be encoded in the language, disjunction often allows for representing problems
of lower complexity in a simpler and more natural fashion [10].

Recently, disjunctive datalog is employed in several “hot” application areas
like information integration and knowledge management. In particular, several



approaches formalizing repair semantics in data integration system by using
logic programs have been proposed (see, e.g., [1, 13, 7]), and the exploitation of
disjunctive datalog for information integration is the main focus of the INFOMIX
project (IST-2001-33570), funded by the European Commission.

Data integration is an important problem, given that more and more data
are dispersed over many data sources. In a user-friendly information system, a
data integration system provides transparent access to the data, and relieves the
user from the burden of having to identify the relevant data sources for a query,
accessing each of them separately, and combining the individual results into the
global view of the data.

Informally, a data integration system I may be viewed as system 〈G,S,M〉
that consists of a global schema G, which specifies the global (user) elements,
a source schema S, which describes the structure of the data sources in the
system, and a mapping M, which specifies the relationship between the sources
and the global schema. Usually, the global schema also contains information
about constraints, Σ, such as key constraints or exclusion dependencies issued
on a relational global schema. When the user issues a query q on the global
schema, the global database is constructed by data retrieval from the sources
and q is answered from it. However, the global database might be inconsistent
with the constraints Σ.

To remedy this problem, the inconsistency might be eliminated by modifying
the database and reasoning on the “repaired” database. To this aim, the idea
exploited in the mentioned papers is to encode the constraints Σ of G into a logic
program, Π, using disjunction (or unstratified negation, as done in [7]), such
that the stable models of this program yield the repairs of the global database.
Answering a user query, q, then amounts to cautious reasoning over the logic
program Π augmented with the query, and the retrieved facts R.

An attractive feature of this approach is that disjunctive logic programs serve
as executable logical specifications of repair, and thus allow to state repair poli-
cies in a declarative manner rather than in a procedural way. Moreover, the
effectiveness of the approach is guaranteed by the availability of some efficient
inference engines, such as the DLV system [19] and the GnT system [17], and by
some optimization techniques for disjunctive programs which have been recently
proposed in [14, 8].

However, in spite of its high expressiveness, it has been clearly recognized
that classical Datalog∨ presents some limitations for its applicability to real
data integration settings. In data integration contexts, it is reasonable to assume
that users should be able to express most of the SQL2 queries. Indeed, SQL2
is widely accepted as the standard query language in the database context.
However, Datalog∨ is not comparable with SQL2 in that some queries that
can be expressed in Datalog∨ cannot be expressed in SQL2 and vice versa. For
instance, Datalog∨ provides the power of recursion and disjunction which cannot
be simulated in SQL2, and SQL2 allows aggregate operators (such as SUM,
MIN, MAX) and ordering features which cannot be expressed or easily simulated



in classical Datalog∨. In some cases, aggregate operators can be simulated in
Datalog∨, but this produces inefficient programs and unnatural encodings of the
problems.

In [9], the above deficiency of Datalog∨ has been overcome by extending the
language with a sort of aggregate functions (Datalog∨A), first studied in the con-
text of deductive databases, and implementing them in DLV [10] – the state-of-
the-art Disjunctive Logic Programming system. Under a computational point of
view, the resulting formalism turned out to be equivalent to standard Datalog∨,
since ‘brave reasoning’ for ground programs is ΣP

2 -complete whereas ‘cautious
reasoning’ for ground programs is ΠP

2 -complete. However, at the best of our
knowledge, no optimizations techniques for the efficient evaluation of disjunctive
programs enriched with aggregate functions have been appeared in the literature.
Hence, with current implementations of stable model engines, the evaluation of
queries over large data sets quickly becomes infeasible because of lacking scala-
bility. This calls for suitable optimization methods that help in speeding up the
evaluation of queries, and in making Datalog∨A well suited for real applications
in data integration settings.

In this paper, we face such efficiency problems and we present an optimiza-
tion technique, that is able to support Datalog∨ programs, enriched with aggre-
gate functions. Specifically, we investigate a promising line of research consisting
of the extension of deductive database techniques and, specifically, of binding
propagation techniques exploited in the Magic-Set method [24, 2, 4, 23, 18, 22],
to nonmonotonic logic languages like disjunctive datalog.

