
Under consideration for publication in Theory and Practice of Logic Programming 1

Enhanced Sharing Analysis Techniques:
A Comprehensive Evaluation

ROBERTO BAGNARA, ENEA ZAFFANELLA∗
Department of Mathematics, University of Parma, Italy

(e-mail: {bagnara,zaffanella}@cs.unipr.it)

PATRICIA M. HILL†
School of Computing, University of Leeds, Leeds, U.K.

(e-mail: hill@comp.leeds.ac.uk)

Abstract

Sharing, an abstract domain developed by D. Jacobs and A. Langen for the analysis of
logic programs, derives useful aliasing information. It is well-known that a commonly
used core of techniques, such as the integration of Sharing with freeness and linearity
information, can significantly improve the precision of the analysis. However, a number
of other proposals for refined domain combinations have been circulating for years. One
feature that is common to these proposals is that they do not seem to have undergone
a thorough experimental evaluation even with respect to the expected precision gains. In
this paper we experimentally evaluate: helping Sharing with the definitely ground variables
found using Pos, the domain of positive Boolean formulas; the incorporation of explicit
structural information; a full implementation of the reduced product of Sharing and Pos;
the issue of reordering the bindings in the computation of the abstract mgu; an original
proposal for the addition of a new mode recording the set of variables that are deemed to
be ground or free; a refined way of using linearity to improve the analysis; the recovery
of hidden information in the combination of Sharing with freeness information. Finally,
we discuss the issue of whether tracking compoundness allows the computation of more
sharing information.

1 Introduction

In the execution of a logic program, two variables are aliased or share at some
program point if they are bound to terms that have a common variable. Conversely,
two variables are independent if they are bound to terms that have no variables in
common. Thus by providing information about possible variable aliasing, we also
provide information about definite variable independence. In logic programming,
a knowledge of the possible aliasing (and hence definite independence) between
variables has some important applications.

∗ The work of the first and second authors has been partly supported by MURST projects “Cer-
tificazione automatica di programmi mediante interpretazione astratta” and “Interpretazione
astratta, sistemi di tipo e analisi control-flow.”
† This work was partly supported by EPSRC under grant GR/M05645.

2 R. Bagnara, E. Zaffanella, and P. M. Hill

Information about variable aliasing is essential for the efficient exploitation of
AND-parallelism (Bueno, de la Banda and Hermenegildo 1994, Bueno, de la Banda
and Hermenegildo 1999, Chang, Despain and DeGroot 1985, Hermenegildo and
Greene 1990, Hermenegildo and Rossi 1995, Jacobs and Langen 1992, Muthukumar
and Hermenegildo 1992). Informally, two atoms in a goal are executed in parallel if,
by a mixture of compile-time and run-time checks, it can be guaranteed that they
do not share any variable. This implies the absence of binding conflicts at run-time:
it will never happen that the processes associated to the two atoms try to bind the
same variable.

Another significant application is occurs-check reduction (Crnogorac, Kelly and
Søndergaard 1996, Søndergaard 1986). It is well-known that many implemented
logic programming languages (e.g., almost all Prolog systems) omit the occurs-check
from the unification procedure. Occurs-check reduction amounts to identifying the
unifications where such an omission is safe, and, for this purpose, information on
the possible aliasing of program variables is crucial.

Aliasing information can also be used indirectly in the computation of other
interesting program properties. For instance, the precision with which freeness in-
formation can be computed depends, in a critical way, on the precision with which
aliasing can be tracked (Bruynooghe, Codish and Mulkers 1994a, Codish, Dams,
Filé and Bruynooghe 1993, Filé 1994, King and Soper 1994, Langen 1990, Muthuku-
mar and Hermenegildo 1991).

In addition to these well-known applications, a recent line of research has shown
that aliasing information can be exploited in Inductive Logic Programming (ILP).
In particular, in (Blockeel, Demoen, Janssens, Vandencasteele and Laer 2000), the
authors consider several optimizations proposed for speeding up the refinement
of inductively defined predicates in ILP systems. The applicability of these opti-
mizations, previously defined in terms of syntactic conditions on the considered
predicate, can be recast as tests on variable aliasing.

Before continuing, a brief note on terminology: a variable is compound if it is
bound to a non-variable term, it is ground if it is bound to a term containing no
variables, it is free if it is not compound, it is linear if it is bound to a term that
does not contain multiple occurrences of a variable.

Sharing, a domain due to D. Jacobs and A. Langen (Jacobs and Langen 1989,
Jacobs and Langen 1992, Langen 1990), is based on the concept of set-sharing.
An element of the Sharing domain, which is a set of sharing-groups (i.e., a set of
sets of variables), represents information on groundness, groundness dependencies,
possible aliasing, and more complex sharing-dependencies among the variables that
are involved in the execution of a logic program (Bagnara, Hill and Zaffanella
1997, Bagnara, Hill and Zaffanella 2002, Bueno et al. 1994, Bueno et al. 1999).

Even though Sharing is, in a sense, remarkably precise, it is well-known that
more precision is attainable by combining it with other domains. Nowadays, no-
body would seriously consider performing sharing analysis without exploiting the
combination of aliasing information with groundness and linearity information. As a
consequence, expressions such as ‘sharing information’, ‘sharing domain’ and ‘shar-
ing analysis’ usually capture groundness, aliasing, linearity and quite often also

Enhanced Sharing Analysis Techniques: A Comprehensive Evaluation 3

freeness. Notice that this idiom is nothing more than a historical accident: as we
will see in the sequel, compoundness and other kinds of structural information could
also be included in the collective term ‘sharing information’.

As argued informally by H. Søndergaard (Søndergaard 1986), linearity informa-
tion can be suitably exploited to improve the accuracy of a sharing analysis. This
observation has been formally applied in (Codish, Dams and Yardeni 1991) to the
specification of the abstract mgu operator for ASub, a sharing domain based on the
concept of pair-sharing (i.e., aliasing and linearity information is encoded by a set
of pairs of variables). A similar integration with linearity for the domain Sharing

was proposed by Langen in his PhD thesis (Langen 1990). The synergy attain-
able from the integration between aliasing and freeness information was pointed
out by K. Muthukumar and M. Hermenegildo (Muthukumar and Hermenegildo
1992). Building on these works, W. Hans and S. Winkler (Hans and Winkler 1992)
proposed a combined integration of freeness and linearity information with shar-
ing, but small variations (such as the one we will present as the starting point for
our work) have been developed by M. Bruynooghe et al. (Bruynooghe and Codish
1993, Bruynooghe et al. 1994a).

There have been a number of other proposals for more refined combinations
which have the potential for improving the precision of the sharing analysis over
and above that obtainable using the classical combinations of Sharing with linearity
and freeness. These include the implementation of more powerful abstract seman-
tic operators (since it is well-known that the commonly used ones are sub-optimal)
and/or the integration with other domains. Not one of these proposals seem to have
undergone a thorough experimental evaluation, even with respect to the expected
precision gains. The goal of this paper is to systematically study these enhance-
ments and provide a uniform theoretical presentation together with an extensive
experimental evaluation that will give a strong indication of their impact on the
accuracy of the sharing information.

Our investigation is primarily from the point of view of precision. Reasonable
efficiency is also clearly of interest but this has to be secondary to the question
as to whether precision is significantly improved: only if this is established, should
better implementations be researched. One of the investigated enhancements is
the integration of explicit structural information in the sharing analysis and an
important contribution of this paper is that it shows both the feasibility and the
positive impact of this combination.

Note that, regardless of its practicality, any feasible sharing analysis technique
that offers good precision may be valuable. While inefficiency may prevent its adop-
tion in production analyzers, it can help in assessing the precision of the more
competitive techniques.

This paper represents a further step in our systematic investigation of many
diverse issues concerning the Sharing domain. We first examined the adequacy of
Sharing with respect to the property of interest, that is, pair-sharing (Bagnara et
al. 2002). Prior to this work, Sharing had been accepted and implemented as it was,
but in (Bagnara et al. 1997) we proved that Sharing is redundant for pair-sharing
and we identified the weakest abstraction of Sharing that can capture pair-sharing

4 R. Bagnara, E. Zaffanella, and P. M. Hill

and groundness with the same degree of precision. One notable advantage of this
abstraction is that the costly star-union operator is no longer necessary. In (Hill,
Bagnara and Zaffanella 1998, Hill, Bagnara and Zaffanella 2002) we have proved
the soundness, idempotence, and commutativity of Sharing. Most importantly, these
results have been established, for the first time, without assuming that the analyzed
language performs the occurs-check in the unification procedure. This closed a long-
standing gap, as all the works on the use of Sharing for the analysis of Prolog pro-
grams had always disregarded this problem. The problem of scalability of Sharing,
still retaining as much precision as possible, was tackled in (Zaffanella, Bagnara and
Hill 1999a), where a family of widening operators (Cousot and Cousot 1992) is pre-
sented that allows the desired goal to be achieved. Finally, in (Zaffanella, Hill and
Bagnara 1999b, Zaffanella, Hill and Bagnara 2002) we have studied the decompo-
sition of Sharing and its non-redundant counterpart via complementation (Cortesi,
Filé, Giacobazzi, Palamidessi and Ranzato 1997). This work has shed new light,
not only on the relation between these domains and Def (the domain of definite
Boolean functions), but also, more generally, on the use of complementation to
obtain (minimal) decompositions.

The present paper, which is an improved and extended version of (Bagnara,
Zaffanella and Hill 2000b), is structured as follows. In Section 2, we define some no-
tation and recall the definitions of the domain Sharing and its standard integration
with freeness and linearity information denoted as SFL. In Section 3, we briefly
describe the China analyzer, the benchmark suite and the methodology we follow
in the experimental evaluations. In each of the next seven sections, we describe and
experimentally evaluate different enhancements and precision optimizations for the
domain SFL. Section 4 considers a simple combination of Pos with SFL; Section 5
investigates the effect of including explicit structural information by means of the
Pattern(·) construction; Section 6 discusses possible heuristics for reordering the
bindings so as to maximize the precision of SFL; Section 7 studies the implemen-
tation of a more precise combination between Pos and SFL; Section 8 describes a
new mode ‘ground or free’ to be included in SFL; Section 9 and Section 10 study
the possibility of improving the exploitation of the linearity and freeness informa-
tion already encoded in SFL. In Section 11 we discuss (without an experimental
evaluation) whether compoundness information can be useful for precision gains.
Section 12 concludes with some final remarks.

2 Preliminaries

For any set S, ℘(S) denotes the powerset of S. For ease of presentation, we assume
there is a finite set of variables of interest denoted by VI . If t is a syntactic object
then vars(t) and mvars(t) denote the set and the multiset of variables in t, respec-
tively. If a occurs more than once in a multiset M we write a A M . We let Terms
denote the set of first-order terms over VI . Bind denotes the set of equations of
the form x = t where x ∈ VI and t ∈ Terms is distinct from x. Note that we do
not impose the occurs-check condition x /∈ vars(t), since we target the analysis of
Prolog and CLP systems possibly omitting this check. The following simplification

Enhanced Sharing Analysis Techniques: A Comprehensive Evaluation 5

of the standard definitions for the Sharing domain (Cortesi and Filé 1999, Hill et
al. 1998, Jacobs and Langen 1992) assumes that the set of variables of interest is
always given by VI .1

Definition 1
(The set-sharing domain SH .) The set SH is defined by

SH def= ℘(SG),

where the set of sharing-groups SG is given by

SG def= ℘(VI) \ {∅}.

SH is ordered by subset inclusion. Thus the lub and glb of the domain are set union
and intersection, respectively.

Definition 2
(Abstract operations over SH .) The abstract existential quantification on SH
is encoded by the binary function aexists : SH × ℘(VI) → SH such that, for each
sh ∈ SH and V ∈ ℘(VI),

aexists(sh, V) def=
{
S \ V

∣∣ S ∈ sh, S \ V 6= ∅

}
∪
{
{x}

∣∣ x ∈ V }.
For each sh ∈ SH and each V ∈ ℘(VI), the extraction of the relevant component

of sh with respect to V is given by the function rel : ℘(VI)× SH → SH defined as

rel(V, sh) def= {S ∈ sh | S ∩ V 6= ∅ }.

For each sh ∈ SH and each V ∈ ℘(VI), the function rel : ℘(VI) × SH → SH
gives the irrelevant component of sh with respect to V . It is defined as

rel(V, sh) def= sh \ rel(V, sh).

The function (·)? : SH → SH , also called star-union, is given, for each sh ∈ SH ,
by

sh? def=
{
S ∈ SG

∣∣∣∣ ∃n ≥ 1 . ∃T1, . . . , Tn ∈ sh . S =
n⋃
i=1

Ti

}
.

For each sh1, sh2 ∈ SH , the function bin: SH × SH → SH , called binary union,
is given by

bin(sh1, sh2) def= {S1 ∪ S2 | S1 ∈ sh1, S2 ∈ sh2 }.
We also use the self-bin-union function sbin: SH → SH , which is given, for each

sh ∈ SH , by

sbin(sh) def= bin(sh, sh).

1 Note that, during the analysis process, the set of variables of interest may expand (when solving
the body of a clause) and contract (when abstract descriptions are projected onto the variables
occurring in the head of a clause). However, at any given time the set of variables of interest is
fixed. By consistently denoting this set by VI , we simplify the presentation, since we can omit
the set of variables of interest to which an abstract description refers.

6 R. Bagnara, E. Zaffanella, and P. M. Hill

The function amgu: SH × Bind → SH captures the effect of a binding on an
element of SH . Assume (x = t) ∈ Bind , sh ∈ SH , Vx = {x}, Vt = vars(t), and
Vxt = Vx ∪ Vt. Then

amgu(sh, x = t) def= rel(Vxt, sh) ∪ bin
(
rel(Vx, sh)?, rel(Vt, sh)?

)
. (1)

We now briefly recall the standard integration of set-sharing with freeness and
linearity information. These properties are each represented by a set of variables,
namely those variables that are bound to terms that definitely enjoy the given
property. These sets are partially ordered by reverse subset inclusion so that the
lub and glb operators are given by set intersection and union, respectively.

Definition 3

(The domain SFL.) Let F def= ℘(VI) and L
def= ℘(VI) be partially ordered by

reverse subset inclusion. The domain SFL is defined by the Cartesian product

SFL def= SH × F × L

ordered by the component-wise extension of the orderings defined on the three
subdomains.

A complete definition would explicitly deal with the set of variables of interest VI .
We could even define an equivalence relation on SFL identifying the bottom element
⊥ def= 〈∅,VI ,VI 〉 with all the elements corresponding to an impossible concrete
computation state: for example, elements 〈sh, f, l〉 ∈ SFL such that f * vars(sh)
(because a free variable does share with itself) or VI \ vars(sh) * l (because vari-
ables that cannot share are also linear). Note however that these and other similar
spurious elements rarely occur in practice and cannot compromise the correctness
of the results.

In a bottom-up abstract interpretation framework, such as the one we focus on,
abstract unification is the only critical operation. Besides unification, the analysis
depends on the ‘merge-over-all-paths’ operator, corresponding to the lub of the
domain, and the abstract projection operator, which can be defined in terms of an
abstract existential quantification operator.

