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Abstract. The paper concerns with the theory of similarity relations in the framework of
Logic Programming. Similarity relation [34] is a formal notion that allows us to manage
alternative instances of entities that can be considered ‘equal’ with a given degree. In [8,
15, 30, 29, 18] this notion has been encapsulated in an inference engine, based on the Logic
Programming paradigm, modifying the inference model to provide a more flexible unifica-
tion (approximately equal) than the dichotomic match (equal or not). In many situations,
more than one similarity relation can be defined in a universe by taking into account differ-
ent contexts. In this paper we studied some aggregations of such fuzzy relations and their
application to our extented Logic Programming framework.

1 Introduction and previous works

The main interest in Logic Programming field traditionally concerns problems related to the anal-
ysis and the efficiency of exact inferences allowed by logic programs [1, 14]. However, very often
the need of methods to enhance this capability, in order to deal with approximate information or
flexible inference schemes, arises in many applications. In general, approximate reasoning capa-
bilities are introduced in the Logic Programming framework by considering the inference system
based on fuzzy logic rather than on conventional two-valued logic.

In [8] a methodology that allows to manage uncertain and imprecise information in the frame
of the declarative paradigm of Logic Programming has been proposed. With this aim, a Similarity
relation R between function and predicate symbols in the language of a logic program is considered.
Approximate inferences are then possible since Similarity relation allows us to manage alternative
instances of entities that can be considered ”equal” with a given degree.

With respect to the previous literature [4, 31, 12, 13], this approach is very different since the
approximation is represented and managed at a syntactic-level, instead of at a rule-level. Roughly
speaking, the basic idea is that the fuzziness feature is provided by an abstraction process which
exploits a formal representation of similarity relations between elements in the alphabet of the
language (constants, functions, predicates). On the contrary, in the underground logic theory, the
inference rule as well as the usual crisp representation of the considered universe are not modified.
It allows us to avoid both the introduction of weights on the clauses, and the use of fuzzy sets as
elements of the language.

In [29] the operational counterpart of this extension is faced by introducing a modified SLD
Resolution procedure. Such a procedure allows us to compute numeric values belonging to the
interval [0,1] providing an approximation measure of the obtained solutions. These numeric values
are computed through a generalized unification mechanism. In [18] a Prolog interpreter written in
Java which implements this Similarity-based extension has been presented.

In these works, the approximation was based on a single similarity relation. However, by taking
into account different contexts (i.e. points of view), it is possible to define different similarity
relations in a given universe. Let us consider the following Example
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Example 1.
Let U be a set of animals denoted with

U = {M, B, G, E, P, H, S, T, C, W, D}

where these letters stand for

M = man, B = bear, G = gorilla, E = eagle, P = pigeon, H = hawk,

S = shark, T = tiger, C = cat, W = wolf , D = dog.

We can define a similarity R1 between elements in U based on feature ‘morphology’ by setting for
any x, y ∈ U

R1(x, y) = R1(y, x)

R1(x, y) = 1 if x = y

R1(G,M) = R1(D,W ) = R1(E,H) = .8

R1(W,T ) = R1(D,T ) = .6

R1(C, T ) = R1(C,W ) = R1(C,D) = .4

R1(B, T ) = R1(B,C) = R1(B,W ) = R1(B,D) = R1(E,P ) = R1(P,H) = .2

R1(x, y) = 0 otherwise.

Also, we can define a similarity R2 between elements in U based on feature ‘aggressiveness’ by
setting for any x, y ∈ U

R2(x, y) = R2(y, x)

R2(x, y) = 1 if x = y

R2(G,W ) = R2(T, S) = R2(E,H) = .8

R2(M,D) = R2(B,S) = R2(B, T ) = R2(C,D) = .6

R2(M,E) = R2(M,H) = R2(M,C) = R2(B,G) = R2(B,W ) = R2(G,S) =
= R2(G,T ) = R2(E,C) = R2(E,D) = R2(H,C) = R2(H,D) = R2(S,W ) = R2(T,W ) = .4

R2(M,B) = R2(M,G) = R2(M,S) = R2(M,T ) = R2(W,M) = R2(B,E) =
= R2(B,H) = R2(B,C) = R2(B,D) = R2(G,E) = R2(G,H) = R2(G,C) = R2(G,D) =
= R2(E,S) = R2(E, T ) = R2(E,W ) = R2(H,S) = R2(H,T ) = R2(H,W ) = R2(S,C) =

= R2(S,D) = R2(T,C) = R2(T,D) = R2(C,W ) = R2(W,D) = .2

R2(x, y) = 0 otherwise.