1.1 Related Work

The Magic-Set method is one of the most well-known technique for the opti-
mization of positive recursive Datalog programs due to its efficiency and its
generality, even though other focused methods such as the supplementary magic
set and other special techniques for linear and chain queries have been proposed
as well (see, e.g., [15, 24, 21]). Intuitively, the goal of the Magic-Set method (orig-
inally defined for non-disjunctive datalog queries only) is to use the constants
appearing in the query to reduce the size of the instantiation by eliminating “a
priori” a number of ground instances of the rules which cannot contribute to the
derivation of the query goal.

After seminal papers [2, 4], the viability of the approach was demonstrated e.g.
in [16, 20]. Lateron, extensions and refinements have been proposed, addressing
e.g. query constraints in [23], the well-founded semantics in [18], or integration
into cost-based query optimization in [22]. The research on variations of the
Magic-Set method is still going on. For instance, in [5] a technique for the class
of soft-stratifiable programs is given, and in [14] an elaborated technique for
disjunctive programs is described.

It has been noted (e.g. in [18]) that in the non-disjunctive case, memoing
techniques lead to similar computations as evaluations after Magic-Set transfor-
mations. Also in the disjunctive case such techniques have been proposed, e.g.



Hyper Tableaux [3], for which similar relations might hold. However, we leave
this issue for future research, and follow [18] in noting that an advantage of
Magic-Sets over such methods is that the latter may be more easily combined
with other database optimization techniques.

An extension of the Magic-Set method to disjunctive programs is due to
[14], where the author observes that binding propagation strategies have to be
changed for disjunctive rules so that each time a head predicate receives some
binding from the query, it eventually propagates this relevant information to
all the other head predicates as well as to the body predicates. An algorithm
implementing the above strategy has been also proposed in [14]. Moreover, in [8]
some fresh and refined ideas for extending the Magic-Set method to disjunctive
datalog queries have been provided, by avoiding some major drawbacks that are
intrinsic of the method in [14].

1.2 Contribution

In this paper, we continue on the way paved in [8], and we provide an exten-
sion of the Magic-Set method to deal with Datalog∨A programs as well (DMSA

algorithm). Specifically, in Section 2, we preliminarily show how to extend Dis-
junctive Logic Programming by aggregate functions and we formally define the
semantics of the resulting language, named Datalog∨A.

Then, in Section 3, we show that in order to make such technique work in
the presence of both disjunction and aggregate atoms, traditional Sideways In-
formation Passing Strategies (SIPS ), cf. [4], simulating the data flow occurring
in the top-down evaluation of the query, must be modified by imposing some
additional constraints. We provide all the details needed for understanding the
main ideas exploited in the design of the DMSA algorithm, which has been fully
implemented and integrated in the DLV system [19] – the state-of-the-art imple-
mentation of disjunctive datalog. Finally, in Section 4 we draw our conclusions.

2 The Datalog∨A Language

In this section, we provide a formal definition of the syntax and semantics of
the Datalog∨A language – an extension of Datalog∨ by set-oriented functions
(also called aggregate functions). We assume that the reader is familiar with
standard Datalog∨; we refer to atoms, literals, rules, and programs of Datalog∨,
as standard atoms, standard literals, standard rules, and standard programs, re-
spectively. For further background, see [12, 10].

2.1 Syntax

A (Datalog∨A) set is either a symbolic set or a ground set. A symbolic set is a
pair {Vars :Conj}, where Vars is a list of variables and Conj is a conjunction of



standard literals. Intuitively, a symbolic set {X:a(X, Y ), p(Y )} stands for the set
of X-values making a(X, Y ), p(Y ) true, i.e., {X :∃Y s.t . a(X, Y ), p(Y ) is true}.
Note that also negative literals may occur in the conjunction Conj of a symbolic
set.

