
A declarative approach to uncertainty orders?

Andrea Capotorti1 and Andrea Formisano2

1 Dipartimento di Matematica e Informatica, Università di Perugia.
capot@dipmat.unipg.it

2 Dipartimento di Informatica, Università dell’Aquila.
formisano@di.univaq.it

Abstract. Traditionally, most of the proposed probabilistic models of
decision under uncertainty rely on numerical measures and representa-
tions. Alternative proposals call for qualitative (non-numerical) treat-
ment of uncertainty, based on preference relations and belief orders.
The automation of both numerical and non-numerical frameworks surely
represents a preliminary step in the development of inference engines of
intelligent agents, expert systems, and decision-support tools.
In this paper we exploit Answer Set Programming to formalize and rea-
son about uncertainty expressed by belief orders. The availability of ASP-
solvers supports the design of automated tools to handle such formaliza-
tions. Our proposal reveals particularly suitable whenever the domain of
discernment is partial, i.e. it does not represent a closed world but just
the relevant part of a problem.
We first illustrate how to automatically “classify”, according to the most
well-known uncertainty frameworks, any given partial qualitative uncer-
tainty assessment. Then, we show how to compute the enlargement of
an assessment to any other new inference target, with respect to a fixed
(admissible) qualitative framework.

Key words: Uncertainty orders, answer set programming, partial as-
sessments, general inference.

Probability does not exist!
—Bruno de Finetti [13]

Introduction and background

Nowadays, several numerical tools are usually adopted in AI to represent and
manage uncertainty. All of them originate from amendments of the well-known
Probability measure, aimed at generalizing it to better fit different peculiarities
of specific application fields (for a survey the reader can refer to [21, 30] or
to [25, Chapters 8–10], among others. The Appendix briefly summarizes some
basic notions about uncertainty measures, from the quantitative point of view).
The measures that achieved wider diffusion can be classified as:
?

Research partially funded by the Information Society Technologies programme of the European
Commission, Future and Emerging Technologies under the IST-2001-37004 WASP project.

- Capacities;
- Possibility and Necessity measures;
- Probabilities;
- Belief and Plausibility functions;
- Lower and Upper probabilities.

Among all these measures (which are real-valued functions), Capacities [7] char-
acterize the weakest notion. Indeed, Capacities are measures whose unique prop-
erty is monotonicity with respect to the implication of events. Namely, if a situ-
ation A implies a situation B, then the uncertainty on A should be not greater
than the uncertainty on B. Uncertainty models based on such measures are
very general but, on the other hand, very weak because they describe nothing
more than “common sense” behaviors. The class of Capacities includes all other
classes.

Possibility measures (Necessity measures are their dual, cf. Def. 2 of the Ap-
pendix) come from Fuzzy theory [17, 33] and originate from the need to express
“vagueness” about the descriptions of situations instead of uncertainty about
their truth.

Probabilities are characterized by the “additivity” property: Having judged
the uncertainties P (A) and P (B) on any pair of disjoint situations A and B,
the uncertainty on their combination A ∨ B is defined as P (A) + P (B). Such
measures have a wide range of applications. Almost any medical, engineering,
economic, and environmental decision-aid tool is usually built on (or at least
compared to) probabilistic models.

Belief functions (whose dual are Plausibilities) are the base of Evidence the-
ory [26]. The Belief on a proposition represents the “strength” by which a not
fully detailed information supports its truth. Plausibility functions, on the other
hand, represent how much the evidence makes reasonable that a proposition is
true. Such uncertainty measures have found valuable application in economic and
medical frameworks where the initial available information is quite not-specific.

Lower probabilities (whose dual are Upper probabilities) are instead adopted
whenever one needs to consider as valid an entire family of probabilistic models
in place of a single one. Such measures have been developed within the field of
Imprecise probabilities [11, 29]. Obviously, such uncertainty measures are usually
adopted in each context where precise probabilities are typically used, but where
there are not enough constraints to be obliged to use a unique model.

As a matter of fact, each one of the framework described so far, can manage
uncertainty and retains all of the expressive power of mathematical quantitative
models. Though, inevitably, they suffer from the drawbacks often faced whenever
numerical models are applied to practical problems: a) the difficulty of express-
ing a complete evaluation, and b) the hardness to elicit precise numerical values.
The former problem can be circumvented by following the pioneering approach
proposed by de Finetti in the context of Probabilities [12, 13]. Namely, by in-
troducing the so called partial models, i.e. numerical evaluations defined only on
some of the situations at hand, and intended to be a restriction of some of the
complete models mentioned above. (Then, we will deal with partial Capacities,

2

partial Probabilities, and so on.) This approach allows the analyst of the problem
to focus his/her evaluation on the situations really judged relevant, w.r.t. the
problem at hand. This leaves open the possibility to enlarge the model to other
scenarios that could enter on the scene later. To obviate the latter drawback of
numerical models, qualitative approaches have been proposed in the last decades.
The central idea of such methodologies is to grade uncertainty about the truth
of propositions, through comparisons expressing the judgement of “less or more
believed to be true”. This operationally translates into the use of (partial) order
relations in place of numerical grades.

Qualitative approaches are receiving wider and wider attention, either as
theoretical tools to deal directly with belief management [3, 10, 14], or inside
the more articulated framework of decision-making theory (see, for example, [15,
16, 18, 20, 22]). This is because, they better fit the nature of human judgments.

Numerical models remain anyway a reference point. Both because their prop-
erties are well-known and deeply investigated, and because, when profitably in-
volved, they could bring to conclusions hardly achievable by purely qualitative
tools. The connection between the qualitative and the numerical frameworks is
usually expressed by the requirement that the qualitative order must be repre-
sentable3 by a (partial) numerical model. Representability of an order guarantees
that the comparisons among the propositions follow the same rationale of the
kind of numerical model agreeing with. Hence, the basic properties of the way
in which different pieces of information are combined is maintained.

