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Abstract

Complementation, the inverse of the reduced product operation, is a technique for system-
atically finding minimal decompositions of abstract domains. Filé and Ranzato advanced
the state of the art by introducing a simple method for computing a complement. As an
application, they considered the extraction by complementation of the pair-sharing do-
main PS from the Jacobs and Langen’s set-sharing domain SH . However, since the result
of this operation was still SH , they concluded that PS was too abstract for this. Here,
we show that the source of this result lies not with PS but with SH and, more precisely,
with the redundant information contained in SH with respect to ground-dependencies and
pair-sharing. In fact, a proper decomposition is obtained if the non-redundant version of
SH , PSD, is substituted for SH . To establish the results for PSD, we define a general
schema for subdomains of SH that includes PSD and Def as special cases. This sheds
new light on the structure of PSD and exposes a natural though unexpected connection
between Def and PSD. Moreover, we substantiate the claim that complementation alone
is not sufficient to obtain truly minimal decompositions of domains. The right solution
to this problem is to first remove redundancies by computing the quotient of the domain
with respect to the observable behavior, and only then decompose it by complementation.

Keywords: Abstract Interpretation, Domain Decomposition, Complementation,
Sharing Analysis.

1 Introduction

Complementation (Cortesi, Filé, Giacobazzi, Palamidessi and Ranzato 1997), which
is the inverse of the well-known reduced product operation (Cousot and Cousot
1979), can systematically obtain minimal decompositions of complex abstract do-
mains. It has been argued that these decompositions would be useful in finding
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† The work of the first and third authors has been partly supported by MURST project “Certi-

ficazione automatica di programmi mediante interpretazione astratta.”
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space saving representations for domains and to simplify domain verification prob-
lems.

In (Filé and Ranzato 1996), Filé and Ranzato presented a new method for com-
puting the complement, which is simpler than the original proposal by Cortesi et
al. (Cortesi, Filé, Giacobazzi, Palamidessi and Ranzato 1995, Cortesi et al. 1997)
because it has the advantage that, in order to compute the complement, only a
relatively small number of elements (namely the meet-irreducible elements of the
reference domain) need be considered. As an application of this method, the authors
considered the Jacobs and Langen’s sharing domain (Jacobs and Langen 1992), SH ,
for representing properties of variables such as groundness and sharing. This domain
captures the property of set-sharing. Filé and Ranzato illustrated their method by
minimally decomposing SH into three components; using the words of the authors
(Filé and Ranzato 1996, Section 1):

“[. . . ] each representing one of the elementary properties that coexist in the elements
of Sharing, and that are as follows: (i) the ground-dependency information; (ii) the pair-
sharing information, or equivalently variable independence; (iii) the set-sharing informa-
tion, without variable independence and ground-dependency.”

However, this decomposition did not use the usual domain PS for pair-sharing.
Filé and Ranzato observed that the complement of the pair-sharing domain PS
with respect to SH is again SH and concluded that PS was too abstract to be
extracted from SH by means of complementation. Thus, in order to obtain their
non-trivial decomposition of SH , they used a different (and somewhat unnatural)
definition for an alternative pair-sharing domain, called PS ′. The nature of PS ′ and
its connection with PS is examined more carefully in Section 6.

We noticed that the reason why Filé and Ranzato obtained this result was not
to be found in the definition of PS , which accurately represents the property of
pair-sharing, but in the use of the domain SH to capture the property of pair-
sharing. In (Bagnara, Hill and Zaffanella 1997, Bagnara, Hill and Zaffanella 2001),
it was observed that, for most (if not all) applications, the property of interest is not
set-sharing but pair-sharing. Moreover, it was shown that, for groundness and pair-
sharing, SH includes redundant elements. By defining an upper closure operator
ρ that removed this redundancy, a much smaller domain PSD , which was denoted
SH ρ in (Bagnara et al. 1997), was found that captured pair-sharing and groundness
with the same precision as SH . We show here that using the method given in
(Filé and Ranzato 1996), but with this domain instead of SH as the reference
domain, a proper decomposition can be obtained even when considering the natural
definition of the pair-sharing domain PS . Moreover, we show that PS is exactly
one of the components obtained by complementation of PSD . Thus the problem
exposed by Filé and Ranzato was, in fact, due to the “information preserving”
property of complementation, as any factorization obtained in this way is such that
the reduced product of the factors gives back the original domain. In particular, any
factorization of SH has to encode the redundant information identified in (Bagnara
et al. 1997, Bagnara et al. 2001). We will show that such a problem disappears
when PSD is used as the reference domain.