A ground set is a set of pairs of the form 〈t : Conj〉, where t is a list of
constants and Conj is a ground (variable free) conjunction of standard literals.
An aggregate function is of the form f(S), where S is a set, and f is a function
name among #count, #min, #max, #sum, #times. An aggregate atom is Lg ≺1

f(S) ≺2 Rg, where f(S) is an aggregate function, ≺1,≺2∈ {=, <, ≤, >,≥}, and
Lg and Rg (called left guard, and right guard, respectively) are terms. One of
“Lg ≺1” and “≺2 Rg” can be omitted. An atom is either a standard (Datalog∨)
atom or an aggregate atom.

A (Datalog∨A) rule r is a construct

a1 v · · · v an :- b1, · · · , bm.

where a1, · · · , an, b1, · · · , bm are atoms, and n ≥ 0, m ≥ 0. The disjunction
a1 v · · · v an is the head of r, while the conjunction b1, ..., bm is the body of r.
A (Datalog∨A) program is a set of Datalog∨A rules.

For simplicity, and without loss of generality, we assume that the body of
each rule contains at most one aggregate atom. A global variable of a rule r is a
variable appearing in some standard atom of r; a local variable of r is a variable
appearing solely in an aggregate function in r.

Stratification. A Datalog∨A program P is aggregate-stratified if there exists
a function || ||, called level mapping, from the set of (standard) predicates of P
to ordinals, such that for each pair a and b of (standard) predicates of P, and for
each rule r ∈ P: (i) if a appears in the head of r, and b appears in an aggregate
atom in the body of r, then ||b|| < ||a||, and (ii) if a appears in the head of r,
and b occurs in a standard atom in the body of r, then ||b|| ≤ ||a||.

Example 1. Consider the program consisting of a set of facts for predicates a
and b, plus the following two rules:

q(X) :- p(X),#count{Y : a(Y, X), b(X)} ≤ 2.
p(X) :- q(X), b(X).

The program is aggregate-stratified, as the following level mapping || || satisfies
the required conditions: ||a|| = ||b|| = 1; ||p|| = ||q|| = 2.
If we add the rule b(X) :- p(X), then no legal level-mapping exists and the program
becomes aggregate-unstratified. 2

Intuitively, aggregate-stratification forbids recursion through aggregates,
which could cause an unclear semantic in some cases. Consider, for instance,
the (aggregate-unstratified) program consisting only of rule p(a) :-#count{X :
p(X)} = 0. Neither p(a) nor ∅ is an intuitive meaning for the program. We should



probably assert that the above program does not have any answer set (defining
a notion of “stability” for aggregates), but then positive programs would not
always have an answer set if there is no integrity constraint. In the following we
assume that Datalog∨A programs are safe and aggregate-stratified.

2.2 Semantics

Given a Datalog∨A program P, let UPdenote the set of constants appearing
in P, UN

P ⊆ UP the set of the natural numbers occurring in UP , and BPthe
set of standard atoms constructible from the (standard) predicates of P with
constants in UP . Furthermore, given a set S, 2S denotes the set of all multisets
over elements from S. Let us now describe the domains and the meanings of the
aggregate functions we consider.
#count: defined over 2UP , returns the number of the elements in the set.

#sum: defined over 2UNP , returns the sum of the elements in the set.

#times: defined over 2UNP , returns the product of the elements in the set.5

#min ; #max: defined over 2UP −∅, returns the minimum/maximum element in
the set (if the set contains also strings, the lexicographic ordering is considered).
If the argument of an aggregate function does not belong to its domain, then ⊥
is returned.

A substitution is a mapping from a set of variables to the set UP of the con-
stants appearing in the program P. A substitution from the set of global variables
of a rule r (to UP) is a global substitution for r; a substitution from the set of
local variables of a symbolic set S (to UP) is a local substitution for S. Given a
symbolic set without global variables S = {Vars : Conj}, the instantiation of
set S is the following ground set of pairs inst(S):
{〈γ(Vars) : γ(Conj)〉 | γ is a local substitution for S}. Given a substitution σ
and a Datalog∨A object Obj (rule, conjunction, set, etc.), with a little abuse of
notation, we denote by σ(Obj) the object obtained by replacing each variable X
in Obj by σ(X).