In the next section we show that representability of orders, defined on arbi-
trary finite sets of propositions, can be characterized by the specific properties
(axioms). Before to enter into such details, it is worth stressing that in this pa-
per we adopt an alternative approach, by inverting the usual attitude towards
qualitative management of uncertainty. In fact, specific axioms are usually set
in advance, so that only order relations satisfying them are admitted. Here, on
the contrary, given a fixed preference relation (for instance, directly issuing from
analyst’s interpretation of real world), our goal consists in ascertain what are
the reasonable rules to work with. This will be made easy thanks to the expres-
sive power of Answer Set Programming [23, 24]. In fact, most of such axioms
are of direct declarative reading, as they involve only logical and preference re-
lations. As we will see, such a declarative character supports a straightforward
translation of the axioms within the logical framework of Answer Set Program-
ming. As a consequence, we immediately obtain an executable specification able
to discriminate between the different uncertainty orders. More specifically, we
exploit a solver (in our case smodels, cf. [1]) to determine the set of axioms
that are violated by a given preference relation, which expresses user’s beliefs
comparisons.

Then, we move the first step toward the implementation of an inference en-
gine that borrows user’s conceptualization of uncertainty and (implicitly) adopts

3 Recall that, in general, a numerical assessment f on a set of propositions A1, . . . , An

represents (or, equivalently, induces) a qualitative order �∗ among them if, for each
pair Ai, Aj it holds that Ai �∗ Aj ⇐⇒ f(Ai) 6 f(Aj).

3

his/her own way of modeling the intrinsic properties of the problem at hand.
Thus, the system tries to mimic user’s way of expressing lack of information
and variability of phenomena. By acting in this manner, once the (most spe-
cific) framework closest to user’s modelization is detected, it can be used to infer
reasonable conclusions about proposition not comprised in the initial domain.
This process is usually referred to as order extension. The availability of order-
extension techniques is one of the main advantages offered by the use of partial
models in the treatment of uncertainty.

The paper is organized as follows. Next section briefly describes the axioms
characterizing partial uncertainty relations (notice that we focus on the treat-
ment of partial orders, even if total relations can easily be dealt with by exploit-
ing the very same machinery). Sec. 2 recalls the main features of Answer Set
Programming, with particular emphasis on the application to the above men-
tioned issues. In Sections 3 and 4 we illustrate, also by simple examples, the
potentialities of our approach. Finally, we draw conclusions and outline future
developments.

1 Characterization of uncertainty orders

When one admits that nothing is certain one must, I think, also add that
some things are more nearly certain than others.

—Bertrand Russell

By following the way paved by [8, 14, 31, 32], various (qualitative) preference
orders have been fully classified in [4, 5, 6] according to their agreement with the
most well-known numerical models; both for complete and partial assessments.

In particular, apart from Possibility and Necessity measures—that seem to
have an intrinsically numerical character— [6] proposes a fully axiomatic classi-
fication of partial orders according to the numerical models outlined above.

Let us start by briefly recalling the basic notions on uncertainty orders and
their axiomatic characterization. We will not enter into the details of the moti-
vations for such classification, the reader is referred to [4, 5, 6]. The domain of
discernment is represented by a finite set of events E = {E1, . . . , En} (among
them, ∅ and Ω denote the impossible and the sure event, respectively). The
events in E are seen as the relevant propositions on which the subject of the
analysis can (or wants) to express his/her opinion. Hence, usually E does not
represent a full model, i.e. it does not comprehend all elementary situations
and all of their combinations. For this reason, a crucial component of partial
assessments is the knowledge of the logical relationships (incompatibilities, im-
plications, combinations, equivalences, etc.) holding among the events Eis. Such
constraints are usually represented as a set C of clauses predicating on the Eis.

Taking into account the constraints C, the family E spans a minimal Boolean
algebra AE containing E itself. Note that AE is only implicitly defined via E
and C and it is not a part of the assessment. Anyway, AE can be referenced as
a supporting structure.

4

Let � be a partial (i.e. not necessarily defined for all pairs (A,B) in E × E)
order among events, expressing the intuitive idea of being “less or equal than”
or “not preferred to”. The symbols ∼ and ≺ denote the symmetrical part and
asymmetrical part of �, respectively.

As mentioned before, Capacities constitute the most general numerical tool to
manage uncertainty and they express “common sense” behaviors. Hence, in our
context, any reasonable relation � must be representable by a partial Capacity
(i.e., a restriction to the events under consideration, of a Capacity measure). This
translates into the following axioms: the (partial) order � must be a reflexive
binary relation on E such that
(A1) ≺ has no intransitive cycles;4

(A2) ¬(Ω � φ);

(A3) for all A,B ∈ E , A ⊆ B =⇒ ¬(B ≺ A);
where ¬(B ≺ A) means that the pair (B,A) does not belong to ≺.
Mathematical properties of orders satisfying basic axioms (A1), (A2) and (A3)
are deeply investigated in [10]. In what follows, we consider these axioms as
prerequisites for any investigation on �. Differentiation among order relations
can be done on the basis of more specific way of combining distinct pieces of
information. Below, we list the axioms characterizing each class.5 The name
of the classes comes from the representability of � by corresponding partial
numerical measures.6

Comparative Probabilities. An order � is representable by a partial Prob-
ability assessment iff the following holds:

(CP) for any A1, . . . , An, B1, . . . , Bn ∈ E , with Bi � Ai, ∀i = 1, . . . , n,
such that for some r1, . . . , rn > 0, if sup

∑n
i=1 ri(ai − bi) 6 0 holds

than, for all i = 1, . . . , n, Ai ∼ Bi (ai, bi denote the indicator functions
of Ai, Bi, resp.).

