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Abstract. The finite powerset construction upgrades
an abstract domain by allowing for the representation
of finite disjunctions of its elements. While most of the
operations on the finite powerset abstract domain are
easily obtained by lifting the corresponding operations
on the base-level domain, the problem of endowing finite
powersets with a provably correct widening operator is
still open. In this paper we define three generic widening
methodologies for the finite powerset abstract domain.
The widenings are obtained by lifting any widening op-
erator defined on the base-level abstract domain and are
parametric with respect to the specification of a few ad-
ditional operators that allow all the flexibility required
to tune the complexity/precision trade-off. As far as we
know, this is the first time that the problem of deriv-
ing non-trivial, provably correct widening operators in a
domain refinement is tackled successfully. We illustrate
the proposed techniques by instantiating our widening
methodologies on powersets of convex polyhedra, a do-
main for which no non-trivial widening operator was pre-
viously known.

Key words: Abstract interpretation, abstract domain
refinement, powersets, widening operators, convex poly-
hedra.

1 Introduction

The design and implementation of effective, expressive
and efficient abstract domains for data-flow analysis and

? This work has been partly supported by MURST projects
“Aggregate- and Number-Reasoning for Computing: from Deci-
sion Algorithms to Constraint Programming with Multisets, Sets,
and Maps” and “Constraint Based Verification of Reactive Sys-
tems.”

model-checking is a very difficult task. For this reason,
starting with [13], there continues to be strong inter-
est in techniques that derive enhanced abstract domains
by applying systematic constructions on simpler, exist-
ing domains. Disjunctive completion, direct product, re-
duced product and reduced power are the first and most
famous constructions of this kind [13]; several variations
of them as well as others constructions have been pro-
posed in the literature.

Once the carrier of the enhanced abstract domain
has been obtained by one of these systematic construc-
tions, the abstract operations can be defined, as usual, as
the optimal approximations of the concrete ones. While
this completely solves the specification problem, it usu-
ally leaves the implementation problem with the designer
and gives no guarantees about the efficiency (or even the
computability) of the resulting operations. This moti-
vates the importance of generic techniques whereby cor-
rect, even though not necessarily optimal, domain oper-
ations are derived automatically or semi-automatically
from those of the domains the construction operates
upon [10,13,20].

When an abstract domain has very long or infinite as-
cending chains, the standard abstract iteration sequence
[12]

A0(0),A1(0),A2(0), . . . , (1)

where A is the abstract semantic function and 0 is the
bottom element of the domain, may converge very slowly
or fail to converge altogether. This problem can be at-
tacked by resorting to a binary operator ‘∇’ and defining
an alternate abstract semantic function B such that, for
each domain element d, B(d) := d ∇

(
d ⊕ A(d)

)
, where

‘⊕’ is the least upper bound operator of the domain. The
following sequence is then computed instead of (1):

B0(0),B1(0),B2(0), . . . . (2)

If ‘∇’ always results in an upper bound of its operands,
then it is called extrapolation operator and the elements



of the sequence (2) are upper approximations of the
corresponding elements in (1). If, in addition, ‘∇’ en-
sures that (for each possible choice of the A we started
with) the sequence (2) is ultimately stationary, then the
(finitely computable) fixpoint of B is a post-fixpoint of
A and ‘∇’ is called widening operator.

This paper focuses on the derivation of widening op-
erators for a kind of disjunctive refinement we call finite
powerset construction [2], in which finite disjunctions are
implemented by explicit collections of elements of the
base-level abstract domain. The enhanced abstract do-
main obtained by means of this construction contains as-
cending chains whose cardinality is greater than or equal
to the cardinality of the base-level abstract domain. As
a result, every large or infinite abstract domain, when
enhanced by means of the finite powerset construction,
results in a domain with long or infinite ascending chains
whose practicality is thus dependent on the availability
of suitable widening operators.

It should be stressed that what we are facing here
is a dichotomy. On the one hand, the design of a suc-
cessful widening is a very delicate task that is not only
dependent on the considered abstract domain but also
on the particular analysis or verification application and
on the class of systems being analyzed or verified. A
widening is successful for a class of problem instances
to the extent it captures common growth patterns that
do happen in practice in the class. Experimentations is
all what is available today to evaluate the goodness of a
widening with respect to its potential applications. On
the other hand, the extreme specificity of the widening
design problem must be contrasted with the complete
generality of the finite powerset construction. The im-
portant contribution of this paper is constituted by three
methodologies for the design of widening operators on
any finite powerset domain. These methodologies make
it very easy to ensure that the resulting operator is in-
deed a widening (a non-trivial problem, as witnessed by
the fact that previous attempts at defining a widening on
powersets of polyhedra have failed) while leaving enough
latitude to the designer to attack the precision problem
in a domain-dependent, problem-dependent way. As far
as we know, this is the first time that the problem of de-
riving non-trivial, provably correct widening operators
in a domain refinement is tackled successfully.

In this paper, we also present specializations of our
widening methodologies to finite powersets of convex
polyhedra. Not only is this included to help the reader
gain a better intuition regarding the underlying approach
but also to provide a definitely non-toy instance that
is practically useful for applications such as data-flow
analysis and model checking. Sets of polyhedra are im-
plemented in Polylib [26,30] and its successor PolyLib
[27], even though no widenings are provided. Sets of
polyhedra, represented with Presburger formulas made
available by the Omega library [25,28], are used in the
verifier described in [9]; there, an extrapolation operator

(i.e., a widening without convergence guarantee) on sets
of polyhedra is described. Another extrapolation oper-
ator is implemented in the automated verification tool
described in [18], where sets of polyhedra are represented
using the clp(q, r) constraint library [24].

The rest of the paper is structured as follows: Sec-
tion 2 recalls the basic concepts and notations needed in
this paper; Section 3 defines the finite powerset construc-
tion as a disjunctive refinement for any abstract domain
that is a join-semilattice; Section 4 shows the divergence
problems that arise when upgrading any widening for the
base-level domain to work on the finite powerset domain;
Sections 5, 6 and 7 give three alternative strategies for
solving these issues so as to obtain proper widenings for
the finite powerset domain; Section 8 shows a way to con-
trol the precision/efficiency trade-off of these widenings.
Section 9 concludes. Appendix A contains the proofs of
all the stated results.

2 Preliminaries

For a set S, ℘(S) is the powerset of S, whereas ℘f(S)
is the set of all the finite subsets of S; the cardinality
of S is denoted by # S. The set of all the finite mul-
tisets having elements in S is denoted by M(S). The
operators working on multisets are denoted by the cor-
responding operators working on sets: any ambiguity will
be resolved by context. The set of all the partial (resp.,
total) functions from set S to set T is denoted by S � T
(resp., S → T ). The first limit ordinal is denoted by ω.
A poset 〈O,�〉 is a set O equipped with a partial order
‘�’. The strict version of the partial order relation is de-
noted by ‘≺’. Each poset 〈O,�〉 induces a corresponding
poset of finite multisets

〈
M(O),��

〉
where the multiset

partial order ‘��’ is defined, for all M, N ∈ M(O), as
follows [19]:

M �� N
def
⇐⇒

{
∃X, Y ∈ M(O) . N = (M \ X) ∪ Y

and ∀y ∈ Y : ∃x ∈ X . x ≺ y.

A chain over the poset 〈O,�〉 is a totally ordered sub-
set C ⊆ O, i.e., for each x, y ∈ C we have x � y or
y � x. A poset satisfies the ascending chain condition if
all its strictly increasing chains are finite. The induced
poset of finite multisets

〈
M(O),��

〉
satisfies the ascend-

ing chain condition if and only if the base-level poset
〈O,�〉 does [19].1 When the carrier of the relation is
made clear from context, we will abuse terminology by
saying that (the strict version of) a partial order relation
satisfies the ascending chain condition to mean that the
corresponding poset satisfies this property.

We assume some familiarity with the basic notions
of lattice and fixpoint theory [8].

1 Note the systematic replacement of the notion of well-founded

poset, adopted in [19], by the dual notion of poset satisfying the
ascending chain condition, which is more standard in the field of
Abstract Interpretation.
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2.1 Abstract Interpretation

In the literature, several abstract interpretation frame-
works have been proposed that are able to establish a
formal relationship between the behaviors of programs
when observed at different levels of abstraction. The
main difference between these frameworks usually con-
cerns the trade-off between their general applicability
and the strength of the formal results that can be es-
tablished. In this paper we will adopt the framework
proposed in [15, Section 7], where the correspondence
between the concrete and the abstract domains is in-
duced from a concrete approximation relation and a con-
cretization function. Since we are not aiming at maxi-
mum generality, for the sole purpose of simplifying the
presentation, we will consider a particular instance of
the framework by assuming a few additional but non-
essential domain properties. The resulting construction
will be adequate for our purposes, since it still allows for
algebraically weak abstract domains.

The concrete domain is modeled as a complete lat-
tice of semantic properties 〈C,v,⊥,>,t,u〉; as usual,
the concrete approximation relation c1 v c2 holds if c1

is a stronger property than c2 (i.e., c2 approximates c1).
The concrete semantics c ∈ C of a program is formalized
as the least fixpoint of a continuous (concrete) seman-
tic function F : C → C, which is iteratively computed
starting from the bottom element, so that

c = Fω(⊥) :=
⊔

δ<ω

Fδ(⊥).

The abstract domain D̂ = 〈D,`,0,⊕〉 is modeled as
a join-semilattice (i.e., the least upper bound d1⊕d2 ex-
ists for all d1, d2 ∈ D). We will overload ‘⊕’ so that, for
each S ∈ ℘f(D),

⊕
S denotes the least upper bound of

S. The abstract domain D̂ is related to the concrete do-
main by a monotonic and injective concretization func-
tion γ : D → C. Monotonicity and injectivity mean that
the abstract partial order ‘`’ is indeed the approximation
relation induced on D by the concretization function γ.
For all d1, d2 ∈ D, we will use the notation d1  d2 to
mean that d1 ` d2 and d1 6= d2. We assume the existence
of a monotonic abstract semantic function A : D → D
that is sound with respect to F : C → C:

∀c ∈ C : ∀d ∈ D : c v γ(d) =⇒ F(c) v γ
(
A(d)

)
. (3)

This local correctness condition ensures that each con-
crete iterate can be safely approximated by computing
the corresponding abstract iterate (starting from the
bottom element 0 ∈ D). However, due to the weaker al-
gebraic properties satisfied by the abstract domain, the
abstract upward iteration sequence A0(0), A1(0), . . . ,
may not converge. Even when it converges, it may fail
to do so in a finite number of steps, therefore being use-
less for the purposes of static analysis.

Widening operators [11,12,15,16] provide a simple
and general characterization for enforcing and accelerat-
ing convergence. We will adopt a minor variation of the
classical definition of widening operator (see footnote 6
in [16, p. 275]).

Definition 1. (Widening.) Let 〈D,`,0,⊕〉 be a join-
semilattice. The partial operator ∇ : D × D � D is a
widening if

1. for each d1, d2 ∈ D, d1 ` d2 implies that d1 ∇ d2 is
defined and d2 ` d1 ∇ d2;

2. for each increasing chain d0 ` d1 ` · · · , the increasing
chain defined by d′

0 := d0 and d′i+1 := d′i∇(d′i⊕di+1),
for i ∈ N, is not strictly increasing.

Any widening operator ‘∇’ induces a corresponding par-
tial ordering ‘`∇’ on the domain D; this is defined as
the reflexive and transitive closure of the relation
{

(d1, d) ∈ D × D
∣∣ ∃d2 ∈ D . d1  d2 ∧ d = d1 ∇ d2

}
.