Although the primary purpose of this work is to clarify the decomposition of
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the domain PSD , the formulation is sufficiently general to apply to other proper-
ties that are captured by SH . The domain Pos of positive Boolean functions and
its subdomain Def , the domain of definite Boolean functions, are normally used
for capturing groundness (Armstrong, Marriott, Schachte and Søndergaard 1998).
Each Boolean variable has the value true if the program variable it corresponds to
is definitely bound to a ground term. However, the domain Pos is isomorphic to
SH via the mapping from formulas in Pos to the set of complements of their mod-
els (Codish and Søndergaard 1998). This means that any general result regarding
the structure of SH is equally applicable to Pos and its subdomains.

To establish the results for PSD , we define a general schema for subdomains
of SH that includes PSD and Def as special cases. This sheds new light on the
structure of the domain PSD , which is smaller but significantly more involved
than SH .1 Of course, as we have used the more general schematic approach, we
can immediately derive (where applicable) corresponding results for Def and Pos .
Moreover, an interesting consequence of this work is the discovery of a natural
connection between the abstract domains Def and PSD . The results confirm that
PSD is, in fact, the “appropriate” abstraction of the set-sharing domain SH that has
to be considered when groundness and pair-sharing are the properties of interest.

The paper, which is an extended version of (Zaffanella, Hill and Bagnara 1999),
is structured as follows: In Section 2 we briefly recall the required notions and
notations, even though we assume general acquaintance with the topics of lattice
theory, abstract interpretation, sharing analysis and groundness analysis. Section 3
introduces the SH domain and several abstractions of it. The meet-irreducible el-
ements of an important family of abstractions of SH are identified in Section 4.
This is required in order to apply, in Section 5, the method of Filé and Ranzato to
this family. In Section 6 we present some final remarks and we explain what is, in
our opinion, the lesson to be learned from this and other related work. Section 7
concludes.

2 Preliminaries

For any set S, ℘(S) denotes the power set of S and #S is the cardinality of S.
A preorder ‘�’ over a set P is a binary relation that is reflexive and transitive.

If ‘�’ is also antisymmetric, then it is called partial order. A set P equipped with
a partial order ‘�’ is said to be partially ordered and sometimes written 〈P,�〉.
Partially ordered sets are also called posets.

A poset 〈P,�〉 is totally ordered with respect to ‘�’ if, for each x, y ∈ P , either
x � y or y � x. A subset S of a poset 〈P,�〉 is a chain if it is totally ordered with
respect to ‘�’.

Given a poset 〈P,�〉 and S ⊆ P , y ∈ P is an upper bound for S if and only if
x � y for each x ∈ S. An upper bound y for S is a least upper bound (or lub) of
S if and only if, for every upper bound y′ for S, y � y′. The lub, when it exists,

1 For the well acquainted with the matter: SH is a powerset and hence it is dual-atomistic; this
is not the case for PSD .
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is unique. In this case we write y = lubS. Lower bounds and greatest lower bounds
(or glb) are defined dually.

A poset 〈L,�〉 such that, for each x, y ∈ L, both lub{x, y} and glb{x, y} exist,
is called a lattice. In this case, lub and glb are also called, respectively, the join
and the meet operations of the lattice. A complete lattice is a lattice 〈L,�〉 such
that every subset of L has both a least upper bound and a greatest lower bound.
The top element of a complete lattice L, denoted by >, is such that > ∈ L and
∀x ∈ L : x � >. The bottom element of L, denoted by ⊥, is defined dually.