A ground instance of a rule r is obtained in two steps: (1) a global substitution
σ for r is first applied over r; (2) every symbolic set S in σ(r) is replaced by its
instantiation inst(S). The instantiation Ground(P) of a program P is the set of
all possible instances of the rules of P.

Example 2. Consider the following program P1:

q(1) v p(2, 2). q(2) v p(2, 1).
t(X) :- q(X),#sum{Y : p(X, Y)} > 1.

The instantiation Ground(P1) is the following:

q(1) v p(2, 2). q(2) v p(2, 1).
t(1) :- q(1),#sum{〈1 : p(1, 1)〉, 〈2 : p(1, 2)〉} > 1.
t(2) :- q(2),#sum{〈1 : p(2, 1)〉, 〈2 : p(2, 2)〉} > 1. 2

5 #sum and #times applied over an empty set return 0 and 1, respectively.



An interpretation for a Datalog∨A program P is a set of standard ground atoms
I ⊆ BP . The truth valuation I(A), where A is a standard ground literal or a
standard ground conjunction, is defined in the usual way. Besides assigning truth
values to the standard ground literals, an interpretation provides the meaning
also to (ground) sets, aggregate functions and aggregate literals; the meaning of
a set, an aggregate function, and an aggregate atom under an interpretation, is
a multiset, a value, and a truth-value, respectively. Let f(S) be a an aggregate
function. The valuation I(S) of set S w.r.t. I is the multiset of the first constant
of the first components of the elements in S whose conjunction is true w.r.t. I.
More precisely,

I(S) = [ t1 | 〈t1, ..., tn :Conj〉∈S ∧ Conj is true w.r.t. I ]

The valuation I(f(S)) of an aggregate function f(S) w.r.t. I is the result of
the application of the function f on I(S). (If the multiset I(S) is not in the
domain of f , I(f(S)) = ⊥.)

An aggregate atom A = Lg ≺1 f(S) ≺2 Rg is true w.r.t. I if: (i) I(f(S)) 6= ⊥,
and, (ii) the relationships Lg ≺1 I(f(S)), and I(f(S)) ≺2 Ug hold whenever
they are present; otherwise, A is false.

Using the above notion of truth valuation for aggregate atoms, the truth val-
uations of aggregate literals and rules, as well as the notion of model, minimal
model, and answer set for Datalog∨A are an trivial extension of the correspond-
ing notions in Datalog∨ [12].

2.3 Querying Datalog∨A Programs

Let P be a Datalog∨A program and let F be a set of facts. Then, we denote
by PF the program PF = P ∪ F . Given a query Q and an interpretation M
of P, ϑ(Q,M) denotes the set containing each substitution φ for the variables
in Q such that φ(Q) is true in M . The answer to a query Q over PF , under
the brave semantics, denoted by Ansb(Q,PF ), is the set ∪Mϑ(Q,M), such that
M ∈ MM(P ∪ F). The answer to a query Q over the facts in F , under the
cautious semantics, denoted by Ansc(Q,PF ), is the set ∩Mϑ(Q,M), such that
M ∈ MM(P ∪ F) 6= ∅. If MM(P ∪ F) = ∅, then all substitutions over the
universe for variables in Q are in the cautious answer. Finally, we say that
programs P and P ′ are bravely (resp. cautiously) equivalent w.r.t. Q, denoted
by P ≡Q,b P ′ (resp. P ≡Q,c P ′), if for any set F of facts Ansb(Q,PF ) =
Ansb(Q,PF ) (resp. Ansc(Q,PF ) = Ansc(Q,PF )).

3 Magic-Set Method for Datalog∨A Programs

In this section we present the Magic-Set algorithm for Datalog∨A programs
(short. DMSA), which has been implemented and integrated into the DLV sys-
tem [19]. Basically, we adopt a strategy for simulating the top-down evaluation



of a query by modifying the original program by means of additional rules, which
narrow the computation to what is relevant for answering the query.