Definition 4
(Abstract operations over SFL.) The abstract existential quantification on SFL
is encoded by the binary function aexists : SFL×℘(VI)→ SFL such that, for each
d = 〈sh, f, l〉 ∈ SFL and V ∈ ℘(VI),

aexists(d , V) def=
〈
aexists(sh, V), f ∪ V, l ∪ V

〉
.

For each d = 〈sh, f, l〉 ∈ SFL, we define the following predicates. The predicate
indd : Terms×Terms → Bool expresses definite independence of terms. Two terms
s, t ∈ Terms are independent in d if and only if indd(s, t) holds, where

indd(s, t) def=
(

rel
(
vars(s), sh

)
∩ rel

(
vars(t), sh

)
= ∅

)
.

Enhanced Sharing Analysis Techniques: A Comprehensive Evaluation 7

A term t ∈ Terms is free in d if and only if the predicate freed : Terms → Bool
holds for t, that is,

freed(t) def=
(
∃x ∈ VI . x = t ∧ x ∈ f

)
.

A term t ∈ Terms is linear in d if and only if lind(t), where lind : Terms → Bool
is given by

lind(t) def=
(
vars(t) ⊆ l

)
∧
(
∀x, y ∈ vars(t) : x = y ∨ indd(x, y)

)
∧
(
∀x ∈ vars(t) : x A mvars(t)⇒ x /∈ vars(sh)

)
.

The function amgu: SFL× Bind → SFL captures the effects of a binding on an
element of SFL. Let (x = t) ∈ Bind and d = 〈sh, f, l〉 ∈ SFL. Let also Vx = {x},
Vt = vars(t), Vxt = Vx ∪ Vt, Rx = rel(Vx, sh) and Rt = rel(Vt, sh). Then

amgu
(
d , x = t

) def= 〈sh ′, f ′, l′〉,

where

sh ′ def= rel(Vxt, sh) ∪ bin
(
Sx, St

)
;

Sx
def=

{
Rx, if freed(x) ∨ freed(t) ∨

(
lind(t) ∧ indd(x, t)

)
;

R?x, otherwise;

St
def=

{
Rt, if freed(x) ∨ freed(t) ∨

(
lind(x) ∧ indd(x, t)

)
;

R?t , otherwise;

f ′
def=


f, if freed(x) ∧ freed(t);

f \ vars(Rx), if freed(x);

f \ vars(Rt), if freed(t);

f \ vars(Rx ∪Rt), otherwise;

l′
def=
(
VI \ vars(sh ′)

)
∪ f ′ ∪ l′′;

l′′
def=


l \
(
vars(Rx) ∩ vars(Rt)

)
, if lind(x) ∧ lind(t);

l \ vars(Rx), if lind(x);

l \ vars(Rt), if lind(t);

l \ vars(Rx ∪Rt), otherwise.

This specification of the abstract unification operator is equivalent (modulo the
lack of the explicit structural information provided by abstract equation systems) to
that given in (Bruynooghe et al. 1994a), provided x /∈ vars(t). Indeed, as done in all
the previous papers on the subject, in (Bruynooghe et al. 1994a) it is assumed that
the analyzed language does perform the occurs-check. As a consequence, whenever
considering a definitely cyclic binding, that is a binding x = t such that x ∈ vars(t),
the abstract operator can detect the definite failure of the concrete computation
and thus return the bottom element of the domain. Such an improvement would not

8 R. Bagnara, E. Zaffanella, and P. M. Hill

be safe in our case, since we also consider languages possibly omitting the occurs-
check. However, when dealing with definitely cyclic bindings, the specification given
by the previous definition can still be refined as follows.

Definition 5
(Improvement for definitely cyclic bindings.) Consider the specification of the
abstract operations over SFL given in Definition 4. Then, whenever x ∈ vars(t), the
computation of the new sharing component sh ′ can be replaced by the following.2

sh ′ def= rel(Vxt, sh) ∪ bin
(
Sx,CS t

)
,

where

CS t
def=

{
CRt, if freed(x);

CR?
t , otherwise;

CRt
def= rel

(
vars(t) \ {x}, sh

)
.

This enhancement, already implemented in the China analyzer, is the rewording
of a similar one proposed in (Bagnara 1997a) for the domain Pos in the context
of groundness analysis. Its net effect is to recover some groundness and sharing
dependencies that are unnecessarily lost when using the standard operators.

The domain SH captures set-sharing. However, the property we wish to detect
is pair-sharing and, for this, it has been shown in (Bagnara et al. 2002) that SH
includes unwanted redundancy. The same paper introduces an upper-closure oper-
ator ρ on SH and the domain PSD def= ρ(SH), which is the weakest abstraction
of SH that is as precise as SH as far as tracking groundness and pair-sharing is
concerned.3 A notable advantage of PSD is that we can replace the star-union op-
eration in the definition of the amgu by self-bin-union without loss of precision. In
particular, in (Bagnara et al. 2002) it is shown that

amgu(sh, x = t) =ρ rel(Vxt, sh) ∪ bin
(

sbin
(
rel(Vx, sh)

)
, sbin

(
rel(Vt, sh)

))
, (2)

where the notation sh1 =ρ sh2 means ρ(sh1) = ρ(sh2).
It is important to observe that the complexity of the amgu operator on SH (1)

is exponential in the number of sharing-groups of sh. In contrast, the operator on
PSD (2) and the equivalence check using ‘=ρ’ both have polynomial complexity.
Practically speaking, very often this makes the difference between thrashing and
termination of the analysis in reasonable time.

The above observations on SH and PSD can be generalized to apply to the
domain combinations SFL and SFL2

def= PSD ×F ×L. In particular, SFL2 achieves
the same precision as SFL for groundness, pair-sharing, freeness and linearity and
the complexity of the corresponding abstract unification operator is polynomial.

2 Note that, in this special case, it also holds that freed (t) = false and indd (x, t) = (Rx = ∅).
3 The name PSD , which stands for Pair-Sharing Dependencies, was introduced in (Zaffanella et

al. 1999b). All previous papers, including (Bagnara et al. 2002), denoted this domain by SH ρ.

Enhanced Sharing Analysis Techniques: A Comprehensive Evaluation 9

For this reason, all the experimental work in this paper, with the exception of part
of the one described in Section 7, has been conducted using the SFL2 domain.

3 Experimental Evaluation

Since the main purpose of this paper is to provide an experimental measure of the
precision gains that might be achieved by enhancing a standard sharing analysis
with several new techniques we found in the literature, it is clear that the implemen-
tation of the various domain combinations was a major part of the work. However,
so as to adapt these assorted proposals into a uniform framework and provide a fair
comparison of their results, a large amount of underlying conceptual work was also
required. For instance, almost all of the proposed enhancements were designed for
systems that perform the occurs-check and some of them were developed for rather
different abstract domains: besides changing the representation of the domain ele-
ments, such a situation usually requires a reconsideration of the specification of the
abstract operators.

All the experiments have been conducted using the China analyzer (Bagnara
1997a) on a GNU/Linux PC system equipped with an AMD Athlon clocked at 700
MHz and 256 MB of RAM. China is a data-flow analyzer for CLP(HN) languages
(i.e., ISO Prolog, CLP(R), clp(FD) and so forth), HN being an extended Herbrand
system where the values of a numeric domain N can occur as leaves of the terms.
China, which is written in C++, performs bottom-up analysis deriving information
on both call-patterns and success-patterns by means of program transformations
and optimized fixpoint computation techniques. An abstract description is com-
puted for the call- and success-patterns for each predicate defined in the program.

A major point of the experimental evaluation is given by the test-suite, which
is probably the largest one ever reported in the literature on data-flow analysis of
(constraint) logic programs. The suite comprises all the programs we have access to
(i.e., everything we could find by systematically dredging the Internet): more than
330 programs, 24 MB of code, 800 K lines. Besides classical benchmarks, several real
programs of respectable size are included, the largest one containing 10063 clauses
in 45658 lines of code. The suite also comprises a few synthetic benchmarks, which
are artificial programs explicitly constructed to stress the capabilities of the analyser
and of its abstract domains with respect to precision and/or efficiency.

Because of the exponential complexity of the base domain SFL, a data-flow anal-
ysis that includes this domain will only be practical if it incorporates widening
operators (Zaffanella et al. 1999a).4 However, since almost none of the investigated
combinations come with specialized widening operators, for a fair assessment of
the precision improvements we decided to disable all the widenings available in
our SFL implementation. As a consequence, there are a few benchmarks for which
the analysis does not terminate in reasonable time or absorbs memory beyond ac-
ceptable limits, so that a precision comparison is not possible. Note however that

4 Note that we use the term ‘widening operator’ in its broadest sense: any mechanism whereby,
in the course of the analysis, an abstract description is substituted by one that is less precise.

10 R. Bagnara, E. Zaffanella, and P. M. Hill

the motivations behind this choice go beyond the simple observation that widening
operators affect the precision of the analysis: the problem is also that, if we use
the widenings defined and tuned for our implementation of the domain SFL, the
results would be biased. In fact, the definition of a good widening for an analysis
domain normally depends on both the representation and the implementation of
the domain. In other words, different implementations even of the same domain
will require different tunings of the widening operators (or even, possibly, brand
new widenings). This means that adopting the same widening operators for all the
domain combinations would weaken, if not invalidate, any conclusions regarding
the relative benefits of the investigated enhancements. On the other hand, the defi-
nition of a new specialized widening operator for each one of the considered domain
combinations, besides being a formidable task, would also be wasted effort as the
number of benchmark programs for which termination cannot be obtained within
reasonable time is really small.

For space reasons, the experimental results are only summarized here. The inter-
ested reader can find more information (including a description of the constantly
growing benchmark suite and detailed results for each benchmark) at the URI
http://www.cs.unipr.it/China/. Indeed, given the high number of benchmark
programs and the many domain combinations considered,5 even finding a concise,
meaningful and practical way to summarize the results has been a non-trivial task.

For each benchmark, precision is measured by counting the number of indepen-
dent pairs (the corresponding columns are labeled ‘I’ in the tables) as well as the
numbers of definitely ground (labeled ‘G’), free (‘F’) and linear (‘L’) variables de-
tected by each abstract domain. The results obtained for different analyses are
compared by computing the relative precision improvements or degradations on
each of these quantities and expressing them using percentages. The “overall” (‘O’)
precision improvement for the benchmark is also computed as the maximum im-
provement on all the measured quantities.6 The benchmark suite is then partitioned
into several precision equivalence classes: the cardinalities of these classes are ex-
pressed again using percentages. For example, when looking at the precision results
reported in Table 1 for goal-dependent analysis, the value 2.3 that can be found at
the intersection of the row labeled ‘0 < p ≤ 2’ with the column labeled ‘G’ is to
be read as follows: “for 2.3 percent of the benchmarks the increase in the number
of ground variables is less than or equal to 2 percent.” The precision class labeled
‘unknown’ identifies those benchmarks for which a precision comparison was not
possible, because one or both of the analyses was timed-out (for all comparisons,

5 We compute the results of 40 different variations of the static analysis, which are then used
to perform 36 comparisons. The results are computed over 332 programs for goal-independent
analyses and over 221 programs for goal-dependent analyses. This difference in the number of
benchmarks considered comes from the fact that many programs either are not provided with
a set of entry goals or use constructs such as call(G) where G is a term whose principal functor
is not known. In these cases the analyzer recognizes that goal-dependent analysis is pointless,
since no call-patterns can be excluded.

6 When computing this “overall” result for a benchmark, the presence of even a single preci-
sion loss for one of the measures overrides any precision improvement computed on the other
components.

Enhanced Sharing Analysis Techniques: A Comprehensive Evaluation 11

the time-out threshold is 600 seconds). In summary, a precision table gives an ap-
proximation of the distribution of the programs in the benchmark suite with respect
to the obtained precision gains.

For a rough estimate of the efficiency of the different analyses, for each comparison
we provide two tables that summarize the times taken by the fixpoint computa-
tions. It should be stressed that these by no means provide a faithful account of the
intrinsic computational cost of the tested domain combinations. Besides the lack
of widenings, which have a big impact on performance as can be observed by the
results reported in (Zaffanella et al. 1999a), the reader should not forget that, for
ease of implementation, having targeted at precision we traded efficiency whenever
possible. Therefore, these tables provide, so to speak, upper-bounds: refined imple-
mentations can be expected to perform at least as well as those reported in the
tables.

As done for the precision results, the timings are summarized by partitioning
the suite into equivalence classes and reporting the cardinality of each class using
percentages. In the first table we consider the distribution of the absolute time
differences, that is we measure the slow-down and speed-up due to the incorporation
of the considered enhancement. Note that the class called ‘same time’ actually
comprises the benchmarks having a time difference below a given threshold, which
is fixed at 0.1 seconds. In the second table we show the distribution of the total
fixpoint computation times, both for the base analysis (in the columns labeled ‘%1’)
and for the enhanced one (in the columns labeled ‘%2’); the columns labeled ‘∆’
show how much each total time class grows or shrinks due to the inclusion of the
considered combination.

4 A Simple Combination with Pos

It is well-known that the domain Sharing (and thus also SFL) keeps track of ground
dependencies. More precisely, Sharing contains Def , the domain of definite Boolean
functions (Armstrong, Marriott, Schachte and Søndergaard 1998), as a proper sub-
domain (Cortesi, Filé and Winsborough 1992, Zaffanella et al. 1999b). However,
we consider here the combination of SFL with Pos, the domain of positive Boolean
functions (Armstrong et al. 1998). There are several good reasons to couple SFL
with Pos:

1. Pos is strictly more expressive than Def in that it can represent (positive) dis-
junctive groundness dependencies that arise in the analysis of Prolog programs
(Armstrong et al. 1998). The ability to deal with disjunctive dependencies is
also needed for the precise approximation of the constraints of some CLP lan-
guages: for example, when using the finite domain solver of SICStus Prolog,
the user can write disjunctive constraints such as ‘X #= 4 #\/ Y #= 6’.

2. The increased precision on groundness propagates to the SFL component. It
can be exploited to remove redundant sharing groups and to identify more
linear variables, therefore having a positive impact on the computation of the
amgu operator of the SFL domain. Moreover, when dealing with sequences

12 R. Bagnara, E. Zaffanella, and P. M. Hill

of bindings, the added groundness information allows them to be usefully
reordered. In fact, while it has been proved that Sharing alone is commutative,
meaning that the result of the analysis does not depend on the ordering in
which the bindings are executed (Hill et al. 1998), the domain SFL does not
enjoy this property. In particular, even for the simpler combination of Sharing

with linearity it is known since (Langen 1990, pp. 66-67) that better results
are obtained if the grounding bindings are considered before the others.7 As
an example, consider the sequences of unifications

(
f(X,X, Y) = A, X = a

)
and

(
X = a, f(X,X, Y) = A

)
(Langen 1990, p. 66). The combination with

Pos is clearly advantageous in this respect.
3. Besides being useful for improving precision on other properties, disjunctive

dependencies also have a few direct applications, such as occurs-check reduc-
tion. As observed in (Crnogorac et al. 1996), if the groundness formula x ∨ y
holds, the unification x = y is occurs-check free, even when neither x nor y
are definitely linear.