As an alternative definition, a lattice is an algebra 〈L,∧,∨〉 such that ∧ and ∨
are two binary operations over L that are commutative, associative, idempotent,
and satisfy the following absorption laws, for each x, y ∈ L: x ∧ (x ∨ y) = x and
x ∨ (x ∧ y) = x.

The two definitions of lattice are equivalent. This can be seen by defining:

x � y def⇐⇒ x ∧ y = x
def⇐⇒ x ∨ y = y

and

glb{x, y} def= x ∧ y,

lub{x, y} def= x ∨ y.

The existence of an isomorphism between the two lattices L1 and L2 is denoted by
L1 ≡ L2.

A monotone and idempotent self-map ρ : P → P over a poset 〈P,�〉 is called a
closure operator (or upper closure operator) if it is also extensive, namely

∀x ∈ P : x � ρ(x).

Each upper closure operator ρ over a complete lattice C is uniquely determined by
the set of its fixpoints, that is, by its image

ρ(C) def=
{
ρ(x)

∣∣ x ∈ C }.
We will often denote upper closure operators by their images. The set of all upper
closure operators over a complete lattice C, denoted by uco(C), forms a complete
lattice ordered as follows: if ρ1, ρ2 ∈ uco(P ), ρ1 v ρ2 if and only if ρ2(C) ⊆ ρ1(C).
The reduced product of two elements ρ1 and ρ2 of uco(C) is denoted by ρ1 u ρ2 and
defined as

ρ1 u ρ2
def= glb{ρ1, ρ2}.

For a more detailed introduction to closure operators, the reader is referred to
(Gierz, Hofmann, Keimel, Lawson, Mislove and Scott 1980).

A complete lattice C is meet-continuous if for any chain Y ⊆ C and each x ∈ C,

x ∧
(∨

Y
)

=
∨
y∈Y

(x ∧ y).

Most domains for abstract interpretation (Cortesi et al. 1997) and, in particular,
all the domains considered in this paper are meet-continuous.
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Assume that C is a meet-continuous lattice. Then the inverse of the reduced
product operation, called weak relative pseudo-complement, is well defined and given
as follows. Let ρ, ρ1 ∈ uco(C) be such that ρ v ρ1. Then

ρ ∼ ρ1
def= lub{ ρ2 ∈ uco(C) | ρ1 u ρ2 = ρ }.

Given ρ ∈ uco(C), the weak pseudo-complement (or, by an abuse of terminology
now customary in the field of Abstract Interpretation, simply complement) of ρ
is denoted by idC ∼ ρ, where idC is the identity over C. Let Di

def= ρDi (C) with
ρDi ∈ uco(C) for i = 1, . . . , n. Then {Di | 1 ≤ i ≤ n } is a decomposition for C
if C = D1 u · · · uDn. The decomposition is also called minimal if, for each k ∈ N
with 1 ≤ k ≤ n and each Ek ∈ uco(C), Dk @ Ek implies

C @ D1 u · · · uDk−1 uEk uDk+1 u · · · uDn.

Assume now that C is a complete lattice. If X ⊆ C, then Moore(X) denotes the
Moore completion of X, namely,

Moore(X) def=
{∧

Y
∣∣ Y ⊆ X }

.

We say that C is meet-generated by X if C = Moore(X). An element x ∈ C is
meet-irreducible if

∀y, z ∈ C :
(
(x = y ∧ z) =⇒ (x = y or x = z)

)
.

The set of meet-irreducible elements of a complete lattice C is denoted by MI(C).
Note that > ∈ MI(C). An element x ∈ C is a dual-atom if x 6= > and, for
each y ∈ C, x ≤ y < > implies x = y. The set of dual-atoms is denoted by
dAtoms(C). Note that dAtoms(C) ⊂ MI(C). The domain C is dual-atomistic if
C = Moore

(
dAtoms(C)

)
. Thus, if C is dual-atomistic, MI(C) = {>}∪dAtoms(C).