In many cases, we may need to aggregate different relations. Aggregation of binary (fuzzy)
relations is an important and challenging mathematical problem in applied areas as social choice,
group choice, multiple-criteria decision-making, synthesis of implication functions, etc. Formally,
this problem can be formulated in terms of group choice theory as follows: suppose U is a finite set of
alternatives and R =< R1, ..., Rn > is an ordered n-tuple of binary (fuzzy) relations on U. Elements
of R are regarded as individual preferences and R is called a profile of individual preferences on
the set U of alternatives. For a given U, an aggregation rule assigns a group preference R to each
profile R of individual preferences on U (very often it is assumed that n > 2). We denote this rule
by the same letter R. Depending on the application area, various restrictions are imposed on R. In
[5, 11, 2, 26, 27, 21, 28], the fuzzy binary relations R1, ..., Rn and R satisfy T-transitivity property
in which T is an Archimedian t-norm. In our framework we consider transitivity based on the
minimum triangular norm. In particular, in this paper we study properties of Rmin =

⋂
i Ri and

Rmax =
⋃

i Ri assuming that individual and group preferences are similarity relations on a finite
set of alternative U.

The paper is organized as follows. After preliminaries on similarity relation in Logic Pro-
gramming framework, Section 3 will study the aggregation of similarity relations by intersection
(Subsection 3.1) and union (Subsection 3.2), and their exploitation in the similarity based Logic
Programming (Subsection 3.3). The last section contains some concluding remarks.
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2 Preliminaries

2.1 Similarity relation

An important and very intuitive theoretical basis for fuzzy subsets is given by the concept of
fuzzy equivalence relations, which, in some sense, measure the degree to which two points of the
universe are indistinguishable, and which generalize and relax the concept of classical equivalence
relations. A strong motivation for this notion follows from the so-called Poincaré Paradox [25]: if
for three (real world) objects A, B and C we know that A is indistinguishable from B and B is
indistinguishable from C, we cannot necessarily conclude that A is indistinguishable from C too.
Fuzzy equivalence relations have been introduced under the name of similarity relation in [34]
(with respect to the minimum TM , the generalization to t-norms was considered in [32]). In this
section, we will recall some well-known definitions and properties related to similarity relation and
to its application in the Logic Programming framework.

In Cantorian set theory, a relation on a universe U can be identified with a subset of U2. By
analogy, a fuzzy relation on U is then a fuzzy subset of U2. For early traces of properties of fuzzy
relations see [34] and [22–24], more recent treatments include [6, 3].

At first, let us recall that a T-norm is a binary operation ∧ : [0, 1] × [0, 1] → [0, 1] associative,
commutative, non-decreasing in both the variables, and such that x ∧ 1 = 1 ∧ x = x for any x in
[0,1]. In the sequel, we assume that x ∧ y is the minimum between the two elements x, y ∈ [0, 1].

Definition 1. Given a T-norm, a fuzzy relation R on a set U is T-transitive if and only if
T (R(x, y), R(y, z)) ≤ R(x, z) for any x, y, z ∈ U.

Among all T-transitive fuzzy relations, similarity relations and fuzzy T-preorders are the most
important ones.

Definition 2. A similarity on a domain U is a fuzzy relation R : U × U → [0, 1] in U such that
the following properties hold

i) R(x, x) = 1 for any x ∈ U (reflexivity)

ii) R(x, y) = R(y, x) for any x, y ∈ U (symmetry)

iii) R(x, z) ≥ R(x, y) ∧ R(y, z) for any x, y, z ∈ U (transitivity)

we say that R is strict if the following implication is also verified

iv) R(x, z) = 1 =⇒ x = z.

The value R(x, z) can be interpreted as the degree of equality or the degree of indistinguishabil-
ity of x and y or, equivalently, as the truth value of the statement ’x is equal to y’. The ∧-transitivity
is a many-valued model of the proposition ’IF x is equal to y AND y is equal to z THEN x is equal
to z’.

Similarities also are called indistinguishability operators, fuzzy equalities, fuzzy equivalences,
likeness, probabilistic relations, proximity relations, M-valued equality, depending on the authors
and on the t-norm used to model their transitivity.

There is a lot of work around this concept and it has been proved to be a useful tool both in
the theoretical aspects of fuzzy logic and in their applications such as fuzzy control or approximate
reasoning.
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2.2 Similarity relation and closure operators

We synthetically give some well known notions concerning closure operators and equivalence rela-
tions.