4. Detecting the set of definitely ground variables through Pos and exploiting it
to simplify the operations on SFL can improve the efficiency of the analysis.
In particular this is true if the set of ground variables is readily available, as
is the case, for instance, with the GER implementation of Pos (Bagnara and
Schachte 1999).

5. The combination with Pos is essential for the application of a powerful widen-
ing technique on SFL (Zaffanella et al. 1999a). This is very important, since
analysis based on SFL is not practical without widenings.

6. In the context of the analysis of CLP programs, the notions of “ground vari-
able” and the notion of “variable that cannot share a common variable with
other variables” are distinct. A numeric variable in, say, CLP(R), cannot
share with other variables (not in the sense of interest in this paper) but is
not ground unless it has been constrained to a unique value. Thus the analysis
of CLP programs with SFL alone either will lose precision on pair-sharing (if
numeric variables are allowed to “share” in order to compute their ground-
ness) or will not be able to compute the groundness of numeric variables (if
numeric variables are excluded from the sharing-sets). In the first alternative,
as we have already noted, the precision with which groundness of numeric
variables can be tracked will also be limited. Since groundness of numeric
variables is important for a number of applications (e.g., compiling equality
constraints down to assignments or tests in some circumstances), we advocate
the use of Pos and SFL at the same time.

Thus, as a first technique to enhance the precision of sharing analysis, we con-
sider the simple propagation of the set of definitely ground variables from the Pos
component to the SFL component.8 We denote this domain by Pos× SFL.

7 A binding x = t is grounding with respect to an abstract description if, in all the concrete
computation states approximated by the abstract description, either the variable x is ground
or all the variables in t are ground. For example, when considering an abstract description
sh ∈ SH , the binding x = t is grounding if rel({x}, sh) = ∅ or rel(vars(t), sh) = ∅.

8 A more precise combination will be considered in Section 7.

Enhanced Sharing Analysis Techniques: A Comprehensive Evaluation 13

Prec. class Goal Independent Goal Dependent

O I G F L O I G F L

5 < p ≤ 10 — — — — — 0.5 — 0.5 — —

2 < p ≤ 5 0.3 — 0.3 — — — — — — —

0 < p ≤ 2 0.6 0.6 0.6 — 0.6 3.2 3.6 2.3 — 2.7

same precision 95.8 96.1 95.8 96.7 96.1 92.8 92.8 93.7 96.4 93.7

unknown 3.3 3.3 3.3 3.3 3.3 3.6 3.6 3.6 3.6 3.6

Time difference class % benchmarks

Goal Ind. Goal Dep.

degradation > 1 2.7 6.8

0.5 < degradation ≤ 1 1.5 0.5

0.2 < degradation ≤ 0.5 3.0 0.9

0.1 < degradation ≤ 0.2 5.7 5.0

both timed out 3.3 3.6

same time 81.6 81.9

0.1 < improvement ≤ 0.2 — 0.5

0.2 < improvement ≤ 0.5 0.9 0.5

0.5 < improvement ≤ 1 0.3 —

improvement > 1 0.9 0.5

Total time class Goal Ind. Goal Dep.

%1 %2 ∆ %1 %2 ∆

timed out 3.3 3.3 — 3.6 3.6 —

t > 10 8.4 9.0 0.6 7.2 7.2 —

5 < t ≤ 10 0.6 0.3 -0.3 1.4 1.4 —

1 < t ≤ 5 6.6 7.5 0.9 3.2 3.6 0.5

0.5 < t ≤ 1 3.3 2.7 -0.6 5.4 5.4 —

0.2 < t ≤ 0.5 7.2 8.4 1.2 10.4 13.1 2.7

t ≤ 0.2 70.5 68.7 -1.8 68.8 65.6 -3.2

Table 1. SFL2 versus Pos× SFL2.

As noted above, the GER implementation of (Bagnara and Schachte 1999), be-
sides being the fastest implementation of Pos known to date, is the natural can-
didate for this combination, since it provides constant-time access to the set G of
the definitely ground variables. Note that the widenings on the Pos component
have been retained. The reason for this choice is that they fire for only a few bench-
marks and, when coming into play, they rarely affect the precision of the groundness
analysis: by switching them off we would only obtain a few more time-outs.

In the SFL component, the set G of definitely ground variables is used

• to reorder the sequence of bindings in the abstract unification so as to handle
the grounding ones first;
• to eliminate the sharing groups containing at least one ground variable; and

14 R. Bagnara, E. Zaffanella, and P. M. Hill

• to recover from previous linearity losses.

The experimental results for Pos×SFL are compared with those obtained for the
domain SFL considered in isolation and reported in Table 1. It can be observed that
a precision improvement is observed in all of the measured quantities but freeness,
affecting up to 3.6% of the programs.

Note that there is a small discrepancy between these results and those of (Bag-
nara et al. 2000b) where more improvements were reported. The reason is that the
current SFL implementation uses an enhanced abstract unification operator, fully
exploiting the anticipation of the grounding bindings even on the base domain SFL
itself. In contrast, in the earlier SFL implementation used for the results in (Bagnara
et al. 2000b), only the syntactically grounding bindings were anticipated.9

As for the timings, even if the figures in the tables seem to contradict what we
claimed in point 4 above, a closer inspection of the detailed results reveals that this
is only due to a very unfortunate interaction between the increased precision given
by Pos and the absence of widening operators on SFL. This state of affairs forces
the analyzer to compute a few, but very expensive, further iterations in the fixpoint
computation.

Because of the reasons detailed above, we believe Pos should be part of the global
domain employed by any “production analyzer” for CLP languages. That is why,
for the remaining comparisons, unless otherwise stated, this simple combination
with the Pos domain is always included.

5 Tracking Explicit Structural Information

A way of increasing the precision of almost any analysis domain is by enhancing
it with structural information. This technique was proposed in (Cortesi, Le Char-
lier and Van Hentenryck 1994), where the generic structural domain Pat(<) was
introduced. A similar proposal, tailored to sharing analysis, is due to (Bruynooghe
et al. 1994a), where abstract equation systems are considered. In the experimental
evaluation the Pattern(·) construction (Bagnara 1997a, Bagnara 1997b, Bagnara,
Hill and Zaffanella 2000a) is used. This is similar to Pat(<) and correctly supports
the analysis of languages omitting the occurs-check in the unification procedure as
well as those that do not.

The construction Pattern(·) upgrades a domain D (which must support a certain
set of basic operations) with structural information. The resulting domain, where
structural information is retained to some extent, is usually much more precise
than D alone. There are many occasions where these precision gains give rise to
consistent speed-ups. The reason for this is twofold. First, structural information
has the potential of pruning some computation paths on the grounds that they
cannot be followed by the program being analyzed. Second, maintaining a tuple
of terms with many variables, each with its own description, can be cheaper than
computing a description for the whole tuple (Bagnara et al. 2000a). Of course,

9 A binding x = t is syntactically grounding if vars(t) = ∅.

Enhanced Sharing Analysis Techniques: A Comprehensive Evaluation 15

there is also a price to be paid: in the analysis based on Pattern(D), the elements
of D that are to be manipulated are often bigger (i.e., there are more variables of
interest) than those that arise in analyses that are simply based on D.

When comparing the precision results, the difference in the number of variables
tracked by the two analyses poses a non-trivial problem. How can we provide a
fair measure of the precision gain? There is no easy answer to such a question.
The approach chosen is simple though unsatisfactory: at the end of the analysis,
first throw away all the structural information in the results and then calculate
the cardinality of the usual sets. In other words, we only measure how the explicit
structural information in Pattern(D) improves the precision on D itself, which is
only a tiny part of the real gain in accuracy. As shown by the following example,
this solution greatly underestimates the precision improvement coming from the
integration of structural information.

Consider a simple but not trivial Prolog program: mastermind.10 Consider also
the only direct query for which it has been written, ‘?- play.’, and focus the
attention on the procedure extend code/1. A standard goal-dependent analysis of
the program with the Pos × SFL domain cannot say anything on the successes of
extend code/1. If the analysis is performed with Pattern(Pos×SFL) the situation
changes radically. Here is what such a domain allows China to derive:11

extend_code([([A|B],C,D)|E]) :-

list(B), list(E),

(functor(C,_,1);integer(C)),

(functor(D,_,1);integer(D)),

ground([C,D]), may_share([[A,B,E]]).

This means: “during any execution of the program, whenever extend code/1 suc-
ceeds it will have its argument bound to a term of the form [([A|B],C,D)|E],
where B and E are bound to list cells (i.e., to terms whose principal functor is either
’.’/2 or []/0); C and D are ground and bound to a functor of arity 1 or to an
integer; and pair-sharing may only occur among A, B, and E”. Once structural in-
formation has been discarded, the analysis with Pattern(Pos× SFL) only specifies
that extend code/1 may succeed. Thus, according to our approach to the precision
comparison, explicit structural information gives no improvements in the analysis
of extend code/1 (which is far from being a fair conclusion).

Of course, structural information is very valuable in itself. When exploited for
optimized compilation it allows for enhanced clause indexing and simplified unifi-
cation. Moreover, several program verification techniques are highly dependent on
this kind of information. However, the value of this extra precision could only be
measured from the point of view of the target application of the analysis.

10 This program which implements the game “Mastermind” was rewritten by H. Koenig and
T. Hoppe after code by M. H. van Emden and available at http://www.cs.unipr.it/China/
Benchmarks/Prolog/mastermind.pl.

11 Some extra groundness information obtained by the analysis has been omitted for simplicity:
this says that, if A and B turn out to be ground, then E will also be ground.

16 R. Bagnara, E. Zaffanella, and P. M. Hill

Prec. class Goal Independent Goal Dependent

O I G F L O I G F L

p > 20 7.5 2.7 3.9 2.1 3.3 6.3 1.4 3.6 1.8 3.6

10 < p ≤ 20 3.9 2.1 2.7 — 2.4 2.7 2.3 1.4 — 2.7

5 < p ≤ 10 4.5 1.8 2.7 2.4 2.4 1.8 0.9 2.3 0.9 1.4

2 < p ≤ 5 7.5 6.0 3.9 2.7 5.1 2.7 3.2 1.4 1.8 2.3

0 < p ≤ 2 7.8 9.0 6.6 6.9 12.0 2.3 4.5 1.8 1.8 5.0

same precision 61.7 71.7 73.5 79.2 67.8 74.2 78.3 80.1 84.2 75.1

unknown 6.6 6.6 6.6 6.6 6.6 9.5 9.5 9.5 9.5 9.5

p < 0 0.3 — — — 0.3 0.5 — — — 0.5

Time diff. class % benchmarks

Goal Ind. Goal Dep.

degradation > 1 11.7 17.6

0.5 < degradation ≤ 1 1.2 0.9

0.2 < degradation ≤ 0.5 3.6 4.1

0.1 < degradation ≤ 0.2 1.5 4.1

both timed out 3.3 3.6

same time 70.8 66.5

0.1 < improvement ≤ 0.2 0.9 0.5

0.2 < improvement ≤ 0.5 1.5 —

0.5 < improvement ≤ 1 0.6 0.5

improvement > 1 4.8 2.3

Total time class Goal Ind. Goal Dep.

%1 %2 ∆ %1 %2 ∆

timed out 3.3 6.6 3.3 3.6 9.5 5.9

t > 10 9.0 8.4 -0.6 7.2 8.6 1.4

5 < t ≤ 10 0.3 1.5 1.2 1.4 1.8 0.5

1 < t ≤ 5 7.5 6.6 -0.9 3.6 5.0 1.4

0.5 < t ≤ 1 2.7 3.3 0.6 5.4 3.2 -2.3

0.2 < t ≤ 0.5 8.4 10.2 1.8 13.1 13.6 0.5

t ≤ 0.2 68.7 63.3 -5.4 65.6 58.4 -7.2

Table 2. Pos× SFL2 versus Pattern(Pos× SFL2).

Thus the precision of the domain Pos × SFL has been compared with that ob-
tained using the domain Pattern(Pos × SFL) and the results reported in Table 2.
It can be seen that, for goal-independent analysis, on one third of the benchmarks
compared there is a precision improvement in at least one of the measured quanti-
ties; the same happens for one sixth of the benchmarks in the case of goal-dependent
analysis. Moreover, the increase in precision can be considerable, as testified by the
percentages of benchmarks falling in the higher precision classes.

The reader may be surprised, as the authors were, to see that in some cases the

Enhanced Sharing Analysis Techniques: A Comprehensive Evaluation 17

precision actually decreased.12 Indeed, to the best of our knowledge, this possibility
has escaped all previous research work investigating this kind of abstract domain
enhancement, including (Cortesi et al. 1994, Bruynooghe et al. 1994a, Bagnara
1997a). The reason for these precision losses lies in a subtle interaction between the
explicit structural information and the underlying abstract unification operator.

When using the base domain Pos × SFL, the abstract evaluation of a single
syntactic binding, such as x = f(y, z), directly corresponds to a single application of
the amgu operator. In contrast, when computing on Pattern(Pos×SFL), it may well
happen that the computed abstract description already contains the information
that variable x is bound to a term, such as f

(
g(w), w

)
. As a consequence, after

peeling the principal functor f/2, the abstract computation should proceed by
evaluating, on the base domain Pos× SFL, the set of bindings

{
y = g(w), z = w

}
.

Here the problem is that, as already noted, the amgu operator on the base domain
Pos × SFL is not commutative. While this improvement in the data used by the
abstract computation very often allows for a corresponding increase in the precision
of the result, in rare situations it may happen that a sub-optimal ordering of the
bindings is chosen, incurring a precision loss.

It should be noted that such a negative interaction with the explicit structural
information is only possible when the underlying domain implements sub-optimal
abstract operators. In particular, this phenomenon could not be observed when
computing on Pattern(SH) or Pattern(Pos).

One issue that should be resolved is whether the improvements provided by ex-
plicit structural information subsume those previously obtained for the simple com-
bination with Pos. Intuitively, it would seem that this cannot happen, since these
two enhancements are based on different kinds of information: while the Pattern(·)
construction encodes some definite structural information, the precision gain due
to using Pos rather than just Def only stems from disjunctive groundness depen-
dencies. However, the impact of these techniques on the overall analysis is really
intricate and some overlapping cannot be excluded a priori : for instance, both tech-
niques affect the ordering of bindings in the computation of abstract unification on
SFL. In order to provide some experimental evidence for this qualitative reasoning,
the precision results are computed for the simpler domain Pattern(SFL) and then
compared with those obtained for the domain Pattern(Pos× SFL). Since the main
differences between Tables 1 and 3 can be explained by discrepancies in the num-
bers of programs that timed-out, these results confirm our expectations that these
two enhancements are effectively orthogonal.