The following result holds (Filé and Ranzato 1996, Theorem 4.1).

Theorem 1
If C is meet-generated by MI(C) then uco(C) is pseudo-complemented and for any
ρ ∈ uco(C)

idC ∼ ρ = Moore
(
MI(C) \ ρ(C)

)
.

Another interesting result is the following (Filé and Ranzato 1996, Corollary 4.5).

Theorem 2
If C is dual-atomistic then uco(C) is pseudo-complemented and for any ρ ∈ uco(C)

idC ∼ ρ = Moore
(
dAtoms(C) \ ρ(C)

)
.

Let Vars be a denumerable set of variables. For any syntactic object o, vars(o)
denotes the set of variables occurring in o. Let TVars be the set of first-order terms
over Vars. If x ∈ Vars and t ∈ TVars \ {x}, then x 7→ t is called a binding. A
substitution is a total function σ : Vars → TVars that is the identity almost every-
where. Substitutions are denoted by the set of their bindings, thus a substitution
σ is identified with the (finite) set{

x 7→ σ(x)
∣∣ x 6= σ(x)

}
.
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If t ∈ TVars , we write tσ to denote σ(t). A substitution σ is idempotent if, for all
t ∈ TVars, we have tσσ = tσ. The set of all idempotent substitutions is denoted by
Subst .

It should be stressed that this restriction to idempotent substitutions is provided
for presentation purposes only. In particular, it allows for a straight comparison
of our work with respect to other works appeared in the literature. However, the
results proved in this paper do not rely on the idempotency of substitutions and
are therefore applicable also when considering substitutions in rational solved form
(Colmerauer 1982, Colmerauer 1984). Indeed, we have proved in (Hill, Bagnara
and Zaffanella 1998) that the usual abstract operations defined on the domain
SH , approximating concrete unification over finite trees, also provide a correct
approximation of concrete unification over a domain of rational trees.

3 The Sharing Domains

In order to provide a concrete meaning to the elements of the set-sharing domain
of D. Jacobs and A. Langen (Jacobs and Langen 1989, Langen 1990, Jacobs and
Langen 1992), a knowledge of the finite set VI ⊂ Vars of variables of interest
is required. For example, in the Ph.D. thesis of Langen (Langen 1990) this set
is implicitly defined, for each clause being analyzed, as the finite set of variables
occurring in that clause. A clearer approach has been introduced in (Cortesi, Filé
and Winsborough 1994, Cortesi, Filé and Winsborough 1998) and also adopted
in (Bagnara et al. 1997, Bagnara et al. 2001, Cortesi and Filé 1999), where the set
of variables of interest is given explicitly as a component of the abstract domain.
During the analysis process, this set is elastic. That is, it expands (e.g., when solving
clause’s bodies) and contracts (e.g., when abstract descriptions are projected onto
the variables occurring in clause’s heads). This technique has two advantages: first,
a clear and unambiguous description of those semantic operators that modify the
set of variables of interest is provided; second, the definition of the abstract domain
is completely independent from the particular program being analyzed. However,
since at any given time the set of variables of interest is fixed, we can simplify the
presentation by consistently denoting this set by VI . Therefore, in this paper all
the abstract domains defined are restricted to a fixed set of variables of interest VI
of finite cardinality n; this set is not included explicitly in the representation of the
domain elements; also, when considering abstract semantic operators having some
arguments in Subst , such as the abstract mgu, the considered substitutions are
always taken to have variables in VI . We would like to emphasize that this is done
for ease of presentation only: the complete definition of both the domains and the
semantic operators can be immediately derived from those given, e.g., in (Bagnara
et al. 1997, Bagnara et al. 2001). Note that other solutions are possible; we refer the
interested reader to (Cortesi, Filé and Winsborough 1996, Section 7) and (Scozzari
2001, Section 10), where this problem is discussed in the context of groundness
analysis.