Definition 3. Let (P,¹) be a poset. An operator H : P → P is called a closure (resp. reductive)
operator if for any x, y in P the following properties hold:

i) x ¹ H(x) (resp. H(x) ¹ x)

ii) H(H(x)) = H(x)

iii) x ¹ y =⇒ H(x) ¹ H(y).

Proposition 1. Let ≡ be an equivalence relation on a set S and P(S) the powerset of S. Then,
the operator H≡ : P(S) → P(S) such that for any X ⊆ P(S)

H≡(X) = {x′ ∈ S | ∃x ∈ X : x′ ≡ x)}

is a closure operator.

The following notion of λ−cut is crucial in fuzzy set theory:

Definition 4. Let U be a domain and R : U × U → [0, 1] a fuzzy relation in U . Then, for any
λ ∈ [0, 1], the relation ≅R,λ in U defined as

x ≅R,λ y ⇐⇒ R(x, y) º λ

is named cut of level λ (in short λ-cut) of R.

Similarity relations are strictly related with equivalence relations and, then, to closure opera-
tors. Indeed, the notion of λ− cut allows us to define a similarity by means of a suitable family of
equivalence relations according to the following result that can be easily proven.

Proposition 2. Let U be a domain and R : U × U → [0, 1] a Similarity in U . Then, for any λ ∈
[0, 1], the relation ≅R,λ in U is an equivalence relation. Also, the operator H≅R,λ

: P(U) → P(U)
such that for any X ∈ P(U)

H≅R,λ
(X) = {z ∈ U | ∃x ∈ X : x ≅R,λ y} = {z ∈ U | ∃x ∈ X : R(z, x) ≥ λ} ,

is a closure operator.

Proposition 3. Let R be a similarity in a domain U and, for any λ ∈ [0, 1] let ≅R,λ be the λ−cut
of R. Then, {≅R,λ}λ∈[0,1] is a family of equivalence relations such that,

i) for any µ and λ in [0, 1], λ ¹ µ ⇒ ≅R,λ ⊇ ≅R,µ

ii) for any µ in [0, 1],
⋂

λ¹µ

≅R,λ = ≅R,µ .

Conversely, let {≅λ}λ∈[0,1] be a family of equivalence relations satisfying conditions i) and ii).
Then the relation R defined by setting

R(x, y) = Sup{λ ∈ [0, 1] | x ≅λ y}

is a similarity whose family of λ−cuts is equal to the family {≅λ}λ∈[0,1].

Any λ−cut can be considered as a generalization of the equality. This notion plays an important
rule in our approach. Indeed, the relation ≅R,λ formalizes the idea that two constant symbols can
be considered equal with a fixed approximation level λ ∈ [0, 1]. Such a level provides a measure
of the allowed approximation in order to avoid failure of matching between constant symbols in a
SLD-derivation process.
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2.3 Logic Programming with Similarity

We briefly recall that a logic program P is a set of universally quantified Horn clauses on a first
order language L, denoted with H ← B1, . . . , Bk, and a goal is a negative clause, denoted with
A1, . . . , An. We denote with BL the set of ground atomic formulae in L, i.e. the Herbrand base of
L, and with TP the immediate consequence operator TP : P(BL) 7→ P(BL) defined by:

TP (X) = {a|a ← a1, . . . , an ∈ Γ (P ) and ai ∈ X, 1 ≤ i ≤ n}

where Γ (P ) denotes the set of all ground instances of clauses in P . The application of Tarski’s
fixpoint theorem yields a characterization of the semantics of P , which is the least Herbrand model
MP of P given by:

MP = lfp(TP ) =
⋃

n≥0 Tn
P (∅)

where lfp stands for least fixpoint [1].
In the classical Logic Programming, function and predicate symbols of the language L are crisp

elements, i.e., distinct elements represent distinct information and no matching is possible. In [8]
the exact matching between different entities is relaxed by introducing a Similarity relation R in
the set of constant, function and predicate symbols in the language of a logic program P. In order
to deal with the approximation introduced by a similarity relation R, the program P is extended
by adding new clauses which are ”similar” at least with a fixed degree λ in (0,1] to the given ones.
This program transformation is obtained by considering the closure operator Hλ associated to R.
The new logic program

Hλ(Γ (P )) = {C ′ ∈ L|∃C ∈ Γ (P ) such that R(C,C ′) ≥ λ},

named extended-program of level λ, allows us to enhance the inference process.
An alternative way to manage the information carried on by the Similarity introduced between

function and predicate symbols in P , is given by considering as an unique element different symbols
which have Similarity degree greater or equal to λ. In other words, we consider the quotient set of
≅R,λ as a new alphabet Lλ, where F/ ≅R,λ and R/ ≅R,λ are the sets of function and predicate
symbols, respectively. More formally, let us denote with [s] ∈ Lλ the equivalence class of a symbol
s ∈ F ∪ R with respect to ≅R,λẆe call translation up to ≅R,λ the function:

τλ : F ∪ R 7→ F/ ≅R,λ ∪R/ ≅R,λ

defined by setting:

τλ(x) = x for any variable x ∈ V , and τλ(f) = [f ]

for any function/predicate symbol f ∈ F ∪ R. Recursively, we can easily define the extension of
τλ to the sets of formulae in L. Let us consider a logic program P on the language L.

