
Preserving (Security) Properties under Action
Refinement?

Annalisa Bossi, Carla Piazza, and Sabina Rossi

Dipartimento di Informatica, Università Ca’ Foscari di Venezia
via Torino 155, 30172 Venezia, Italy

{bossi,piazza,srossi}@dsi.unive.it

Abstract. In the design process of distributed systems we may have
to replace abstract specifications of components by more concrete speci-
fications, thus providing more detailed design information. In the context
of process algebra this well-known approach is often referred to as action
refinement. In this paper we study the relationships between action re-
finement, compositionality, and (security) process properties within the
Security Process Algebra (SPA). We formalize the concept of action re-
finement both as a structural inductive definition and in terms of sub-
sequent context compositions. We study compositional properties of our
notion of refinement and provide conditions under which general process
properties are preserved through it. Finally, we consider information flow
security properties and define decidable classes of secure terms which are
closed under action refinement.

1 Introduction

In the development of complex systems it is common practice to first describe
it succinctly as a simple abstract specification and then refine it stepwise to a
more concrete implementation. This hierarchical specification approach has been
successfully developed for sequential systems where abstract-level instructions
are expanded until a concrete implementation is reached (see, e.g., [21]).

In the context of process algebra, this refinement methodology amounts to
defining a mechanism for replacing abstract actions with more concrete pro-
cesses. We adopt the terminology action refinement to refer to this stepwise
development of systems specified as terms of a process algebra. We refer to [14]
for a survey on the state of the art of action refinement in process algebra.

Action refinement in process algebras is usually defined by extending the
syntax with some compositional operator [1, 13]. Here we follow a different ap-
proach and instead of extending the language, we use a construction based on
context composition. This allows us to reason on the relationships between ac-
tion refinement and the security properties of SPA processes that we have deeply
studied in, e.g., [3]. In the last part of the paper we prove that our definition of
action refinement is indeed equivalent to the one presented in [1].
? This work has been partially supported by the EU Contract IST-2001-32617 “Models

and Types for Security in Mobile Distributed Systems” (MyThS).

In this paper we model action refinement as a ternary function Ref taking as
arguments an action r to be refined, a system description E on a given level of
abstraction and an interpretation of the action r on this level by a more concrete
process F on a lower abstraction level. The refined process can be obtained either
by applying a structural inductive definition or through a more complex context
composition as described by the following simple example.

Let E be the process a.r.b.0 + c.0 and r be the action we intend to refine by
the process F ≡ d1.d2.0. The refined process, denoted by Ref (r, E, F), will be
the process a.d1.d2.b.0 + c.0 which can be obtained in two equivalent ways: (1)
we can either apply a structural inductive definition as follows: Ref (r, E, F) =
a.Ref (r, r.b.0, F) + c.0 = a.F ′[b.0] + c.0 where F ′[Y] is the context d1.d2.Y and
F ′[b.0] is the process d1.d2.b.0; (2) or we can compute the refinement by a single
context composition as E′[F ′[b.0]] where E′[X] is the context a.X + c.0 while
F ′[Y] is as above the context d1.d2.Y .

Our definitions follow the static syntactic approach to action refinement (see,
e.g., [19]). We prove several compositional properties of our notion of refinement.
Indeed, compositional properties are fundamental in the stepwise development of
complex systems. They allow us to refine sub-components of the system, while
guaranteeing that the final result does not depend on the order in which the
refinements are applied. We also provide conditions under which our notion of
refinement preserves general properties of processes and, in particular, we focus
on security properties.

In system development, it is important to consider security related issues from
the very beginning. Indeed, considering security only at the final step could lead
to a poor protection or, even worst, could make it necessary to restart the devel-
opment from scratch. A security-aware stepwise development requires that the
security properties of interest are either preserved or gained during the develop-
ment steps, until a concrete (i.e., implementable) specification is obtained.

In this paper we consider information flow security properties (see, e.g., [12,
9, 15]), i.e., properties that allow one to express constraints on how information
should flow among different groups of entities. These properties are usually for-
malized by considering two groups of entities labelled with two security levels:
high (H) and low (L). The only constraint is that no information should flow
from H to L. For example, to guarantee confidentiality in a system, it is sufficient
to label every confidential (i.e., secret) information with H and then partition
each system user as H and L, depending on whether such a user is or is not
authorized to access confidential information. The constraint of no information
flow from H to L guarantees that no access to confidential information is possible
by L-labelled users. We consider the bisimulation-based security property named
Persistent Bisimulation-based non Deducibility on Compositions (P BNDC , for
short) [10]. Property P BNDC is based on the idea of Non-Interference [12]
and requires that every state which is reachable by the system still satisfies a
basic Non-Interference property. We show how to both instantiate and extend
the results obtained for general process properties in order to provide decidable
conditions ensuring that P BNDC is preserved under action refinement.

2

The paper is organized as follows. In Section 2 we recall some basic notions of
the SPA language. In Section 3 we formalize our notion of action refinement as
a structural inductive definition. We also study its compositional properties. In
Section 4 we reformulate action refinement in terms of context composition and
we state conditions under which general process properties are preserved through
action refinement. In Section 5 we consider the security property P BNDC and
define decidable classes of P BNDC processes which are closed under action
refinement. Finally, in Section 6 we discuss some related works.