Comparative Beliefs. An order � is representable by a partial Belief func-
tion assessment iff for all A,B, C ∈ E s.t. A ⊂ B, B ∧ C = φ it holds that

(B) A ≺ B =⇒ ¬(B ∨ C � A ∨ C).

Comparative Lower probabilities. An order � is representable by a partial
Lower probability assessment iff for all A,B ∈ E s.t. A∧B = φ it holds that

(L) φ ≺ A =⇒ ¬(A ∨B � B).

4 A preference relation≺ on a set X has an intransitive cycle if there exist A1, . . . , An ∈
X for n > 2 such that Ai ≺ Ai+1 holds for each i = 1, . . . , n − 1, while A1 ≺ An

does not hold.
5 Note that we characterize each class by a single axiom, whereas in [6] some classes

are described by introducing further axioms. It is easy to see that these additional
axioms are redundant whenever we consider to enlarge ≺ by monotonicity (i.e. by
imposing that A ⊆ B ⇐⇒ A ≺ B always holds).

6 Axiom (CP) was originally introduced in [8]. Axiom (B) derives by the analogous
axiom introduced for complete orders in [32].

5

Comparative Plausibilities. An order � is representable by a partial Plau-
sibility function assessment iff for all A,B,C ∈ E s.t. A ⊂ B it holds that

(PL) A ∼ B =⇒ ¬(A ∨ C ≺ B ∨ C).

Comparative Upper probabilities. An order� is representable by a partial
Upper-probability assessment iff for all A,B,C ∈ E s.t. A∧B = φ it holds that

(U) φ ∼ A =⇒ ¬(C ≺ A ∨ C).

Comparative Lower/Upper probabilities. An order � can be simultane-
ously represented by both a partial Lower-probability assessment and by a
partial Upper-probability assessment iff it simultaneously satisfies both ax-
ioms (L) and (U).

Note that only the axiom (CP) does not have a pure qualitative nature since it
involves indicator functions and summations. Such axiom is the only one whose
verification should require some form of numerical elaboration (e.g. involving
some linear programming tool such as the simplex or the interior point methods).
Meanwhile, to remain within the same kind of axioms, the following necessary
axiom (WC) can also be considered. Note that (WC), if taken by itself, does
not guarantee the representability of � by a partial Probability assessment;
nevertheless, its failure witnesses non-representability.

Weak comparative probabilities. If � is representable by a partial Proba-
bility assessment then, for all A,B,C ∈ E s.t. A∧C = B∧C = φ it holds that

(WC) A � B =⇒ ¬(B ∨ C ≺ A ∨ C)

Clearly, all such qualitative axioms are of direct reading, i.e. they explicit
which are the rules to follow in combining elements of the domain E to remain
inside a specific framework.

The introduction of different classes of orders shares the very same motiva-
tions supporting the definition of different numerical measures of uncertainty.
The main point is that there exist practical situations where a strictly prob-
abilistic approach is not viable. The following example describes an extremely
simplified situation of this kind.

Example 1. Let A, B, and C be three distinct companies, and let each of them
be a potential buyer of a firm that some other company wants to sell. Even
being distinct, both A and C belong to the same holding. Hence, the following
uncertainty order about which company will be the buyer, could reflect specific
information about the companies’ strategies (by abuse of notation, let A denote
the event “the company A buys the firm”, and similarly for B and C):

∅ ≺ A ≺ B ≺ B ∨ C ≺ A ∨ C ≺ Ω.

Since A, B and C are incompatible events, it is immediate to see that the order
relation is not representable by a probability because it violates axiom (WC),
while it can be managed in line with Belief functions behaviors because it agrees
with axiom (B).

6

2 Answer set programming

In the following sections we show how to obtain executable specifications from
the axiomatic classification of preference orders described so far. To this end, we
employ Answer Set Programming (ASP, for short).

Let us first briefly recall the basics of such alternative style of logic pro-
gramming [23, 24]. A problem can be encoded—by using a function-free logic
language—as a set of properties and constraints which describe the (candidate)
solutions. More specifically, an ASP-program is a collection of rules of the form

L1; . . . ;Lk;not Lk+1; . . . ;not L` ← L`+1, . . . , Lm,not Lm+1, . . . ,not Ln

where n > m > ` > k > 0 and each Li is a literal, i.e., an atom A or a negation
of an atom ¬A. The symbol ¬ denotes classical negation, while not stands for
negation-as-failure (Notice that ′,′ and ′;′ stand for logical conjunction and dis-
junction, respectively.) The left-hand side and the right-hand side of the clause
are said head and body, respectively. A rule with empty head is a constraint.
Intuitively, the literals in the body of a constraint cannot be all true, otherwise
they would imply falsity.

Semantics of ASP is expressed in terms of answer sets (or equivalently stable
models, cf. [19]). Consider first the case of an ASP-program P which does not
involve negation-as-failure (i.e., ` = k and n = m). In this case, a set X of literals
is said to be closed under P if for each rule in P , whenever {L`+1, . . . , Lm} ⊆ X,
it holds that {L1, . . . , Lk} ∩ X 6= ∅. If X is inclusion-minimal among the sets
closed under P , then it is said to be an answer set for P . Such a definition is
extended to any program P containing negation-as-failure by considering the
reduct PX (of P). PX is defined as the set of rules

L1; . . . ;Lk ← L`+1, . . . , Lm

for all rules of P such that X contains all the literals Lk+1, . . . , L`, but does not
contain any of the literals Lm+1, . . . , Ln. Clearly, PX does not involve negation-
as-failure. The set X is an answer set for P if it is an answer set for PX .