The set

Pλ = τλ(Γ (P )) = {C ′ ∈ Lλ|C
′ = τλ(C), C clause in Γ (P )}

is a logic program that we name abstract-program of level λ.
By considering the abstract program Pλ, it is possible to express information provided by the

similarity relation in a syntectic way exploiting the quotient language Lλ. Then, Pλ could be used
to manage similarity-based reasoning as well as Hλ(Γ (P )). In [30] the equivalence of these two
approaches has been shown for first order languages by using an abstract interpretation technique.

It is worth to stress that the introduced similarity generally changes the semantic of the original
program. Indeed, it allows us to add new clauses to P providing the extended program Hλ(P ).
This is the more straight way to implement the approximated inference process based on similarity.
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On the other hand, by considering the abstract program Pλ, it is possible to express information
provided by the similarity relation in a syntectic way exploiting the quotient language Lλ.

Both these programs allow to perform approximate inferences by assuming a “tolerance” level
λ ∈ (0, 1] in the relaxed matching between different function/predicate symbols.

In [8], the formal notion of fuzzy least Herbrand model MP,R : BL 7→ [0, 1] of the program P
with respect to the Similarity R is defined by setting for any A ∈ BL:

MP,R(A) = Sup{λ ∈ [0, 1] |A ∈ MHλ(Γ (P ))}

= Sup{λ ∈ [0, 1] |Hλ(Γ (P )) ² A }

Roughly speaking, for any A ∈ BL the value MP,R(A) provides the best deduction degree of A, i.e,
the best level of approximation λ that allows us to prove A by considering an extended program
Hλ(Γ (P )). It can be proved that:

MP,R(A) = Sup{λ ∈ [0, 1] |tλ(A) ∈ MPλ
}

= Sup{λ ∈ [0, 1] |Pλ ² τλ(A)}

Thus, in order to compute the fuzzy least Herbrand model of a program P extended with a
Similarity R, we can equivalently perform our computations in the extended or in the abstract
domain.

3 On aggregations in multi context-based Logic Programming

framework

In many situations, there can be more than one similarity relation defined in a universe. For exam-
ple that we have a set of elements defined by some features. We can generate a similarity relation
from each feature. In these cases, we must manage and use such information in an appropriated
way, for instance we may need to aggregate the obtained relations. In this Section we give a first
formal environment in order to make that.

3.1 Aggregation of similarity relations by intersection

The most common way to put together a family of T-transitive fuzzy relations is by calculating
their minimum (or infimum), which also is a T-transitive relation. Indeed the following well-known
proposition [33] states that x, y are related with respect to R if and only if they are related with
respect to all the relations of the family (because the infimum is used to model the universal
quantifier ∀ in fuzzy logic [9]).

Proposition 4. Let (Ri)i∈I be a family of T-transitive fuzzy relations on a set U. The relation
defined for all x, y ∈ U by

R(x, y) = mini∈IRi(x, y)

is a T-transitive fuzzy relation on U.

In particular,

Corollary 1. Let R1, . . . , Rn be n similarity relations on a set U. The relation Rmin =
⋂

i Ri

defined for all x, y ∈ U by

Rmin(x, y) = min{R1(x, y), . . . , Rn(x, y)}

is a similarity relation on U.
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Example 2. We consider the similarity relations R1 and R2 defined in Example 1. Then,
Rmin(x, y) = Rmin(y, x)

Rmin(x, y) = 1 if x = y

Rmin(E,H) = .8

Rmin(W,T ) = Rmin(C,D) = .4

Rmin(G,M) = Rmin(D,W ) = Rmin(D,T ) = Rmin(C, T ) = Rmin(C,W ) = Rmin(B, T ) =
= Rmin(B,C) = Rmin(B,W ) = Rmin(B,D) = .2

Rmin(x, y) = 0 otherwise.