Decomposing Non-Redundant Sharing 7

3.1 The Set-sharing Domain SH

Definition 1
(The set-sharing domain SH .) The domain SH is given by

SH def= ℘(SG),

where the set of sharing-groups SG is given by

SG def= ℘(VI ) \ {∅}.

SH is partially ordered by set inclusion so that the lub is given by set union and
the glb by set intersection.

Note that, as we are adopting the upper closure operator approach to abstract
interpretation, all the domains we define here are ordered by subset inclusion. As
usual in the field of abstract interpretation, this ordering provides a formalization
of precision where the less precise domain elements are those occurring higher in
the partial order. Thus, more precise elements contain less sharing groups.

Since SH is a power set, SH is dual-atomistic and

dAtoms(SH ) =
{

SG \ {S}
∣∣ S ∈ SG

}
.

In all the examples in this paper, the elements of SH are written in a simplified
notation, omitting the inner braces. For instance, the set{

{x}, {x, y}, {x, z}, {x, y, z}
}

would be written simply as

{x, xy, xz, xyz}.

Example 1
Suppose VI = {x, y, z}. Then the seven dual-atoms of SH are:

s1 = { y, z, xy, xz, yz, xyz},
s2 = {x, z, xy, xz, yz, xyz},
s3 = {x, y, xy, xz, yz, xyz},

 these lack a singleton;

s4 = {x, y, z, xz, yz, xyz},
s5 = {x, y, z, xy, yz, xyz},
s6 = {x, y, z, xy, xz, xyz},

 these lack a pair;

s7 = {x, y, z, xy, xz, yz }, this lacks VI .

The meet-irreducible elements of SH are s1, . . . , s7, and the top element SG .

Definition 2
(Operations over SH .) The function bin: SH × SH → SH , called binary union,
is given, for each sh1, sh2 ∈ SH , by

bin(sh1, sh2) def= {S1 ∪ S2 | S1 ∈ sh1, S2 ∈ sh2 }.
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The star-union function (·)? : SH → SH is given, for each sh ∈ SH , by

sh? def=
{
S ∈ SG

∣∣∣ ∃sh ′ ⊆ sh . S =
⋃

sh′
}
.

The j-self-union function (·)j : SH → SH is given, for each j ≥ 1 and sh ∈ SH , by

shj def=
{
S ∈ SG

∣∣∣ ∃sh ′ ⊆ sh .
(

# sh′ ≤ j, S =
⋃

sh′
)}

.

The extraction of the relevant component of an element of SH with respect to a
subset of VI is encoded by the function rel : ℘(VI ) × SH → SH given, for each
V ⊆ VI and each sh ∈ SH , by

rel(V, sh) def= {S ∈ sh | S ∩ V 6= ∅ }.

The function amgu captures the effects of a binding x 7→ t on an element of SH .
Let sh ∈ SH , vx = {x}, vt = vars(t), and vxt = vx ∪ vt. Then

amgu(sh, x 7→ t) def=
(
sh \ (rel(vxt, sh)

)
∪ bin

(
rel(vx, sh)?, rel(vt, sh)?

)
.

We also define the extension amgu: SH × Subst → SH by

amgu(sh , ∅) def= sh,

amgu
(
sh , {x 7→ t} ∪ σ

) def= amgu
(
amgu(sh , x 7→ t), σ \ {x 7→ t}

)
.

The function proj : SH ×℘(VI )→ SH that projects an element of SH onto a subset
V ⊆ VI of the variables of interest is given, for each sh ∈ SH , by

proj(sh, V ) def= {S ∩ V | S ∈ sh , S ∩ V 6= ∅ } ∪
{
{x}

∣∣ x ∈ VI \ V
}
.