Once a problem is described as an ASP-program P , its solutions (if any) are
represented by the answer sets of P . Notice that an ASP-program may have
none, one, or several answer sets.

Let us consider the program P consisting of the two rules
p; q ← ¬r ← p.

Such a program has two answer sets: {p,¬r} and {q}. If we add the rule (actu-
ally, a constraint) ← q to P , then we rule-out the second of those answer sets,
because it violates the constraint. This simple example reveals the core of the
usual approach followed in formalizing/solving a problem with ASP. Intuitively
speaking, the programmer adopts a “generate-and-test” strategy: first (s)he pro-
vides a set of rules describing the collection of (all) potential solutions. Then,
the addition of a group of constraints rules-out all those answer sets that are not
desired real solutions.

To find the solutions of an ASP-program, an ASP-solver is used. Several
solvers have became available (cf. [1], for instance), each of them being charac-
terized by its own prominent valuable features.

7

Expressive power of ASP, as well as, its computational complexity have been
deeply investigated. The interested reader can refer to the survey [9], among
others, for a comparison of expressive power and computational complexity of
various forms of logic programming.

As we will see, in this work we choose smodels as solver, together with its
natural front-end lparse [28].

Let us give a simple example of ASP-program (see [2], among others, for a
presentation of ASP as a tool for declarative problem-solving). In doing this, we
will recall the syntax of smodels as well as the main features of lparse/smodels
which will be exploited in the rest of the paper (see [28], for a much detailed
description). The problem we want to formalize in ASP is the well-known n-
queens problem: “Given a n× n chess board, place n queens in such a way that
no two of them attack each other”. The clauses below state that a candidate
solution is any disposition of the queens, provided that each column of the board
contains one and only one queen. (The fact that a queen is placed on the nth

column and on the mth row is encoded by the atom queen(n,m).)7

position(1..n).

1{queen(Col,Row) : position(Col)}1 :- position(Row).

The second rule is a particular form of constraint available in smodels’ language.
The general form of such a kind of clauses is

k{〈property def〉:〈range def〉}m :-〈search space〉
where: the conditions 〈search space〉 in the body define the set of objects of the
domain to be checked; the atom 〈property def〉 in the head defines the property
to be checked; the conjunction 〈range def〉 defines the possible values that the
property may take on the objects defined in the body, namely by providing a
conjunction of unary predicates each of them defining a range for one of the
variables that occur in 〈property def〉 but not in 〈search space〉; k and m are
the minimum and maximum number of values that the specified property may
take on the specified objects. (Notice that this form of constraint, available in
smodels, actually is syntactic sugar, since it can be translated into “proper”
ASP-clauses thanks to negation, cf. [28, 27].)

We now introduce two constraints, in order to rule out those placements
where two queens control either the same row or the same diagonal of the board:

:- queen(Col,Row1), queen(Col,Row2),
position(Col), position(Row1), position(Row2),
Row1 < Row2.

:- queen(Col1,Row1), queen(Col2,Row2),
position(Col1), position(Col2), position(Row1), position(Row2),
Row1 < Row2, abs(Col1-Col2) == abs(Row1-Row2).

Here is some of the answer sets produced by smodels, when fed with our
program (together with a value for the constant n, in this case we put n= 8).

7 In the syntax of smodels ‘:-’ denotes implication ←, while ‘,’ stands for conjunction.
Moreover, the constant n occurring in the first clause, can be seen as a parameter of
the program, supplied to the solver at run-time.

8

Answer: 1.
Stable Model: queen(4,1) queen(6,2) queen(1,3) queen(5,4) queen(2,5)

queen(8,6) queen(3,7) queen(7,8) ...
Answer: 2.
Stable Model: queen(4,1) queen(2,2) queen(8,3) queen(5,4) queen(7,5)

queen(1,6) queen(3,7) queen(6,8) ...
...

Notice that lparse offers some elementary built-in arithmetic functions (such
as abs(), in the above clause) that can be used to perform simple arithmetics.
More in general, lparse allows the user to employ user-defined C or C++ functions
within an ASP-program. The object code of these functions needs only to be
linked with lparse at run time. (The interested reader is referred to [28] for
a detailed description of this feature.) We exploited this feature (not directly
available in some other solvers) to implement a basic library of functions aimed
at handling sets and operation on sets.

The pair lparse/smodels constitutes an essential and neat tool for fast pro-
totypical development. Moreover notable facilities come from the simple albeit
useful capability of integration with the C programming language, the prompt
availability of the source-code (under the GNU General Public License) and
documentation, and the ease of use.

3 Preference classification

Our first task consists in writing an ASP-program able to classify any given
partial order �, w.r.t. the axioms seen in Sec. 1 (except for (CP), that, up to
our knowledge, does not admit a purely declarative formulation). A preliminary
step is the introduction of suitable predicates, namely, prec(·,·), precneq(·,·), and
equiv(·,·), to render in ASP the relators �, ≺, and ∼, respectively. Moreover,
the fact of “being an event” (i.e. a member of E) is stated through the monadic
predicate event(·).8 Auxiliary predicates/functions are defined to render usual
set-theoretical constructors, such as ∩, ∪, and ⊆, which, as mentioned, have
been made available by linking user-defined C-libraries.