3.2 Aggregation of similarity relations by union

The binary fuzzy relation Rmin =
⋂

i Ri is an extreme case of aggregation rule because it is very
restrictive. Indeed, Rmin(a, b) ≤ Ri(a, b) for any i. Many times this way to aggregate fuzzy relations
by intersection leads to undesirable results in applications. The reason is that the minimum has a
drastic effect. For instance, if two objects of our universe are very similar or indistinguishable for
all but one similarity relation, and for this particular one the similarity value is very low, then the
result applying the minimum will give this last measure and will lose the information of all the
other ones. This can be reasonable and useful if we need a perfect matching with respect to all
our relations, but this is not the case in many situations. When we need to take all the relations
into account in a less drastic way, we need to use other ways to aggregate them. A possibility of
softening the previous proposition is by replacing the intersection by the union.

We define Rmax =
⋃

i Ri by setting Rmax(x, y) = max{R1(x, y), . . . , Rn(x, y)}.

Note that Rmax not is a similarity relation.

Example 3. We consider the similarity relations R1 and R2 defined in Example 1. Then,
Rmax(x, y) = Rmax(y, x)

Rmax(x, y) = 1 if x = y

Rmax(M,G) = Rmax(G,W ) = Rmax(T, S) = Rmax(W,D) = Rmax(E,H) = .8

Rmax(M,D) = Rmax(B,S) = Rmax(B, T ) = Rmax(C,D) = Rmax(T,D) = .6

Rmax(C,W ) = Rmax(T,C) = Rmax(M,E) = Rmax(M,H) = Rmax(M,C) = Rmax(B,G) =
= Rmax(B,W ) = Rmax(G,S) = Rmax(G,T ) = Rmax(E,C) = Rmax(E,D) =

= Rmax(H,C) = Rmax(H,D) = Rmax(S,W ) = Rmax(T,W ) = .4

Rmax(M,B) = Rmax(M,S) = Rmax(M,T ) = Rmax(W,M) = Rmax(B,E) = Rmax(B,H) =
= Rmax(P,E) = Rmax(B,C) = Rmax(B,D) = Rmax(G,E) = Rmax(G,H) = Rmax(G,C) =
= Rmax(P,H) = Rmax(G,D) = Rmax(E,S) = Rmax(E, T ) = Rmax(E,W ) = Rmax(H,S) =

= Rmax(H,T ) = Rmax(H,W ) = Rmax(S,C) = Rmax(S,D) = .2

Rmax(x, y) = 0 otherwise.

Note that
Rmax(W, D) = 0.8, Rmax(B, W) = 0.4, Rmax(B, D) = 0.2
which violates the min-transitivity property because
Rmax(B, D) ¤ Rmax(W, D) ∧ Rmax(B, W)

Let us recall that the max-T product [34, 33] allows us to construct the transitive closure of a
given reflexive and symmetric fuzzy relation.

Definition 5. Let T be a T-norm and R, S two fuzzy relations in a set U . The max-T (or sup-T )
product R ◦ S of R and S is the fuzzy relation on U defined by

(R ◦ S)(x, y) = sup
z∈ U

T (R(x, z), S(z, y)) for any x, y ∈ U .
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Assuming T continuous, due to the associativity of max-T product, we can define for each n ∈ N
the power Rn of a fuzzy relation R recursively:

R1 = R,

Rn+1 = R ◦ Rn for any n ∈ N .

Definition 6. The T -transitive closure (or T -closure R∗ of a fuzzy relation R on a set U is defined
by R∗ = sup

n∈ N

Rn.

Proposition 5. If R is a reflexive and symmetric fuzzy relation on a finite set U of cardinality
n, then R∗ = Rn−1.

Proposition 6. Let R be a reflexive and symmetric fuzzy relation on a set U .

R = R∗ if and only if T (R(x, y), R(y, z)) ≤ R(x, z) for any x, y, z ∈ U .

Therefore, the transitive closure R∗ of a reflexive and symmetric fuzzy relation is a similarity
operator. Moreover, it is straightforward to prove that R∗ is a relation greater or equal than R
(R∗ ≥ R). Moreover,it can be shown [33] that if E is a similarity operator greater or equal than
R, then E ≥ R∗. In other words, the transitive closure R∗ of R is the smallest similarity operator
that contains R and is therefore the best upper approximation of R.

In fact, the following proposition can be proved.

Proposition 7. Given a reflexive and symmetric fuzzy relation R on a set U and R∗ its transitive
closure. Let A be the set of similarity operators on U greater than or equal to R. Then

R∗(x, y) = inf
E∈ A

{E(x, y)}.