2 Basic Notions

The Security Process Algebra (SPA) [9] is a variation of Milner’s CCS [18] where
the set of visible actions is partitioned into two security levels, high and low, in
order to specify multilevel systems. SPA syntax is based on the same elements
as CCS, i.e.: a set L = I ∪ O of visible actions where I = {a, b, . . .} is a set of
input actions and O = {ā, b̄, . . .} is a set of output actions; a special action τ
which models internal computations, not visible outside the system; a function
·̄ : L → L, such that ¯̄a = a, for all a ∈ L. Act = L∪{τ} is the set of all actions.
The set of visible actions is partitioned into two sets, H and L, of high security
actions and low security actions such that H = H and L = L, where H and L
are obtained by applying function ·̄ to all the elements in H and L, respectively.

The syntax of SPA terms is as follows1:

T ::= 0 | Z | a.T | T + T | T |T | T \ v | T [f] | recZ.T

where Z is a variable, a ∈ Act , v ⊆ L, f : Act → Act is such that f(l̄) = f(l)
for l ∈ L, f(τ) = τ , f(H) ⊆ H ∪ {τ}, and f(L) ⊆ L ∪ {τ}. We apply the
standard notions of free and bound (occurrences of) variables in a SPA term.
More precisely, all the occurrences of the variable Z in recZ.T are bound ; while
Z is free in a term T if there is an occurrence of Z in T which is not bound.

A SPA process is a SPA term without free variables. We denote by E the set
of all SPA processes, ranged over by E,F,

The operational semantics of SPA processes is given in terms of Labelled Tran-
sition Systems (LTS, for short). In particular, the LTS (E ,Act ,→), whose states
are processes, is defined by structural induction as the least relation generated
by the axioms and inference rules reported in Figure 1.

Intuitively, 0 is the empty process that does nothing; a.E is a process that
can perform an action a and then behaves as E; E1 + E2 represents the nonde-
terministic choice between the two processes E1 and E2; E1|E2 is the parallel
composition of E1 and E2, where executions are interleaved, possibly synchro-
nized on complementary input/output actions, producing the silent action τ ;
E \ v is a process E prevented from performing actions in v; E[f] is the process
E whose actions are renamed via the relabelling function f ; if in T there is
1 Actually in [9] recursion is introduced through constant definitions instead of the

rec operator.

3

Prefix
−

a.E
a→ E

Sum
E1

a→ E′
1

E1 + E2
a→ E′

1

E2
a→ E′

2

E1 + E2
a→ E′

2

Parallel
E1

a→ E′
1

E1|E2
a→ E′

1|E2

E2
a→ E′

2

E1|E2
a→ E1|E′

2

E1
l→ E′

1 E2
l̄→ E′

2

E1|E2
τ→ E′

1|E′
2

Restriction
E

a→ E′

E \ v
a→ E′ \ v

if a 6∈ v

Relabelling
E

a→ E′

E[f]
f(a)→ E′[f]

Recursion
T [recZ.T [Z]]

a→ E′

recZ.T [Z]
a→ E′

with a ∈ Act and l ∈ L.

Fig. 1. The operational rules for SPA

at most the free variable Z, then recZ.T [Z] is the recursive process which can
perform all the actions of the process obtained by substituting recZ.T [Z] to the
place-holder Z in the term T [Z].

The concept of observation equivalence is used to establish equalities among
processes and it is based on the idea that two systems have the same semantics
if and only if they cannot be distinguished by an external observer. This is
obtained by defining an equivalence relation over E equating two processes when
they are indistinguishable. In this paper we consider the relations named weak
bisimulation, ≈, and strong bisimulation, ∼, defined by Milner for CCS [18].
They equate two processes if they are able to mutually simulate their behavior
step by step.

We use the following notations: E
a→ E′ to denote the transition labelled by a

from E to E′, E
a=⇒ E′ to denote any sequence of transitions E(τ→)∗ a→ (τ→)∗E′

where (τ→)∗ denotes a (possibly empty) sequence of τ labelled transitions, and
E

â=⇒ E′ which stands for E
a=⇒ E′ if a ∈ L, and for E(τ→)∗E′ if a = τ .

We say that E′ is reachable from E if there exist a1, . . . , an ∈ Act such that
E

a1→ . . .
an→ E′.

Weak bisimulation does not care about internal τ actions while strong bisi-
mulation does.

4

Definition 1 (Weak and Strong Bisimulation). A symmetric binary rela-
tion R ⊆ E × E over processes is a weak bisimulation if (E,F) ∈ R implies, for
all a ∈ Act, if E

a→ E′, then there exists F ′ such that F
â=⇒ F ′ and (E′, F ′) ∈ R.

Two processes E,F ∈ E are weakly bisimilar, denoted by E ≈ F , if there exists
a weak bisimulation R containing the pair (E,F).

The definition of strong bisimulation is obtained by replacing â=⇒ with a→ in
the sentence above. Two processes E,F ∈ E are strongly bisimilar, denoted by
E ∼ F , if there exists a strong bisimulation R containing the pair (E,F).

The relation ≈ (∼) is the largest weak (strong) bisimulation and it is an
equivalence relation.