The characterization of potential legal answer sets is done by asserting prop-
erties of prec(·,·), precneq(·,·), and equiv(·,·), by means of the following rules:

prec(E1,E2) :- event(E1), event(E2), equiv(E1,E2).
prec(E2,E1) :- event(E1), event(E2), equiv(E1,E2).
equiv(E1,E2) :- event(E1), event(E2), prec(E2,E1), prec(E1,E2).
prec(E1,E2) :- event(E1), event(E2), precneq(E1,E2).
:- precneq(E1,E2), event(E1), event(E2), equiv(E1,E2).

Also axioms (A1), (A2), and (A3) must be imposed. For instance (A3) is
rendered by:

:- event(E1), event(E2), subset(E1,E2), precneq(E2,E1).

8 Actually, in our program, events are denoted by integer numbers. Here, for the sake
of readability, we systematically denote events by capital letters.

9

This rules-out all answer sets in which there exist two events E1 and E2 such
that both E1 ⊆ E2 and E2 ≺ E1 hold.

Consider now one of the axioms of Sec. 1, say (B), for simplicity. Since, in this
phase, we do not want to impose such axiom, but we just want to test whether
or not it is satisfied by the preference relation at hand, we introduce a rule of
the form:
failsB :- event(A), event(B), event(C), subset(A,B), A!=B, empty(interset(B,C)),

precneq(A,B), prec(unionset(B,C),unionset(A,C)).

whose meaning is that the fact failsB is true (i.e. belongs to the answer set)
whenever there exist events falsifying axiom (B). Having in mind the axiom (B)
of Sec. 1, this clause is of immediate reading. Analogous treatment has been
done for all other axioms (L), (U), (PL), and (WC).

When smodels is fed with such program, together with a description of an in-
put preference relation (i.e., a collection of facts of the forms prec(·,·), precneq(·,·),
and equiv(·,·)), different outcomes may be obtained:
a) If no answer set is produced, then the input preference relation violates

some basic requirement, such as axioms (A1), (A2), or (A3).
b) Otherwise, if an answer set is generated, there exists a numerical (partial)

model representing the input preference order. Moreover, the presence in
the answer set of a fact of the form failsC (say failsL, for example), witnesses
that the corresponding axiom ((L) in the case) is violated by the given
preference order. Consequently, the given order (as well as its extensions) is
not compatible with the uncertainty framework ruled by C (in the case of
failsL, the given order cannot be represented by a partial Lower probability).

Example 2. Suppose a physician wants to perform a preliminary evaluation
about the reliability of a test for SARS (Severe Acute Respiratory Syndrome).
Up to his/her knowledge, the SARS diagnosis is based on moderate or severe res-
piratory symptoms and on the positivity or indeterminacy of an adopted clinical
test about the presence of the SARS-associated antibody coronavirus (SARS-
CoV). The elements appearing in his/her analysis can be schematized as:

A ≡ Normal respiratory symptoms
B ≡ Moderate respiratory symptoms
C ≡ Severe respiratory symptoms
D ≡ Moderate or sever respiratory symptoms
E ≡ Death from pulmonary diseases
F ≡ Positive or indeterminate clinical test

subject to these (logical) restrictions:
A∩B=∅, B∩C=∅, A∩C=∅, A∪B∪C=Ω, D=A∪B, E⊂C, F∩A= ∅.

Consider the following partial order:
precneq(∅,C). precneq(C,B). prec(B,A). precneq(C,D).
precneq(E,C). precneq(E,D). precneq(F,A). equiv(A∪E,A∪C).

Due to events’ meaning, such order seems reasonable. If it is given as input to
smodels, the answer set found includes the facts failsB and failsWC. This means
that the given preference relation agrees with the basic axioms, however it cannot

10

be managed by using neither a Probability nor a Belief function. Nevertheless,
one can use comparative Lower probabilities or comparative Plausibilities.

4 Partial-order extension

An interesting problem is that of finding an extension of a preference relation so
as to take into account any further event extraneous “in some sense” to the initial
assessment. Obviously, this should be achieved in a way that the extension retains
the same character of the initial order (e.g., both satisfy the same axioms).

More precisely, let be given an initial (partial) assessment expressed as a set of
known events E together with a (partial) order � over E . Moreover, assume that
� satisfies the axioms characterizing a specific class, say C, of orders (cf. Sec. 3).
Consider now a new event S (not in E), implicitly described by means of a
collection C′ of set-theoretical constraints involving the known events. In the
spirit of [8, Theorem 3], the problem we are going to tackle is: Determine which
is the “minimal” extension �+ (over E ∪{S}) of the given preference relation �,
induced by the new event, which still belongs to the class C. In other words, we
are interested in ascertaining how the new event S must relate to the members
of E in order that �+ still is in C.

To this aim we want to determine the sub-collections LS,WLS, US, andWUS,
of E so defined:

E ∈ LS iff no extension �∗ of � can infer that S �∗ E

E ∈ WLS iff no extension �∗ of � can infer that S ≺∗ E

E ∈ US iff no extension �∗ of � can infer that E �∗ S

E ∈ WUS iff no extension �∗ of � can infer that E ≺∗ S

Consequently, any order �+ extending � must, at least, impose that:
E ≺+ S for each E ∈ LS, E �+ S for each E ∈ WLS,

S ≺+ E for each E ∈ US, and S �+ E for each E ∈ WUS,

in order to satisfy the axioms characterizing C.
In what follows, we describe an ASP-program that solves this problem by

taking advantage from the computation executed during the classification phase
(cf. Sec. 3): It gets as input the knowledge regarding the satisfied axiom(s), the
preference and logical relations on the original set of events. Such program is
fed to the solver, together with the description of the new event (see Example 3,
below).