Example 4. The Min-transitive closure of Rmax defined in Example 3 is

R∗
max(x, y) = R∗

max(y, x)

R∗
max(x, y) = 1 if x = y

R∗
max(M,G) = R∗

max(M,D) = R∗
max(M,W ) = R∗

max(G,W ) = R∗
max(G,D) = R∗

max(E,H) =

= R∗
max(T, S) = R∗

max(W,D) = .8

R∗
max(M,C) = R∗

max(M,B) = R∗
max(M,S) = R∗

max(M,T ) = R∗
max(B,S) = R∗

max(B, T ) =

= R∗
max(B,G) = R∗

max(B,W ) = R∗
max(B,C) = R∗

max(B,D) = R∗
max(G,S) =

= R∗
max(G,T ) = R∗

max(G,C) = R∗
max(C,D) = R∗

max(T,D) = R∗
max(C,W ) =

= R∗
max(T,C) = R∗

max(S,W ) = R∗
max(T,W ) = R∗

max(S,C) = R∗
max(S,D) = .6

R∗
max(M,E) = R∗

max(M,H) = R∗
max(B,E) = R∗

max(B,H) = R∗
max(G,E) = R∗

max(G,H) =

= R∗
max(E,C) = R∗

max(E,D) = R∗
max(E,S) = R∗

max(E, T ) = R∗
max(E,W ) =

= R∗
max(H,C) = R∗

max(H,D) = R∗
max(H,S) = R∗

max(H,T ) = R∗
max(H,W ) = .4

R∗
max(M,P ) = R∗

max(B,P ) = R∗
max(G,P ) = R∗

max(E,P ) = R∗
max(H,P ) = R∗

max(S, P ) =

= R∗
max(T, P ) = R∗

max(C,P ) = R∗
max(W,P ) = R∗

max(D,P ) = .2.

which is a similarity relation.

3.3 Exploiting Rmin and Rmax in the similarity based Logic Programming

The fuzzy relations Rmin =
⋂

i Ri, and Rmax =
⋃

i Ri are two extreme cases of aggregation rules.
The first one implies that Rmin(a, b) ≤ Ri(a, b) for any i, the second one that Rmax(a, b) ≥ Ri(a, b)
for any i. In the sequel we study properties of these relations in the framework of the Similarity-
based Logic Programming. Let us start with Rmin.
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Proposition 8. Let R1, . . . , Rn be n similarity relations on a set U, let λ ∈ (0, 1] and let P be a
logic program. Then,

Hλ,Rmin
(Γ (P)) ⊆

n
∩

i=1
Hλ,Ri

(Γ (P))

Proof. A ∈ Hλ,Rmin
(Γ (P)) =⇒ ∃A’ ∈ Γ (P) t.c. Rmin(A, A’) > λ

=⇒min{R1(A, A’),...,Rn(A, A’)}> λ =⇒Ri(A, A’) > λ ∀i = 1, ..., n
=⇒ A ∈ Hλ,Ri

(A’) ∀i = 1, ..., n, A’ ∈ Γ (P) =⇒ A ∈ Hλ,Ri
(Γ (P)) ∀i = 1, ..., n

=⇒ A ∈
n
∩

i=1
Hλ,Ri

(Γ (P))

Let us prove that the inverse inclusion does not hold.
Let the following logic program be given
P = {q(c)←; r(c)←; p(a)←}
Let us suppose that R1 and R2 are two similarity relations defined in L(P ) such that
R1(r, q) < λ, R1(p, q) > λ, R1(r, p) < λ;
R2(r, q) < λ, R2(p, q) < λ, R2(r, p) > λ.
Then it follows:
Hλ,R1

(Γ (P)) = {q(c)←; r(c)←; p(a)←;p(c)←; q(a)←}
Hλ,R2

(Γ (P)) = {q(c)←; r(c)←; p(a)←;p(c)←; r(a)←}
2
∩

i=1
Hλ,Ri

(Γ (P)) = {q(c)←; r(c)←; p(a)←;p(c)←}

Rmin(r, q) < λ, Rmin(p, q) < λ, Rmin(r, p) < λ
Hλ,Rmin

(Γ (P))= {q(c)←; r(c)←; p(a)←}
Results
2
∩

i=1
Hλ,Ri

(Γ (P))* Hλ,Rmin
(Γ (P)). ⋄

By the previous result, because the Logic Programming is a monotonic inference system, it follows
that:

MHλ,Rmin
(Γ (P )) ⊆ M n

∩
i=1

Hλ,Ri
(Γ (P ))