The relation ‘`∇’ satisfies the ascending chain condition.
We write d1 ∇ d to denote d1 `∇ d and d1 6= d.

It can be proved that the upward iteration sequence
with widenings starting at the bottom element d0 := 0
and defining the rest by

di+1 :=

{
di, if A(di) ` di,

di ∇
(
di ⊕A(di)

)
, otherwise,

converges after a finite number j ∈ N of iterations [16].
Note that the widening is only applied to arguments
di and d′i = di ⊕ A(di) satisfying di  d′i. Also, when
condition (3) holds, the post-fixpoint dj ∈ D of A is
a correct approximation of the concrete semantics, i.e.,
Fω(⊥) v γ(dj).

When trying to prove that an upper bound operator
� : D × D → D is indeed a widening, a possible tactic
is to provide a “convergence certificate.” This is con-
stituted by a structure that disallows indefinite growth
and a way of mapping elements of D to elements of the
structure, such that the application of the upper bound
operator results in a strict growth: as growth cannot be
indefinite, convergence is certified. Formally, a finite con-
vergence certificate for ‘�’ (on D̂) is a triple (O,�, µ)
where 〈O,�〉 is a poset satisfying the ascending chain
condition and µ : D → O, which is called level mapping,
is such that

∀d1, d2 ∈ D : d1  d2 =⇒ µ(d1) ≺ µ(d1 � d2).

We will abuse notation by writing ‘µ’ to denote the cer-
tificate (O,�, µ).

2.2 The Abstract Domain of Polyhedra

In this section, we instantiate the abstract interpretation
framework sketched above by presenting the well-known
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abstract domain of closed convex polyhedra. This do-
main will be used throughout the paper to illustrate the
generic widening techniques that will be defined.

Let Rn, where n > 0, be the n-dimensional real vec-
tor space. The set P ⊆ Rn is a closed and convex poly-
hedron (polyhedron, for short) if and only if P can be
expressed as the intersection of a finite number of closed
affine half-spaces of Rn. The set CPn of closed convex
polyhedra on Rn, when partially ordered by subset in-
clusion, is a lattice having the empty set and Rn as the
bottom and top elements, respectively; the binary meet
operation is set-intersection, whereas the binary join op-
eration, denoted by ‘]’, is called convex polyhedral hull
(poly-hull, for short). Therefore, we have the abstract
domain

ĈPn := 〈CPn,⊆, ∅, Rn,],∩〉.

This domain can be related to several concrete domains,
depending on the intended application. One example of
a concrete domain is the complete lattice

Ân :=
〈
℘(Rn),⊆, ∅, Rn,∪,∩

〉
.

Note that ĈPn is a meet-sublattice of Ân, sharing the
same bottom and top elements. Another example is the
complete lattice

B̂n :=
〈
℘c(R

n),⊆, ∅, Rn,∪c,∩
〉
,

where ℘c(Rn) is the set of all topologically closed and
convex subsets of Rn and the join operation ‘∪c’ returns
the smallest topologically closed and convex set contain-

ing its arguments. Note that ĈPn is a sublattice of B̂n.
As a final example of concrete domain for some analyses,
consider the complete lattice

Ĉn :=
〈
℘(CPn),⊆, ∅, CPn,∪,∩

〉
.

The abstract domain ĈPn, which is a join-semilattice,
is related to the concrete domains Ân, B̂n and Ĉn by
the three concretization functions γA : CPn → ℘(Rn),
γB : CPn → ℘c(Rn) and γC : CPn → ℘(CPn) defined as
follows, for each P ∈ CPn:

γA(P) := P , (4)

γB(P) := P , (5)

γC(P) := ↓P := {Q ∈ CPn | Q ⊆ P }. (6)

These functions are trivially monotonic and injective.
For each choice of concrete domain carrier C, that is

C ∈
{
℘(Rn), ℘c(Rn), ℘(CPn)

}
, the continuous semantic

function F : C → C and the corresponding monotonic
abstract semantic function A : CPn → CPn, which is as-
sumed to be correct, are deliberately left unspecified.

The domain ĈPn contains infinite ascending chains hav-
ing no least upper bound in CPn. Thus, the convergence
of the abstract iteration sequence has to be guaranteed
by the adoption of widening operators.

2.3 Widening the Polyhedral Domain

The first widening on polyhedra was introduced in [17]
and refined in [21]. This operator, denoted by ‘∇s’, has
been termed standard widening and used almost univer-
sally. Its formal specification requires some further no-
tation and concepts related to the domain of polyhedra.

Any vector v ∈ Rn is regarded as a matrix in Rn×1

so that it can be manipulated with the usual matrix op-
erations of addition, multiplication (both by a scalar and
by another matrix), and transposition, which is denoted
by vT. For each i = 1, . . . n, the i-th component of the
vector v ∈ Rn is denoted by vi. The scalar product of
v,w ∈ Rn, denoted 〈v,w〉, is vTw =

∑n
i=1

viwi. The
vector of Rn having all components equal to zero is de-
noted by 0.

Let V = {v1, . . . ,vm} ⊆ Rn be a finite set of vectors.
The vectors in V are said affinely independent if the
only solution of the system of equations

{∑m
i=1

λivi =

0,
∑m

i=1
λi = 0

}
is λi = 0, for each i = 1, . . . , m. If

k ≤ n+1 is the maximum number of affinely independent
points of a polyhedron P ∈ CPn, then the dimension of
P , denoted as dim(P), is k − 1.

For each vector a ∈ Rn and scalar b ∈ R, where a 6=
0, the linear non-strict inequality constraint 〈a,x〉 ≥ b
defines a topologically closed affine half-space of Rn. The
linear equality constraint 〈a,x〉 = b defines an affine hy-
perplane of Rn (i.e., the intersection of the affine half-
spaces 〈a,x〉 ≥ b and 〈−a,x〉 ≥ −b). We do not distin-
guish between syntactically different constraints defining
the same affine half-space so that, for example, x ≥ 2
and 2x ≥ 4 are the same constraint. Thus, each polyhe-
dron P can be represented by a finite system of linear
equality and non-strict inequality constraints C and we
write P = con(C). The subsets of equality and inequal-
ity constraints in C are denoted by eq(C) and ineq(C),
respectively. When P = con(C) 6= ∅, we say that C is in
minimal form if and only if # eq(C) = n − dim(P) and
there does not exist C ′ ⊂ C such that con(C′) = P . All
constraint systems in minimal form describing a given
polyhedron have the same cardinality.

The following definition of standard widening requires
that each equality constraint is split into the two cor-
responding linear inequalities; thus, for each constraint
system C, we define

repr≥(C) :=
{
〈−a,x〉 ≥ −b

∣∣∣
(
〈a,x〉 = b

)
∈ C

}

∪
{
〈a,x〉 ≥ b

∣∣∣
(
〈a,x〉 ≥ b

)
∈ C or

(
〈a,x〉 = b

)
∈ C

}
.

Definition 2. (Standard widening.) For i = 1, 2,
let Pi = con(Ci) ∈ CPn, where the constraint system
C1 is either inconsistent or in minimal form. Then, the
polyhedron P1 ∇s P2 ∈ CPn is defined as

P1 ∇s P2 =

{
P2, if P1 = ∅;

con(C′
1 ∪ C′

2), otherwise;
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where

C′
1 :=

{
β1 ∈ repr≥(C1)

∣∣∣ P2 ⊆ con
(
{β1}

) }
,

C′
2 :=

{
β2 ∈ repr≥(C2)

∣∣∣∣∣
∃β1 ∈ repr≥(C1) .

P1 = con
(
repr≥(C1)[β2/β1]

)
}

and repr≥(C1)[β2/β1] :=
(
repr≥(C1) \ {β1}

)
∪ {β2}.

The constraints in C′
1 are those that would have been se-

lected when using the original proposal of [17], whereas
the constraints in C′

2 are added to ensure that this widen-
ing is a well-defined operator on the domain of polyhedra
(i.e., it does not depend on the particular constraint rep-
resentations).

We now define a finite convergence certificate for
the standard widening ‘∇s’: the basic intuition is that
a standard widening application will either result in an
increase of the dimension of the polyhedron (which hap-
pens when some equalities are turned into inequalities or
dropped altogether) or, if the dimension is unchanged,
in a decrease of the number of constraints.

Definition 3. ((Os,�s, µs).) Let Os = (N, N) and ‘�s’
denote the lexicographic ordering for Os that uses ‘≥’
for the individual ordering of the components. A cer-
tificate for ‘∇s’ is (Os,�s, µs) where the level mapping
µs : CPn → Os, for each P = con(C) ∈ CPn such that C
is either inconsistent or in minimal form, is defined by

µs(P) :=

{
(n + 1, 0), if P = ∅;(
n − dim(P), # C

)
, otherwise.

3 A Disjunctive Refinement

Traditionally, semantic domains have been designed in-
crementally by applying suitable domain constructors to
basic components. In this respect, the theory of abstract
interpretation makes no exception and systematic ways
of composing or enhancing abstract domains have been
proposed since [13]. In this section, we present the fi-
nite powerset operator [2], which is a domain refinement
similar to disjunctive completion [13] and is obtained by
a variant of the down-set completion construction pre-
sented in [14]. The following notation and definitions are
mainly borrowed from [2, Section 6].

Definition 4. (Non-redundancy.) Let D̂ = 〈D,`,0,⊕〉
be a join-semilattice. The set S ∈ ℘(D) is called non-
redundant with respect to ‘`’ if and only if 0 /∈ S and
∀d1, d2 ∈ S : d1 ` d2 =⇒ d1 = d2. The set of finite
non-redundant subsets of D (with respect to ‘`’) is de-
noted by ℘`

fn(D). The reduction function Ω`

D
: ℘f(D) →

℘`

fn(D) mapping a finite set into its non-redundant coun-
terpart is defined, for each S ∈ ℘f(D), by

Ω`

D
(S) := S \ { d ∈ S | d = 0 or ∃d′ ∈ S . d  d′ }.

The restriction to the finite subsets reflects the fact that
here we are mainly interested in an abstract domain
where disjunctions are implemented by explicit collec-
tions of elements of the base-level abstract domain. As a
consequence of this restriction, for any S ∈ ℘f(D) such
that S 6= {0}, Ω`

D
(S) is the (finite) set of the maximal

elements of S.

Definition 5. (Finite powerset domain.) Let D̂ =
〈D,`,0,⊕〉 be a join-semilattice. The finite powerset do-
main over D̂ is the join-semilattice

D̂P :=
〈
℘`

fn(D),`P,0P,⊕P

〉
,

where 0P := ∅ and S1 ⊕P S2 := Ω`

D
(S1 ∪ S2).

The approximation ordering ‘`P’ induced by ‘⊕P’ is
the Hoare powerdomain partial order [1], so that S1 `P

S2 if and only if

∀d1 ∈ S1 : ∃d2 ∈ S2 . d1 ` d2.

In abstract interpretation terms, this states that each el-
ement of S1 is correctly approximated by some elements
of S2; hence S1 is correctly approximated by S2.

A sort of Egli-Milner partial order relation2 will also
be useful: S1 `EM S2 holds if and only if either S1 = 0P

or S1 `P S2 and

∀d2 ∈ S2 : ∃d1 ∈ S1 . d1 ` d2.

This states that every element of S2 serves the purpose
of approximating some elements of S1.

An (Egli-Milner) connector for D̂P, denoted by ‘�EM’
is any upper bound operator for the partial order ‘`EM’
on ℘`

fn(D). The reason we call such an operator a “con-
nector” is because it will typically work by joining (con-
necting) elements in its arguments so as to ensure that
all the resulting elements approximate an element in the
arguments. Note that although a least upper bound for
‘`EM’ may not exist, a connector can always be defined;
for instance, we can let S1 �EM S2 :=

{⊕
(S1 ∪ S2)

}
.