Similar experimental evaluations, but based on the abstract equation systems of
(Bruynooghe et al. 1994a), were reported by A. Mulkers et al. in (Mulkers, Simoens,
Janssens and Bruynooghe 1994, Mulkers, Simoens, Janssens and Bruynooghe 1995).
Here a depth-k abstraction (replacing all subterms occurring at a depth greater than
or equal to k with fresh abstract variables) is conducted on a small benchmark suite
(19 programs) for values of k between 0 and 3. The domain they employed was not

12 This happens for the program attractions2 in the case of goal-independent analysis and for
the program semi in the case of goal-dependent analysis.

18 R. Bagnara, E. Zaffanella, and P. M. Hill

Prec. class Goal Independent Goal Dependent

O I G F L O I G F L

5 < p ≤ 10 — — — — — 0.5 — 0.5 — —

2 < p ≤ 5 0.3 — 0.3 — — — 0.5 — — —

0 < p ≤ 2 — — — — — 3.2 3.2 2.7 — 2.7

same precision 93.1 93.4 93.1 93.4 93.4 86.4 86.4 86.9 90.0 87.3

unknown 6.6 6.6 6.6 6.6 6.6 10.0 10.0 10.0 10.0 10.0

Time diff. class % benchmarks

Goal Ind. Goal Dep.

degradation > 1 5.7 7.7

0.5 < degradation ≤ 1 2.4 0.5

0.2 < degradation ≤ 0.5 3.6 5.4

0.1 < degradation ≤ 0.2 5.4 2.7

both timed out 6.6 9.5

same time 75.6 73.8

0.1 < improvement ≤ 0.2 — —

0.2 < improvement ≤ 0.5 0.6 —

0.5 < improvement ≤ 1 — —

improvement > 1 — 0.5

Total time class Goal Ind. Goal Dep.

%1 %2 ∆ %1 %2 ∆

timed out 6.6 6.6 — 10.0 9.5 -0.5

t > 10 8.1 8.4 0.3 7.7 8.6 0.9

5 < t ≤ 10 1.5 1.5 — 2.3 1.8 -0.5

1 < t ≤ 5 5.1 6.6 1.5 4.5 5.0 0.5

0.5 < t ≤ 1 3.9 3.3 -0.6 3.2 3.2 —

0.2 < t ≤ 0.5 7.2 10.2 3.0 10.9 13.6 2.7

t ≤ 0.2 67.5 63.3 -4.2 61.5 58.4 -3.2

Table 3. Pattern(SFL2) versus Pattern(Pos× SFL2).

suitable for the analysis of real programs and, in fact, even the analysis of a modest-
sized program like ann could only be carried out with depth-0 abstraction (i.e.,
without any structural information). Such a problem in finding practical analysers
that incorporated structural information with sharing analysis was not unique to
this work: there was at least one other previous attempt to evaluate the impact
of structural information on sharing analysis that failed because of combinatorial
explosion [A. Cortesi, personal communication, 1996].

What makes the more realistic experimentation now possible is the adoption
of the non-redundant domain PSD , where the exponential star-union operation is
replaced by the quadratic self-bin-union. Note that, even if biased by the absence
of widenings, the timings reported in Table 2 show that the Pattern(·) construction

Enhanced Sharing Analysis Techniques: A Comprehensive Evaluation 19

is computationally feasible. Indeed, as demonstrated by the results reported in
(Bagnara et al. 2000a), an analyzer that incorporates a carefully designed structural
information component, besides being more precise, can also be very efficient.

The results obtained in this section demonstrate that there is a relevant amount
of sharing information that is not detected when using the classical set-sharing
domains. Therefore, in order to provide an experimental evaluation that is as sys-
tematic as possible, in all of the remaining experiments the comparison is performed
both with and without explicit structural information.

6 Reordering the Non-Grounding Bindings

As already explained in Section 4, the results of abstract unification on SFL may
depend on the order in which the bindings are considered and will be improved if
the grounding bindings are considered first. This heuristic, which has been used for
all the experiments in this paper, is well-known: in the literature all the examples
that illustrate the non-commutativity of the abstract mgu on SFL use a grounding
binding. However, as observed in Section 5, the problem is more general than that.

To illustrate this, suppose that VI = {u, v, w, x, y, z} is the set of relevant vari-
ables, and consider the SFL element13

d def=
〈
{vy, wy, xy, yz},∅, {u, x, z}

〉
,

where no variable is free and u, x, and z are linear with the bindings v = w and
x = y. Then, applying amgu to these bindings in the given ordering, we have:

d1 = amgu(d , v = w)

=
〈
{vwy, xy, yz},∅, {u, x, z}

〉
,

d1,2 = amgu(d1, x = y)

=
〈
{vwxy, vwxyz, xy, xyz},∅, {u, z}

〉
.

Using the reverse ordering, we have:

d2 = amgu(d , x = y)

=
〈
{vwxy, vwxyz, vxy, vxyz, wxy,wxyz, xy, xyz},∅, {u, z}

〉
,

d2,1 = amgu(d2, v = w)

=
〈
{vwxy, vwxyz, xy, xyz},∅, {u}

〉
.

Thus d2,1 loses the linearity of z (which, in turn, could cause bigger precision losses
later in the analysis).

In principle, optimality can be obtained by adopting the brute-force approach:
trying all the possible orderings of the non-grounding bindings. However, this is
clearly not feasible. While lacking a better alternative, it is reasonable to look for
heuristics that can be applied in the context of a local search paradigm: at each

13 Elements of SH are written in a simplified notation, omitting the inner braces. For instance,
the set

{
{x}, {x, y}, {x, z}, {x, y, z}

}
is written as {x, xy, xz, xyz}.

20 R. Bagnara, E. Zaffanella, and P. M. Hill

step, the next binding for the amgu procedure is chosen by evaluating the effect of
its abstract execution, considered in isolation, on the precision of the analysis.

Suppose the number of independent pairs is taken as a measure of precision. Then,
at each step, for each of the bindings under consideration, the new component sh ′,
as given by Definition 4, must be computed. However, because the computation
of sh ′ is the most costly operation to be performed in the computation of the
amgu operator, a direct application of this heuristic does not appear to be feasible.
As an alternative, consider a heuristic based on the number of star-unions that
have to be computed. Star-unions are likely to cause large losses in the number of
independent pairs that are found. As only non-grounding bindings are considered,
any binding requiring the computation of a star-union will need the star-union
even if it is delayed, although a binding that does not require the star-union may
require it if its computation is postponed: its variables may lose their freeness,
linearity or independence as a result of evaluating the other bindings. It follows
that one potential heuristic is: “delay the bindings requiring star-unions as much as
possible”. In the next example, by adopting this heuristic, the linearity of variable
y is preserved.

Consider the application of the bindings x = z and v = w to the following
abstract description:

d def=
〈
{vw,wx,wy, z},∅, {u, v, x, y}

〉
.

Since x is linear and independent from z, computing amgu(d , x = z) requires one
star-union, while two star-unions are needed when computing amgu(d , v = w)
because v and w may share. Thus, with the proposed heuristic, x = z is applied
before v = w, giving:

d1 = amgu(d , x = z)

=
〈
{vw,wxz,wy},∅, {u, v, y}

〉
,

d1,2 = amgu(d1, v = w)

=
〈
{vw, vwxyz, vwxz, vwy},∅, {u, y}

〉
.

In contrast, if v = w is applied first, we have:

d2 = amgu(d , v = w)

=
〈
{vw, vwx, vwxy, vwy, z},∅, {u, x, y}

〉
,

d2,1 = amgu(d2, x = z)

=
〈
{vw, vwxyz, vwxz, vwy},∅, {u}

〉
.

Note that the same number of independent pairs is computed in both cases.
It should be noted that this heuristic, considered in isolation, is not a general

solution and can actually lead to precision losses. The problem is that, if a binding
that needs a star-union is delayed, then, when the star-union is computed, it may
be done on a larger sharing-set, forcing more (independent) pairs of variables into
the same sharing group.

Consider the application of the bindings u = x and v = w to the abstract

Enhanced Sharing Analysis Techniques: A Comprehensive Evaluation 21

description

d def=
〈
{u, uw, v, w, xy, xz}, {u, x}, {u, x}

〉
.

Since x and u are both free variables, no star-union is needed in the computation of
amgu(d , u = x), while two star-unions are needed when computing amgu(d , v = w).

d1 = amgu(d , u = x)

=
〈
{uwxy, uwxz, uxy, uxz, v, w}, {u, x}, {u, x}

〉
,

d1,2 = amgu(d1, v = w)

=
〈
{uvwxy, uvwxyz, uvwxz, uxy, uxz, vw},∅,∅

〉
.

Using the other ordering, we have:

d2 = amgu(d , v = w)

=
〈
{u, uvw, vw, xy, xz}, {x}, {x}

〉
,

d2,1 = amgu(d2, u = x)

=
〈
{uvwxy, uvwxz, uxy, uxz, vw},∅,∅

〉
.

Note that in d2,1 variables y and z are independent, whereas they may share in d1,2.
Thus, in this example, by delaying the only binding that requires the star-unions,
v = w, the number of known independent pairs is decreased.

Another possibility is to consider a heuristic that uses the numbers of free and
linear variables as a measure of precision for local optimization. That is, it chooses
first those bindings for which these numbers are maximal. However, the last example
shown above is evidence that even such a proposal may also cause precision losses
(the binding u = x would be chosen first as it preserves the freeness of variable u).

In order to evaluate the effects of these two heuristics on real programs, we have
implemented and compared them with respect to the “straight” abstract compu-
tation, which considers the non-grounding bindings using the left-to-right order.14

The results reported in Tables 4 and 5 can be summarized as follows:

1. the precision on the groundness and freeness components is not affected;
2. the precision on the independent pairs and linearity components is rarely

affected, in particular when considering goal-dependent analyses;
3. even for real programs, as was the case for the artificial examples given above,

the precision can be increased as well as decreased.

Looking at Tables 4 and 5, it can be seen that the heuristic based on freeness and
linearity information is slightly better than the use of the straight order, which, in
its turn, is slightly better than the heuristic based on the number of star-unions.

Clearly, since these results could not be generalized to other orderings, our inves-
tigation cannot be considered really conclusive. Besides designing “smarter” heuris-
tics, it would be interesting to provide a kind of responsiveness test for the underly-
ing domain with respect to the choice of ordering for the non-grounding bindings: a

14 The base domain is Pos× SFL, both with and without structural information.

22 R. Bagnara, E. Zaffanella, and P. M. Hill

Goal Independent without Struct Info with Struct Info

Prec. class O I G F L O I G F L

0 < p ≤ 2 0.9 — — — 0.9 — — — — —

same precision 94.6 95.5 96.4 96.4 95.5 91.3 91.3 93.1 93.1 93.1

unknown 3.6 3.6 3.6 3.6 3.6 6.9 6.9 6.9 6.9 6.9

− 2 ≤ p < 0 0.9 0.9 — — — 1.8 1.8 — — —

Goal Dependent without Struct Info with Struct Info

Prec. class O I G F L O I G F L

same precision 96.4 96.4 96.4 96.4 96.4 90.5 90.5 90.5 90.5 90.5

unknown 3.6 3.6 3.6 3.6 3.6 9.5 9.5 9.5 9.5 9.5

Time diff. class Goal Ind. Goal Dep.

w/o SI with SI w/o SI with SI

degradation > 1 4.5 3.0 7.2 4.1

0.5 < degradation ≤ 1 0.6 0.3 — —

0.2 < degradation ≤ 0.5 2.4 0.9 0.5 0.5

0.1 < degradation ≤ 0.2 1.5 0.6 0.5 0.5

both timed out 3.0 6.3 3.6 9.5

same time 80.7 80.7 85.5 76.9

0.1 < improvement ≤ 0.2 1.5 1.2 0.5 0.5

0.2 < improvement ≤ 0.5 1.8 1.2 1.4 2.3

0.5 < improvement ≤ 1 0.9 0.6 — 0.9

improvement > 1 3.0 5.1 0.9 5.0

Total time class Goal Independent Goal Dependent

without SI with SI without SI with SI

%1 %2 ∆ %1 %2 ∆ %1 %2 ∆ %1 %2 ∆

timed out 3.3 3.3 — 6.6 6.6 — 3.6 3.6 — 9.5 9.5 —

t > 10 9.0 8.1 -0.9 8.4 9.0 0.6 7.2 7.7 0.5 8.6 8.1 -0.5

5 < t ≤ 10 0.3 0.9 0.6 1.5 1.2 -0.3 1.4 0.9 -0.5 1.8 2.7 0.9

1 < t ≤ 5 7.5 7.5 — 6.6 6.3 -0.3 3.6 3.2 -0.5 5.0 4.1 -0.9

0.5 < t ≤ 1 2.7 2.4 -0.3 3.3 3.0 -0.3 5.4 5.9 0.5 3.2 3.6 0.5

0.2 < t ≤ 0.5 8.4 9.3 0.9 10.2 10.5 0.3 13.1 12.7 -0.5 13.6 13.1 -0.5

t ≤ 0.2 68.7 68.4 -0.3 63.3 63.3 — 65.6 66.1 0.5 58.4 58.8 0.5

Table 4. The heuristic based on the number of star-unions.

simple test consists in measuring how much the precision can be affected, in either
way, by the application of an almost arbitrary order. This is the motivation for the
comparison reported in Table 6, where the order is from right-to-left, the reverse
of the usual one. As for the results given in Tables 4 and 5, the number of changes
to the precision observed in Table 6 is small and all the observations made above

Enhanced Sharing Analysis Techniques: A Comprehensive Evaluation 23

Goal Independent without Struct Info with Struct Info

Prec. class O I G F L O I G F L

5 < p ≤ 10 0.3 — — — 0.3 0.3 — — — 0.3

0 < p ≤ 2 0.9 — — — 0.9 2.7 2.4 — — 0.3

same precision 94.3 95.5 96.4 96.4 95.2 89.5 90.1 93.4 93.4 92.8

unknown 3.6 3.6 3.6 3.6 3.6 6.6 6.6 6.6 6.6 6.6

− 2 ≤ p < 0 0.6 0.6 — — — 0.9 0.9 — — —

p < −20 0.3 0.3 — — — — — — — —

Goal Dependent without Struct Info with Struct Info

Prec. class O I G F L O I G F L

0 < p ≤ 2 0.5 — — — 0.5 — — — — —

same precision 94.6 95.0 95.5 95.5 95.0 89.6 89.6 89.6 89.6 89.6

unknown 4.5 4.5 4.5 4.5 4.5 10.4 10.4 10.4 10.4 10.4

−20 ≤ p < −10 0.5 0.5 — — — — — — — —

Time diff. class Goal Ind. Goal Dep.

w/o SI with SI w/o SI with SI

degradation > 1 6.9 4.8 8.1 7.7

0.5 < degradation ≤ 1 2.1 1.5 1.8 0.5

0.2 < degradation ≤ 0.5 2.4 1.8 1.8 2.7

0.1 < degradation ≤ 0.2 1.2 3.3 2.3 3.2

both timed out 2.4 5.7 3.6 9.0

same time 77.4 73.5 78.7 71.9

0.1 < improvement ≤ 0.2 1.2 0.3 — —

0.2 < improvement ≤ 0.5 0.6 1.8 0.9 0.9

0.5 < improvement ≤ 1 0.9 — 0.5 —

improvement > 1 4.8 7.2 2.3 4.1

Total time class Goal Independent Goal Dependent

without SI with SI without SI with SI

%1 %2 ∆ %1 %2 ∆ %1 %2 ∆ %1 %2 ∆

timed out 3.3 2.7 -0.6 6.6 5.7 -0.9 3.6 4.5 0.9 9.5 10.0 0.5

t > 10 9.0 9.6 0.6 8.4 8.7 0.3 7.2 6.8 -0.5 8.6 7.7 -0.9

5 < t ≤ 10 0.3 2.1 1.8 1.5 1.8 0.3 1.4 1.4 — 1.8 2.7 0.9

1 < t ≤ 5 7.5 6.0 -1.5 6.6 6.9 0.3 3.6 4.5 0.9 5.0 5.0 —

0.5 < t ≤ 1 2.7 3.0 0.3 3.3 3.9 0.6 5.4 4.1 -1.4 3.2 3.6 0.5

0.2 < t ≤ 0.5 8.4 9.9 1.5 10.2 13.3 3.0 13.1 13.1 — 13.6 15.4 1.8

t ≤ 0.2 68.7 66.6 -2.1 63.3 59.6 -3.6 65.6 65.6 — 58.4 55.7 -2.7

Table 5. The heuristic based on freeness and linearity.