A SPA term with free variables can be seen as an environment with holes
(the free occurrences of its variables) in which other SPA terms can be inserted.
The result of this substitution is still a SPA term, which could be a process. For
instance, in the term h.0|(l.X + τ.0) we can replace the variable X with the
process h̄.0 obtaining the process h.0|(l.h̄.0 + τ.0); or we can replace X by the
term a.Y obtaining the term h.0|(l.a.Y + τ.0). When we consider a SPA term as
an environment we call it context2, i.e., a SPA context is a SPA term in which
free variables may occur.

Given a context C, we use the notation C[Y1, . . . , Yn] to emphasize the free
variables Y1, . . . , Yn occurring in C. The term C[T1, . . . , Tn] is obtained from
C[Y1, . . . , Yn] by simultaneously replacing all the free occurrences of Y1, . . . , Yn

with the terms T1, . . . , Tn, respectively. For instance, given the contexts C[X] ≡
h.0|(l.X + τ.0) and D[X, Y] ≡ (l.X + τ.0)|Y , the notation C[h̄.0] stands for
h.0|(l.h̄.0 + τ.0), while the notation D[h̄.0, l̄.0] stands for (l.h̄.0 + τ.0)|l̄.0.

Following [18] we extend binary relations on processes to contexts as follows.

Definition 2 (Relations on Contexts). Let R ⊆ E × E be a relation over
processes. Let C,D be two contexts with free variables Y1, . . . , Yn. We say that
C[Y1, . . . , Yn] R D[Y1, . . . , Yn] if C[E1, . . . , En] R D[E1, . . . , En] for any choice
of E1, . . . , En ∈ E. We also use C R D to denote C[Y1, . . . , Yn] R D[Y1, . . . , Yn].

As an example, the contexts C[X, Y] ≡ a.X+τ.Y and D[X, Y] ≡ a.τ.X+τ.Y
are weakly bisimilar since for all E,F ∈ E it holds a.E + τ.F ≈ a.τ.E + τ.F .

Strong bisimulation is a congruence, i.e., if C[X] ∼ D[X] and E ∼ F , then
C[E] ∼ D[F]. Weak bisimulation is not a congruence, i.e., if two contexts C[X]
and D[X] are weakly bisimilar, and two processes E and F are weakly bisimilar,
then C[E] and D[F] are not necessarily weakly bisimilar. However, weak bisim-
ulation is a congruence over the guarded SPA language whose terms are defined
by replacing the production T + T with a.T + a.T in the SPA syntax.

3 Action Refinement

It is standard practice in software development to obtain the final program start-
ing from an abstract, possibly not executable, specification by successive refine-
ment steps. Abstract operations are replaced by more detailed programs which
2 Notice that a SPA term denotes either a process or a context.

5

can be further refined, until a level is reached where no more abstractions occur.
In the context of process algebra, this stepwise development amounts to inter-
preting actions on a higher level of abstraction by more complicated processes
on a lower level. This is obtained by introducing a mechanism to replace actions
by processes. There are several ways to do this. We adopt the syntactic approach
and define the refinement step as a syntactic process transformation.

We need to introduce some notation. Given a process F and a variable Y ,
we denote by F 0[Y] the context obtained by replacing each occurrence of 0 in F
with the variable Y . As an example, consider the process F ≡ recZ.(a.Z + b.0).
Then F 0[Y] ≡ recZ.(a.Z + b.Y).

To introduce our notion of action refinement we also need to define which are
the refinable actions of a process. This concept is based on the following notions
of bound and free actions.

Definition 3. (Bound and Free actions) Let T be a SPA term. The set of
bound actions of T , denoted by bound(T), is inductively defined as follows:

bound(0) = ∅
bound(Z) = ∅ where Z is a variable
bound(a.T) = bound(T)
bound(T1 + T2) = bound(T1) ∪ bound(T2)
bound(T1|T2) = bound(T1) ∪ bound(T2)
bound(T \ v) = bound(T) ∪ v
bound(T [f]) = bound(T) ∪ {a, f(a) | f(a) 6= a}
bound(recZ.T) = bound(T)

An action occurring in T is said to be free if it is not bound. We denote by
free(T) the set of free actions of T .

In practice, an action is bound in a term T if either it is restricted in a
subterm of T or it belongs to the domain or the codomain of a relabelling
function f occurring in T . For instance, the actions a and ā occur bound in the
process E ≡ a.0 + recZ.((ā.Z + b.a.0) \ {a, ā}).

An abstract action r occurring in a process E is refinable if r is not bound in
E and, in order to avoid problems with synchronizations, r̄ does not occur in E.
We also require that the process F which is intended to refine r is different from
0 and that it does not contain the parallel operator. Moreover, r and r̄ should not
occur in F otherwise we would enter into an infinite loop of refinements. Finally
we impose that the free actions of F are not bound in E and vice-versa, to avoid
undesired bindings of actions in the refined process. All these requirements are
formalized in the following notion of refinability. We will discuss them in the
next subsection.

Definition 4. (Refinability) Let E,F be SPA processes and r ∈ L. The action
r is said to be refinable in E with F if:

(a) F is not the process 0;
(b) F does not contain any occurrence of the parallel operator;

6

(c) r 6∈ bound(E) and r̄ does not occur in E;
(d) r and r̄ do not occur in F ;
(e) for all subterm E′ of E, (bound(E′) ∩ free(F)) ∪ (bound(F) ∩ free(E′)) = ∅

Example 1. Consider the processes E ≡ (r.a.0|ā.b.0) \ {a, ā} and F ≡ c.d.0. In
this case action r is refinable in E with F .