The handling of the axioms is done by ASP-rules of the form (here we list
the rule for axiom (L), the other axioms are treated similarly):

:- holdsL, event(A), event(B), empty(N), empty(interset(A,B)),
precneq(N,A), prec(unionset(A,B),B).

Rules of this kind (actually, constraints, in the sense described in Sec. 2),
declare “undesirable” any extension for which the axiom is violated. For instance,
consider a ground instance of the above rule; whenever the fact holdsL is present
(i.e. is true in an answer set), then to make the (ground) clause satisfied, at

11

least one of the other literals must not belong to the answer set. (Notice that,
these literals are all true exactly when (L) is violated.) Consequently, in order to
activate this constraint (i.e. to impose axiom (L), for the case at hand) it suffices
to add the fact holdsL to the input of the solver.

A further rule describes the potential answer set we are interested in:

1{ precneq(E1,E2), equiv(E1,E2), precneq(E2,E1) }1 :- event(E1), event(E2).

This rule simply asserts that any computed answer-set must predicate on
each pair E1,E2 of events by stating exactly one, and only one, of the three facts
precneq(E1,E2), equiv(E1,E2), and precneq(E2,E1). Then, smodels produces as
output the answer sets fulfilling the desired requirements and encoding “legal”
total orders.

The collections LS, WLS, US, and WUS can be obtained by computing the
intersection Cn of all these answer sets. (Or, equivalently, by computing the set
of logical consequences of the ASP-program. Notice that, in general, Cn needs
not to be an answer set by itself.)

Unfortunately, not all the available ASP-solvers offer the direct computation
of Cn as a built-in feature (DLV, for instance does, while smodels does not,
cf. [1]). In general, a simple inspection of the answer sets generated by smodels
allows one to detect which is the minimal extension of the preference relation
which is mandatory for each total order.

In order to facilitate this detection, we designed a simple post-processor which
filters smodels’ output and produces the imposed extension of �.

Example 3. Consider the partial order of Example 2 and the new event:

S ≡ The real state of having SARS
subject to these restrictions: S⊂F and F∩E⊂S. Since in Example 2 we discov-
ered that the initial preference relation satisfies axiom (PL), we want to impose
such axiom and compute the extension of the initial order.

Once filtered smodels’ output, we obtained the following result:9

precneq(S,A∪C) precneq(S,A∪E) precneq(S,D)
precneq(S,A) precneq(S,Ω) prec(∅,S) prec(S,F)

showing that, apart from obvious relations induced by monotonicity, no significa-
tive constraint involving S can be inferred. Since S and E can be freely compared,
this result suggests that either further investigation about relevance of the clini-
cal test or a revision of the initial preference relation, should be performed.

The availability of automated tools able to extend preference orders, when-
ever new knowledge (new events) is acquired, directly suggests applications in
expert systems and decision-support tools. In automated diagnosis, planning, or
problem solving, to mention some examples, one could easily imagine scenarios
where knowledge is not entirely available from the beginning. We could outline
how a rudimental inference process could develop, by identifying the basic steps
an automated agent should perform:

9 We list here only the portion of the extension involving the new event S.

12

0) Acquisition of an initial collection of observations (events) about the object
of the analysis, together with a (qualitative) partial preference assessment;

1) Detection of which is the most adequate (i.e., the most discriminant) un-
certainty framework, through a “preference classification phase” (cf. Sec. 3);

2) Whenever new knowledge becomes available, refine agent’s description of
the real world by performing order extension (which substantially corre-
sponds to knowledge inference. Cf. Sec. 4).

The results of step 2) could be then exploited to guide further investigations on
the real world, in order to obtain new information. Then, step 2) will be repeated
and the process will continue until further pieces of knowledge are obtainable or
an enough accurate degree of believe is achieved.

Conclusions

In this paper we started an exploration of the potentialities offered by Answer Set
Programming for building decision support systems based on qualitative judg-
ments. Thanks to the remarkable features of ASP, the implementation of what
could be thought as a kernel of an inference engine, sprouted almost naturally.
Certainly, our research is at an initial stage and the implementation we reported
on in this paper cannot be considered to be prototype. Next step in this re-
search would consist in validating the proposed approach by means of a number
of benchmarks aimed at testing our prototype on the ground of real applications.
A comparison of its behaviour w.r.t. other possible declarative approaches, for
instance exploiting Constraint Logic Programming, is due. Results of this ac-
tivity will help in consolidating the prototype. In this context, a further goal
consists in completing our approach so as to handle comparative Probabilities
too. Since no axiomatic characterization of comparative Probabilities is known
(up to our knowledge), this aim should be achieved through integration with
efficient linear optimization tools (such as the column generation techniques).
More in general, we envisage the design of a full-blown automated system which
integrates different (in someway complementary) techniques and methods for un-
certainty management; comprehending mixed numerical/qualitative assessments
and conditional frameworks.

Acknowledgments

We thank the anonymous referees for the useful remarks, as well as Stefania Costantini
and Agostino Dovier for fruitful discussions on the topics of this paper.

References

[1] Web references for some ASP solvers.
ASSAT: http://assat.cs.ust.hk
CCalc: http://www.cs.utexas.edu/users/tag/cc

13

Cmodels: http://www.cs.utexas.edu/users/tag/cmodels
DeReS: ftp://ftp.cs.engr.uky.edu/cs/software/logic
DLV: http://www.dbai.tuwien.ac.at/proj/dlv
Smodels: http://www.tcs.hut.fi/Software/smodels.

[2] C. Baral. Knowledge representation, reasoning and declarative problem solving.
Cambridge University Press, 2003.

[3] T. Bilgiç. Fusing interval preferences. In Proc. of EUROFUSE Workshop on
Preference Modelling and Applications, pages 253–258, 2001.