24 R. Bagnara, E. Zaffanella, and P. M. Hill

still hold. Surprisingly, this reversed ordering provides marginally better precision
results than those obtained using the considered heuristics.15

7 The Reduced Product between Pos and Sharing

The overlap between the information provided by Pos and the information provided
by Sharing mentioned in Section 4 means that the Cartesian product Pos × SFL
contains redundancy, that is, there is more than one element that can characterize
the same set of concrete computational states.

In (Bagnara et al. 2000b), two techniques that are able to remove some of this
redundancy were experimentally evaluated. One of these aims at identifying those
pairs of variables (x, y) for which the Boolean formula of the Pos component implies
the binary disjunction x ∨ y. In such a case, it is always safe to assume that the
variables x and y are independent.16 Since the number of independent pairs is
one of the quantities explicitly measured, this enhancement has the potential for
“immediate” precision gains. The other technique exploits the knowledge of the
sets of ground-equivalent variables: the variables in e ⊆ VI are ground-equivalent
in φ ∈ Pos if and only if, for each x, y ∈ e, φ |= (x ↔ y). For a description of how
these sets can be used to improve sharing analysis, the reader is referred to (Bagnara
et al. 2000b). The main motivation for experimenting with this specific reduction
was the ease of its implementation, since all the needed information can easily be
recovered from the already computed E component of the GER implementation
of Pos (Bagnara and Schachte 1999). The experimental evaluation results given in
(Bagnara et al. 2000b) for these two techniques show precision improvements with
only three of the programs and, also, only with respect to the number of independent
pairs that were found. Those results just apply to these limited forms of reduction,
so could not be considered a complete account of all the possible precision gains.

The full reduced product (Cousot and Cousot 1979) between Pos and Sharing has
been elegantly characterized in (Codish, Søndergaard and Stuckey 1999), where set-
sharing à la Jacobs and Langen is expressed in terms of elements of the Pos domain
itself. Let [φ]VI denote the set of all the models of the Boolean function φ defined
over the set of variables VI . Then, the isomorphism maps each set-sharing element
sh ∈ SH into the Boolean formula φ ∈ Pos such that

[φ]VI = {VI \ S | S ∈ sh } ∪ {VI }.

The sharing information encoded by an element (φg, φsh) ∈ Pos × Pos can be im-
proved by replacing the second component (that is, the Boolean formula describing
set-sharing information) with the conjunction φg ∧ φsh . The reader is referred to
(Codish et al. 1999) for a complete account of this composition and a justification
of its correctness.

15 It is worth noting that the only precision improvement reported in Table 6 for the goal-dependent
analysis with structural information (caused by the program semi) corresponds to the precision
decrease reported in Table 2. This confirms that, as informally discussed in Section 5, such a
precision decrease was due to the non-commutativity of the amgu operator on Pos× SFL.

16 Note that this observation dates back, at least, to (Crnogorac et al. 1996).

Enhanced Sharing Analysis Techniques: A Comprehensive Evaluation 25

Goal Independent without Struct Info with Struct Info

Prec. class O I G F L O I G F L

5 < p ≤ 10 0.3 — — — 0.3 0.3 — — — 0.3

0 < p ≤ 2 0.9 0.3 — — 0.6 4.2 3.0 — — 1.2

same precision 94.3 95.2 96.4 96.4 95.5 87.7 89.2 93.4 93.4 91.9

unknown 3.6 3.6 3.6 3.6 3.6 6.6 6.6 6.6 6.6 6.6

− 2 ≤ p < 0 0.6 0.6 — — — 1.2 1.2 — — —

p < −20 0.3 0.3 — — — — — — — —

Goal Dependent without Struct Info with Struct Info

Prec. class O I G F L O I G F L

0 < p ≤ 2 0.5 — — — 0.5 0.5 — — — 0.5

same precision 95.5 95.9 96.4 96.4 95.9 90.0 90.5 90.5 90.5 90.0

unknown 3.6 3.6 3.6 3.6 3.6 9.5 9.5 9.5 9.5 9.5

−20 ≤ p < −10 0.5 0.5 — — — — — — — —

Time diff. class Goal Ind. Goal Dep.

w/o SI with SI w/o SI with SI

degradation > 1 4.2 6.0 4.5 6.8

0.5 < degradation ≤ 1 0.6 0.6 — —

0.2 < degradation ≤ 0.5 2.4 1.5 1.4 0.9

0.1 < degradation ≤ 0.2 1.8 0.9 0.5 —

both timed out 2.4 5.7 3.6 9.0

same time 78.3 76.2 82.8 74.2

0.1 < improvement ≤ 0.2 1.5 1.2 1.8 0.9

0.2 < improvement ≤ 0.5 1.8 0.3 1.4 1.8

0.5 < improvement ≤ 1 0.9 0.9 0.5 0.5

improvement > 1 6.0 6.6 3.6 5.9

Total time class Goal Independent Goal Dependent

without SI with SI without SI with SI

%1 %2 ∆ %1 %2 ∆ %1 %2 ∆ %1 %2 ∆

timed out 3.3 2.7 -0.6 6.6 5.7 -0.9 3.6 3.6 — 9.5 9.0 -0.5

t > 10 9.0 8.7 -0.3 8.4 9.9 1.5 7.2 7.7 0.5 8.6 8.1 -0.5

5 < t ≤ 10 0.3 1.8 1.5 1.5 1.5 — 1.4 0.5 -0.9 1.8 2.7 0.9

1 < t ≤ 5 7.5 6.9 -0.6 6.6 6.0 -0.6 3.6 3.2 -0.5 5.0 4.5 -0.5

0.5 < t ≤ 1 2.7 2.4 -0.3 3.3 2.7 -0.6 5.4 5.4 — 3.2 3.6 0.5

0.2 < t ≤ 0.5 8.4 8.7 0.3 10.2 11.1 0.9 13.1 13.1 — 13.6 12.2 -1.4

t ≤ 0.2 68.7 68.7 — 63.3 63.0 -0.3 65.6 66.5 0.9 58.4 59.7 1.4

Table 6. Reversing the ordering of the non-grounding bindings.

26 R. Bagnara, E. Zaffanella, and P. M. Hill

Goal Independent without Struct Info with Struct Info

Prec. class O I G F L O I G F L

10 < p ≤ 20 0.3 0.3 — — — — — — — —

5 < p ≤ 10 — — — — — 0.6 0.6 — — —

2 < p ≤ 5 0.3 0.3 — — — — — — — —

0 < p ≤ 2 7.2 7.2 — — 0.6 8.7 8.7 — — 0.6

same precision 88.9 88.9 96.7 96.7 96.1 83.1 83.1 92.5 92.5 91.9

unknown 3.3 3.3 3.3 3.3 3.3 7.5 7.5 7.5 7.5 7.5

Goal Dependent without Struct Info with Struct Info

Prec. class O I G F L O I G F L

p > 20 0.9 0.9 — — — — — — — —

10 < p ≤ 20 — — — — — 0.5 0.5 — — —

5 < p ≤ 10 — — — — — 0.9 0.9 — — —

2 < p ≤ 5 0.9 0.9 — — — 0.9 0.9 — — —

0 < p ≤ 2 4.5 4.5 — — — 4.5 4.5 — — —

same precision 90.0 90.0 96.4 96.4 96.4 83.7 83.7 90.5 90.5 90.5

unknown 3.6 3.6 3.6 3.6 3.6 9.5 9.5 9.5 9.5 9.5

Time diff. class Goal Ind. Goal Dep.

w/o SI with SI w/o SI with SI

degradation > 1 1.8 3.3 1.4 1.4

0.5 < degradation ≤ 1 0.3 0.3 — 1.8

0.2 < degradation ≤ 0.5 0.9 0.9 0.9 1.4

0.1 < degradation ≤ 0.2 1.8 1.5 — —

both timed out 3.3 6.6 3.6 9.5

same time 86.4 81.3 88.7 80.5

0.1 < improvement ≤ 0.2 1.2 1.2 0.9 1.4

0.2 < improvement ≤ 0.5 2.4 2.4 1.4 0.5

0.5 < improvement ≤ 1 0.3 0.9 1.8 —

improvement > 1 1.5 1.5 1.4 3.6

Total time class Goal Independent Goal Dependent

without SI with SI without SI with SI

%1 %2 ∆ %1 %2 ∆ %1 %2 ∆ %1 %2 ∆

timed out 3.3 3.3 — 6.6 7.5 0.9 3.6 3.6 — 9.5 9.5 —

t > 10 9.0 9.0 — 8.4 8.1 -0.3 7.2 7.2 — 8.6 8.1 -0.5

5 < t ≤ 10 0.3 0.3 — 1.5 1.5 — 1.4 1.4 — 1.8 2.7 0.9

1 < t ≤ 5 7.5 7.8 0.3 6.6 6.6 — 3.6 3.6 — 5.0 5.0 —

0.5 < t ≤ 1 2.7 2.4 -0.3 3.3 3.9 0.6 5.4 5.9 0.5 3.2 2.7 -0.5

0.2 < t ≤ 0.5 8.4 9.3 0.9 10.2 11.1 0.9 13.1 13.1 — 13.6 13.1 -0.5

t ≤ 0.2 68.7 67.8 -0.9 63.3 61.1 -2.1 65.6 65.2 -0.5 58.4 58.8 0.5

Table 7. Pos× SFL2 versus Pos⊗ SFL2.

Enhanced Sharing Analysis Techniques: A Comprehensive Evaluation 27

Goal Independent without Struct Info with Struct Info

Prec. class O I G F L O I G F L

5 < p ≤ 10 — — — — — 0.3 0.3 — — —

2 < p ≤ 5 0.3 0.3 — — — — — — — —

0 < p ≤ 2 2.7 2.7 — — 0.6 3.9 3.9 — — 0.6

same precision 86.1 86.1 89.2 89.2 88.6 80.7 80.7 84.9 84.9 84.3

unknown 10.8 10.8 10.8 10.8 10.8 15.1 15.1 15.1 15.1 15.1

Goal Dependent without Struct Info with Struct Info

Prec. class O I G F L O I G F L

p > 20 0.5 0.5 — — — — — — — —

10 < p ≤ 20 — — — — — 0.5 0.5 — — —

5 < p ≤ 10 — — — — — 0.5 0.5 — — —

0 < p ≤ 2 2.7 2.7 — — — 2.7 2.7 — — —

same precision 89.1 89.1 92.3 92.3 92.3 77.8 77.8 81.4 81.4 81.4

unknown 7.7 7.7 7.7 7.7 7.7 18.6 18.6 18.6 18.6 18.6

Table 8. Pos× SFL2 versus Pos⊗ SFL.

This specification of the reduced product can be reformulated, using the stan-
dard set-sharing representation for the second component, to define a reduction
procedure reduce: Pos× SH → SH such that, for all φg ∈ Pos, sh ∈ SH ,

reduce(φg, sh) =
{
S ∈ sh

∣∣ (VI \ S) ∈ [φg]VI

}
.

The enhanced integration of Pos and SFL, based on the above reduction operator,
is denoted here by Pos⊗ SFL. From a formal point of view, this is not the reduced
product between Pos and SFL: while there is a complete reduction between Pos
and SH , the same does not necessarily hold for the combination with freeness and
linearity information. Also note that the domain Pos⊗SFL is strictly more precise
than the domain ShPSh, defined in (Scozzari 2000) for pair-sharing analysis. This is
because the domain ShPSh is the reduced product of a strict abstraction of Pos and
a strict abstraction of SH .

When using the domain PSD in place of SH , the ‘reduce’ operator specified
above can interact in subtle ways with an implementation removing the ρ-redundant
sharing groups from the elements of PSD . The following is an example where such
an interaction provides results that are not correct.

Let VI = {x, y, z} and sh = {xy, xz, yz, xyz} ∈ PSD be the current set-sharing
description. Suppose that the implementation internally represents sh by using the
ρ-reduced element shred = {xy, xz, yz}, so that sh = ρ(shred). Suppose also that
the groundness description computed on the domain Pos is φg = (x ↔ y ↔ z).
Note that we have [φg]VI =

{
∅, {x, y, z}

}
. Then we have

sh ′ = reduce(sh, φg) = {xyz};
sh ′red = reduce(shred, φg) = ∅.

The two Pos-reduced elements sh ′ and sh ′red are not equivalent, even modulo ρ.

28 R. Bagnara, E. Zaffanella, and P. M. Hill

Note that the above example does not mean that the reduced product between
Pos and PSD yields results that are not correct; neither does it mean that it is less
precise than the reduced product between Pos and SH for the computation of the
observables. More simply, the optimizations used in our current implementation of
PSD are not compatible with the above reduction process.

In Table 7 we show the results of the comparison between the base domain
Pos× SFL2 and the domain Pos⊗ SFL2. We stress the fact that, given the above
observation, these precision results provide an over-estimation for any improvements
that would be obtained by a correct implementation of this enhancement. In order
to assess the magnitude of this over-estimation, in Table 8 we show the precision
results obtained when comparing the base domain Pos × SFL2 with the domain
Pos ⊗ SFL: the implementation of Pos ⊗ SFL, by avoiding ρ-reductions, is not
affected by the correctness problem mentioned above. By looking at the two tables
it can be observed that less than half of the precision improvements of Table 7 hold
(namely, the corresponding improvements are also detected when using the correct
combination Pos ⊗ SFL). A more detailed investigation of the experimental data,
which cannot be reported here for space reasons, shows that another fifth of the
improvements of Table 7 do not hold (namely, they were false improvements caused
by the incorrect implementation of the enhancement). No conclusion can be drawn
for the remaining fraction of the improvements, because the corresponding analysis
on the domain Pos⊗ SFL timed out.