Consider now the processes E as above and F1 ≡ b.0+(c.d.0)\{b}. In this case
condition (e) of Definition 4 is not satisfied since bound(F1)∩ free(E) = {b} 6= ∅.
Hence r is not refinable in E with F1. ut

The refinement of an abstract action r in a process E with a refining process
F is obtained by replacing each occurrence of r in E with F . In order to support
action refinement, in the literature the prefixing operator is usually replaced
by sequential composition ”;” (see [1, 13]). Here we follow a different approach
and instead of extending the language, we use a construction based on context
composition. Thus, for instance the refinement of the action r in the process
E ≡ a.r.b.0 with the process F ≡ c.d.0 is obtained by substituting b.0 for Y in
a.F 0[Y] ≡ a.c.d.Y , i.e., it is the process a.F 0[b.0]. The conditions on the refinable
actions and the fact that F does not contain the parallel operator, ensure that
our notion of action refinement is comparable with more classical ones like, e.g.,
[1] (see Section 6). Moreover, the fact that we do not modify our language, allows
us to directly apply our security notions for SPA processes also when reasoning
on action refinement.

Our notion of action refinement is defined by structural induction on the
process to be refined.

Definition 5. (Action Refinement) Let E,F be SPA processes such that r is
an action refinable in E with F . The refinement of r in E with F is the process
Ref (r, E, F) inductively defined on the structure of E as follows:

(1) Ref (r,0, F) ≡ 0
(2) Ref (r, Z, F) ≡ Z
(3) Ref (r, r.E1, F) ≡ F 0[Ref (r, E1, F)]
(4) Ref (r, a.E1, F) ≡ a.Ref (r, E1, F), if a 6= r
(5) Ref (r, E1[f], F) ≡ Ref (r, E1, F)[f]
(6) Ref (r, E1 \ v, F) ≡ Ref (r, E1, F) \ v
(7) Ref (r, E1 + E2, F) ≡ Ref (r, E1, F) + Ref (r, E2, F)
(8) Ref (r, E1|E2, F) ≡ Ref (r, E1, F)|Ref (r, E2, F)
(9) Ref (r, recZ.E1, F) ≡ recZ.Ref (r, E1, F)

Point (3) of definition above deals with the basic case in which we replace
an occurrence of r with the refining process F . If E ≡ r.E1 and r is the only
occurrence of r in E, then Ref (r, E, F) ≡ F 0[Ref (r, E1, F)] ≡ F 0[E1] represent-
ing the process which first behaves as F and then, when the execution of F is
terminated, proceeds as E1. In all the other cases the refinement process enters
inside the components of E. This is correct also when restriction or relabelling
operators are involved since conditions (c), (d) and (e) of Definition 4 guarantee

7

that we never refine restricted or relabelled actions and that undesired bindings
of actions will never occur.

Example 2. Let E ≡ r.a.0 + b.0 and F ≡ c.0 + d.0. It is immediate to observe
that r is refinable in E with F . By applying points 7. and 3. of Definition 5 we
get Ref (r, E, F) ≡ c.a.0 + d.a.0 + b.0.

Let E ≡ (a.r.b.0) \ {b} and F ≡ c.d.0. Since bound(E) = {b} and b does
not occur in F , r is refinable in E with F . By applying points 6., 4. and 3. of
our definition of action refinement we get Ref (r, E, F) ≡ (a.c.d.b.0)\{b}. Notice
that, our notion of refinability does not allow us to refine r in E with F1 ≡ b.d.0.
However, as done in [1], we can first apply an α conversion mapping E into the
equivalent process E1 ≡ (a.r.e.0) \ {e} and then refine r in E1 with F1 getting
the expected process (a.b.d.e.0) \ {e}.

Let E ≡ a.r.b.0|r.c.0 and F ≡ c.d.0. Applying our definition we get that
Ref (r, E, F) ≡ a.c.d.b.0|c.d.c.0. As expected, since in E there are two occur-
rences of r we replace them with two copies of F . In this way it is possible that
new synchronizations are generated. ut

From now on when we write Ref (r, E, F) we tacitly assume that r is refinable
in E with F .

Notice that we do not allow the use of the parallel composition in the process
F . In fact, if E ≡ r.a.0 and F ≡ b.0|c.0, by applying our notion of refinement we
would obtain the process b.a.0|c.a.0, i.e., we would duplicate part of E. Usually
this undesired behavior is avoided by exploiting the concatenation operator ”;”
in the definition of action refinement (obtaining the process (b.0|c.0); a.0). Here
instead, we prefer to impose restrictions on F . This assumption is only mildly re-
strictive since, if F is a finite state3 process, then there always exists a process F1,
strongly bisimilar to F , which does not contain any occurrence of the parallel op-
erator (see [17]). For instance, in the previous example it is sufficient to consider
F1 ≡ b.c.0 + c.b.0 in order to get the expected Ref (r, E, F1) ≡ b.c.a.0 + c.b.a.0.

At any fixed abstraction level during the top-down development of a program,
it is unrealistic to think that there is just one action to be refined at that level.
Compositional properties of the refinement operation allow us to discard the
ordering in which the refinements occur.