The input to the DMSA algorithm (see Figure 1) is a disjunctive datalog pro-
gram with aggregate functions P and a query Q. If the query contains some non-
free IDB predicates, it outputs a (optimized) program DMSA(Q,P) consisting of a
set of modified and magic rules, stored by means of the sets modifiedRules(Q,P)
and magicRules(Q,P), respectively. The main steps of the algorithm DMSA are
illustrated by means of the following running example, which is an adaptation
of the “Strategic Companies” example in [6].

Example 3. We are given a collection C of companies producing some goods in
a set G, such that each company ci ∈ C is controlled by a set of other companies
Oi ⊆ C. A subset of the companies C ′ ⊂ C is a strategic set set if it is a minimal
set of companies producing all the goods in G, such that if Oi ⊆ C ′ for some
i = 1, . . . ,m then ci ∈ C ′ must hold. This scenario can be modelled by means of
the following program Psc.

r1 : sc(C1) v sc(C2) :- produced by(P, C1, C2).
r2 : sc(C) :- controlled by(C, C1, C2, C3), sc(C1), sc(C2), sc(C3).

Moreover, a company is dominant if it is strategic and produces only products
which are not produced by any other strategic company:

r3 : dominant(C) :- sc(C), #sum{P : produced by(P, C, C2), sc(C2)} = 0.

Finally, given a company c ∈ C, we consider a query Qsc = dominant(c). 2

The key idea of the algorithm is to materialize binding information which
would be propagated during a top-down computation by suitable adornments.
These are strings of the letters b and f , denoting bound or free for each argument
of a predicate. First, adornments are created for query predicates. To efficiently
manage adornments, we exploit a stack S of predicates for storing all the adorned
predicates to be used for propagating the binding of the query: At each step, an
element is removed from S, and each defining rule is processed at a time.

The computation starts in step 2 by initializing the variable
modifiedRules(Q,P) to the empty set — the need of this structure will
be clear in a while. Then, the function BuildQuerySeeds pushes on the stack
S the adorned predicates of Q, and stores in magicRules(Q,P) some facts,
called magic seeds. Each fact in such a variable is the magic version of an
adorned atom pα pushed in S, denoted by magic(pα), obtained by eliminating
all arguments labelled f in α.

Example 4. Given the query Qsc = dominant(c) and the program Psc, Build-
QuerySeeds creates magic dominantb(c). and pushes dominantb onto the stack
S. 2



Input: A Datalog∨ program P, and a query Q = g1(t1), . . . , gn(tn).

Output: The optimized program DMSA(Q,P).
var S: stack of adorned predicates; modifiedRules(Q,P),magicRules(Q,P): set of

rules;
begin
1. if g1(t1), . . . , gn(tn) has some IDB predicate then
2. modifiedRules(Q,P):=∅; 〈S, magicRules(Q,P)〉:=BuildQuerySeeds(Q);
3. while S 6= ∅ do
4. pα:=S.pop();
5. for each rule r ∈ P: p(t) v p1(t1) v . . . v pn(tn) :- q1(s1), . . . , qm(sm) do
6. ra:=Adorn(rs,pα,S);
7. magicRules(Q,P) := magicRules(Q,P)

⋃
Generate(ra);

8. modifiedRules(Q,P) := modifiedRules(Q,P)
⋃
{Modify(ra)};

9. end for
10. end while
11. DMSA(Q,P):=magicRules(Q,P) ∪ modifiedRules(Q,P);

12. return DMSA(Q,P);
13. end if

end.

Fig. 1. Magic-Set Method for Datalog∨A Programs.

3.1 Adornment

The query adornments are then used to propagate their information into the
body of the rules defining it, simulating a top-down evaluation. And, in fact, the
core of the technique (steps 4-9 ) consists of removing an adorned predicate pα

from the stack S in step 4, and in propagating its binding in each (disjunctive)
rule r in P of the form

r : p(t) v p1(t1) v . . . v pn(tn) :- q1(s1), . . . , qm(sm).

with n ≥ 0, having an atom p(t) in the head (step 5 ).
Obviously various strategies can be pursued concerning the order of process-

ing the body atoms and the propagation of bindings. These are referred to as
Sideways Information Passing Strategies (SIPS ), cf. [4]. Any SIPS must guar-
antee an iterative processing of all body atoms in r, and simulates the data flow
occurring in the top-down evaluation of the query, by iteratively processing all
the predicates in r.