The precision comparison provides empirical evidence that Pos ⊗ SFL is more
effective than the combination considered in (Bagnara et al. 2000b). However, as
indicated by the number of time-outs reported in Table 8, using Pos⊗ SFL is not
feasible due to its instrinsic exponential complexity. A production analyzer needs
to be based on a corrected and optimized implementation of Pos⊗ SFL2.

8 Ground-or-free Variables

Most of the ideas investigated in the present work are based on earlier work by
other authors. In this section, we describe one originally proposed in (Bagnara et
al. 2000b). Consider the analysis of the binding x = t and suppose that, on a set of
computation paths, this binding is reached with x ground while, on the remaining
computation paths, the binding is reached with x free. In both cases x will be linear
and this is all that will be recorded when using the usual combination Pos× SFL.
This information is valuable since, in the case that x and t are independent, it
allows the star-union operation for the relevant component for t to be dispensed
with. However, the information that is lost, that is, x being either ground or free,
is equally valuable, since this would allow the avoidance of the star-union of both
the relevant components for x and t, even when x and t may share. This loss has
the disadvantages that CPU time is wasted by performing unnecessary but costly
operations and that the precision is potentially degraded: not only are the extra
star-unions useless for correctness but may introduce redundant sharing groups
to the detriment of accuracy. It is therefore useful to track the additional mode
‘ground-or-free’.

Enhanced Sharing Analysis Techniques: A Comprehensive Evaluation 29

The analysis domain SFL is extended with the component GF def= ℘(VI) con-
sisting of the set of variables that are known to be either ground or free. As for
freeness and linearity, the approximation ordering on GF is given by reverse subset
inclusion. When computing the abstract mgu on the new domain

SGFL def= SH × F ×GF× L,

the property of being ground-or-free is used and propagated in almost the same
way as freeness information.

Definition 6
(Improved abstract operations over SGFL.) Let d = 〈sh, f, gf , l〉 ∈ SGFL. We
define the predicate gfreed : Terms → Bool such that, for each first order term t,
where Vt

def= vars(t) ⊆ VI ,

gfreed(t) def=
(
rel(Vt, sh) = ∅

)
∨ (∃x ∈ VI . x = t ∧ x ∈ gf).

Consider the specification of the abstract operations over SFL given in Definition 4.
The improved operator amgu: SGFL× Bind → SGFL is given by

amgu
(
d, x = t

) def= 〈sh ′, f ′, gf ′, l′〉,

where f ′ and l′′ are defined as in Definition 4 and

sh ′ = rel(Vxt, sh) ∪ bin
(
Sx, St

)
;

Sx =

{
Rx, if gfreed(x) ∨ gfreed(t) ∨

(
lind(t) ∧ indd(x, t)

)
;

R?x, otherwise;

St =

{
Rt, if gfreed(x) ∨ gfreed(t) ∨

(
lind(x) ∧ indd(x, t)

)
;

R?t , otherwise;

gf ′ =
(
VI \ vars(sh ′)

)
∪ gf ′′;

gf ′′ =


gf , if gfreed(x) ∧ gfreed(t);

gf \ vars(Rx), if gfreed(x);

gf \ vars(Rt), if gfreed(t);

gf \ vars(Rx ∪Rt), otherwise;

l′ = gf ′ ∪ l′′.

The computation of the set gf ′′ is very similar to the computation of the set
f ′ as given in Definition 4. The new ground-or-free component gf ′ is obtained by
adding to gf ′′ the set of all the ground variables: in other words, if a variable
“loses freeness” then it also loses its ground-or-free status unless it is known to
be definitely ground. It can be noted that, in the computation of this improved
amgu, the ground-or-free property takes the role previously played by freeness. In
particular, when computing sh ′, all the tests for freeness have been replaced by
tests on the newly defined Boolean function gfreed; similarly, in the computation
of the new linearity component l′, the set f ′ has been replaced by gf ′ (since any
ground-or-free variable is also linear). It is also easy to generalize the improvement

30 R. Bagnara, E. Zaffanella, and P. M. Hill

for definitely cyclic bindings introduced in Definition 5 to the domain SGFL: as
before, the test freed(x) needs to be replaced with the new test gfreed(x).

To summarize, the incorporation of the set of ground-or-free variables is cheap,
both in terms of computational complexity and in terms of code to be written.
As far as computational complexity is concerned this extension looks particularly
promising, since the possibility of avoiding star-unions has the potential of absorbing
its overhead if not of giving rise to a speed-up.

Thus the domain Pos × SGFL was experimentally evaluated on our benchmark
suite, with and without the structural information provided by Pattern(·), both in
a goal-dependent and in a goal-independent way, and the results compared with
those previously obtained for the domain Pos×SFL. Note that the implementation
uses the non-redundant version SGFL2

def= PSD × F × GF × L. In the precision
comparisons of Table 9, the new column labeled GF reports precision improvements
measured on the ground-or-free property itself.17

As far as the timings are concerned, the experimentation fully confirms our quali-
tative reasoning: efficiency improvements are more frequent than degradations and,
even with widening operators switched off, the distributions of the total analysis
times show minor changes only. As for precision, disregarding the many improve-
ments in the GF columns, few changes can be observed, and almost all of these
concern just the linearity information.18

The results in Table 9, show that tracking ground-or-free variables, while being
potentially useful for improving the precision of a sharing analysis, rarely reaches
such a goal. In contrast, the precision gains on the ground-or-free property itself are
remarkable, affecting from 39% to 74% of the programs in the benchmark suite. It
is possible to foresee several direct applications for this information that, together
with the just mentioned negligible computational cost, fully justify the inclusion of
this enhancement in a static analyzer. In particular, there are at least two ways in
which a knowledge of ground-or-free variables could improve the concrete unification
procedure.

The first case applies in the context of occurs-check reduction (Søndergaard 1986,
Crnogorac et al. 1996), that is when a program designed for a logic programming
system performing the occurs-check is to be run on top of a system omitting this
test. In order to ensure correct execution, all the explicit and implicit unifications in
the program are treated as if the ISO Prolog built-in unify with occurs check/2

was used to perform them. In order to minimize the performance overhead, it is
important to detect, as precisely as possible and at compile-time, those NSTO
(short for Not Subject To the Occurs-check (Deransart, Ferrand and Téguia: 1991,
ISO/IEC 1995)) unifications where the occurs-check will not be needed. For these
unifications, =/2 can safely be used; for the remaining ones, the program will have to
be transformed so that unify with occurs check/2 is explicitly called to perform

17 For this comparison, in the analysis using Pos× SFL, the number of ground-or-free variables is
computed by summing the number of ground variables with the number of free variables.

18 In fact the sole improvement to the number of independent pairs is due to a synthetic benchmark,
named gof, that was explicitly written to show that variable independence could be affected.

Enhanced Sharing Analysis Techniques: A Comprehensive Evaluation 31

Goal Ind. without Struct Info with Struct Info

Prec. class O I G F GF L O I G F GF L

p > 20 52.7 0.3 — — 52.7 — 48.5 0.3 — — 48.5 —

10 < p ≤ 20 11.7 — — — 11.7 — 16.0 — — — 16.0 —

5 < p ≤ 10 5.4 — — — 5.4 — 7.5 — — — 7.5 —

2 < p ≤ 5 2.4 — — — 2.4 — 1.8 — — — 1.8 —

0 < p ≤ 2 0.3 — — — 0.3 1.5 0.6 — — — 0.6 1.5

same precision 24.1 96.4 96.7 96.7 24.1 95.2 19.0 93.1 93.4 93.4 19.0 91.9

unknown 3.3 3.3 3.3 3.3 3.3 3.3 6.6 6.6 6.6 6.6 6.6 6.6

Goal Dep. without Struct Info with Struct Info

Prec. class O I G F GF L O I G F GF L

p > 20 5.9 — — — 5.9 — 5.9 — — — 5.9 —

10 < p ≤ 20 4.5 — — — 4.5 — 5.4 — — — 5.4 —

5 < p ≤ 10 7.7 0.5 — — 7.7 — 5.4 0.5 — — 5.4 —

2 < p ≤ 5 13.1 — — — 13.1 — 12.2 — — — 12.2 —

0 < p ≤ 2 8.1 — — — 8.1 0.5 10.0 — — — 10.0 —

same precision 57.0 95.9 96.4 96.4 57.0 95.9 51.6 90.0 90.5 90.5 51.6 90.5

unknown 3.6 3.6 3.6 3.6 3.6 3.6 9.5 9.5 9.5 9.5 9.5 9.5

Time diff. class Goal Ind. Goal Dep.

w/o SI with SI w/o SI with SI

degradation > 1 — 0.6 — 0.9

0.5 < degradation ≤ 1 0.3 — 0.5 —

0.2 < degradation ≤ 0.5 — 0.6 0.5 1.4

0.1 < degradation ≤ 0.2 0.3 — — 0.5

both timed out 3.3 6.6 3.6 9.5

same time 88.6 85.2 87.3 82.8

0.1 < improvement ≤ 0.2 1.2 1.2 1.8 1.4

0.2 < improvement ≤ 0.5 2.4 2.4 1.8 0.9

0.5 < improvement ≤ 1 2.1 0.9 2.3 0.9

improvement > 1 1.8 2.4 2.3 1.8

Total time class Goal Independent Goal Dependent

without SI with SI without SI with SI

%1 %2 ∆ %1 %2 ∆ %1 %2 ∆ %1 %2 ∆

timed out 3.3 3.3 — 6.6 6.6 — 3.6 3.6 — 9.5 9.5 —

t > 10 9.0 9.0 — 8.4 8.4 — 7.2 7.2 — 8.6 8.6 —

5 < t ≤ 10 0.3 0.3 — 1.5 1.5 — 1.4 1.4 — 1.8 1.8 —

1 < t ≤ 5 7.5 7.5 — 6.6 6.6 — 3.6 3.6 — 5.0 5.0 —

0.5 < t ≤ 1 2.7 2.7 — 3.3 3.6 0.3 5.4 5.9 0.5 3.2 3.2 —

0.2 < t ≤ 0.5 8.4 8.7 0.3 10.2 10.5 0.3 13.1 12.7 -0.5 13.6 14.0 0.5

t ≤ 0.2 68.7 68.4 -0.3 63.3 62.7 -0.6 65.6 65.6 — 58.4 57.9 -0.5

Table 9. Pos× SFL2 versus Pos× SGFL2.

32 R. Bagnara, E. Zaffanella, and P. M. Hill

them. Ground-or-freeness can be of help for this application, since a unification
between two ground-or-free variables is NSTO. Note that this is an improvement
with respect to the technique used in (Crnogorac et al. 1996), since it is not required
that the two considered variables are independent.

As a second application, ground-or-freeness can be useful to replace the full con-
crete unification procedure by a simplified version. Since a ground-or-free term is
either ground or free, a single run-time test for freeness will discriminate between
the two cases: if this test succeeds, unification can be implemented by a single as-
signment; if the test fails, any specialized code for unification with a ground term
can be safely invoked. In particular, when unifying two ground-or-free variables
that are not free at run-time, the full unification procedure can be replaced by a
simpler recursive test for equivalence.

9 More Precise Exploitation of Linearity

In (King 1994), A. King proposes a domain for sharing analysis that performs
a quite precise tracking of linearity. Roughly speaking, each sharing group in a
sharing-set carries its own linearity information. In contrast, in the approach of
(Langen 1990), which is the one usually followed, a set of definitely linear variables
is recorded along with each sharing-set. The proposal in (King 1994) gives rise to
a domain that is quite different from the ones presented here. Since (King 1994)
does not provide an experimental evaluation and we are unaware of any subsequent
work on the subject, the question whether this more precise tracking of linearity is
actually worthwhile (both in terms of precision and efficiency) seems open.

What interests us here is that part of the theoretical work presented in (King
1994) may be usefully applied even in the more classical treatments of linearity
such as the one being used in this paper. As far as we can tell, this fact was first
noted in (Bagnara et al. 2000b).

In (King 1994), point 3 of Lemma 5 (which is reported to be proven in (King
1993)) states that, if s is a linear term independent from a term t, then in the
unifier for s = t any sharing between the variables in s is necessarily caused by
those variables that can occur more than once in t.

This result can be exploited even when using the domain SFL. Given the abstract
element d = 〈sh, f, l〉, let x ∈ (l \ f) be a non-free but linear variable and let t be
a non-linear term such that indd(x, t). Let also Vx, Vt, Vxt, Rx and Rt be as given
in Definition 4. In such a situation, when abstractly evaluating the binding x = t,
the standard amgu operator gives the set-sharing component

sh ′ = rel(Vxt, sh) ∪ bin(R?x, Rt).

Suppose the set Vt is partitioned into the two components V l
t and V nl

t , where V nl
t

is the set of the “problematic” variables, that is, those variables that potentially

Enhanced Sharing Analysis Techniques: A Comprehensive Evaluation 33

Goal Independent Goal Dependent

Prec. class O I G F L O I G F L

p > 20 0.3 0.3 — — — — — — — —

2 < p ≤ 5 — — — — — 0.5 0.5 — — —

same precision 93.1 93.1 93.4 93.4 93.4 90.0 90.0 90.5 90.5 90.5

unknown 6.6 6.6 6.6 6.6 6.6 9.5 9.5 9.5 9.5 9.5

Time difference class % benchmarks

Goal Ind. Goal Dep.

degradation > 1 0.3 —

0.5 < degradation ≤ 1 — —

0.2 < degradation ≤ 0.5 — —

0.1 < degradation ≤ 0.2 0.3 0.5

both timed out 6.6 9.5

same time 85.2 83.7

0.1 < improvement ≤ 0.2 0.9 1.8

0.2 < improvement ≤ 0.5 2.4 0.5

0.5 < improvement ≤ 1 0.6 2.7

improvement > 1 3.6 1.4

Total time class Goal Ind. Goal Dep.

%1 %2 ∆ %1 %2 ∆

timed out 6.6 6.6 — 9.5 9.5 —

t > 10 8.4 8.4 — 8.6 8.6 —

5 < t ≤ 10 1.5 1.5 — 1.8 1.8 —

1 < t ≤ 5 6.6 6.6 — 5.0 5.0 —

0.5 < t ≤ 1 3.3 3.3 — 3.2 3.2 —

0.2 < t ≤ 0.5 10.2 11.1 0.9 13.6 14.0 0.5

t ≤ 0.2 63.3 62.3 -0.9 58.4 57.9 -0.5

Table 10. The effect of enhanced linearity on Pattern(Pos× SFL2).

make t a non-linear term. Formally,

V l
t

def=

 y ∈ vars(t)

∣∣∣∣∣∣∣∣
y ∈ l
y A mvars(t) =⇒ y /∈ vars(sh)

∀z ∈ vars(t) :
(
y = z ∨ indd(y, z)

)
;

V nl
t

def= Vt \ V l
t .

Let Rl
t = rel(V l

t , sh) and Rnl
t = rel(V nl

t , sh). Note that Rnl
t 6= ∅, because t is a non-

linear term. If also Rl
t 6= ∅ then the standard amgu can be replaced by an improved

version (denoted by amguk) computing the following set-sharing component:

sh ′k = rel(Vxt, sh) ∪ bin(Rx, Rl
t) ∪ bin(R?x, R

nl
t).