Besides the requirement on finiteness, another differ-
ence with respect to the down-set completion of [14] is
that we are dropping the assumption about the complete
distributivity of the concrete domain. This is possible be-
cause our semantic domains are not necessarily related
by Galois connections, so that this property does not
have to be preserved.

The finite powerset domain is related to the con-
crete domain by means of the concretization function
γP : ℘`

fn(D) → C defined by

γP(S) :=
⊔{

γ(d)
∣∣ d ∈ S

}
.

Note that γP is monotonic but not necessarily injective.
For S1, S2 ∈ ℘`

fn(D), we write S1 ≡γP
S2 to denote that

2 Note that ‘`EM’ is similar to, but formally different from the
partial order defined on the Egli-Milner powerdomain [1], since in
its specification we consider the non-redundant elements only.
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O

Q1 Q2

Q3

P1

P2

P3

Fig. 1. The collection of Qi approximates the collection of Pi.

the two abstract elements actually denote the same con-
crete element, i.e., when γP(S1) = γP(S2). It is easy to
see that ‘≡γP

’ is a congruence relation on D̂P. As noted
in [14], non-redundancy only provides a partial, syntactic
form of reduction. On the other hand, requiring the full,
semantic form of reduction for a finite powerset domain
can be computationally very expensive.

An abstract semantic function AP : ℘`

fn(D) → ℘`

fn(D)
on the finite powerset domain may be provided by an
ad-hoc definition, which needs to be matched by a corre-
sponding proof of correctness. More often, if the concrete
semantic function F : C → C satisfies suitable hypothe-
ses, AP can be safely induced from the abstract semantic
function A : D → D. For instance, if F is additive, we
can define AP as follows [13,20]:

AP(S) := Ω`

D

({
A(d)

∣∣ d ∈ S
})

.

3.1 The Finite Powerset Domain of Polyhedra

The domain (ĈPn)P, having carrier the polyhedral do-

main ℘⊆

fn
(CPn), is the finite powerset domain over ĈPn.

The approximation ordering induced by ‘⊆’ is thus de-
fined, for each S1,S2 ∈ ℘⊆

fn
(CPn), by

S1 `P S2 ⇐⇒ ∀P1 ∈ S1 : ∃P2 ∈ S2 . P1 ⊆ P2.

Example 1. Consider the polyhedra in Figure 1 and let

T0 := {P1,P2,P3},

T1 := {P1,Q1,Q2,Q3},

T2 := {Q1,Q2,Q3},

T3 := {Q1,Q2}.

Then T0, T2, T3 ∈ ℘⊆

fn
(CP2), but T1 /∈ ℘⊆

fn
(CP2) since

P1 ⊂ Q1 is redundant in T1, so that T2 = Ω⊆

CP2
(T1).

Moreover, T0 `P T2 but T0 0EM T2, because Q3 approxi-
mates none of the Pi’s. Finally, T0 `EM T3.

Let γA

P
, γB

P
and γC

P
denote the (powerset) concretiza-

tion functions induced by the functions γA, γB and γC

defined by Eqs. (4), (5) and (6), respectively. Then, the
relation ‘≡γA

P

’ makes two finite sets of polyhedra equiva-
lent if and only if they have the same set-union. The gen-
eral problem of deciding the semantic equivalence with

respect to γA

P
of two finite (non-redundant) collections of

polyhedra is known to be computationally hard [29]. For
γB

P
, the relation ‘≡γB

P

’ makes two finite sets of polyhedra
equivalent if and only if they have the same poly-hull,
so that the powerset construction provides no benefit at
all. Finally, γC

P
is injective so that ‘≡γC

P

’ coincides with
the identity congruence relation.

4 Extrapolation Operators on the Finite
Powerset Domain

If the domain refinement of the previous section is meant
to be used for static analysis, then a key ingredient that
is still missing is a systematic way of ensuring the ter-
mination of the analysis. Following the spirit underlying
the domain refinement methodology, one may try and lift
any widening operator ∇ : D × D � D defined on the
base-level abstract domain D̂ so as to be applied to ele-
ments of the finite powerset domain D̂P.3 Unfortunately,
unless suitable counter-measures are taken, most of the
lifting heuristics will break the convergence guarantee,
resulting in an extrapolation operator for the finite pow-
erset domain. Here we introduce a very general class of
extrapolation operators lifting the base-level widening
‘∇’.

Definition 6. (Extrapolation heuristics.) An oper-
ator h∇

P
: ℘`

fn(D) × ℘`

fn(D) � ℘`

fn(D) is an extrapolation

heuristics for D̂P if, for all S1, S2 ∈ ℘`

fn(D) such that
S1 P S2, h∇

P
(S1, S2) is defined and satisfies the follow-

ing conditions:

S2 `EM h∇
P

(S1, S2); (7)

∀d ∈ h∇
P

(S1, S2) \ S2 : ∃d1 ∈ S1 . d1 ∇ d. (8)

Informally, condition (7) ensures that the result is an
upper approximation of S2 in which every element covers
at least one element of S2 (i.e., the heuristics cannot add
elements that are unrelated to S2); condition (8) ensures
that any element in the result that is not in S2 must
originate from an application of ‘∇’ to an element of S1.

It is straightforward to construct an algorithm for
computing an extrapolation heuristics for any given base-
level widening ‘∇’. The basic idea was proposed in [9] for
an abstract domain encoding a set of integer vectors by
means of a Presburger formula. Informally, for all pairs
(d1, d2) ∈ S1 × S2 that can be built using the two argu-
ments S1 and S2, return d1 ∇d2 if defined and return d2

if not.

3 We assume the base-level abstract domain D̂ is provided with
at least one widening operator, as is the case for most abstract
domains used in the context of static analysis. If D̂ satisfies the
ascending chain condition, so that it is not necessarily endowed
with an explicit widening operator, then a dummy widening can
be obtained by considering the least upper bound operator ‘⊕’.

6



Definition 7. (H∇
P

.) For all S1, S2 ∈ ℘`

fn(D) such that
S1 `P S2, let H∇

P
(S1, S2) := S2 ⊕P Ω`

D
(S) where

S := { d1 ∇ d2 ∈ D | d1 ∈ S1, d2 ∈ S2, d1  d2 }.

Proposition 1. The H∇
P

operator is an extrapolation
heuristics for D̂P.

For the finite powerset domain over ĈPn, lines 10–
15 of the algorithm specified in [9, Figure 8, page 773]
provide an implementation of the heuristics H∇

P
, instan-

tiated with the standard widening, ‘∇s’, on ĈPn.

Example 2. To see that the heuristics H∇
P

is not a widen-

ing for (ĈPn)P, consider the strictly increasing sequence
T0 `P T1 `P · · · in CP1 defined by4

Tj :=
{
{x = i}

∣∣ i ∈ N, 0 ≤ i ≤ j
}
.

Then, no matter what the specification for ‘∇’ is, we
obtain H∇

P
(Tj , Tj+1) = Tj+1, for all j ∈ N. Thus, the

“widened” sequence is diverging.

The iteration sequence in Example 2 is diverging be-
cause there is no finite upper bound on the cardinality
of the iterates. To overcome this problem, the operator
sketched in [9], which uses the H∇

P
heuristics of Defini-

tion 7, assumes that a further approximation is applied
whenever the cardinality of the set to be widened ex-
ceeds a fixed bound k ∈ N. However, no matter how this
further approximation step is defined, this approach is
not enough to obtain a proper widening, so that termina-
tion cannot be guaranteed. In fact, the following example
shows that the extrapolation heuristics H∇

P
may result

in an infinite increasing sequence on D̂P whose elements
all have bounded cardinality.

Example 3. Consider the extrapolation heuristics H∇
P

for (ĈP2)P, as specified in Definition 7, with ‘∇s’ as the

widening on the base-level abstract domain ĈP2 (so that
H∇

P
is the one used in [9]). Let P0,P1,P2,P3,P4 ∈ CP2

be defined as

P0 = {0 ≤ x ≤ 4, 0 ≤ y ≤ 4, x − y ≤ 3, x + y ≥ 1},

P1 = {0 ≤ x ≤ 4, 0 ≤ y ≤ 4, x − y ≤ 3},

P2 = {0 ≤ x ≤ 4, 0 ≤ y ≤ 4},

P3 = {0 ≤ x ≤ 8, 0 ≤ y ≤ 8, x + y ≤ 14,

x − y ≥ −6, 5x − y ≥ −2, x + 3y ≥ 3},

P4 = {0 ≤ x ≤ 8, 0 ≤ y ≤ 8, x + y ≤ 14,

x − y ≥ −6, 4x − y ≥ −3, x + 2y ≥ 2}.

Note that P1 = P0 ∇s P1 and P2 = P1 ∇s P2; moreover,
for all i ∈ {0, 1, 2}, we have Pi * P3 and Pi * P4.

4 In this and the following examples, we abuse notation by writ-
ing a constraint system C to denote the polyhedron P = con(C).

O

T2 = {P2,P3}

P3

P2

O

T3 = {P2,P4}

P4

P2

O

U3 = {P′
0
}

T0 = {P0}

P0

P′
0

O

T1 = {P1,P3}

P3

P1

Fig. 2. The iterates T0, T1, T2, T3 and U3 in Example 3.

Consider an increasing sequence T0 `P T1 `P T2 `P

T3 `P . . . starting with elements

T0 = {P0},

T1 = {P1,P3},

T2 = {P2,P3},

T3 = {P2,P4},

as shown in Figure 2. Then, the corresponding “widened”
sequence U0 `P U1 `P U2 `P U3 `P . . . , will be computed
as follows. Since U0 = T0, in the first iteration we com-
pute

U1 = H∇
P

(U0, T1)

= {P3} ]P {P0 ∇s P1}

= {P1,P3}

= T1.

In the second iteration, we obtain

U2 = H∇
P

(U1, T2)

= {P3} ]P {P1 ∇s P2}

= {P2,P3}

= T2.

In the third iteration, letting

P ′
0 := P3 ∇s P4

= {0 ≤ x ≤ 8, 0 ≤ y ≤ 8, x + y ≤ 14, x − y ≥ −6},

we obtain

U3 = H∇
P

(U2, T3)

= {P2} ]P {P3 ∇s P4}

= {P3 ∇s P4}

= {P ′
0}.
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Note that the polyhedron P2 does not occur in U3 be-
cause it is made redundant by P ′

0 (i.e., P2 ⊆ P ′
0).

Now, the singleton U3 = {P ′
0} has the same structure

as the singleton U0 = {P0}, because the polyhedron P ′
0

can be obtained from P0 by a scaling (by a factor 2) fol-
lowed by a rotation. As a consequence, it is possible to in-
definitely extend the sequence Ti and the corresponding
“widened” sequence Ui without obtaining convergence
(in a finite number of steps). Since, in the above com-
putation, all the abstract elements have cardinality less
than or equal to 2, the addition of any (non-trivial) up-
per bound on the cardinality of the abstract descriptions
will have no effect on termination.

5 Powerset Widenings using Set Cardinality

The first methodology we propose shares with [9] the
idea of posing constraints on the cardinality of the ar-
guments of the widening. As observed in the previous
section, this approximation on its own is insufficient to
ensure the operator is a widening. A closer inspection of
the iterates in Example 3 shows that divergence is actu-
ally caused by the reduction function Ω`

D
, which inter-

feres with the cardinality control mechanism by remov-
ing redundant elements, so that the cardinality threshold
is never reached. The problem caused by Ω`

D
is avoided

by requiring the extrapolation heuristics h∇
P

being used
by the widening to satisfy an additional property.