Therefore, fixed λ ∈ (0, 1], the extended program w.r.t. Rmin allows to deduce less ground atomic
formulae than to the intersection of the extended programs of the similarity relations R1, . . . , Rn.
Moreover, we can prove the following result:

Proposition 9. Let R1, . . . , Rn be n similarity relations on a set U, let λ ∈ (0, 1] and let P be a
logic program. Then,

M n
∩

i=1
Hλ,Ri

(Γ (P ))
⊆

n
∩

i=1
MHλ,Ri

(Γ (P ))

Proof. A ∈ M n
∩

i=1
Hλ,Ri

(Γ (P))
= ∪

j>0
Tj

n
∩

i=1
Hλ,Ri

(Γ (P ))

(∅)=⇒ ∃k >1 t.c. A∈Tk
n
∩

i=1
Hλ,Ri

(Γ (P ))

(∅)

=⇒ ∃k>1 t.c. A∈Tk
Hλ,Ri

(Γ (P ))
(∅) ∀i = 1, ..., n

=⇒A∈ ∪
j>0

Tj
Hλ,Ri

(Γ (P ))
(∅) = MHλ,Ri

(Γ (P )) ∀i = 1, ..., n

=⇒A∈
n
∩

i=1
MHλ,Ri

(Γ (P ))

Now let us prove that the inverse inclusion does not hold.
Let the following logic program be given
P = {q(a)←q(b); q(c)←}
MP = {q(c)}
Let us suppose that R1 and R2 are two similarity relations defined in L(P ) such that
R1(a,b) < λ, R1(a,c) > λ, R1(b,c) < λ;
R2(a,b) < λ, R2(a,c) < λ, R2(b,c) > λ.
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Then, it results
Hλ,R1

(Γ (P)) = {q(a)←q(b); q(c)←; q(c)←q(b); q(a)←}
MHλ,R1

(Γ (P )) = {q(a), q(c)};
Hλ,R2

(Γ (P)) = {q(a)←q(b); q(c)←; q(a)←q(c); q(b)←}
MHλ,R2

(Γ (P )) = {q(b), q(c), q(a)};
2
∩

i=1
MHλ,Ri

(Γ (P )) = {q(a), q(c)};

2
∩

i=1
Hλ,Ri

(Γ (P)) = {q(a)←q(b); q(c)←}

M 2
∩

i=1
Hλ,Ri

(Γ (P ))
= {q(c)}

Then it results
2
∩

i=1
MHλ,Ri

(Γ (P )) * M 2
∩

i=1
Hλ,Ri

(Γ (P ))
. ⋄

Summarizing,

MHλ,Rmin
(Γ (P )) ⊆ M n

∩
i=1

Hλ,Ri
(Γ (P ))

⊆
n
∩

i=1
MHλ,Ri

(Γ (P ))

Thus, let us define the fuzzy least Herbrand model of P w.r.t. the intersection relation Rmin as:

MP,Rmin
(A) = sup{λ ∈ [0, 1] / A ∈ MHλ,Rmin

(Γ (P ))}

It can be easily proved that:

Proposition 10. Let R1, . . . , Rn be n strict similarity relations on a set U. Then,
A ∈ MP ⇐⇒ MP,Rmin

(A) = 1

Analogous properties hold for R∗
max.

Proposition 11. Let R1, . . . , Rn be n similarity relations on a set U, let λ ∈ (0, 1] and let P be
a logic program. Then,

n
∪

i=1
MHλ,Ri

(Γ (P )) ⊆ M n
∪

i=1
Hλ,Ri

(Γ (P ))

Proof. Let us consider A ∈
n
∪

i=1
MHλ,Ri

(Γ (P )) =⇒ ∃m ∈ {1, . . . , n} such as A ∈ MHλ,Rm (Γ (P )) =⇒

=⇒ A ∈ ∪
j>0

T j
Hλ,Rm

(Γ (P ))
(∅) =⇒ ∃k>1 such as A ∈ Tk

Hλ,Rm
(Γ (P ))

(∅) =⇒ ∃k>1 such as A∈Tk
n
∪

i=1
Hλ,Ri

(Γ (P ))

(∅)

=⇒A∈ ∪
j>0

T j
n
∪

i=1
Hλ,Ri

(Γ (P ))

(∅) = M n
∪

i=1
Hλ,Ri

(Γ (P ))

Let us prove that the inverse inclusion does not hold.
Let us consider the following logic program
P = {p(a)←q(c); r(a)←}
Let us suppose that R1 and R2 are two similarity relations defined in L(P ) such that
R1(r, q) > λ, R1(p, q) < λ, R1(r, p) < λ, R1(a, c) < λ;
R2(r, q) < λ, R2(p, q) < λ, R2(r, p) < λ, R2(a, c) > λ.
Then it follows:
Hλ,R1