Together with lub, the functions proj and amgu are the key operations that
make the abstract domain SH suitable for computing static approximations of the
substitutions generated by the execution of logic programs. These operators can be
combined with simpler ones (e.g., consistent renaming of variables) so as to provide
a complete definition of the abstract semantics. Also note that these three operators
have been proved to be the optimal approximations of the corresponding concrete
operators (Cortesi and Filé 1999). The j-self-union operator defined above is new.
We show later when it may safely replace the star-union operator. Note that, letting
j = 1, 2, and n, we have sh1 = sh, sh2 = bin(sh, sh), and, as # VI = n, shn = sh?.

3.2 The Tuple-Sharing Domains

To provide a general characterization of domains such as the groundness and pair-
sharing domains contained in SH , we first identify the sets of elements that have
the same cardinality.
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Definition 3
(Tuples of cardinality k.) For each k ∈ N with 1 ≤ k ≤ n, the overloaded
functions tuplesk : SG → SH and tuplesk : SH → SH are defined as

tuplesk(S) def=
{
T ∈ ℘(S)

∣∣ #T = k
}
,

tuplesk(sh) def=
⋃{

tuplesk(S′)
∣∣ S′ ∈ sh

}
.

In particular, if S ∈ SG and sh ∈ SH , let

pairs(S) def= tuples2(S),

pairs(sh) def= tuples2(sh).

The usual domains that represent groundness and pair-sharing information will
be shown to be special cases of the following more general domain.

Definition 4
(The tuple-sharing domains TSk.) For each k ∈ N such that 1 ≤ k ≤ n, the
function ρTSk

: SH → SH is defined as

ρTSk
(sh) def=

{
S ∈ SG

∣∣ tuplesk(S) ⊆ tuplesk(sh)
}

and, as ρTSk
∈ uco(SH ), it induces the lattice

TSk
def= ρTSk

(SH ).

Note that ρTSk

(
tuplesk(sh)

)
= ρTSk

(sh) and that there is a one to one correspon-
dence between TSk and ℘

(
tuplesk(VI )

)
. The isomorphism is given by the functions

tuplesk : TSk → ℘
(
tuplesk(VI )

)
and ρTSk

: ℘
(
tuplesk(VI )

)
→ TSk. Thus the do-

main TSk is the smallest domain that can represent properties characterized by
sets of variables of cardinality k. We now consider the tuple-sharing domains for
the cases when k = 1, 2, and n.

Definition 5
(The groundness domain Con.) The upper closure operator ρCon : SH → SH
and the corresponding domain Con are defined as

ρCon

def= ρTS1 ,

Con def= TS1(SH ) = ρCon(SH ).

This domain, which represents groundness information, is isomorphic to a domain
of conjunctions of Boolean variables. The isomorphism tuples1 maps each element
of Con to the set of variables that are possibly non-ground. From the domain
tuples1(Con), by set complementation, we obtain the classical domain G (Jones and
Søndergaard 1987) for representing the set of variables that are definitely ground
(so that we have TS1

def= Con ≡ G).
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Definition 6

(The pair-sharing domain PS .) The upper closure operator ρPS : SH → SH
and the corresponding domain PS are defined as

ρPS

def= ρTS2
,

PS def= TS2(SH ) = ρPS (SH ).

This domain represents pair-sharing information and the isomorphism tuples2 maps
each element of PS to the set of pairs of variables that may be bound to terms that
share a common variable. The domain for representing variable independence can
be obtained by set complementation.

Finally, in the case when k = n we have a domain consisting of just two elements:

TSn =
{

SG , SG \ {VI}
}
.

Note that the bottom of TSn differs from the top element SG only in that it
lacks the sharing group VI . There is no intuitive reading for the information en-
coded by this element: it describes all but those substitutions σ ∈ Subst such that⋂{

vars(xσ)
∣∣ x ∈ VI

}
6= ∅.

Just as for SH , the domain TSk (where 1 ≤ k ≤ n) is dual-atomistic and:

dAtoms(TSk) =
{(

SG \ {U ∈ SG | T ⊆ U }
) ∣∣∣ T ∈ tuplesk(VI )

}
.