Definition 8. (∇-covered heuristics.) The extrapo-
lation heuristics h∇

P
is said to be ∇-covered if, for all

S1, S2 ∈ ℘`

fn(D) such that S1 P S2, we have

∀d1 ∈ S1 : ∃d ∈ h∇
P

(S1, S2) . d1 `∇ d. (9)

Although H∇
P

of Definition 7 is not ∇-covered,5 a ∇-
covered extrapolation heuristics for D̂P can be obtained
for any widening ‘∇’ on the base-level domain D̂ by se-
lectively replacing the standard reduction map Ω`

D
with

a non-standard, widening-based reduction map Ω∇

D
. The

idea being that if, in a set in ℘f(D), one element d entails
another d′, then instead of just removing the redundant
element d, the map Ω∇

D
replaces both d and d′ by d∇d′.

Definition 9. (∇-reduction map, Ω∇

D
.) A function

Ω∇

D
: ℘f(D) → ℘`

fn(D) is called ∇-reduction map if it
satisfies the following property: for all S ∈ ℘f(D), if
Ω∇

D
(S) = S′, then there exists a sequence T0, . . . , Tm

of elements of ℘f(D) such that T0 = S, Tm = S′ and,
for each 0 < i ≤ m, Ti =

(
Ti−1 \ {d, d′}

)
∪ {d ∇ d′},

where d, d′ ∈ Ti−1 and d  d′. The (overloaded) oper-
ator Ω∇

D
: ℘`

fn(D) × ℘`

fn(D) → ℘`

fn(D) is defined, for all
S1, S2 ∈ ℘`

fn(D), by

Ω∇

D
(S1, S2) := Ω∇

D
(S1 ∪ S2).

5 In particular, in Example 3 we saw that P2 ∈ T2 and
H∇

P
(T2,T3) = {P ′

0
}, but P2 0∇ P ′

0
.

Proposition 2. The Ω∇

D
operator is a ∇-covered ex-

trapolation heuristics for D̂P.

Example 4. Consider the iteration sequence of Exam-
ple 3 and suppose now that, instead of using H∇

P
, we

adopt a ∇-covered extrapolation heuristics satisfying Def-
inition 9. Then, we obtain the widened sequence U ′

0 `P

U ′
1 `P U ′

2 `P . . . , where U ′
0 = U0, U

′
1 = U1 and U ′

2 = U2

would be computed as before. However in the third iter-
ation we will obtain

U ′
3 = Ω∇

D
(U2, T3)

= Ω∇

D

(
{P2,P3,P4}

)

= Ω∇

D

(
{P2,P3 ∇s P4}

)

= Ω∇

D

(
{P2,P

′
0}

)

= {P2 ∇s P
′
0}

=
{
{x ≥ 0, y ≥ 0}

}
,

therefore breaking the divergence pattern.

In order to control the cardinality of the abstract
iterates, several possible solutions could be adopted. In
the following proposal, if the cardinality of the second
argument of the widening S2 exceeds a fixed bound k by
some ` > 0, we first collapse S2 to a smaller set S′

2 by
replacing a subset of cardinality `+1 by its join (so that
# S′

2 ≤ k and S2 `EM S′
2).

Definition 10. (Collapsor.) For each k ≥ 1, a unary
operator ⇑k : ℘`

fn(D) → ℘`

fn(D) is called a k-collapsor for

D̂P if, for each S ∈ ℘`

fn(D), either # S ≤ k and ⇑k S = S
or there exists S′ ⊆ S with # S′ > # S − k such that

⇑k S = (S \ S′) ⊕P {⊕S′}.

We now define a widening on the powerset domain
that uses a k-collapsor with a ∇-covered extrapolation
heuristics to ensure convergence of the abstract iterates.

Definition 11. (The ‘k∇P’ widening.) Let h∇
P

be a ∇-
covered extrapolation heuristics and ‘⇑k’ be a k-collapsor
for D̂P, for some k ≥ 1. For all S1, S2 ∈ ℘`

fn(D) such that
S1 P S2, let

S1 k∇P S2 := h∇
P

(S1,⇑k S2).

Then ‘ k∇P’ is said to be a cardinality-based widening.

Theorem 1. The ‘ k∇P’ operator is a widening on D̂P.

Example 5. To illustrate the widening operator ‘k∇P’ for

k = 2, we consider the powerset domain (ĈP1)P with

the standard widening ‘∇s’ on ĈP1, a ∇-covered ex-
trapolation heuristics Ω∇

D
satisfying Definition 9 and a

2-collapsor that, given a non-redundant and finite set
of intervals on the x-axis, reduces its cardinality to 2
by taking the poly-hull of all the intervals but the one
having the smallest lower bound. Consider the sequence
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T0 `P T1 `P · · · of Example 2 and the widened se-
quence U0 `P U1 `P · · · where U0 = T0 and Ui =
Ui−1 2∇P (Ui−1 ]P Ti), for each i > 0. As U0 ⊂ T1,
and # T1 = 2, we obtain U1 = T1. Again U1 ⊂ T2. As
# T2 = 3, we compute ⇑2 T2 before applying an Ω∇

D
op-

erator. Thus, we obtain

U1 = Ω∇

D
(U1,⇑2 T2)

= Ω∇

D

(
U1,

{
{x = 0}, {1 ≤ x ≤ 2}

})

= Ω∇

D

({
{x = 0}, {x = 1}, {1 ≤ x ≤ 2}

})

=
{
{x = 0}, {x = 1} ∇s {1 ≤ x ≤ 2}

}

=
{
{x = 0}, {1 ≤ x}

}
.

In the next iteration we obtain stabilization. Clearly, the
precision of this widening will depend on the value of k.

6 Powerset Widenings Using Connectors

One obvious explanation for the divergence of the itera-
tion sequence in Example 2 is that the base-level widen-
ing never comes into play. The second widening we pro-
pose is designed to avoid such situations.

To be more specific, when using the extrapolation
heuristics H∇

P
of Definition 7, the reason for divergence

is that elements of S2 that do not cover an element in S1

will be included, unchanged, in H∇
P

(S1, S2) without any
involvement in a widening computation. To avoid this,
one possibility is to replace S2 with S1 �EM S2, where
‘ �EM’ is a connector for D̂P, so that no such “brand new”
elements can exist. Note that such a solution is not re-
ally specific for the extrapolation operator H∇

P
. Here we

specify another subclass of extrapolation heuristics that,
when combined with a connector operator as described
above, can be used to define a proper widening operator.

Definition 12. (∇-connected heuristics.) The ex-
trapolation heuristics h∇

P
is said to be ∇-connected if,

for all S1, S2 ∈ ℘`

fn(D) where S1 P S2, we have

∀d ∈ h∇
P

(S1, S2) ∩ S2 :

(∃d1 ∈ S1 . d1  d) =⇒ (∃d′
1 ∈ S1 . d′1 ∇ d). (10)

As already said, the above subclass includes the extrap-
olation heuristics H∇

P
of Definition 7.

Proposition 3. The H∇
P

operator is a ∇-connected ex-
trapolation heuristics for D̂P.

We therefore define a widening on the finite powerset
domain that enforces convergence by using a connector
with a ∇-connected extrapolation heuristics.

Definition 13. (The ‘EM∇P’ widening.) Let h∇
P

be
a ∇-connected extrapolation heuristics and ‘ �EM’ be a

connector for D̂P. For all S1, S2 ∈ ℘`

fn(D) such that
S1 P S2, let S1 EM∇P S2 := h∇

P
(S1, S

′
2) where

S′
2 :=

{
S2, if S1 `EM S2;

S1 �EM S2, otherwise.

Then ‘EM∇P’ is said to be a connector-based widening.

Theorem 2. The ‘EM∇P’ operator is a widening on D̂P.

In general the precision of this widening will depend on
the chosen connector operator.

Example 6. To illustrate the widening operator ‘EM∇P’

we consider the powerset domain (ĈP1)P, with the stan-

dard widening ‘∇s’ on ĈP1 and the trivial connector
‘]EM’ returning the singleton poly-hull of its arguments.
Consider the sequence T0 `P T1 `P · · · of Example 2 and
the widened sequence U0 `P U1 `P · · · where U0 = T0

and Ui = Ui−1 EM∇P (Ui−1 ]P Ti), for each i > 0. When
computing U1, the second argument of the widening is
U0 ]P T1 = T1. Note that U0 `EM T1 does not hold so
that the connector is needed. Thus, we obtain

U1 = H∇
P

(U0,U0 ]EM T1)

= H∇
P

(
U0,

{
{0 ≤ x ≤ 1}

})

=
{
{0 ≤ x}

}
.

In the next iteration we obtain stabilization.
Consider now the powerset domain (ĈP2)P and the

iteration sequences T0 `P T1 `P · · · and U0 `P U1 `P · · ·
of Example 3. Let U ′

0 `P U ′
1 `P · · · be the sequence com-

puted by using the widening operator ‘EM∇P’ specified
above. Clearly, U ′

0 = U0 = T0. However, by letting

P5 := P0 ] P1 ] P3

= {0 ≤ x ≤ 8, 0 ≤ y ≤ 8,

x + y ≤ 14, x − y ≥ −6, 3x − y ≥ −4},

instead of obtaining U1 = {T1} we obtain

U ′
1 = H∇

P
(U ′

0,U
′
0 ]EM T1)

= H∇
P

(
U ′

0, {P0 ] P1 ] P3}
)

= H∇
P

(
U ′

0, {P5}
)

=
{
P0 ∇s P5

}

=
{
{x ≥ 0, y ≥ 0}

}
.

7 Powerset Widenings Using Certificates

The third widening technique we present in this paper
requires a certificate (O,�, µ) for the base-level widen-
ing ‘∇’. Widenings obtained in this way will be termed
certificate-based. As it is used in the computation of the
new widening on the powerset domain, the certificate
for the base-level widening must be finitely computable,

9



O

Q1

Q2

Q3

Q
P1

P2 P3

P4

P

Fig. 3. The lgo relation on collections of polyhedra.

i.e., such that the partial order ‘�’ and the level map-
ping µ are both finitely computable. This means that
such a certificate for ‘∇’ on D̂ cannot be simply taken
as (D,`∇, I), where I is the identity map, since ‘`∇’, in
general, does not come with a computability guarantee.6

The certificate-based widening can be seen as a vari-
ant of the framework presented in [4,5], which provided
a clean and formal development for an idea originally
sketched in [7]. We will use the certificate µ to define a
suitable relation ‘ yP’ on the finite powerset domain D̂P.
This relation will be shown to be a limited growth order-
ing (lgo) [4,5] on D̂P, i.e., the strict version of a finitely
computable preorder on ℘`

fn(D) that satisfies the ascend-
ing chain condition. Intuitively, the new widening ‘µ∇P’
on the finite powerset domain will be defined so that the
relation ‘ yP’ will correspond to the relation ‘

µ∇P
’.

Definition 14. (‘ yP’.) Let (O,�, µ) be a finitely com-
putable certificate for the widening operator ‘∇’ on D̂.
The relation yP ⊆ ℘`

fn(D)×℘`

fn(D) induced by µ is such
that, for each S1, S2 ∈ ℘`

fn(D), S1 yP S2 holds if and
only if, letting d1 :=

⊕
S1 and d2 :=

⊕
S2, one of the

following holds:

µ
(
d1

)
≺ µ

(
d2

)
; (11)

µ
(
d1

)
= µ

(
d2

)
∧ # S1 > 1 ∧ # S2 = 1; (12)

µ
(
d1

)
= µ

(
d2

)
∧ # S1 > 1 ∧ # S2 > 1 ∧ µ̃(S1) ≺≺ µ̃(S2),

(13)

where the function µ̃ : ℘`

fn(D) → M(O) is defined, for
each S ∈ ℘`

fn(D), so that µ̃(S) is the multiset over O
obtained by applying µ to each element in S. Namely,
by µ̃(S) :=

{
µ(d)

∣∣ d ∈ S
}
.