[4] A. Capotorti, G. Coletti, and B. Vantaggi. Non additive ordinal relations repre-
sentable by lower or upper probabilities. Kybernetika, 34(1):79–90, 1998.

[5] A. Capotorti and B. Vantaggi. Relationships among ordinal relations on a finite
set of events. In B. Bouchon-Meunier, R. R. Yager, and L. A. Zadeh, editors,
Information, Uncertainty, Fusion, pages 447–458. Kluwer, 1998.

[6] A. Capotorti and B. Vantaggi. Axiomatic characterization of partial ordinal rela-
tions. Internat. J. Approx. Reason., 24:207–219, 2000.

[7] G. Choquet. Theory of capacities. Annales de l’institut Fourier, 5:131–295, 1954.
[8] G. Coletti. Coherent qualitative probability. J. Math. Psych., 34(3):297–310, 1990.
[9] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive

power of logic programming. ACM Computing Surveys, 33(3):374–425, 2001.
[10] G. de Cooman. Confidence relations and ordinal information. Inform. Sci.,

104:241–278, 1997.
[11] G. de Cooman and P. Walley. The imprecise probability project. Available

at :http://ippserv.rug.ac.be/.
[12] B. de Finetti. Sul significato soggettivo della probabilità. Fundamenta Mathemati-

cae, 17:298–321, 1931. Engl. transl. in P. Monari and D. Cocchi, editors, Induction
and Probability, CLUEB, Bologna: 291–321, 1993.

[13] B. de Finetti. Theory of Probability. Wiley, 1974. (Italian original Teoria della
probabilità, Einaudi, Torino, 1970).

[14] D. Dubois. Belief structure, possibility theory and decomposable confidence mea-
sures on finite sets. Comput. Artif. Intell., 5:403–416, 1986.

[15] D. Dubois, H. Fargier, and P. Perny. Qualitative decision theory with prefer-
ence relations and comparative uncertainty: An axiomatic approach. Artif. Intel.,
148:219–260, 2003.

[16] D. Dubois, H. Fargier, and H. Prade. Decision-making under ordinal preferences
and uncertainty. In AAAI Spring Symposium on Qualitative Preferences in De-
liberation and Practical Reasoning, pages 41–46, 1997.

[17] D. Dubois and H. Prade. Fuzzy sets and systems: theory and applications. Aca-
demic Press, New York, 1980.

[18] D. Dubois, H. Prade, and R. Sabbadin. A possibilistic logic machinery for quali-
tative decision. In AAAI Spring Symposium on Qualitative Preferences in Delib-
eration and Practical Reasoning, pages 47–54, 1997.

[19] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Proc. of 5th ILPS Conference, pages 1070–1080, 1988.

[20] P. H. Giang and P. P. Shenoy. A comparison of axiomatic approaches to qualitative
decision making under possibility theory. In Proc. of the 17th Conf. on Uncertainty
in Artificial Intelligence UAI01, pages 162–170, 2001.

[21] G. J. Klir and T. A. Folger. Fuzzy sets, uncertainty, and information. Prentice-
Hall, 1988.

[22] D. Lehmann. Generalized qualitative probability: Savage revisited. In Proc. of the
12th Conf. on Uncertainty in Artificial Intelligence UAI96, pages 381–388, 1996.

14

[23] V. Lifschitz. Answer set planning. In D. De Schreye, editor, Proc. of ICLP’99,
pages 23–37. The MIT Press, 1999.

[24] W. Marek and M. Truszczyński. Stable models and an alternative logic program-
ming paradigm. In The Logic Programming Paradigm: a 25-Year Perspective,
pages 375–398. Springer, 1999.

[25] H. T. Nguyen and E. A. Walker. A first course in fuzzy logic. CRC Press, Boca
Raton, 1997.

[26] G. Shafer. A mathematical theory of evidence. University of Princeton Press,
Princeton, 1976.

[27] P. Simons. Extending the Smodels System with Cardinality and Weight Con-
straints. PhD thesis, Helsinki University, Department of Computer Science and
Engineering, July 2000. Research report 58 of Technology Laboratory for Com-
puter Science, HUT-TCS-A58.

[28] T. Syrjänen. Lparse 1.0 user’s manual, 1999. Available at http://www.tcs.hut.

fi/Software/smodels.
[29] P. Walley. Statistical reasoning with imprecise probabilities. Chapman and Hall,

London, 1991.
[30] P. Walley. Measures of uncertainty in expert systems. Artif. Intel., 83:1–58, 1996.
[31] P. Walley and T. Fine. Varieties of modal (classificatory) and comparative prob-

ability. Synthese, 41:321–374, 1979.
[32] S. K. M. Wong, Y. Y. Yao, P. Bollmann, and H. C. Bürger. Axiomatization of

qualitative belief structure. IEEE Trans. Systems Man Cybernet., 21:726–734,
1991.

[33] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

A gentle introduction to uncertainty measures

In this appendix we briefly describe the various generalizations of Probability measures
used in this paper, as introduced in standard literature. The following material is
far from being an exhaustive and complete treatment. We will give just a informal
introduction to the subject. The interested reader can refer to the widely available
literature. Introductory treatment of the relationships between Probability measures,
belief functions and possibility measures, can be found in [21, 25, 30], to mention some
among many.

We will consider, as domain of interest, a set Ω of possibilities (Ω is often refered
to as sample space). For our purposes it is sufficient to consider the case of a finite
domain. An event is then defined as a subset of Ω. In order to introduce uncertainty
measures, we can consider any algebra A (on Ω), consisting of a set of subsets of Ω,
such that Ω ∈ A, and closed under union and complementation.