Thus we have

dAtoms(Con) =
{(

SG \ {U ∈ SG | x ∈ U }
) ∣∣∣ x ∈ VI

}
,

dAtoms(PS) =
{(

SG \ {U ∈ SG | x, y ∈ U }
) ∣∣∣ x, y ∈ VI , x 6= y

}
.

Example 2

Consider Example 1. Then the dual-atoms of Con are

r1 = s1 ∩ s4 ∩ s5 ∩ s7 = { y, z, yz},
r2 = s2 ∩ s4 ∩ s6 ∩ s7 = {x, z, xz },
r3 = s3 ∩ s5 ∩ s6 ∩ s7 = {x, y, xy };

the dual-atoms of PS are

m1 = s4 ∩ s7 = {x, y, z, xz, yz},
m2 = s5 ∩ s7 = {x, y, z, xy, yz},
m3 = s6 ∩ s7 = {x, y, z, xy, xz }.

It can be seen from the dual-atoms that, for each j = 1, . . . , n, where j 6= k, the
precision of the information encoded by domains TSj and TSk is not comparable.
Also, we note that, if j < k, then ρTSj

(TSk) = {SG} and ρTSk
(TSj) = TSj .
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3.3 The Tuple-Sharing Dependency Domains

We now need to define domains that capture the propagation of groundness and
pair-sharing; in particular, the dependency of these properties on the further in-
stantiation of the variables. In the same way as with TSk for Con and PS , we
first define a general subdomain TSDk of SH . This must be safe with respect to
the tuple-sharing property represented by TSk when performing the usual abstract
operations. This was the motivation behind the introduction in (Bagnara et al.
1997, Bagnara et al. 2001) of the pair-sharing dependency domain PSD . We now
generalize this for tuple-sharing.

Definition 7
The tuple-sharing dependency domain (TSDk.) For each k where 1 ≤ k ≤ n,
the function ρTSDk

: SH → SH is defined as

ρTSDk
(sh)
def=
{
S ∈ SG

∣∣∣ ∀T ⊆ S : #T < k =⇒ S =
⋃
{U ∈ sh | T ⊆ U ⊆ S }

}
,

and, as ρTSDk
∈ uco(SH ), it induces the tuple-sharing dependency lattice

TSDk
def= ρTSDk

(SH ).

It follows from the definitions that the domains TSDk form a strict chain.

Proposition 1
For j, k ∈ N with 1 ≤ j < k ≤ n, we have TSD j ⊂ TSDk.

Moreover, TSDk is not less precise than TSk.

Proposition 2
For k ∈ N with 1 ≤ k ≤ n, we have TSk ⊆ TSDk. Furthermore, if n > 1 then
TSk ⊂ TSDk.

As an immediate consequence of Propositions 1 and 2 we have that that TSDk is
not less precise than TS1 u · · · u TSk.

Corollary 1
For j, k ∈ N with 1 ≤ j ≤ k ≤ n, we have TSj ⊆ TSDk.

It also follows from the definitions that, for the TSDk domain, the star-union op-
erator can be replaced by the k-self-union operator.

Proposition 3
For 1 ≤ k ≤ n, we have ρTSDk

(
shk
)

= sh?.

We now instantiate the tuple-sharing dependency domains for the cases when
k = 1, 2, and n.
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Definition 8

(The ground dependency domain Def .) The domain Def is induced by the
upper closure operator ρDef : SH → SH . They are defined as

ρDef

def= ρTSD1 ,

Def def= TSD1 = ρDef (SH ).

By Proposition 3, we have, for all sh ∈ SH , ρTSD1
(sh) = sh? so that TSD1 is a

representation of the domain Def used for capturing groundness. It also provides
evidence for the fact that the computation of the star-union is not needed for the
elements in Def .

Definition 9

(The pair-sharing dependency domain PSD.) The upper closure operator
ρPSD : SH → SH and the corresponding domain PSD are defined as

ρPSD

def= ρTSD2 ,

PSD def= TSD2 = ρPSD(SH ).