Proposition 4. The ‘ yP’ relation is finitely computable
and satisfies the ascending chain condition.

Example 7. Consider the polyhedra in Figure 3 and let

T1 := {P1,P2,P3,P4},

T2 := {Q1,Q2,Q3},

6 Note that, for the domain CPn of polyhedra and the standard
widening ‘∇s’, the certificate (Os,�s, µs) provided in Definition 3
is finitely computable.

O

Q1

Q2

Q3

Q
P1

P2 P3

P

Fig. 4. The lgo relation on collections of polyhedra.

so that P =
⊎
T1 and Q =

⊎
T2. By Definition 3,

µs(P) = (0, 5) ≺s (0, 4) = µs(Q) so that, by condi-
tion (11) of Definition 14, we obtain T1 yP T2.

Now consider the polyhedra in Figure 4 and let

U1 := {P1,P2,P3},

U2 := {Q1},

U3 := {Q1,Q2,Q3},

so that U1 P U2 P U3, P =
⊎
U1, Q1 =

⊎
U2, Q =⊎

U3 and µs(P) = µs(Q1) = µs(Q) = (0, 4). Since
#U2 = 1, none of the conditions of Definition 14 apply so
that U2 6y

P
U3. On the other hand, as #U1 = #U3 = 3,

we have U1 yP U2 by condition (12) of Definition 14.
Finally, since

µ̃s(U1) =
{
(0, 6), (0, 4), (0, 4)

}

≺≺s

{
(0, 4), (0, 4), (0, 4)

}
= µ̃s(U3),

we obtain U1 yP U3 using condition (13) of Defini-
tion 14.

For the sake of precision, the specification of our
certificate-based widening assumes the existence of a
subtract operation for the base-level domain. It is ex-
pected that a specific subtraction would be provided for
each domain; here we just indicate a minimal specifi-
cation that can be trivially satisfied in case no better
alternative is available.

Definition 15. (Subtraction.) A subtraction for D̂ is
any partial operator 	 : D × D � D such that, for all
d1, d2 ∈ D, d2 ` d1 implies that d1 	 d2 is defined and
both d1 	 d2 ` d1 and d1 = (d1 	 d2) ⊕ d2 hold.

A trivial subtraction operator can always be defined as
d1 	 d2 := d1. In practice, when designing a widening,
the actual subtraction operator would be expected to
lose as little precision as possible.

Example 8. The operator pdiff : CPn × CPn → CPn is
defined so that, for any P1,P2 ∈ CPn, pdiff(P1,P2) de-
notes the smallest closed and convex polyhedron con-
taining the set difference P1 \ P2. Then, if P2 ⊆ P1, we
have pdiff(P1,P2) ⊆ P1 and

P1 = (P1 \ P2) ∪ P2

= pdiff(P1,P2) ∪ P2

= pdiff(P1,P2) ] P2,
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T1 = {P1,P2,P3}
T2 = T1 ∪ {P4}

P1
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P4
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U

T2

Q =
U

T1 ∇s

U

T2

O

P1

P2 P3

P4

Pd

Fig. 5. The second case of the certificate-based widening.

so that ‘pdiff’ is a subtraction for ĈPn.

We now define a widening on the finite powerset do-
main that enforces convergence by means of a limited
growth ordering induced by a certificate for the base-
level widening.

Definition 16. (The ‘µ∇P’ widening.) Let ‘ yP’ be
the limited growth ordering induced by the certificate µ
for ‘∇’, let ‘ �P’ be any upper bound operator on D̂P

and ‘	’ be a subtraction for D̂. For all S1, S2 ∈ ℘`

fn(D)
such that S1 P S2, let

S1 µ∇P S2 :=





S, if S1 yP S;

S ⊕P {d}, if
⊕

S1 
⊕

S;{⊕
S

}
, otherwise

where S := S1 �P S2 and d :=
(⊕

S1 ∇
⊕

S
)
	

(⊕
S

)
.

Then ‘µ∇P’ is said to be a certificate-based widening.

Theorem 3. The ‘ µ∇P’ operator is a widening on D̂P.

There are three cases in the specification of ‘µ∇P’ in
Definition 16. In the first one, the widening simply re-
turns the upper bound S = S1�PS2, since this is enough
to ensure a strict increase in the limited growth ordering
relation. In the second case, the join of S1 is strictly more
precise than the join of S, so that we apply the base-level
widening ‘∇’ to them and then, using the subtraction op-
erator, improve the obtained result, since S1 yP S⊕P{d}
holds. In the last case, since the join of S1 is equivalent
to the join of S, we return the singleton consisting of the
join itself, as originally proposed in [13, Section 9].

Example 9. To illustrate the three cases of Definition 16,

consider the finite powerset domain (ĈP2)P, with the

standard widening ‘∇s’ for ĈP2, certified by the level
mapping µs defined in Definition 3. Let also the sub-
traction ‘	’ be defined as ‘pdiff’ and the upper bound

‘�P’ be defined as ‘⊕P’, so that, for all S1,S2 ∈ (ĈP2)P

such that S1 `P S2, we will have S1 �P S2 = S2.

In particular, this means that in the first case of Def-
inition 16, S1 µ∇P S2 = S2. Applications of this case can
be observed by considering the sets of polyhedra intro-
duced in Example 7 (see Figure 3)

{P1,P2,P3,P4} µ∇P {Q1,Q2,Q3} = {Q1,Q2,Q3}

and (see Figure 4)

{P1,P2,P3} µ∇P {Q1} = {Q1},

{P1,P2,P3} µ∇P {Q1,Q2,Q3} = {Q1,Q2,Q3}.

Figure 5 illustrates an application of the second case
of Definition 16. Consider the computation of T1 µ∇P T2

where sets T1 and T2 are as shown in the top left diagram
while their poly-hulls

⊎
T1 and

⊎
T2 are shown in the

top right diagram. Since µs

(⊎
T1

)
= (0, 5) 6�s (0, 6) =

µs

(⊎
T2

)
, we obtain T1 6y

P
T2, so that the first case

of Definition 16 does not apply. As
⊎
T1 ⊂

⊎
T2, the

second case applies and we use the base-level widening
to compute Q =

⊎
T1 ∇s

⊎
T2, shown in the bottom left

diagram. We then find the polyhedral difference Pd =
pdiff

(
Q,

⊎
T2

)
, to obtain the widened set T1 µ∇P T2 =

T2 ∪ {Pd} as shown in the bottom right diagram. Note
that, as far as the divergence problem is concerned, it
would be enough to return the singleton set

{
Q

}
, since

T1 yP

{
Q

}
already holds; however, by exploiting the

availability of a non-trivial subtraction operator, we can
usually obtain, as in this case, a more precise result.

The polyhedra shown in the top left diagram of Fig-
ure 5 can also illustrate the application of the third and
last case of Definition 16. To this end, consider the set
T ′

1 = {P1,P3,P4} and the computation of T ′
1 µ∇P T2.

Since
⊎
T ′

1 =
⊎
T2, the first two cases of Definition 16

do not apply, so that we compute T ′
1 µ∇P T2 =

{⊎
T2

}
.

As shown in the example above, Definition 16 does
not require that the upper bound operator ‘�P’ is based
on the base-level widening ‘∇’. Moreover, the scheme of
Definition 16 can be easily extended to any finite set of
heuristically chosen upper bound operators on D̂P, still
obtaining a proper widening operator for the powerset
domain. The simplest heuristics, already used in the ex-
ample above, is the one taking �P := ⊕P. If this fails
to ensure a increase in the level mapping, another pos-
sibility is the adoption of an extrapolation heuristics h∇

P

for D̂P. Anyway, many variations could be defined, de-
pending on the required precision/efficiency trade-off. In
the following section, we investigate one of these possi-
bilities, which originates as a generalization of an idea
proposed in [9].

11



8 Merging Elements According to a
Congruence Relation

For any powerset widening, it may be possible to merge
together (i.e., join) some of the elements occurring in
the second argument without compromising the finite
convergence guarantee. This merging operation can be
guided by a congruence relation on the finite powerset
domain, the idea being that a well-chosen relation will
benefit the precision/efficiency trade-off of the widening.

One option is to use semantics preserving congru-
ence relations, i.e., refinements of the congruence re-
lation ‘≡γP

’. As the purpose of this paper is to pro-
vide generic widening procedures for powersets, here we
only consider congruences that may be defined indepen-
dently of any particular concrete domain and the in-
tended widening. Two such relations are the identity
congruence relation, where trivial equivalence is assumed,
and the ⊕-congruence relation, where sets that have the
same join are equivalent. However, the identity congru-
ence allows for no merging at all and hence has no effect
at all on the iteration sequence. On the other hand, the
⊕-congruence enables a direct application of the base-
level widening on the joined elements, thereby providing
a default heuristics that is likely to hasten convergence.
We now define a new non-identity congruence relation
for any powerset domain that refines the ⊕-congruence.

Definition 17. (‘/’ and ‘./’.) The content relation / ⊆
℘`

fn(D) × ℘`

fn(D) is such that S1 / S2 holds if and only
if, for all S′

1 ∈ ℘`

fn(D),

S′
1 `P S1 =⇒ ∃S′′

1 ∈ ℘`

fn(D) .
⊕

S′
1 =

⊕
S′′

1 ∧S′′
1 `P S2.

The same-content relation ./ ⊆ ℘`

fn(D)×℘`

fn(D) is such
that S1 ./ S2 holds if and only if S1 / S2 and S2 / S1.

Thus S1 `P S2 implies that S1 / S2 so that S /
{⊕

S
}
,

since S `P

{⊕
S

}
. Moreover, if S2 is a singleton, then

S1 `P S2 if and only if S1 / S2. Hence ‘./’ is a congruence
relation on D̂P that refines the ⊕-congruence.

Observe that the identity congruence relation can be
obtained by strengthening the conditions in the defini-
tion of ‘/’, replacing

⊕
S′

1 =
⊕

S′′
1 with S′

1 = S′′
1 ; and

the ⊕-congruence can be obtained by weakening the con-
ditions, replacing S′′

1 `P S2 with
⊕

S′′
1 `

⊕
S2. Thus the

same-content relation is a compromise between keeping
all the information provided by the explicit set structure,
as done by the identity congruence, and losing all of this
information, as occurs with the ⊕-congruence.

For the finite powerset domain of polyhedra (ĈPn)P,
the content relation ‘/’ corresponds to the condition that
S1 / S2 holds if and only if

⋃
S1 ⊆

⋃
S2; and hence,

the same-content relation ‘./’ coincides with the induced
congruence relation ‘≡γA

P

’.

Proposition 5. For all S1,S2 ∈ ℘⊆

fn
(CPn), S1 ./ S2 if

and only if S1 ≡γA

P

S2.

O

T0

P2P1

P3

O

T1

A

Q5

Q1

Q2

Q3

Q4

Fig. 6. Merging polyhedra according to ‘./’.

Example 10. Consider the polyhedra in Figure 6. Then
P1 ] P2 = P1 ∪ P2 and P2 ] P3 = P2 ∪ P3 so that, as
T0 = {P1,P2,P3},

T0 ./ {P1 ∪ P2,P3} ./ {P1,P2 ∪ P3}.