34 R. Bagnara, E. Zaffanella, and P. M. Hill

As a consequence of King’s result (King 1994, Lemma 5), only Rnl
t (the relevant

component of sh with respect to the problematic variables V nl
t) has to be combined

with R?x while Rl
t can be combined with just Rx (without the star-union).

For a working example, suppose VI = {v, w, x, y, z} is the set of variables of
interest and consider the SFL element

d def=
〈
{vx,wx, y, z}, {v, w, y}, {v, w, x, y}

〉
with the binding x = f(y, z). Note that all the applicability conditions specified
above are met: in particular t = f(y, z) is not linear because z /∈ l. AsRx = {vx,wx}
and Rt = {y, z}, a standard analysis would compute

d ′ = amgu
(
d , x = f(y, z)

)
=
〈
{vwxy, vwxz, vxy, vxz, wxy,wxz},∅, {y}

〉
.

On the other hand, since V l
t = {y} and V nl

t = {z}, the enhanced analysis would
compute

d ′k = amguk
(
d , x = f(y, z)

)
=
〈
{vwxz, vxy, vxz, wxy,wxz},∅, {y}

〉
.

Note that d ′k does not include the sharing group vwxy. This means that, if in the
sequel of the computation variable z is bound to a ground term, then variables
v and w will be known to be definitely independent. This independence is not
captured when using the standard amgu since d ′ includes the sharing group vwxy,
and therefore the variables v and w will potentially share even after grounding z.

The experimental evaluation for this enhancement is reported in Table 10. The
comparison of times shows that the efficiency of the analysis, when affected, is
more likely to be improved than degraded. As for the precision, improvements are
observed for only two programs; moreover, these are synthetic benchmarks such as
the above example. Nevertheless, despite its limited practical relevance, this result
demonstrates that the standard combination of Sharing with linearity information
is not optimal, even when all the possible orderings of the non-grounding bindings
are tried.

10 Sharing and Freeness

As noted by several authors (Bruynooghe et al. 1994a, Bueno et al. 1994, Cabeza
and Hermenegildo 1994), the standard combination of Sharing and Free is not op-
timal. G. Filé (Filé 1994) formally identified the reduced product of these domains
and proposed an improved abstract unification operator. This new operator ex-
ploits two properties that hold for the most precise abstract description of a single
concrete substitution:

1. each free variable occurs in exactly one sharing group;
2. two free variables occur in the same sharing group if and only if they are

aliases (i.e., they have become the same variable).

Enhanced Sharing Analysis Techniques: A Comprehensive Evaluation 35

When considering the general case, where sets of concrete substitutions come into
play, property 1 can be used to (partially) recover disjunctive information. In par-
ticular, it is possible to decompose an abstract description into a set of (maximal)
descriptions that necessarily come from different computation paths, each one sat-
isfying property 1. The abstract unification procedure can thus be computed sepa-
rately on each component, and the results of each subcomputation are then joined
to give the final description. As such components are more precise than the original
description (they possibly contain more ground variables and less sharing pairs),
precision gains can be obtained.

Furthermore, by exploiting property 2 on each component, it is possible to cor-
rectly infer that for some of them the computation will fail due to a functor clash
(or to the occurs-check, if considering a system working on finite trees). Note that a
similar improvement is possible even without decomposing the abstract description.
As an example, consider an abstract element such as the following:

d =
〈
{xy, u, v}, {x, y}, {x, y}

〉
.

Since the sharing group xy is the only one where the free variables x and y occur,
property 2 states that x and y are indeed the same variable in all the concrete
computation states described by d ∈ SFL. Therefore, when abstractly evaluating
the substitution

{
x = f(u), y = g(v)

}
, it can be safely concluded that its concrete

counterparts will result in failure due to the functor clash. In the same circum-
stances, it can also be concluded that a concrete substitution corresponding to, say,{
x = f(y)

}
will cause a failure of the occurs-check, if this is performed.

As was the case for the reduced product between Pos and SH (see Section 7), the
interaction between the enhanced abstract unification operator and the elimination
of ρ-redundant elements can lead to results that are not correct.

To see this, let VI = {w, x, y, z} and consider the set of concrete substitutions
Σ = ℘(σ), where σ = {x 7→ v, y 7→ v, z 7→ v} (note that v /∈ VI). The abstract
element describing Σ is d = 〈sh, f, l〉 ∈ SFL, where sh = {w, x, xy, xyz, xz, y, yz, z}
and f = l = VI . Suppose that the implementation represents d by using the reduced
element dred = 〈shred, f, l〉, where shred = sh \ {xyz}, so that sh = ρ(shred).

According to the specification of the enhanced operator, dred can be decomposed
into the following four components:

c1 =
〈
{w, x, y, z}, f, l

〉
, c3 =

〈
{w, xz, y}, f, l

〉
,

c2 =
〈
{w, x, yz}, f, l

〉
, c4 =

〈
{w, xy, z}, f, l

〉
.

Consider the binding x = f(y, w) and, for each i ∈ {1, . . . , 4}, the computation
of c′i = 〈sh ′i, f

′
i , l
′
i〉 = amgu

(
ci, x = f(y, w)

)
, where we have l′1 = l′2 = l′3 = VI and

l′4 = {w, z}. In all four cases, we have z ∈ l′i, so that z keeps its linearity even after
merging the results of the four subcomputations into a single abstract description.

In contrast, when performing the same computation with the original abstract
description d in the decomposition phase, we also obtain a fifth component,

c5 =
〈
{w, xyz}, f, l

〉
.

36 R. Bagnara, E. Zaffanella, and P. M. Hill

Goal Independent without Struct Info with Struct Info

Prec. class O I G F L O I G F L

p > 20 0.3 0.3 — — — — — — — —

5 < p ≤ 10 — — — — — 0.3 — — — 0.3

0 < p ≤ 2 0.9 0.3 — — 0.6 3.6 3.0 — — 0.6

same precision 94.6 95.2 95.8 95.8 95.2 86.1 87.0 90.1 90.1 89.2

unknown 4.2 4.2 4.2 4.2 4.2 9.9 9.9 9.9 9.9 9.9

Goal Dependent without Struct Info with Struct Info

Prec. class O I G F L O I G F L

same precision 96.4 96.4 96.4 96.4 96.4 89.6 89.6 89.6 89.6 89.6

unknown 3.6 3.6 3.6 3.6 3.6 10.4 10.4 10.4 10.4 10.4

Time diff. class Goal Ind. Goal Dep.

w/o SI with SI w/o SI with SI

degradation > 1 9.6 13.6 3.2 5.9

0.5 < degradation ≤ 1 0.6 1.8 1.4 1.4

0.2 < degradation ≤ 0.5 3.3 2.4 1.8 3.6

0.1 < degradation ≤ 0.2 0.6 1.5 2.3 1.4

both timed out 3.3 6.6 3.6 9.5

same time 82.2 73.5 87.8 77.8

0.1 < improvement ≤ 0.2 — — — —

0.2 < improvement ≤ 0.5 0.3 — — —

0.5 < improvement ≤ 1 — — — —

improvement > 1 — 0.6 — 0.5

Total time class Goal Independent Goal Dependent

without SI with SI without SI with SI

%1 %2 ∆ %1 %2 ∆ %1 %2 ∆ %1 %2 ∆

timed out 3.3 4.2 0.9 6.6 9.9 3.3 3.6 3.6 — 9.5 10.4 0.9

t > 10 9.0 9.6 0.6 8.4 8.4 — 7.2 7.2 — 8.6 8.1 -0.5

5 < t ≤ 10 0.3 0.9 0.6 1.5 1.2 -0.3 1.4 1.4 — 1.8 1.8 —

1 < t ≤ 5 7.5 6.9 -0.6 6.6 5.7 -0.9 3.6 3.6 — 5.0 4.5 -0.5

0.5 < t ≤ 1 2.7 2.1 -0.6 3.3 4.5 1.2 5.4 5.9 0.5 3.2 3.2 —

0.2 < t ≤ 0.5 8.4 8.4 — 10.2 12.0 1.8 13.1 12.7 -0.5 13.6 14.9 1.4

t ≤ 0.2 68.7 67.8 -0.9 63.3 58.1 -5.1 65.6 65.6 — 58.4 57.0 -1.4

Table 11. The effect of enhanced freeness on Pos× SFL2.

When computing c′5 = 〈sh ′5, f
′
5, l
′
5〉 = amgu

(
c5, x = f(y, w)

)
, we obtain l′5 = {w},

so that z loses its linearity when merging the five results into a single abstract
description. Note that this is not an avoidable precision loss, since in the concrete

Enhanced Sharing Analysis Techniques: A Comprehensive Evaluation 37

computation path corresponding to the substitution σ we would have computed

σ′ =
{
x 7→ f(x,w), y 7→ f(y, w), z 7→ f(z, w)

}
,

where z is bound to a non-linear term (namely, an infinite rational term with an
infinite number of occurrences of variable w). Therefore, the result obtained when
using the abstract description dred is not correct.

As already observed in Section 7, the above correctness problem lies not in the
SFL2 domain itself, but rather in our optimized implementation, which removes
the ρ-redundant elements from the set-sharing description.

We implemented the first idea by Filé (i.e., the exploitation of property 1) on
the usual base domain Pos×SFL2. As noted above, this implementation may yield
results that are not correct: the precision comparison reported in Table 11 provides
an over-estimation of the actual improvements that could be obtained by a correct
implementation. However, it is not possible to assess the magnitude of this over-
estimation, since our implementation of this enhancement on the domain Pos×SFL,
where no ρ-redundancy elimination is performed, times-out on a large fraction of
the benchmarks. The results in Table 11 show that precision improvements are only
observed for goal-independent analysis. When looking at the time comparisons,
it should be observed that the analysis of several programs had to be stopped
because of the combinatorial explosion in the decomposition, even though we used
the domain Pos × SFL2. Among the proposals experimentally evaluated in this
paper, this one shows the worst trade-off between cost and precision.

Note that, in principle, such an approach to the recovery of disjunctive informa-
tion can be pursued beyond the integration of sharing with freeness. In fact, by
exploiting the ground-or-free information as in Section 8, it is possible to obtain
decompositions where each component contains at most one occurrence (in contrast
with the exactly one occurrence of Filé’s idea) of each ground-or-free variable. In
each component, the ground-or-free variable could then be “promoted” as either a
ground variable (if it does not occur in the sharing groups of that component) or
as a free variable (if it occurs in exactly one sharing group).

It would be interesting to experiment with the second idea of Filé. However,
such a goal would require a big implementation effort, since at present there is no
easy way to incorporate this enhancement into the modular design of the China

analyzer.19

11 Tracking Compoundness

In (Bruynooghe et al. 1994a, Bruynooghe, Codish and Mulkers 1994b), Bruynooghe
and colleagues considered the combination of the standard set-sharing, freeness,

19 Roughly speaking, the SFL component should be able to produce some new (implicit) structural
information and notify it to the enclosing Pattern(·) component, which would then need to
combine this information with the (explicit) structural information already available. However,
in order to be able to receive notifications from its parameter, the Pattern(·) component, which
is implemented as a C++ template, would have to be heavily modified.

38 R. Bagnara, E. Zaffanella, and P. M. Hill

and linearity domains with compoundness information. As for freeness and linear-
ity, compoundness was represented by the set of variables that definitely have the
corresponding property.

As discussed in (Bruynooghe et al. 1994a, Bruynooghe et al. 1994b), compound-
ness information is useful in its own right for clause indexing. Here though, the focus
is on improving sharing information, so that the question to be answered is: can the
tracking of compoundness improve the sharing analysis itself? This question is also
considered in (Bruynooghe et al. 1994a, Bruynooghe et al. 1994b) where a technique
is proposed that exploits the combination of sharing, freeness and compoundness.
This technique relies on the presence of the occurs-check.

Informally, consider the binding x = t together with an abstract description
where x is a free variable, t is a compound term and x definitely shares with t.
Since x is free, x is aliased to one of the variables occurring in t. As a consequence,
the execution of the binding x = t will fail due to the occurs-check. In a more
general case, when only possible sharing information is available, the precision of
the abstract description can be safely improved by removing, just before computing
the abstract binding, all the sharing groups containing both x and a variable in t.
In addition, if this reduction step removes all the sharing groups containing a free
variable, then it can be safely concluded that the computation will fail.

To see how this works in practice, consider the binding x = f(y, z) and the
description d1

def= 〈sh1, f1, l1〉 ∈ SFL such that

sh1
def= {wx, xy, xz, y, z},

f1
def= {x},

l1
def= {w, x, y, z}.

Since x is free and f(y, z) is compound, the sharing-groups xy and xz can be
removed so that the amgu computation will give the set-sharing and linearity com-
ponents

sh ′1
def= {wxy,wxz},

l′1
def= {w, x, y, z}

instead of the less precise

sh ′1
def= {wxy,wxz, xy, xyz, xz},

l′1
def= {w}.

Note that the precision improvement of this particular example could also be ob-
tained by the technique introduced by Filé and discussed in the previous section.
This is because the term with which x is unified is “explicitly” compound. However,
if the term t was “implicitly” compound (i.e., if it was an abstract variable known to
represent compound terms) then the technique by Filé would not be applicable. For
example, consider the binding x = y and the description d2

def= 〈sh2, f2, l2〉 ∈ SFL

Enhanced Sharing Analysis Techniques: A Comprehensive Evaluation 39

such that

sh2
def= {wx, xyz, y},

f2
def= {x},

l2
def= {w, x, y, z}

supplemented by a compoundness component ensuring that y is compound. Then
the sharing-group xyz can be removed so that the amgu will compute

sh ′2
def= {wxy},

l′2
def= {w, x, y, z}

instead of

sh ′2
def= {wxy,wxyz, xyz},

l′2
def= {w}.

To see how a knowledge of the compoundness can be used to identify definite failure,
consider the unification x = f(y, z) and the description d3

def= 〈sh3, f3, l3〉 ∈ SFL
such that

sh3
def= {wxy,wxz, x, y, z},

f3
def= {w, x},

l3
def= {w, x, y, z}.

As in the examples above, variable x is free and term t
def= f(y, z) is compound so

that, by applying the reduction step, we can remove the sharing groups wxy and
wxz. However, this has removed all the sharing groups containing the free variable
w, resulting in an inconsistent computation state.

We did not implement this technique, since it is only sound for the analysis
of systems performing the occurs-check, whereas we are targeting at the analysis
of systems possibly omitting it. Nonetheless, an experimental evaluation would
be interesting for assessing how much this precision improvement can affect the
accuracy of applications such as occurs-check reduction.

12 Conclusion

In this paper we have investigated eight enhanced sharing analysis techniques that,
at least in principle, have the potential for improving the precision of the sharing
information over and above that obtainable using the classical combination of set-
sharing with freeness and linearity information. These techniques either make a
better use of the already available sharing information, by defining more powerful
abstract semantic operators, or combine this sharing information with that captured
by other domains. Our work has been systematic since, to the best of our knowledge,
we have considered all the proposals that have appeared in the literature: that is,

40 R. Bagnara, E. Zaffanella, and P. M. Hill

better exploitation of groundness, freeness, linearity, compoundness, and structural
information.