(Γ (P)) = {p(a)←q(c); r(a)←; q(a)←; p(a)←r(c)}
MHλ,R1

(Γ (P )) = {q(a), r(a)};
Hλ,R2

(Γ (P)) = {p(a)←q(c); r(a)←; p(c)←q(c); p(a)←q(a); r(c)←}
MHλ,R2

(Γ (P )) = {r(c), r(a)};
n
∪

i=1
MHλ,Ri

(Γ (P ))= {r(c), r(a), q(a)};
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2
∪

i=1
Hλ,Ri

(Γ (P)) = {p(a)←q(c); r(a)←; q(a)←; p(a)←r(c); p(c)←q(c)←; p(a)←q(a); r(c)←}

Hλ,Ri
(Γ (P)) = {q(a)←q(b); q(c)←}

M 2
∪

i=1
Hλ,Ri

(Γ (P ))
= {r(c), r(a), q(a), p(a)}

Then, it follows:

M 2
∪

i=1
Hλ,Ri

(Γ (P ))
*

2
∪

i=1
MHλ,Ri

(Γ (P )). ⋄

Furthermore, it results that

Proposition 12. Let R1, . . . , Rn be n similarity relations on a set U, let λ ∈ (0, 1] and let P be
a logic program. Then,

n
∪

i=1
Hλ,Ri

(Γ (P)) ⊆ Hλ,R∗

max
(Γ (P))

Proof. C ∈
n
∪

i=1
Hλ,Ri

(Γ (P)) =⇒ ∃j ∈ {1, . . . , n} t.c. C ∈ Hλ,Rj
(Γ (P)) =⇒

=⇒ ∃C’ ∈ Γ (P) t.c. Rj(C, C’) > λ =⇒ Rmax(C, C’) > λ =⇒ R∗
max(C, C’) > λ =⇒

=⇒ C ∈ Hλ,R∗

max
(Γ (P))

Let us prove that the inverse inclusion does not hold.
Let us consider two similarity relations R1 ed R2 defined in a first order languages L such that
R1(a, b) = 0.3, R1(a, c) = 0.3, R1(b, c) = 0.5
R2(a, b) = 0.6, R2(a, c) = 0.4, R2(b, c) = 0.4
then
Rmax(a, b) = 0.6, Rmax(a, c) = 0.4, Rmax(b, c) = 0.5
and
R∗

max(a, b) = 0.6, R∗
max(a, c) = 0.5, R∗

max(b, c) = 0.5
Let P = {a←}
Then, results that
H0.5,R1

(Γ (P)) = {a←}
H0.5,R2

(Γ (P)) = {a←; b←}
2
∪

i=1
H0.5,Ri

(Γ (P)) = {a←; b←}

H0.5,R∗

max
(Γ (P)) = {a←; b←; c←}

Then,

H0.5,R∗

max
(Γ (P)) *

2
∪

i=1
H0.5,Ri

(Γ (P)) ⋄

Then, because the Logic Programming is a monotonic inference system
M n

∪
i=1

Hλ,Ri
(Γ (P ))

⊆ MHλ,R∗
max

(Γ (P ))

Therefore, fixed λ ∈ (0, 1], the extended program w.r.t. R∗
max allows to deduce more ground atomic

formulae than to the union of the extended programs of the similarity relations R1, . . . , Rn.

Summarizing,
n
∪

i=1
MHλ,Ri

(Γ (P )) ⊆ M n
∪

i=1
Hλ,Ri

(Γ (P ))
⊆ MHλ,R∗

max
(Γ (P ))

Let us define the fuzzy least Herbrand model of P w.r.t. the union relation R∗
max as:

MP,R∗

max
(A) = sup{λ ∈ [0, 1] / A ∈ MHλ,R∗

max
(Γ (P ))}
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It can be proved that:

Proposition 13. Let R1, . . . , Rn be n strict similarity relations on a set U and let P be a logic
program. Then,

A ∈ MP ⇐⇒ MP,R∗

max
(A) = 1

4 Conclusion

In this paper we studied two estreme cases (Rmin and Rmax) of group preferences relationsimposing
the min-transitivity property. The operators Min and Max (intersection and union in terms of fuzzy
relations) are two extreme cases of aggregation rules. Properties of these relations in the framework
of Similarity-based Logic Programming have been proved. As future work different aggregation
rules will be studied in order to manage the similarity values in a less extreme way.
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