On the other hand, since T1 = {Q1,Q2,Q3,Q4,Q5},
letting T2 := {Q1,Q2,Q3,Q4}, although

⊎
T1 =

⊎
T2,

T1 6 T2. To see this, let A be an inner point of polyhe-
dron Q5 and let S1, S2, and S′

1 in Definition 17 be T1,
T2, and T ′

1 =
{
{A}

}
, respectively. Then, the one and

only collection of polyhedra having the same poly-hull
of T ′

1 is T ′
1 itself. However, T ′

1 0P T2, so that T1 6 T2.

We now define an operation merger for the power-
set domain that replaces selected subsets by congruent
singleton sets for any given congruence relation.

Definition 18. (Mergers.) Let ‘∼’ be a congruence
relation on D̂P. The relation merge∼ ⊆ ℘`

fn(D)×℘`

fn(D)
is such that merge∼(S1, S2) holds if and only if S1 `P S2

and
∀d2 ∈ S2 : ∃S′

1 ⊆ S1 . {d2} ∼ S′
1.

A set S ∈ ℘`

fn(D) is fully-merged for ‘∼’, if merge∼(S, S′)
implies S = S′; S is pairwise-merged for ‘∼’ if, for all
d1, d2 ∈ S, we have that {d1, d2} is fully-merged. A unary
operator ↑∼ : ℘`

fn(D) → ℘`

fn(D) is a merger for ‘∼’ if
merge∼(S, ↑∼ S) holds for all S ∈ ℘`

fn(D).

Observe that, for all S ∈ ℘`

fn(D), we have S `EM ↑∼ S.

As ‘∼’ is a congruence relation on D̂P, for any merger
‘↑∼’ for ‘∼’ and S ∈ D̂P, S ∼ (↑∼ S) holds. Assuming
that we use a congruence relation that refines the ⊕-
congruence, we can always merge a set to obtain one
that is fully- or pairwise-merged.

Proposition 6. Let ‘∼’ be congruence relation on D̂P

that refines the ⊕-congruence relation. Then there exists
a merger ‘↑∼’ such that, for all S ∈ ℘`

fn(D), ↑∼ S is fully-
merged (resp., pairwise-merged).

For the finite powerset domain over ĈPn, lines 1–9 of
the algorithm specified in [9, Figure 8, page 773] define
a merger operator ‘↑./’ such that, for each finite set S
of polyhedra, ↑./ S is pairwise-merged. Thus, the algo-
rithm described in [9] is in fact the composition of three
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Widening Required Optional

k∇P ∇-covered h∇

P (Ω∇
D ) merger ↑∼

k-collapsor ⇑k

EM∇P ∇-connected h∇

P (H∇

P ) merger ↑∼

connector �EM

µ∇P certificate µ merger ↑∼

upper bound �P other upper bounds

subtraction 	 (π1)

Table 1. The required and optional operators for the three widen-
ings (defaults defined in the present paper in parentheses).

computational devices: the pairwise-merger for ‘./’, the
extrapolation heuristics H∇

P
of Definition 7 and a cardi-

nality control mechanism (which is not formally speci-
fied). Since all the abstract elements considered in Ex-
ample 3 are fully-merged, even the complete algorithm
is still implementing an extrapolation operator which is
not a proper widening.

Example 11. To illustrate the merge relation for the fi-

nite powerset domain of polyhedra (ĈPn)P with the ‘./’
congruence relation, we again use the two diagrams in
Figure 6. The set of polyhedra T0 in the left-hand dia-
gram is not pairwise-merged since

{P1 ] P2} = {P1 ∪ P2} ./ {P1,P2},

{P2 ] P3} = {P2 ∪ P3} ./ {P2,P3}.

The sets {P1∪P2,P3} and {P1,P2∪P3} are fully-merged
and hence pairwise-merged, and both merge

./

(
T0, {P1 ∪

P2,P3}
)

and merge
./

(
T0, {P1,P2 ∪ P3}

)
hold. The set

T1 in the right-hand diagram is pairwise-merged but
not fully-merged. Since

⊎
T1 =

⋃
T1, the singleton set

{
⋃
T1} is fully-merged and hence pairwise-merged and

merge
./

(
T1, {

⋃
T1}

)
holds.

9 Conclusion

We have studied the problem of endowing any abstract
domain obtained by means of the finite powerset con-
struction with a provably correct widening operator. We
have proposed three generic widening operators that are
parametric with respect to the specification of some sim-
pler operators: these are summarized in Table 1, where
we distinguish the operators that are actually required
(even though defaults are available for some of them)
from those that can be optionally used to tune the pre-
cision/efficiency trade-off of the widenings.

Having three alternative methodologies for the spec-
ification of a widening, it is natural to question whether
or not one of them is going to be better than the oth-
ers with respect to some “measure,” be it the preci-
sion of the obtained results, the expected efficiency of
the overall analysis, or even the ease of implementation.

Clearly, the generality of the finite powerset construc-
tion makes it impossible to answer these questions in
general. Nonetheless, the following observations provide
useful guidelines for the prospective widening designer.

A rather obvious remark is that all the widenings
presented in this paper directly depend on the base-
level widening used for the extrapolation heuristics or
the convergence certificate: there is little hope that any
of the methodologies we propose will behave well if the
base-level widening is inadequate to the considered ap-
plication. This observation applies not only to the pre-
cision of the widening, but also (to some extent) to its
efficiency.

If the finite powerset construction is applied to a rea-
sonably precise base-level domain, such as the domain
of convex polyhedra, then a certificate-based widening
may be a good starting point. In fact, this methodology
provides the designer with a high degree of flexibility:
not only it allows for the choice of several, possibly fine-
grained certificates, but it also enables to experiment
with a possibly wide range of upper bound operators. In
such a context, the cardinalities of the collections of ab-
stract elements are rather small, since most of the preci-
sion of the approximation is already encoded in the base-
level elements (e.g., the polyhedra). In other words, the
finite powerset construction is meant to avoid the pre-
cision losses caused by a few, mainly irregular growth
patterns.

If, in contrast, the base-level domain and widening
are somehow weak, as might be the case for the ab-
stract domain of intervals [11], then a certificate-based
widening is probably not a good choice. In this case,
the simplicity and efficiency of the base-level domain are
better exploited by increasing the cardinality of the ab-
stract collections of elements, so that a cardinality-based
widening is likely to provide better results.

The connector-based widening can be seen as an in-
termediate alternative: on the one hand, it shares with
the cardinality-based widening the simplicity (and ease
of implementation) of the approach; on the other hand,
in order to obtain reasonable precision, it requires that
an adequate connector operator is identified for the ap-
plication at hand.

As already stressed in the introduction, in all cases
the resulting widening operator will have to undergo a
thorough experimentation in order to ascertain to what
extent it actually adapts to the specific class of problem
instances that are of interest. For the finite powerset do-
main of convex polyhedra, this work has just started.
We have extended the Parma Polyhedra Library (PPL)
[3,6], a modern C++ library for the manipulation of con-
vex polyhedra, with a prototype implementation of the
certificate-based widening and its variant employing the
‘widening up to’ technique [22,23]. The current proto-
type, which is based on the new widening operator de-
fined in [4,5], tries two upper bound operators for the
powerset domain: the first one is the least upper bound;
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the second one is the extrapolation heuristics H∇
P

(but
instantiated using the widening in [4,5]). The initial re-
sults obtained are very encouraging as our new widening
compares favorably, both in terms of precision and effi-
ciency, with the extrapolation operator of [9].
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A Proofs

Proof (of Proposition 1 on page 7). Using the
notation of Definition 6, we show that H∇

P
(S1, S2) =

S2 ⊕P Ω`

D
(S), where

S := { d1 ∇ d2 ∈ D | d1 ∈ S1, d2 ∈ S2, d1  d2 },

satisfies properties (7) and (8) of Definition 6. Note that,
by Definition 6, we have S1 P S2, so that S2 6= ∅.

Let S′ := S2 ∪ Ω`

D
(S); then, by Definitions 5 and 7,

we obtain

H∇
P

(S1, S2) = S2 ⊕P Ω`

D
(S)

= Ω`

D

(
S2 ∪ Ω`

D
(S)

)

= Ω`

D
(S′). (14)

We will prove that

S2 `P Ω`

D
(S′); (15)

∀d ∈ Ω`

D
(S′) : ∃d2 ∈ S2 . d2 ` d; (16)

∀d ∈ Ω`

D
(S′) \ S2 : ∃d1 ∈ S1 . d1 ∇ d. (17)

Then, using equation (14), property (7) of Definition 6
follows from properties (15) and (16) and property (8)
of Definition 6 follows from property (17).

To prove property (15), let d2 ∈ S2; then, since S2 ⊆
S′, we also have d2 ∈ S′; hence, by Definition 4, there
exists d′

2 ∈ Ω`

D
(S′) such that d2 ` d′2. Therefore prop-

erty (15) holds.
To prove properties (16) and (17), let d ∈ Ω`

D
(S′)\S2;

then, by Definition 4, d ∈ S′ and, as d /∈ S2, again by
Definition 4, d ∈ S. Thus there exist d1 ∈ S1 and d2 ∈ S2

such that d = d1 ∇ d2 and hence d1 ∇ d. Therefore
property (17) holds. Moreover, as ‘∇’ is a widening on
D̂, d2 ` d. Therefore property (16) holds. ut

Proof (of Proposition 2 on page 8). Assuming the
notation and hypothesis introduced in Definition 9, we
show that Ω∇

D
(S1, S2) satisfies properties (7) and (8) of

Definition 6 and property (9) of Definition 8. Let S =
S1 ∪ S2, so that Ω∇

D
(S1, S2) = Ω∇

D
(S). By Definition 9,

there exist m ∈ N and a sequence T0, . . . , Tm in ℘f(D)
where T0 = S, Tm = Ω∇

D
(S) and, for each 0 < i ≤ m,

there exist d, d′ ∈ Ti−1 such that d  d′ and Ti =
(
Ti−1 \

{d, d′}
)
∪ {d ∇ d′}. Thus, for all d ∈ Ti−1 there exists

d′ ∈ Ti such that d `∇ d′. We prove, for all 0 ≤ i ≤ m,
the following properties hold:

∀d ∈ S2 : ∃di ∈ Ti . d ` di; (18)

∀di ∈ Ti : ∃d ∈ S2 . d ` di; (19)

∀di ∈ Ti \ S : ∃d ∈ S1 . d ∇ di; (20)

∀d ∈ S1 : ∃di ∈ Ti . d `∇ di. (21)

Letting i = m in properties (18) and (19) we obtain
S2 `EM Ω∇

D
(S), so that property (7) in Definition 6 holds.

Since S1 `P S2 and Tm ∈ ℘`

fn(D), we have Tm \ S =
Tm \ S2; thus, letting i = m in property (20), we ob-
tain that property (8) in Definition 6 holds. Thus Ω∇

D

is an extrapolation heuristics for D̂P. Moreover, letting
i = m in property (21), we obtain that property (9) in
Definition 8 holds, so that Ω∇

D
is ∇-covered.

We now prove the four properties by induction on i.
For the base case, we have i = 0 and T0 = S = S1 ∪ S2,
so that all the properties hold trivially. For the inductive
case, we have m > 0 and assume that i > 0. By Defini-
tion 9, if di−1 ∈ Ti−1, then there exists di ∈ Ti such that
either di−1 = di or there exists d′

i−1 ∈ Ti−1 such that
di−1  d′i−1 6= di and di = di−1 ∇ d′i−1; in both cases,
di−1 `∇ di. Thus, assuming properties (18), (19), (20)
and (21) hold for i − 1, they also hold for i. ut

Proof (of Theorem 1 on page 8). We first prove
condition (1) of Definition 1, i.e., S2 `P S1k∇PS2. Assume
the notation and the hypotheses introduced in Defini-
tion 11 and let T := S1 k∇P S2 = h∇

P
(S1,⇑k S2). By Def-

inition 10, S2 `P ⇑k S2 and, by Definition 6, ⇑k S2 `P T
so that, by transitivity of ‘`P’, S2 `P T .