Using the China analyzer, seven of the eight enhancements have been exper-
imentally evaluated. Because of the availability of a very large benchmark suite,
including several programs of respectable size, the precision results are as conclu-
sive as possible and provide an almost complete account of what is to be expected
when analyzing any real program using these domains.

The results demonstrate that good precision improvements can be obtained with
the inclusion of explicit structural information. For the groundness domain Pos,
several good reasons have been given as to why it should be combined with set-
sharing. As for the remaining proposals, it is hard to justify them as far as the
precision of the analysis is concerned.

Regarding the efficiency of the analysis, it has been explained why the reported
time comparisons can be considered as upper bounds to the additional cost re-
quired by the inclusion of each technique. Moreover, it has been argued that, from
this point of view, the addition of a ‘ground-or-free’ mode and the more precise
exploitation of linearity are both interesting: they are not likely to affect the cost
of the analysis and, when this is the case, they usually give rise to speed-ups.

No further positive indications can be derived from the precision and time com-
parisons of the remaining techniques. In particular, it has not been possible to
identify a good heuristic for the reordering of the non-grounding bindings. The ex-
perimentation suggests that sensible precision improvements cannot be expected
from this technique. When considering these negative results, the reader should be
aware that the precision gains are measured with respect to an analysis tool built on
the base domain Pos× SFL which, to our knowledge, is the most accurate sharing
analysis tool ever implemented.

The experimentation reported in this paper resulted in both positive and negative
indications. We believe that all of these will provide the right focus in the design
and development of useful tools for sharing analysis.

References

Armstrong, T., Marriott, K., Schachte, P. and Søndergaard, H. (1998). Two classes of
Boolean functions for dependency analysis, Science of Computer Programming 31(1): 3–
45.

Bagnara, R. (1997a). Data-Flow Analysis for Constraint Logic-Based Languages, PhD
thesis, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. Printed as Report
TD-1/97.

Bagnara, R. (1997b). Structural information analysis for CLP languages, in M. Falaschi,
M. Navarro and A. Policriti (eds), Proceedings of the “1997 Joint Conference on Declar-
ative Programming (APPIA-GULP-PRODE’97)”, Grado, Italy, pp. 81–92.

Bagnara, R. and Schachte, P. (1999). Factorizing equivalent variable pairs in ROBDD-based
implementations of Pos, in A. M. Haeberer (ed.), Proceedings of the “Seventh Interna-
tional Conference on Algebraic Methodology and Software Technology (AMAST’98)”,
Vol. 1548 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, Amazonia,
Brazil, pp. 471–485.

Enhanced Sharing Analysis Techniques: A Comprehensive Evaluation 41

Bagnara, R., Hill, P. M. and Zaffanella, E. (1997). Set-sharing is redundant for pair-
sharing, in P. Van Hentenryck (ed.), Static Analysis: Proceedings of the 4th International
Symposium, Vol. 1302 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,
Paris, France, pp. 53–67.

Bagnara, R., Hill, P. M. and Zaffanella, E. (2000a). Efficient structural information analysis
for real CLP languages, in M. Parigot and A. Voronkov (eds), Proceedings of the 7th In-
ternational Conference on Logic for Programming and Automated Reasoning (LPAR
2000), Vol. 1955 of Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin,
Réunion Island, France, pp. 189–206.

Bagnara, R., Hill, P. M. and Zaffanella, E. (2002). Set-sharing is redundant for pair-sharing,
Theoretical Computer Science. To appear.

Bagnara, R., Zaffanella, E. and Hill, P. M. (2000b). Enhanced sharing analysis techniques:
A comprehensive evaluation, in M. Gabbrielli and F. Pfenning (eds), Proceedings of the
2nd International ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, Association for Computing Machinery, Montreal, Canada, pp. 103–114.

Blockeel, H., Demoen, B., Janssens, G., Vandencasteele, H. and Laer, W. V. (2000). Two
advanced transformations for improving the efficiency of an ILP system, in J. Cussens
and A. Frisch (eds), Work-in-Progress Reports, Tenth International Conference on In-
ductive Logic Programming, London, UK, pp. 43–59.

Bruynooghe, M. and Codish, M. (1993). Freeness, sharing, linearity and correctness — All at
once, in P. Cousot, M. Falaschi, G. Filé and A. Rauzy (eds), Static Analysis, Proceedings
of the Third International Workshop, Vol. 724 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin, Padova, Italy, pp. 153–164. An extended version is available as
Technical Report CW 179, Department of Computer Science, K.U. Leuven, September
1993.

Bruynooghe, M., Codish, M. and Mulkers, A. (1994a). Abstract unification for a composite
domain deriving sharing and freeness properties of program variables, in F. S. de Boer
and M. Gabbrielli (eds), Verification and Analysis of Logic Languages, Proceedings of
the W2 Post-Conference Workshop, International Conference on Logic Programming,
Santa Margherita Ligure, Italy, pp. 213–230.

Bruynooghe, M., Codish, M. and Mulkers, A. (1994b). A composite domain for freeness,
sharing, and compoundness analysis of logic programs, Technical Report CW 196, De-
partment of Computer Science, K.U. Leuven, Belgium.

Bueno, F., de la Banda, M. G. and Hermenegildo, M. (1994). Effectiveness of global anal-
ysis in strict independence-based automatic program parallelization, in M. Bruynooghe
(ed.), Logic Programming: Proceedings of the 1994 International Symposium, MIT Press
Series in Logic Programming, The MIT Press, Ithaca, NY, USA, pp. 253–268.

Bueno, F., de la Banda, M. G. and Hermenegildo, M. (1999). Effectivness of abstract
interpretation in automatic parallelization: a case study in logic programming, ACM
Transactions on Programming Languages and Systems 21(2): 189–239.

Cabeza, D. and Hermenegildo, M. (1994). Extracting non-strict independent and-
parallelism using sharing and freeness information, in B. Le Charlier (ed.), Static Anal-
ysis: Proceedings of the 1st International Symposium, Vol. 864 of Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin, Namur, Belgium, pp. 297–313.

Chang, J.-H., Despain, A. M. and DeGroot, D. (1985). AND-parallelism of logic programs
based on a static data dependency analysis, Digest of Papers of COMPCON Spring’85,
IEEE Computer Society Press, pp. 218–225.

Codish, M., Dams, D. and Yardeni, E. (1991). Derivation and safety of an abstract unifi-
cation algorithm for groundness and aliasing analysis, in Furukawa (1991), pp. 79–93.

Codish, M., Dams, D., Filé, G. and Bruynooghe, M. (1993). Freeness analysis for logic

42 R. Bagnara, E. Zaffanella, and P. M. Hill

programs — and correctness?, in D. S. Warren (ed.), Logic Programming: Proceedings
of the Tenth International Conference on Logic Programming, MIT Press Series in Logic
Programming, The MIT Press, Budapest, Hungary, pp. 116–131. An extended version is
available as Technical Report CW 161, Department of Computer Science, K.U. Leuven,
December 1992.

Codish, M., Søndergaard, H. and Stuckey, P. J. (1999). Sharing and groundness depen-
dencies in logic programs, ACM Transactions on Programming Languages and Systems
21(5): 948–976.

Cortesi, A. and Filé, G. (1999). Sharing is optimal, Journal of Logic Programming
38(3): 371–386.

Cortesi, A., Filé, G. and Winsborough, W. (1992). Comparison of abstract interpretations,
in M. Kuich (ed.), Proceedings of the 19th International Colloquium on Automata, Lan-
guages and Programming (ICALP’92), Vol. 623 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin, Wien, Austria, pp. 521–532.

Cortesi, A., Filé, G., Giacobazzi, R., Palamidessi, C. and Ranzato, F. (1997). Complemen-
tation in abstract interpretation, ACM Transactions on Programming Languages and
Systems 19(1): 7–47.

Cortesi, A., Le Charlier, B. and Van Hentenryck, P. (1994). Combinations of abstract do-
mains for logic programming, Conference Record of POPL ’94: 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Portland, Oregon,
pp. 227–239.

Cousot, P. and Cousot, R. (1979). Systematic design of program analysis frameworks, Pro-
ceedings of the Sixth Annual ACM Symposium on Principles of Programming Languages,
pp. 269–282.

Cousot, P. and Cousot, R. (1992). Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation, in M. Bruynooghe and M. Wirsing
(eds), Proceedings of the 4th International Symposium on Programming Language Im-
plementation and Logic Programming, Vol. 631 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin, Leuven, Belgium, pp. 269–295.

Crnogorac, L., Kelly, A. D. and Søndergaard, H. (1996). A comparison of three occur-
check analysers, in R. Cousot and D. A. Schmidt (eds), Static Analysis: Proceedings
of the 3rd International Symposium, Vol. 1145 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin, Aachen, Germany, pp. 159–173.

Deransart, P., Ferrand, G. and Téguia:, M. (1991). NSTO programs (Not Subject to Occur-
Check), in V. Saraswat and K. Ueda (eds), Logic Programming: Proceedings of the 1991
International Symposium, MIT Press Series in Logic Programming, The MIT Press, San
Diego, USA, pp. 533–547.

Filé, G. (1994). Share × Free: Simple and correct, Technical Report 15, Dipartimento di
Matematica, Università di Padova.

Furukawa, K. (ed.) (1991). Logic Programming: Proceedings of the Eighth International
Conference on Logic Programming, MIT Press Series in Logic Programming, The MIT
Press, Paris, France.

Hans, W. and Winkler, S. (1992). Aliasing and groundness analysis of logic programs
through abstract interpretation and its safety, Technical Report 92–27, Technical Uni-
versity of Aachen (RWTH Aachen).

Hermenegildo, M. and Greene, K. J. (1990). &-Prolog and its performance: Exploiting inde-
pendent And-Parallelism, in D. H. D. Warren and P. Szeredi (eds), Logic Programming:
Proceedings of the Seventh International Conference on Logic Programming, MIT Press
Series in Logic Programming, The MIT Press, Jerusalem, Israel, pp. 253–268.

Hermenegildo, M. and Rossi, F. (1995). Strict and non-strict independent and-parallelism

Enhanced Sharing Analysis Techniques: A Comprehensive Evaluation 43

in logic programs: Correctness, efficiency, and compile-time conditions, Journal of Logic
Programming 22(1): 1–45.

Hill, P. M., Bagnara, R. and Zaffanella, E. (1998). The correctness of set-sharing, in G. Levi
(ed.), Static Analysis: Proceedings of the 5th International Symposium, Vol. 1503 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, Pisa, Italy, pp. 99–114.

Hill, P. M., Bagnara, R. and Zaffanella, E. (2002). Soundness, idempotence and commu-
tativity of set-sharing, Theory and Practice of Logic Programming 2(2): 155–201. To
appear. Available at http://arXiv.org/abs/cs.PL/0102030.

ISO/IEC (1995). ISO/IEC 13211-1: 1995 Information technology — Programming lan-
guages — Prolog — Part 1: General core, International Standard Organization.

Jacobs, D. and Langen, A. (1989). Accurate and efficient approximation of variable aliasing
in logic programs, in E. L. Lusk and R. A. Overbeek (eds), Logic Programming: Pro-
ceedings of the North American Conference, MIT Press Series in Logic Programming,
The MIT Press, Cleveland, Ohio, USA, pp. 154–165.

Jacobs, D. and Langen, A. (1992). Static analysis of logic programs for independent AND
parallelism, Journal of Logic Programming 13(2&3): 291–314.

King, A. (1993). A new twist on linearity, Technical Report CSTR 93-13, Department of
Electronics and Computer Science, Southampton University, Southampton, UK.

King, A. (1994). A synergistic analysis for sharing and groundness which traces linearity, in
D. Sannella (ed.), Proceedings of the Fifth European Symposium on Programming, Vol.
788 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, Edinburgh, UK,
pp. 363–378.

King, A. and Soper, P. (1994). Depth-k sharing and freeness, in P. Van Hentenryck (ed.),
Logic Programming: Proceedings of the Eleventh International Conference on Logic Pro-
gramming, MIT Press Series in Logic Programming, The MIT Press, Santa Margherita
Ligure, Italy, pp. 553–568.

Langen, A. (1990). Advanced Techniques for Approximating Variable Aliasing in Logic Pro-
grams, PhD thesis, Computer Science Department, University of Southern California.
Printed as Report TR 91-05.

Mulkers, A., Simoens, W., Janssens, G. and Bruynooghe, M. (1994). On the practicality
of abstract equation systems, Report CW 198, Department of Computer Science, K. U.
Leuven, Leuven, Belgium.

Mulkers, A., Simoens, W., Janssens, G. and Bruynooghe, M. (1995). On the practicality
of abstract equation systems, in L. Sterling (ed.), Logic Programming: Proceedings of
the Twelfth International Conference on Logic Programming, MIT Press Series in Logic
Programming, The MIT Press, Kanagawa, Japan, pp. 781–795.

Muthukumar, K. and Hermenegildo, M. (1991). Combined determination of sharing and
freeness of program variables through abstract interpretation, in Furukawa (1991),
pp. 49–63. An extended version appeared in (Muthukumar and Hermenegildo 1992).

Muthukumar, K. and Hermenegildo, M. (1992). Compile-time derivation of variable depen-
dency using abstract interpretation, Journal of Logic Programming 13(2&3): 315–347.

Scozzari, F. (2000). Abstract domains for sharing analysis by optimal semantics, in J. Pals-
berg (ed.), Static Analysis: 7th International Symposium, SAS 2000, Vol. 1824 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin, Santa Barbara, CA, USA, pp. 397–
412.

Søndergaard, H. (1986). An application of abstract interpretation of logic programs: Occur
check reduction, in B. Robinet and R. Wilhelm (eds), Proceedings of the 1986 European
Symposium on Programming, Vol. 213 of Lecture Notes in Computer Science, Springer-
Verlag, Berlin, pp. 327–338.

Zaffanella, E., Bagnara, R. and Hill, P. M. (1999a). Widening Sharing, in G. Nadathur

44 R. Bagnara, E. Zaffanella, and P. M. Hill

(ed.), Principles and Practice of Declarative Programming, Vol. 1702 of Lecture Notes
in Computer Science, Springer-Verlag, Berlin, Paris, France, pp. 414–431.

Zaffanella, E., Hill, P. M. and Bagnara, R. (1999b). Decomposing non-redundant sharing
by complementation, in A. Cortesi and G. Filé (eds), Static Analysis: Proceedings of the
6th International Symposium, Vol. 1694 of Lecture Notes in Computer Science, Springer-
Verlag, Berlin, Venice, Italy, pp. 69–84.

Zaffanella, E., Hill, P. M. and Bagnara, R. (2002). Decomposing non-redundant sharing by
complementation, Theory and Practice of Logic Programming 2(2): 233–261. To appear.
Available at http://arXiv.org/abs/cs.PL/0101025.