First we show that our refinement is local to the components in which the
action to be refined occurs. This is a consequence of the following theorem.

Theorem 1. Let E1, . . . , En and F be terms. Let C[Z1, . . . , Zn] be a context
with no occurrences of r and r̄. It holds

Ref (r, C[E1, . . . , En], F) ≡ C[Ref (r, E1, F), . . . ,Ref (r, En, F)].

Hence, if we have a term G which is of the form E1|E2| . . . |En and the
action r occurs only in Ei it is sufficient to apply the refinement to Ei to obtain
Ref (r, G, F) ≡ E1|E2| . . . |Ref (r, Ei, F)| . . . |En.
3 A process is finite state if it reaches only a finite number of different processes. Notice

that a finite state process can be recursive.

8

Example 3. Consider the process G ≡ recV.(a.V + recW.(a.W + r.W)). We can
decompose it into C[Z] ≡ recV (a.V +Z) and E ≡ recW.(a.W +r.W) and apply
the refinement to E. If F ≡ b.c.0 we get that Ref (r, E, F) ≡ recW.(a.W +b.c.W).
Hence, Ref (r, G, F) ≡ recV.(a.V + recW.(a.W + b.c.W)). ut

If we need to refine two actions in a process E, then the order in which we
apply the refinements is irrelevant.

Theorem 2. Let E be a term. Let F1 and F2 be two terms with no occurrences
of r1, r2, r̄1, and r̄2.

Ref (r2,Ref (r1, E, F1), F2) ≡ Ref (r1,Ref (r2, E, F2), F1).

Example 4. Let E ≡ r1.a.0 + r2.b.r2.0, F1 ≡ b.0 and F2 ≡ c.0. We have that
Ref (r2,Ref (r1, E, F1), F2) ≡ b.a.0 + c.b.c.0 ≡ Ref (r1,Ref (r2, E, F2), F1). ut

Moreover, we can refine r1 in E using F1 and r2 in F1 using F2 independently
from the order in which the refinements are applied as stated by the following
theorem.

Theorem 3. Let E,F1, F2 be terms such that r1 and r̄1 do not occur in F2.

Ref (r2,Ref (r1, E, F1), F2) ≡ Ref (r1, Ref(r2, E, F2),Ref (r2, F1, F2)).

Example 5. Let E ≡ r1.a.0 + a.r2.0, F1 ≡ b.r20 and F2 ≡ c.0. We have
Ref (r2,Ref (r1, E, F1), F2) ≡ Ref (r2, b.r2.a.0 + a.r2.0, F2) ≡ b.c.a.0 + a.c.0 ≡
Ref (r1, r1.a.0 + a.c.0, b.c.0) ≡ Ref (r1,Ref (r2, E, F2),Ref (r2, F1, F2)). ut

4 Preserving Process Properties under Refinement

A process property P is nothing but a class of processes, i.e., the class of processes
which satisfy P. In particular, we are interested in classes of processes expressing
security notions, i.e., classes of processes which are all secure (with respect to a
particular notion of security). We intend to investigate conditions under which
notions of security are preserved under action refinement. This correspond to
analyze conditions under which classes of processes are closed with respect to
action refinement.

We start by characterizing our notion of refinement uniquely in terms of
context composition, spelling out the recursion on the structure of E. To do this
we introduce a suitable operation which realizes the necessary links from the
parts of E which precede an occurrence of r and the parts of E which follow
that occurrence. In other words we have to hook F to E, whenever an action r
occurs.

We define the set E@r of the parts of E which syntactically follow the outer-
most occurrences of an action r, and the context E{r} which represents the part
of E before the outermost occurrences of r.

9

Definition 6 (E@r and E{r}). Let E be a SPA term and r be a refinable
action in E. The set of terms E@r is inductively defined as follows:

0@r = ∅; Z@r = ∅;
(r.T)@r = {T}; (a.T)@r = T@r, if a 6= r;
(T1 + T2)@r = T1@r ∪ T2@r; (T1|T2)@r = T1@r ∪ T2@r;
(T \ v)@r = T@r; (T [f])@r = T@r;
(recZ.T)@r = T@r.

Let E@r = {T1, . . . , Tn} and {XT1 , . . . , XTn
} be a set of distinct variables in-

dexed in the elements of E{r}. The context E{r} is inductively defined as follows

0{r} = 0; Z{r} = Z;
(r.T){r} = XT ; (a.T){r} = a.(T{r}), if a 6= r;
(T1 + T2){r} = T1{r}+ T2{r}; (T1|T2){r} = T1{r}|T2{r};
(T \ v){r} = (T{r}) \ v; (T [f]){r} = (T{r})[f];
(recZ.T){r} = recZ.(T{r}).

Notice that if E@r = {T1, . . . , Tn}, then {XT1 , . . . , XTn
} is the set of free

variables of E{r}. In the following we will write E{r} to denote the context
E{r}[XT1 , . . . , XTn

]. Thus E{r}[S1, . . . , Sn] represents the term obtained from
E{r}[XT1 , . . . , XTn] by simultaneously replacing all the free occurrences of the
variables XT1 , . . . , XTn with the terms S1, . . . , Sn, respectively.

Example 6.