We now prove condition (2) holds in Definition 1.
Suppose T0 `P T1 `P · · · is an increasing chain of ele-
ments in ℘`

fn(D) and consider the sequence defined by
U0 := T0 and, for each i > 0,

Ui := Ui−1 k∇P T ′
i ,

where T ′
i = Ui−1 ⊕P Ti. Suppose that i > 0. By Def-

inition 5, Ui−1 `P T ′
i . By the first part of the proof,

T ′
i `P Ui so that, by transitivity of ‘`P’, Ui−1 `P Ui.

Thus U0 `P U1 `P · · · is another increasing chain in
℘`

fn(D).
Consider any j ≥ 0 such that Uj 6= ∅ and suppose

dj ∈ Uj . By Definition 11, we have Uj+1 = h∇
P

(Uj ,⇑k T ′
j).

By condition (9) in Definition 8, there exists dj+1 ∈ Uj+1

such that dj `∇ dj+1. By transitivity, for all i > j, there
exists di ∈ Ui such that dj `∇ di. As the ‘∇’ relation
satisfies the ascending chain condition, there exist m ∈ N
and dm ∈ Um such that dj `∇ dm and, for all i ≥ m,
dm ∈ Ui.

Reasoning towards a contradiction, suppose that the
widened sequence does not converge in a finite number
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of steps. Then, by the point above, there exists ` ∈ N
and U ∈ ℘`

fn(D) where # U > k and U ⊆ Ui for all i ≥ `.
In particular, we have U ⊆ U` ∩ U`+1. By condition (8)
in Definition 6, U ⊆ ⇑k T ′

`+1 so that #(⇑k T ′
`+1) > k

contradicting Definition 10. Thus the widened sequence
converges in a finite number of steps. ut

Proof (of Proposition 3 on page 9). By Proposi-
tion 1, H∇

P
is an extrapolation heuristics for D̂P. There-

fore, using the notation of Definition 6, it remains to
show that H∇

P
(S1, S2) = S2 ⊕P Ω`

D
(S) where

S := { d1 ∇ d2 ∈ D | d1 ∈ S1, d2 ∈ S2, d1  d2 }

satisfies property (10) of Definition 12. In Proposition 1,
we have shown that equation (14) holds.

Assume that d ∈ H∇
P

(S1, S2) ∩ S2 and d1 ∈ S1 are
such that d1  d. Then d1 ∇ d is defined and is in S.
By Definition 4, there exists d′ ∈ Ω`

D
(S) such that d1 ∇

d ` d′; also, as ‘∇’ is a widening, d ` d1 ∇ d. Again
by Definition 4, there exists d′′ ∈ Ω`

D

(
S2 ∪ Ω`

D
(S)

)
=

H∇
P

(S1, S2) such that d′ ` d′′. To summarize,

d ` d1 ∇ d ` d′ ` d′′.

Since we observed that both d, d′′ ∈ H∇
P

(S1, S2) ∈ ℘`

fn(D),
non-redundancy implies that d = d′′, so that

d = d1 ∇ d = d′ = d′′.

Since d′ ∈ S, we also have d ∈ S. Thus, there exist
d′1 ∈ S1 and d2 ∈ S2 such that d = d′

1 ∇ d2 and hence
d′1 ∇ d, proving property (10) of Definition 12. ut

Proof (of Theorem 2 on page 9). We first prove
condition (1) in Definition 1, i.e., S2 `P S1 EM∇P S2.
Assume the notation and the hypotheses introduced in
Definition 13 and let T := S1 EM∇P S2 = h∇

P
(S1, S

′
2). As

‘�EM’ is a connector, we have S2 `EM S1�EMS2. Thus, in
both the cases of the definition of S ′

2, S2 `EM S′
2, which

implies S2 `P S′
2. Moreover, by Definition 6, S ′

2 `P T so
that, by transitivity of ‘`P’, S2 `P T .

We now prove condition (2) holds in Definition 1.
Suppose T0 `P T1 `P · · · is an increasing chain of el-
ements in ℘`

fn(D) and consider the sequence defined by
U0 := T0 and Ui := Ui−1EM∇P(Ui−1⊕PTi), for each i > 0.
As we have already shown that condition (1) in Defini-
tion 1 holds, (Ui−1 ⊕P Ti) `P Ui so that, by transitivity
of ‘`P’, Ui−1 `P Ui. Thus U0 `P U1 `P · · · is another
increasing chain in ℘`

fn(D). We need to show that the
widened sequence converges in a finite number of steps.

For each i > 0, consider the successive widened iter-
ates Ui−1 and Ui, so that, according to Definition 13, we
can write Ui = h∇

P
(Ui−1, S

′
2), where in both the cases for

the definition of S′
2 we have Ui−1 `EM S′

2. Since h∇
P

is a
∇-connected extrapolation heuristics, by property (7) of
Definition 6, we have S ′

2 `EM Ui and, by transitivity of
‘`EM’, Ui−1 `EM Ui. Moreover, in the above context, the

properties (8) of Definition 6 and (10) of Definition 12
can be rewritten to the simpler property:

∀d′ ∈ Ui : ∃d ∈ Ui−1 . d `∇ d′. (22)

Let Wi ⊆ D × D be defined so that (d, d′) ∈ Wi holds
if and only if d ∈ Ui−1, d′ ∈ Ui and d ∇ d′. Thus, by
property (22), we have

∀d′ ∈ Ui \ Ui−1 : ∃d ∈ Ui−1 . (d, d′) ∈ Wi. (23)

For each i ∈ N, consider the finite directed graph
Gi = (Vi, Ei), where

– the set of vertices Vi ⊆ D is Vi :=
⋃
{Uj | 0 ≤ j ≤ i };

– the set of edges Ei ⊆ Vi × Vi is

Ei :=
⋃

{Wj | 0 < j ≤ i }.

Furthermore, consider the (a priori, possibly infinite)
graph G = (V, E) such that

V =
⋃

i≥0

Vi; E =
⋃

i≥0

Ei =
⋃

i≥1

Wi.

We will now show that G is a finite and acyclic graph,
so that, by property (23), ‘EM∇P’ is a widening. Namely,
we will prove the following properties for the graph G,
which combined together imply that G is a finite and
acyclic graph:

1. G has no infinite paths;
2. G has a finite number of connected components;
3. G is finitely branching, i.e., each vertex has finite

outdegree.

To prove G has no infinite paths, suppose p := d0 →
d1 → · · · → di → · · · is a (possibly infinite) path in
G. By the definition of G, if (dk−1, dk) is an edge in
p for some k > 0, then there exists an index j > 0
such that (dk−1, dk) ∈ Wj . By definition of Wj , we know
that dk−1 ∇ dk. Thus, we have a strictly increasing
sequence d0 ∇ d1 ∇ · · · ∇ di ∇ · · · and hence, as
‘∇’ satisfies the ascending chain condition, the path p
must be finite.

We now prove that the graph G has a finite number of
connected components. Consider, for any i > 0 the graph
Gi = (Vi, Ei). Then, by property (23), for each vertex
di in Vi either di ∈ Vi−1 or there is an edge (di−1, di) in
Ei where di−1 ∈ Ui−1 ⊆ Vi−1. Thus, for all i ∈ N, the
number of components of Gi is no more than the number
of components of Gi−1. As the number of components of
G0 is # U0, the number of components of G is no more
than # U0.

Finally, to prove that G is finitely branching, consider
any vertex d ∈ V . Suppose that, for some index i > 0,
there exists (d, d′) ∈ Ei \ Ei−1 (note that (d, d′) /∈ E0

because E0 = ∅). Then (d, d′) ∈ Wi. Thus, by definition
of Wi, d ∈ Ui−1 and d′ ∈ Ui \Ui−1 and d  d′. However,
for all indices j ≥ i, as Ui `P Uj , there exists dj ∈
Uj such that d′ ` dj so that d  dj ; as Uj is a non-
redundant set (in the sense of Definition 4), d /∈ Uj .
Thus all outgoing edges from d are in Ei. As the set Ei

is finite, d has a finite number of outgoing edges. ut
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In order to prove Proposition 4, we first define a mi-
nor variant (a coarsening) of the ‘ yP’ relation and show
that it satisfies the ascending chain condition.

Definition 19. (‘ yL’.) Let (O,�, µ) be a finite con-
vergence certificate for the widening operator ‘∇’ on D̂.
The relation yL ⊆ ℘`

fn(D)×℘`

fn(D) induced by µ is such
that, for each S1, S2 ∈ ℘`

fn(D), S1 yL S2 holds if and
only if either one of the following conditions holds:

µ
(⊕

S1

)
≺ µ

(⊕
S2

)
;

µ
(⊕

S1

)
= µ

(⊕
S2

)
∧ µ̃(S1) ≺≺ µ̃(S2).

Lemma 1. The ‘ yL’ relation on D̂P satisfies the as-
cending chain condition.

Proof. By assumption, (O,�, µ) is a finite convergence
certificate for the base-level widening operator ‘∇’, so
that 〈O,�〉 satisfies the ascending chain condition. As
noted in Section 2, the induced poset

〈
M(O),��

〉
also

satisfies the ascending chain condition. As a consequence,
the lexicographic product of ‘�’ and ‘��’ satisfies the as-
cending chain condition on the product O×M(O). Note
that, by Definition 19, S1 yL S2 holds if and only if there
is a strict increase in this lexicographic product order-
ing, so that ‘ yL’ satisfies the ascending chain condition.
ut

Proof (of Proposition 4 on page 10). By hypothe-
ses, the certificate (O,�, µ) is such that both ‘�’ and µ
are finitely computable. Thus, the finite computability
of the relation ‘ yP’ is an easy consequence of the way it
is defined and the fact that we only consider finite sets
and multisets.

We first show that, for all Si, Si+1, Si+2 ∈ D̂P,

Si yP Si+1 yP Si+2 =⇒

(Si yL Si+1) ∨ (Si yL Si+2). (24)

There are three cases corresponding to the three con-
ditions in Definition 14. If Si yP Si+1 holds by virtue
of condition (11), then µ

(⊕
Si

)
≺ µ

(⊕
Si+1

)
, which im-

plies Si yL Si+1. Similarly, if Si yP Si+1 holds by virtue
of condition (13), then both µ

(⊕
Si

)
= µ

(⊕
Si+1

)
and

µ̃(Si) ≺≺ µ̃(Si+1), which again implies Si yL Si+1. Oth-
erwise, Si yP Si+1 must hold by virtue of condition (12)
so that µ

(⊕
Si

)
= µ

(⊕
Si+1

)
and # Si+1 = 1. How-

ever, Si+1 yP Si+2 also holds and, as # Si+1 = 1, this
may only happen by virtue of condition (11) so that
µ
(⊕

Si+1

)
≺ µ

(⊕
Si+2

)
. Thus,

µ
(⊕

Si

)
= µ

(⊕
Si+1

)
≺ µ

(⊕
Si+2

)

and Si yL Si+2.
We prove that ‘ yP’ satisfies the ascending chain con-

dition by contraposition; thus we suppose that there is
an infinite chain S0 yP S1 yP · · · yP Si yP · · · of ab-
stract elements in the finite powerset domain D̂P. Then
by (24), there exists a sequence 0 ≤ j1 ≤ · · · ≤ ji ≤ · · ·

such that S0 yL Sj1 yL · · · yL Sji
yL · · · and, for all

i ∈ N, ji ≥ i. Thus this sequence is also infinite which
contradicts the result of Lemma 1 that ‘ yL’ satisfies the
ascending chain condition. ut

Proof (of Theorem 3 on page 11). Let S1, S2 ∈
℘`

fn(D), where S1 P S2 and let T := S1 µ∇P S2. Let
S := S1 �P S2. Then, as ‘ �P’ is an upper bound operator
on D̂P we have

S1 P S2 `P S. (25)

We first prove that condition (1) in Definition 1 holds,
i.e., S2 `P T . Consider each of the three cases in Defini-
tion 16 separately. If the first case applies, then T = S
and the result holds by (25). If the second case applies,
then T = S ⊕P {d} so that as ‘⊕P’ is the least upper
bound operator, the result follows again by (25). If the
third and last case applies, then T =

{⊕
S2

}
, so that

the result holds trivially by definition of ‘`P’.
We now prove that condition (2) in Definition 1 holds.