Roughly speaking, a SIPS act as follows. Let q be an atom that has not yet
been processed, then its adorned version is created by assuming constants and
variables occurring in already considered atoms to be bound, which is denoted by
v→X q, where X is the set of the variables assumed to be bound which propagate
their values into q, and v is the set of the predicates in which these variables
occur. The formal definition of SIPS is provided below.

Definition 1. Let r be a rule having p in the head, and let pα be an adornment.
A SIPS for r is a labelled bipartite graph 〈V1 ∪ V2, E〉, where V1 is the set of
subset of B(r) ∪ {pα}, V2 ∈ B(r), and E is a set of arcs satisfying the following
conditions:
1. each arc is of the form v →X s, where v ∈ V1 and s ∈ V2, where X is a

non-empty set of variables such that (i) each variable in X appears in s and
in either a bound argument position of pα or a positive body literal of v, and



(ii) for each literal in v there exists a sequence of literals v = l0, l1, ..., lm = s
with li and li+1 sharing at least a common argument.

2. there exists a total order of B(r) ∪ {pα} in which
(a) pα precedes all members of B(r),
(b) any literal which does not appear in the graph follows every literal that

appears in the graph, and
(c) for each arc v →X s, if u ∈ v the u precedes s. 2

It is well know that if we are able to construct a SIPS for a given rule r and
a predicate pα, then we can use its edges for simulating the data flow from the
head to the body of a rule, and, hence, for deriving the adornment of the rule,
which is, in fact, performed in the step 6.

Example 5. Consider the rule path(X, Y) :- path(X, Z), path(Z, Y). together
with query path(1, 5)?. Then, the adornment of the query predicate,
i.e., pathbb(1, 5), passes its binding information to path(X, Z) through
pathbb(X, Y) →{X} path(X, Z), which causes the generation of the adorned pred-
icate pathbf(X, Z). Then, we apply {pathbb(X, Y), pathbf(X, Z)} →{X,Y,Z}
path(Z, Y), generating pathbb(Z, Y). The resulting adorned rule is
pathbb(X, Y) :- pathbf(X, Z), pathbb(Z, Y). 2

We point out that, for each rule, it is possible to derive different SIPS, asso-
ciated to all the possible permutations of the atoms appearing in the body. The
choosing of a strategy does not matter in the case of positive programs, but it
represents a serious issue in the case of Datalog∨A programs, as shown in the
following section.

3.2 Binding Propagation in Datalog∨A Programs

Aggregate Atoms. Let us first consider the binding propagation in the pres-
ence of aggregate atoms. We recall that an aggregate atom has the form
Lg ≤ f{V ars : Conj} ≤ Ug, where V ars are variables local w.r.t. the func-
tion f , while Conj is a conjunction of literals. All the variables occurring in
predicates of Conjs that are not in V ars are said global variables.

Since Conjs might contain some variables that are used into other predicates
of the rule, we can exploit these variables for propagating the binding into the
aggregate atom, too. Then, in the adornment step, literals in Conj can be treated
as they were part of the rule; nonetheless some further attention is needed for
ensuring the correctness of the SIPS implemented. In fact, literals in Conj have
not to be used for propagating bindings to other literals, and, hence, they should
be considered at the end of the adornment process. To this aim we extend any
standard SIPS, by introducing the additional constraint of preferring for binding
propagation aggregate atoms only if there are no other atoms to be processed.
Moreover, when only aggregate atoms remain to be processed we prefer the ones
having the maximum number of bound variables.