– Let E ≡ r.0|a.0. We have that E@r is {0} and E{r} is X0|a.0.
– Let E ≡ (a.r.0 + b.r.c.r.a.0) | r.0. The set E@r contains two processes

and is equal to {0, c.r.a.0}. Note that the term c.r.a.0 in E@r contains an
occurrence of r. The context E{r} is (a.X0 + b.Xc.r.a.0) | X0. The set of the
free variables of E{r} is exactly {XT | T ∈ E@r}.

– Let E ≡ recZ.(a.Z+r.Z). We have that E@r is {Z} and E{r} is recZ.(a.Z+
XZ). In this case E@r has only one element which is not a process. ut

The refinement of an action r in E with F can be equivalently obtained by
successive context compositions as follows.

Definition 7 (Partial Refinement). Let E and F be terms, and r ∈ Act be
an action refinable in E with F . Let Y be a variable which does not occur neither
in E nor in E{r} nor in F . Let E@r = {T1, . . . , Tn}. The partial refinement
ParRef (r, E, F) of r in E with F is defined as

ParRef (r, E, F) ≡ E{r}[F 0[T1], . . . , F 0[Tn]].

The following theorem provides an alternative characterization of our notion
of refinement.

Theorem 4. The refinement Ref (r, E, F) of r in E with F satisfies

– Ref (r, E, F) ≡ ParRef 0(r, E, F) ≡ E, if r does not occur in E;

10

– Ref (r, E, F) ≡ ParRef n+1(r, E, F) ≡ ParRef (r,ParRef n(r, E, F), F), if r
occurs n + 1 times in E.

Intuitively E@r are the parts of E which syntactically follow the occurrences
of the action r, while E{r} is the part of E which precedes the r’s. The holes
XT ’s in E{r} serve to hook the refinement F . Similarly, the free variable Y of
F 0[Y] serves to hook the elements of E@r after the execution of F . The partial
refinement ParRef (r, E, F) replaces in E as many occurrences as possible of r
with F . In the case of nested occurrences of r (e.g., r.a.r.0) the partial refinement
replaces only the first occurrence. Hence in order to replace all the occurrences
in the worst case it is necessary to compute the partial refinement n times, where
n is the number of occurrences of r in E. We would obtain the same result by
arbitrarily choosing at each step one occurrence of r replacing it with F , and
going on until there are no more occurrences of the refineble action r.

Example 7. We consider again the second process of Example 6, i.e., let E ≡
(a.r.0 + b.r.c.r.a.0) | r.0 and F ≡ e.f.0. The partial refinement ParRef (r, E, F)
is the process E′ ≡ (a.e.f.0 + b.e.f.c.r.a.0) | e.f.0. The context E′{r} coincides
with (a.e.f.0 + b.e.f.c.Xa.0) | e.f.0. Hence Ref (r, E, F) = ParRef (r, E′, F) =
(a.e.f.0 + b.e.f.c.e.f.a.0) | e.f.0. ut

Let P be a generic process property. We are now ready to introduce some
conditions which imply that P is preserved under action refinement.

Definition 8 (P-refinable contexts). Let P be a class of processes. A class
C of contexts is said to be a class of P-refinable contexts if:

– if C ∈ C and C is a process, then C ∈ P;
– if C,D ∈ C, then C[D] ∈ C;
– if C ∈ C and r is refinable in C, then C@r ∪ {C{r}} ⊆ C.

Theorem 5. Let P be a class of processes and C be a class of P-refinable con-
texts. Let E and F be processes. If E,F 0[Y] ∈ C, then Ref (r, E, F) is a process
in P and it is a P-refinable context in C.

In order to apply Theorem 5 we need to be able to characterize classes of
P-refinable contexts. In the following section we analyze one of the security prop-
erty considered in [3], namely P BNDC , and we show how to apply Theorem 5.

5 Action Refinement and Information Flow Security

Information flow security in a multilevel system aims at guaranteeing that no
high level (confidential) information is revealed to users running at low security
levels [11, 9, 16], even in the presence of any possible malicious process (attacker).
Persistent Bisimulation-based Non Deducibility on Composition (P BNDC , for
short) [10] is an information flow security property suitable to analyze processes
in completely dynamic hostile environments, i.e., environments which can be

11

dynamically reconfigured at run-time. The notion of P BNDC is based on the
idea of Non-Interference [12] and requires that every state which is reachable by
the system still satisfies a basic Non-Interference property. If this holds, one is
assured that even if the environment changes during the execution no malicious
attacker will be able to compromise the system, as every possible reachable
state is guaranteed to be secure. In this paper we present P BNDC through its
unwinding characterization (see [3]).

The definition of P BNDC in terms of unwinding condition points out that
all the high level actions of a P BNDC process can be locally simulated by a
sequence of τ actions.

Definition 9 (P BNDC). A process E is P BNDC if for all E′ reachable from
E and for all h ∈ H, if E′ h→ E′′, then E′ τ̂=⇒ E′′′ with E′′ \H ≈ E′′′ \H.

Example 8. Let l ∈ L and h ∈ H. The process h.l.h.0 + τ.l.0 is P BNDC . The
process h.l.0 is not P BNDC . ut

Example 9. Let us consider a distributed data base (adapted from [14]) which
can take two values and which can be both queried and updated. In particular,
the high level user can query it through the high level actions qry1 and qry2,
while the low level user can only update it through the low level actions upd1

and upd2. Hence qry1, qry2 ∈ H and upd1, upd2 ∈ L. We can model the data
base with the SPA process E defined as

E ≡ recZ.(qry1.Z + upd1.Z + τ.Z+
upd2.recW.(qry2.W + upd2.W + τ.W + upd1.Z)).