By Proposition 4, ‘yP’ satisfies the ascending chain con-
dition; hence, to complete the proof it is sufficient to
show that S1 yP T . Consider each of the three cases in
Definition 16. If the first case is applied, then the appli-
cability condition trivially ensures that S1 yP T .

If the second case is applied, then T = S ⊕P {d},
where

d := d1 	 d2;

d1 :=
⊕

S1 ∇
⊕

S;

d2 :=
⊕

S.

Note that the applicability condition
⊕

S1 
⊕

S for
this case ensures that the base-level widening application
in the computation of the abstract element d1 ∈ D is well
defined. Moreover, since ‘∇’ is an upper bound operator
on D̂, we have d2 ` d1, so that also the subtraction
application in the computation of the abstract element
d ∈ D is well defined. By Definition 15, we know that
d1 = (d1 	 d2) ⊕ d2. As a consequence, we obtain

⊕
T =

⊕(
S ⊕P {d}

)

= d ⊕
(⊕

S
)

= d ⊕ d2

= (d1 	 d2) ⊕ d2

= d1

=
⊕

S1 ∇
⊕

S.

Since µ is a certificate for the base-level widening ‘∇’,
we obtain

µ
(⊕

S1

)
≺ µ

(⊕
S1 ∇

⊕
S

)
= µ

(⊕
T

)
,

so that by condition (11) of Definition 14, S1 yP T .
Finally, suppose that the last case is applied. Then

T =
{⊕

S2

}
so that

⊕
T =

⊕
S2. It follows from (25)

that
⊕

S1 `
⊕

T `
⊕

S. As the condition for the second
case of Definition 16 does not hold,

⊕
S1 =

⊕
S, which
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O

T0 = {P1,P2}

P1

P2

O

T1 = {P1,P2,P3}

P1

P2

P3

O

P4

P5

U

T1

Pd

T2 = {P4,P5}

U1 = {
U

T1}

U2 = {P4,Pd}

Fig. 7. The condition #U1 > 1 is needed to obtain a proper
widening.

implies
⊕

S1 =
⊕

T and µ
(⊕

S1

)
= µ

(⊕
T

)
. By (25),

S1 P T so that # S1 > 1. Since # T = 1, condition (12)
of Definition 14 is satisfied and S1 yP T . ut

It should be noted that case (12) of Definition 14
has been introduced so as to ensure that S1 yP

{⊕
S2

}

holds in the last case of the specification of ‘µ∇P’, there-
fore inducing a strict decrease in the corresponding level
mapping. This also made necessary the addition of the
extra conditions on the cardinalities of S1 and S2 in
case (13) of Definition 14, since without these the rela-
tion would have violated the ascending chain condition.
This is illustrated by the following example.

Example 12. Consider the finite powerset domain (ĈP2)P,
with the standard widening ‘∇s’ on the base-level domain
CP2, certified by the level mapping µs defined in Defini-
tion 3 and the upper bound ‘�P’ defined as ‘⊕P’, so that
we will always have S1 �P S2 = S2. Consider an iteration
sequence T0 `P T1 `P T2 `P · · · starting with elements

T0 = {P1,P2},

T1 = {P1,P2,P3},

T2 = {P4,P5},

as in the three diagrams in Figure 7. Then, the first three
elements of widened sequence U0 `P U1 `P U2 `P · · ·
can be computed as follows. First U0 := T0. Then, since
U0 `P T1, we have U1 := U0 µ∇P T1 = T0 µ∇P T1. As⊎
T0 =

⊎
T1, # T1 > 1 and

µ̃s(T0) =
{
(0, 3), (0, 3)

}

6≺≺s

{
(0, 3), (0, 3), (0, 3)

}
= µ̃s(T1),

the last case in Definition 16 applies so that U1 =
{⊎

T1

}
,

as is indicated in the lower square in the right-hand di-
agram of Figure 7. Thus U1 `P T2, so that the widened
iterate U2 := U1 µ∇P T2 is defined. Since

µs

(⊎
U1

)
= (0, 4) = µs

(⊎
T2

)

but

µ̃s(U1) =
{
(0, 4)

}
≺≺s

{
(0, 3), (0, 3)

}
= µ̃s(T2),

without the extra condition #U1 > 1 in case (13) of
Definition 14, we would apply the first case in Defini-
tion 16, obtaining T2 as the next element of the widened
sequence. However, it can be seen that T2 has the same
structure as U0 = T0 (the former being obtained from
the latter by a suitable affine transformation) so that
the sequence T0, T1, T2 and the corresponding “widened”
sequence U0,U1, T2 can be extended indefinitely without
obtaining convergence (in a finite number of steps). In
contrast, since we do require the condition #U1 > 1,
the second case of Definition 16 applies and we com-
pute U2 = T2 ]P {Pd} = {P4,Pd}, where Pd is the (un-
bounded) polyhedron indicated by the dotted lines in
the right-hand diagram.

Proof (of Proposition 5 on page 12). The finite

powerset domain (ĈPn)P is related to the concrete do-

main Ân defined in Section 2.2 by the concretization
function γA

P
induced from γA, where γA(P) = P for each

P ∈ CPn. Namely, for each S ∈ ℘⊆

fn
(CPn), we have

γA

P
(S) =

⋃
S. Therefore, we have to show that, for all

S1,S2 ∈ ℘⊆

fn
(CPn), S1 ./ S2 if and only if

⋃
S1 =

⋃
S2.

First we assume that
⋃
S1 ⊆

⋃
S2 and show that

S1 / S2. Consider an arbitrary element S ′
1 ∈ ℘⊆

fn
(CPn)

such that S ′
1 `P S1. By Definition 5, this implies

⋃
S ′

1 ⊆⋃
S1 so that

⋃
S ′

1 ⊆
⋃
S2. Let

S ′′
1 = Ω⊆

CPn

(
{P ′

1 ∩ P2 ∈ CPn | P ′
1 ∈ S ′

1,P2 ∈ S2 }
)

so that, by Definitions 4 and 5, S ′′
1 `P S2. Moreover,

by Definition 4,
⋃
S ′′

1 =
⋃
S ′

1 ∩
⋃
S2 which implies that⋃

S ′
1 =

⋃
S ′′

1 so that
⊎
S ′

1 =
⊎
S ′′

1 . Thus, by Defini-
tion 17, S1 / S2. By a symmetric argument, we can prove
that

⋃
S2 ⊆

⋃
S1 implies S2 / S1. Thus, again by Defi-

nition 17, we obtain that S1 ≡γA

P

S2 implies S1 ./ S2.

Second we assume that
⋃
S1 *

⋃
S2 and show that

S1 6 S2. By assumption, there exist a point p ∈ Rn such
that p ∈

(⋃
S1

)
\

(⋃
S2

)
. As a consequence, there must

exist a polyhedron P1 ∈ S1 such that p ∈ P1. Consider
now the polyhedron P ′

1 := {p} and the corresponding
singleton S ′

1 = {P ′
1}. Note that S ′

1 `P S1 and S ′
1 0P S2.

Moreover, if S ′′
1 ∈ ℘⊆

fn
(CPn) is such that

⊎
S ′′

1 =
⊎

S ′
1,

then we must have S ′′
1 = S ′

1 so that S ′′
1 0P S2. Hence,

by Definition 17, S1 6 S2. By a symmetric argument,
we can prove that

⋃
S2 *

⋃
S1 implies S2 6 S1. Thus,

reasoning by contraposition, we obtain that S1 ./ S2

implies S1 ≡γA

P

S2. ut

To prove Proposition 6 on page 12, it is convenient
to consider non-redundant merges, where each of the el-
ements in the original abstract collection participates to
just one join operation.

Definition 20. Let ‘∼’ be a congruence relation on D̂P.
Let S1, S2 ∈ ℘`

fn(D), where S2 = {d1, . . . , dm} and {S1i}
m
i=1
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is a partition of S1 such that, for each 1 ≤ i ≤ m,
merge∼

(
S1i, {di}

)
holds. Then we write merge n∼(S1, S2)

and say that S2 is a non-redundant merge of S1.

Lemma 2. Let ‘∼’ be a congruence relation on D̂P that
refines the ⊕-congruence relation. Let S1 6= S2 ∈ ℘`

fn(D)
where merge∼(S1, S2). Then there exists S ′

2 ∈ ℘`

fn(D)
such that merge n∼(S1, S

′
2) and # S′

2 < # S1.

Proof. As S1 6= S2 and merge∼(S1, S2) holds, by Def-
inition 18, S1 P S2 so that there exists d2 ∈ S2 \ S1.
Therefore, also by Definition 18, there exists S ′

1 ⊆ S1 (so
that d2 /∈ S′

1) where {d2} ∼ S′
1. Since ‘∼’ refines the ⊕-

congruence relation, we obtain d2 =
⊕

S′
1 so that S′

1 6=
{d2} and # S′

1 > 1. Let S′
2 = (S1 \ S′

1) ⊕P {d2}. Then,
by Definition 5, # S′

2 < # S1 and, by Definition 18,
merge∼(S1, S

′
2) holds. If S1 \ S′

1 6= ∅, then {S1 \ S′
1, S

′
1}

is a partition of S1; otherwise, {S′
1} is such a partition.

In both cases, by Definition 20, merge n∼(S1, S
′
2). ut

Proof (of Proposition 6 on page 12). We first prove,
by induction on # S, that there exists S ′ ∈ ℘`

fn(D) such
that merge∼(S, S′), S′ is fully-merged and, if S′ 6= S,
then # S′ < # S. As merge∼ is reflexive, the result holds
trivially if S is fully-merged. Note that, for the base cases
when # S ≤ 1, S is fully-merged and the result holds.
Suppose therefore that S is not fully-merged (so that
# S > 1). Then there exists S ′′ ∈ ℘`

fn(D)\{S} such that
merge∼(S, S′′). By Lemma 2, we can assume that S ′′ is
chosen so that merge n∼(S, S′′) and # S′′ < # S. There-
fore we can apply the inductive hypothesis to S ′′; there
exists S′ ∈ ℘`

fn(D) which is fully-merged, merge∼(S′′, S′)
and # S′ ≤ # S′′. As merge∼ is transitive, we obtain
merge∼(S, S′) and # S′ < # S.

Therefore, the merger ‘↑∼’ can be defined, for each
S ∈ ℘`

fn(D), as ↑∼ S = S, when S is already fully-merged,
and ↑∼ S = S′ as defined above, otherwise. The proof for
a pairwise-merger is similar. ut
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