Example 6. Consider again Example 3. When dominantb is removed from
the stack, we select rule r3 for its adornment. Then, C is the unique
bound variable and might propagate its binding to both sc(C) or to
sc(C2) trough the fact produced by(P, C, C2). However, non-aggregate atoms
are always processed first, and hence dominantb(c), passes its binding in-
formation to sc(C) through dominantb(C) →{C} sc(C). Then, we apply
{scb(C), produced by(P, C, C2)} →{C,C2} sc(C2), generating scb(C2). The result-
ing adorned rule is

r3a
: dominantb(C) :- scb(C), #sum{P : produced by(P, C, C2), scb(C2)} = 0.

and the adorned predicate scb is pushed on the stack S. 2

Disjunctive Programs. Let us now consider the case of disjunctive programs
without aggregate functions. Then, as first observed in [14], while in nondisjunc-
tive programs bindings are propagated only head-to-body, any sound rewriting
for disjunctive programs has to propagate bindings also head-to-head in order
to preserve soundness. Roughly, suppose that a predicate p is relevant for the
query, and a disjunctive rule r contains p(X) in the head. Then, besides propa-
gating the binding from p(X) to the body of r (as in the nondisjunctive case),
a sound rewriting has to propagate the binding also from p(X) to the other
head atoms of r. Consider, for instance, a Datalog∨ program P containing rule
p(X) v q(Y) :- a(X, Y), r(X). and the query p(1)?. Even though the query propa-
gates the binding for the predicate p, in order to correctly answer the query, we
also need to evaluate the truth value of q(Y), which indirectly receives the bind-
ing through the body predicate a(X, Y). For instance, suppose that the program
contains facts a(1, 2), and r(1); then atom q(2) is relevant for query p(1)? (i.e.,
it should belong to the magic set of the query), since the truth of q(2) would
invalidate the derivation of p(1) from the above rule, because of the minimality
of the semantics.

It follows that, while propagating the binding, the head atoms of disjunctive
rules must be all adorned as well. We achieve this by defining an extension of any
non-disjunctive SIPS to the disjunctive case. The constraint for such a disjunctive
SIPS is that head atoms (different from p(t)) cannot provide variable bindings,
they can only receive bindings (similarly to negative literals in standard SIPS).
So they should be processed only once all their variables are bound or do not
occur in yet unprocessed body atoms.6 Moreover they cannot make any of their
free-variables bound.

The function Adorn produces an adorned disjunctive rule from an adorned
predicate and a suitable unadorned rule by employing the refined SIPS, pushing
all newly adorned predicates onto S. Hence, in step 6 the rule ra is of the form

ra : pα(t) v pα1

1 (t1) . . . pαn
n (tn) :- q

β1

1 (s1), . . . , qβm
m (sm).

6 Recall that the safety constraint guarantees that each variable of a head atom also
appears in some positive body-atom.



Example 7. Consider again Example 3. When scb is removed from the stack, we
first select rule r1 and the head predicate sc(C1). Then, the adorned version is

r′1a
: scb(C1) v scb(C2) :- produced by(P, C1, C2).

Next r1 is processed again, this time with head predicate sc(C2), producing

r′′1a
: scb(C2) v scb(C1) :- produced by(P, C1, C2).

and finally, processing r2 we obtain

r2a : scb(C) :- controlled by(C, C1, C2, C3), scb(C1), scb(C2), scb(C3).2

3.3 Generation

The algorithm uses the adorned rule ra for generating and collecting the magic
rules in step 7, which simulate the top-down evaluation scheme. Since ra is in
general a disjunctive rule with aggregate atoms, Generate first produces a non-
disjunctive intermediate rule, say r′a by moving head atoms into the body and
by replacing each aggregate atom, say Lg ≤ f{V ars : Conj} ≤ Ug, by the
conjunction Conj.

Then, for each adorned atom p in the body of an adorned rule r′a, a magic
rule rm is generated such that (i) the head of rm consists of magic(p), and (ii)
the body of rm consists of the magic version of the head atom of r′a, followed by
all of the predicates of r′a which can propagate the binding on p.

Example 8. In the program of Example 6, from the rule r′3, we first derive the
following standard rule

dominantb(C) :- scb(C), produced by(P, C, C2), scb(C2).

and, then, the magic rules

magic scb(C) :- magic dominantb(C), produced by(P, C, C2), stb(C2).
magic scb(C2) :- magic dominantb(C), produced by(P, C, C2), stb(C2).