The process E is P BNDC . Indeed, whenever a high level user queries the data
base with a high level action moving the system to a state X then a τ action
moving the system to the same state X may be performed, thus masking the
high level interactions with the system to low level users. ut

The decidability of P BNDC has been proved in [10] and an efficient (poly-
nomial) algorithm has been presented in [3]. A proof system which allows us
to incrementally build P BNDC processes has been obtained by exploiting both
the unwinding characterization of P BNDC (Definition 9) and the compositional
properties of P BNDC with respect to most of the operators of the SPA lan-
guage. Here we exploit the same compositionality properties to define classes of
P BNDC and P BNDC -refinable contexts.

Definition 10 (The classes Crec and Cpar).

– Crec is the class of contexts containing: the process 0; Z, where Z is a vari-
able; l.C, with l ∈ L ∪ {τ}, h.C + τ.C, with h ∈ H, C \ v, C[f], C1 + C2,
and recZ.C, with C,C1, C2 ∈ Crec.

– Cpar is the class of contexts containing: the process 0; Z, where Z is a vari-
able; l.C, with l ∈ L ∪ {τ}, h.C + τ.C, with h ∈ H, C \ v, C[f], C1 + C2,
and C1|C2, with C,C1, C2 ∈ Cpar.

12

Theorem 6. The classes Crec and Cpar are P BNDC-refinable.

Next corollary is an immediate consequence of Theorems 5 and 6.

Corollary 1. Let E and F be processes. If E,F 0[Y] ∈ Crec (resp. ∈ Cpar), then
Ref (r, E, F) is a P BNDC process and it is in Crec (resp. ∈ Cpar).

Example 10. Consider again the abstract specification of the distributed data
base represented through the SPA process E of Example 9. The process E be-
longs to the class Crec of Definition 10. In fact, C1 ≡ qry2.W + upd2.W + τ.W +
upd1.Z ∈ Crec, then C2 ≡ recW.C1 ∈ Crec. Hence, C3 ≡ qry1.Z +upd1.Z +τ.Z +
upd2.C2 ∈ Crec. Thus E ≡ recZ.C3 ∈ Crec.

We can refine the update actions by requiring that each update is requested
and confirmed, i.e., we refine upd1 using F1 ≡ req1.cnf1.0 and upd2 using F2 ≡
req2.cnf2.0, where req1, cnf1, req2, cnf2 are low security level actions. We obtain
that the process Ref(upd2, Ref(upd1, E, F1), F2) is

recZ.(qry1.Z + req1.cnf1.Z + τ.Z+
req2.cnf2.recW.(qry2.W + req2.cnf2.W + τ.W + req1.cnf1.Z)).

Since F 0
1 [Y] and F 0

2 [Y] are in Crec, by applying Theorem 1 we have that the
process Ref(upd2, Ref(upd1, E, F1), F2) is P BNDC . ut

By exploiting the compositionality of P BNDC with respect to ! (see [4]) we
obtain that the above results hold also if we extend the class Cpar by including
all the contexts of the form !C with C ∈ Cpar.

We conclude this section observing that it is immediate to prove Theorem 1
also for the properties Compositional P BNDC (CP BNDC, for short) and Pro-
gressing P BNDC (PP BNDC, for short) presented in [3].

6 Related Work

Action refinement has been extensively studied in the literature. There are es-
sentially two interpretations of action refinement: semantic and syntactic (see
[13]). In the semantic interpretation an explicit refinement operator, written
E[r → F], is introduced in the semantic domain used to interpret the terms
of the algebra. The semantics of E[r → F] models the fact that r is an action
of E to be refined by process F . In the syntactic approach, the same situation
is modelled by syntactically replacing r by F in E. The replacement can be
static, i.e., before execution, or dynamic, i.e., r is replaced as soon as it occurs
while executing E. In order to correctly formalize the replacement, the process
algebra is usually equipped with an operation of sequential composition (rather
than the more standard action prefix), as, e.g., in ACP, since otherwise it would
not be closed under the necessary syntactic substitution. Our approach to ac-
tion refinement follows the static, syntactic interpretation. However, the use of
context composition to realize the refinement allows us to keep the original SPA
language without introducing a sequential composition operator for processes.

13

Our definition of action refinement is equivalent, in most cases, to the clas-
sical static syntactic approaches presented in the literature. We show this by
comparing our definition with the one proposed by Aceto and Hennessy in [1]
to model action refinement for CCS processes. First, observe that the language
considered in [1] is a variation of CCS with the sequential operator ; but with-
out recursion and renaming. Moreover, their semantics is expressed as a strong
bisimilarity extended with a condition on the termination of processes, here de-
noted by ∼√. In [1] a refinement is nothing but a function ρ : L → E which
maps each action a into its refinement. Given a process E its refinement Eρ is
obtained by syntactically replacing each action a occurring in E with ρ(a). Since
by Definition 4 we can avoid the parallel operator in the refining process F , the
following theorem holds.