All of the measures we are going to introduce will be (normalized) monotone real-
valued functions over an algebra. Such functions are usually called (Choquet) Capaci-
ties [7], even if they are refered also as fuzzy measures or Sugeno measures.

Definition 1. A real-valued function F on 2Ω is a Capacity if it holds that
F (∅) = 0, F (Ω) = 1, and for all A, B ⊆ Ω A ⊆ B =⇒ F (A) 6 F (B).

Let us denote the class of Capacities over Ω by CAP(Ω).
The notion of Capacity is often too general to be of interest by itself. In fact

adopting it, apart from monotonicity, there is no other relationship imposed between

15

the uncertainty assigned to a composed event, e.g. F (A ∪ B), and the uncertainty of
its components F (A) and F (B). In order to reflect different rationales in managing the
information, several constraints can be imposed on the manner in which uncertainties
of composed events are determined. In what follows we describe some of the more
interesting measures obtained by imposing further conditions on measures, apart to be
a Capacity. We start with the most adopted measure of uncertainty. It is characterized
by the additivity property of combination: A Probability P over Ω is a capacity which
satisfies the following additivity requirement: For all A, B ⊆ Ω with A∩B = ∅ P (A∪
B) = P (A) + P (B). The class of all Probabilities over Ω is denoted by PROB(Ω).
Clearly, we have that PROB(Ω) ⊆ CAP(Ω). Let us introduce a further concept:

Definition 2. Let F1 and F2 be two functions on 2Ω. Then, F1 is the dual of F2 if
for each A ⊆ Ω it holds that F1(A) = 1− F2(Ω \A).

Note that the dual of a Capacity is a Capacity too. Moreover, the dual of a Probability
is the Probability itself.

Additivity, even being widely adopted in “measurement” processes, is usually thought
to be a too strong requirement. Hence, several generalizations have been proposed. In
particular, the following definition characterizes those Capacities satisfying only one of
the weak inequalities which, taken together, give additivity.

Definition 3. Let Π and N be Capacities over Ω.

- Π is a Possibility measure (over Ω) if it satisfies the following property: For all
A, B ⊆ Ω Π(A ∪B) = max {Π(A), Π(B)}.

- N is a Necessity measure (over Ω) if it is the dual of a Possibility measure.

It is immediate to see that

- a Possibility measure Π satisfies the sub-additivity property:
For all A, B ⊆ Ω Π(A ∪B) 6 Π(A) + Π(B);

- A Necessity measure N satisfies the super-additivity property:
For all A, B ⊆ Ω N(A ∪B) > N(A) + N(B).

A Possibility measure Π is usually induced by a possibility distribution (i.e. a fuzzy
set) π : Ω → [0, 1]. The value π(x) expresses the possibility of a singleton x ∈ Ω to be
representative of the concept being considered. Possibility is then defined by putting
Π(A) = max{π(x) | x ∈ A} for any A ⊆ Ω. The classes of Possibilities and Necessities
over Ω are denoted by POS(Ω) and NEC (Ω), respectively.

Let us consider now a slightly different situation. Suppose that the available (pos-
sibly incomplete) knowledge permits the formulation of some form of constraint on the
Probability of the events. Ideally, such constraints may determine a unique Probability
measure. In general, this is not the case. In fact, there may be a non-void set of Prob-
ability measures which satisfy the given constraints. Here we describe the measures
induced by such set. In particular, a set of Probabilities measures (over Ω) induces two
natural measures. Namely, its lower and upper envelope.

Definition 4. Let ∅ 6= P ⊆ PROB(Ω). The lower envelop P and the upper envelopes
P of P are defined as:

- For each A ⊆ Ω, P(A) = inf {P (A) | P ∈ P};
- For each A ⊆ Ω, P(A) = sup{P (A) | P ∈ P}.

Lower envelopes are usually called Lower probability measures, while upper envelopes,
which are their duals, are called Upper probability measures.

16

Let us denote the classes of Lower and Upper probabilities over Ω by LOWP(Ω) and
UPP(Ω), respectively.

It remains to introduce Belief and Plausibility measures. With the most general
formulation, following [26], we have:

Definition 5. A function Bel : 2Ω → [0, 1] is a Belief measure if it is a Capacity and
it satisfies the following condition (known as ∞-monotonicity).

For each n > 1, Bel
` Sn

i=1 Ai

´
>

P
∅6=I⊆{1,...,n}(−1)|I|+1Bel

` T
i∈I Ai

´
(where Ai ⊆ Ω for each i).

Intuitively speaking, a Belief function Bel is usually constructed through a basic as-
signment of uncertainty, not necessarily being a Capacity, µ : 2Ω → [0, 1] so that, for
any proposition A ⊆ Ω, Bel(A) =

P
B⊆A µ(B).

Notice that Belief functions are often called Capacities monotone of infinite order.
Capacities which satisfy the above condition with the restriction that n 6 N are then
said monotone of order N (or N -monotone). Dually, if the opposite inequality (6)
is considered, the measure is said to be an N-alternating capacity. For N = 2 these
properties reduce to usual super- and sub-additivity, respectively.

The dual of a Belief measure is called Plausibility measure. The classes of Belief
measures and Plausibility measures are denoted by BEL(Ω) and PL(Ω), respectively.

The following relationships can be shown to hold between the classes of Capacities

seen so far:

CAP(Ω) ⊃ LOWP(Ω) ⊃ BEL(Ω) ⊃ NEC (Ω)

CAP(Ω) ⊃ UPP(Ω) ⊃ PL(Ω) ⊃ POS(Ω)

BEL(Ω) ∩ PL(Ω) ⊃ PROB(Ω).

17