Similarly, by looking at Example 7, from the rule r′1a
first its non-disjunctive

intermediate rule

scb(C1) :- scb(C2), produced by(P, C1, C2).

is produced, from which the magic rule

magic scb(C2) :- magic scb(C1), produced by(P, C1, C2).

is generated. Similarly, from the rule r′′1a
we obtain

magic scb(C1) :- magic scb(C2), produced by(P, C1, C2).

and finally r2a
gives rise to the following rules

magic scb(C1) :- magic scb(C), controlled by(C, C1, C2, C3).
magic scb(C2) :- magic scb(C), controlled by(C, C1, C2, C3).
magic scb(C3) :- magic scb(C), controlled by(C, C1, C2, C3). 2



3.4 Modifications

In step 8 the modified rules are generated and collected. These rules represent the
rewriting of the original program in which the instantiation of body predicates
is limited by the magic predicates. Specifically, the function Modify constructs
a rule of the following form

p(t) v p1(t1) v . . . v pn(tn) :- magic(pα(t)), magic(pα1

1 (t1)), . . . , magic(pαn
n (tn)),

q1(s1), . . . , qm(sm).

Finally, after all the adorned predicates have been processed the algorithm out-
puts the program DMSA(Q,P).

Example 9. In our running example, we derive the following set of modified rules:

r′1m
: sc(C1) v sc(C2) :- magic scb(C1), magic scb(C2), produced by(P, C1, C2).

r′′1m
: sc(C2) v sc(C1) :- magic scb(C2), magic scb(C1), produced by(P, C1, C2).

r2m
: sc(C) :- magic scb(C), controlled by(C, C1, C2, C3), sc(C1), sc(C2), sc(C3).

r3m : dominant(C) :- magic dominantb(C), scb(C),
#sum{P : produced by(P, C, C2), scb(C2)} = 0.

where r′1m
(resp. r′′1m

, r2m , r3m) is derived by adding magic predicates and strip-
ping off adornments for the rule r′1a

(resp. r′′1a
, r2a , r3a). Thus, the optimized

program DMSA(Qsc,Pcs) comprises the above modified rules as well as the magic
rules in Example 8, and the magic seed magic dominantb(c). 2

We conclude the exposition of this algorithm by stressing that the rewriting
computed throughout its application is, in fact, an equivalent rewriting of the
input program, in the sense provided by the following proposition.

Theorem 1 (Soundness of the DMSA Algorithm). Let P be a Datalog∨

program, let Q be a query. Then, DMSA(〈Q,P〉) ≡Q,b P and DMSA(〈Q,P〉) ≡Q,c P
hold.

4 Conclusions

Motivated by the application in data integration settings, we have presented
a technique for the optimization of (partially) bound queries that extends the
Magic-Set method to the case of disjunctive programs with aggregate operators.
The technique has been fully implemented into the DLV system.

We point out that our investigation can be of a great interest in several other
applicative domains. In fact, aggregate functions in logic programming languages
appeared already in the 80s, when their need emerged in deductive databases like
LDL. Currently, they are supported in the Smodels system, besides DLV, and
their importance in knowledge representation tasks is widely recognized, since
they can be simulated only by means of inefficient and unnatural encodings of



the problems. As an example, suppose that a user wants to know if the sum
of the salaries of the employees working in a team exceeds a given budget. To
this end, the user should first order the employees defining a successor relation.
Then she should define a sum predicate, in a recursive way, which computes the
sum of all salaries, and compare its result with the given budget. This approach
has two drawbacks: (1) It is bad from the KR perspective, as the encoding is
not natural at all; (2) It is inefficient, as the (instantiation of the) program is
quadratic (in the cardinality of the input set of employees).

Concerning future work, our objective is to extend the Magic-Set method to
the case of disjunctive programs with constraints and unstratified negation, such
that it can be fruitfully applied on arbitrary DLV programs. We believe that
the framework developed in this paper is general enough to be extended to these
more involved cases.
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