Theorem 7. Let E and F be two processes without recursion and renaming.
Consider the function ρ : L → E defined as

ρ(a) =
{

F if a = r
a otherwise

Let Eρ be the refinement of E with ρ as defined in [1]. If F is a guarded process,
then

Eρ ∼√ Ref (r, E, F).

Action refinement is also classified as atomic or non-atomic. Atomic refine-
ment is based on the assumption that actions are atomic and their refinements
should in some sense preserve this atomicity (see, e.g.,[7, 5]). As an example, con-
sider the processes E ≡ r.0|b.0 and F ≡ a1.a2.0. The refinement of r in E with
F is a process (a1.a2).0|b.0 where the execution of a1.a2.0 is non-interruptible,
i.e., action b cannot be executed in between the execution of a1 and a2. On the
other hand, non-atomic refinement is based on the view that atomicity is always
relative to the current level of abstraction and may, in a sense, be destroyed
by the refinement (see, e.g., [1, 8, 20]). In this paper we follow the non-atomic
approach. Actually, this approach is on the whole more popular then the former.

In the literature the term refinement is also used to indicate any transforma-
tion of a system that can be justified because the transformed system implements
the original one on the same abstraction level, by being more nearly executable,
for instance more deterministic. The implementation relation is expressed in
terms of pre-orders such as trace inclusion or various kinds of simulation. Many
papers in this tradition can be found in [6]. The relations between this form of
refinement and information flow security have been studied in [2].

References

1. L. Aceto and M. Hennessy. Adding Action Refinement to a Finite Process Algebra.
Information and Computation, 115(2):179–247, 1994.

2. A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Refinement Operators and In-
formation Flow Security. In Proc. of the 1st IEEE Int. Conference on Software
Engineering and Formal Methods (SEFM’03), pages 44–53. IEEE, 2003.

14

3. A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Verifying Persistent Security Prop-
erties. Computer Languages, Systems and Structures, 2004. To appear. Available
at http://www.dsi.unive.it/∼srossi/cl04.ps.

4. A. Bossi, D. Macedonio, C. Piazza, and S. Rossi. Information Flow Security and
Recursive Systems. In Proc. of the Italian Conference on Theoretical Computer
Science (ICTCS’03), volume 2841 of LNCS, pages 369–382. Springer-Verlag, 2003.

5. G. Boudol. Atomic Actions. Bulletin of the EATCS, 38:136–144, 1989.
6. J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors. Stepwise Refinement

of Distributed Systems, Models, Formalisms, Correctness, REX Workshop, Mook,
The Netherlands, May 29 - June 2, 1989, Proceedings, volume 430 of Lecture Notes
in Computer Science. Springer, 1990.

7. J. W. de Bakker and E. P. de Vink. Bisimulation Semantics for Concurrency with
Atomicity and Action Refinement. Fundamenta Informaticae, 20(1):3–34, 1994.

8. P. Degano and R. Gorrieri. A Causal Operational Semantics of Action Refinement.
Information and Computation, 122(1):97–119, 1995.

9. R. Focardi and R. Gorrieri. Classification of Security Properties (Part I: Infor-
mation Flow). In R. Focardi and R. Gorrieri, editors, Proc. of Foundations of
Security Analysis and Design (FOSAD’01), volume 2171 of LNCS, pages 331–396.
Springer-Verlag, 2001.

10. R. Focardi and S. Rossi. Information Flow Security in Dynamic Contexts. In
Proc. of the IEEE Computer Security Foundations Workshop (CSFW’02), pages
307–319. IEEE, 2002.

11. S. N. Foley. A Universal Theory of Information Flow. In Proc. of the IEEE
Symposium on Security and Privacy (SSP’87), pages 116–122. IEEE, 1987.

12. J. A. Goguen and J. Meseguer. Security Policies and Security Models. In Proc. of
the IEEE Symposium on Security and Privacy (SSP’82), pages 11–20. IEEE, 1982.

13. U. Goltz, R. Gorrieri, and A. Rensink. Comparing Syntactic and Semantic Action
Refinement. Information and Computation, 125(2):118–143, 1996.

14. R. Gorrieri and A. Rensink. Action Refinement. Technical Report UBLCS-99-09,
University of Bologna (Italy), 1999.

15. H. Mantel. Possibilistic Definitions of Security - An Assembly Kit -. In Proc. of
the IEEE Computer Security Foundations Workshop (CSFW’00), pages 185–199.
IEEE, 2000.

16. J. McLean. Security Models and Information Flow. In Proc. of the IEEE Sympo-
sium on Security and Privacy (SSP’90), pages 180–187. IEEE, 1990.

17. J. K. Millen. Unwinding Forward Correctability. In Proc. of the IEEE Computer
Security Foundations Workshop (CSFW’94), pages 2–10. IEEE, 1994.

18. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
19. M. Nielsen, U. Engberg, and K. S. Larsen. Fully Abstract Models for a Process

Language with Refinement. In J. W. de Bakker, W. P. de Roever, and G. Rozen-
berg, editors, Workshop on Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency, volume 354 of LNCS, pages 523–548. Springer-
Verlag, 1989.

20. R. J. van Glabbeek and U. Goltz. Refinement of Actions and Equivalence Notions
for Concurrent Systems. Acta Informatica, 37(4/5):229–327, 2001.

21. N. Wirth. Program Development by Stepwise Refinement. Communications of the
ACM, 14(4):221–227, 1971.

15