Then, it follows from (Bagnara et al. 1997, Theorem 7) that PSD corresponds
to the domain SH ρ defined for capturing pair-sharing. By Proposition 3 we have,
for all sh ∈ SH , that ρPSD (sh2) = sh?, so that, for elements in PSD , the star-
union operator sh? can be replaced by the 2-self-union sh2 = bin(sh , sh) without
any loss of precision. This was also proved in (Bagnara et al. 1997, Theorem 11).
Furthermore, Corollary 1 confirms the observation made in (Bagnara et al. 1997)
that PSD also captures groundness.

Finally, letting k = n, we observe that TSDn = SH . Figure 1 summarizes the
relations between the tuple-sharing and the tuple-sharing dependency domains.

As already discussed at the start of this section, the set of variables of interest
VI is fixed and, to simplify the notation, omitted. In (Bagnara et al. 1997, Bagnara
et al. 2001) the domains SS and SS ρ (corresponding to SH and PSD , respectively)
are instead obtained by explicitly adding to each domain element a new component,
representing the set of variables of interest. It is shown that SSρ is as good as SS
for both representing and propagating pair-sharing and it is also proved that any
weaker domain does not satisfy these properties, so that SS ρ is the quotient (Cortesi
et al. 1994, Cortesi et al. 1998) of SS with respect to the pair-sharing property PS .

We now generalize and strengthen the results in (Bagnara et al. 1997, Bagnara
et al. 2001) and show that, for each k ∈ {1, . . . , n}, TSDk is the quotient of SH
with respect to the reduced product TS1 u · · · u TSk. These results are proved at
the end of this section.

Theorem 3

Let sh1, sh2 ∈ SH and 1 ≤ k ≤ n. If ρTSDk
(sh1) = ρTSDk

(sh2) then, for each
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TS1 = Con TS 2 = PS TS 3 TSn−1 TSn

2l

i=1

TSi

TSD1 = Def
3l

i=1

TSi

TSD2 = PSD

TSD3

n−1l

i=1

TSi

TSDn−1

TSDn =

nl

i=1

TSi = SH

Fig. 1. The set-sharing domain SH and some of its abstractions.

σ ∈ Subst , each sh′ ∈ SH , and each V ∈ ℘(VI ),

ρTSDk

(
amgu(sh1, σ)

)
= ρTSDk

(
amgu(sh2, σ)

)
,

ρTSDk
(sh′ ∪ sh1) = ρTSDk

(sh ′ ∪ sh2),

ρTSDk

(
proj(sh1, V )

)
= ρTSDk

(
proj(sh2, V )

)
.

Theorem 4

Let 1 ≤ k ≤ n For each sh1, sh2 ∈ SH , ρTSDk
(sh1) 6= ρTSDk

(sh2) implies

∃σ ∈ Subst , ∃j ∈ {1, . . . , k} . ρTSj

(
amgu(sh1, σ)

)
6= ρTSj

(
amgu(sh2, σ)

)
.
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3.4 Proofs of Theorems 3 and 4

In what follows we use the fact that ρTSDk
is an upper closure operator so that, for

each sh1, sh2 ∈ SH ,

sh1 ⊆ ρTSDk
(sh2) ⇐⇒ ρTSDk

(sh1) ⊆ ρTSDk
(sh2). (1)

In particular, since (·)? = ρTSD1
, we have

sh1 ⊆ sh?2 ⇐⇒ sh?1 ⊆ sh?2. (2)

Lemma 1
For each sh ∈ SH and each V ∈ ℘(VI ),

ρTSDk
(sh) \ rel

(
V, ρTSDk

(sh)
)

= ρTSDk

(
sh \ rel(V, sh)

)
.

Proof
By Definition 7,

S ∈ρTSDk

(
sh \ rel(V, sh)

)
⇐⇒ ∀T ⊆ S :

(
#T < k =⇒ S =

⋃{
U ∈ sh \ rel(V, sh)

∣∣ T ⊆ U ⊆ S })
⇐⇒ ∀T ⊆ S :

(
#T < k =⇒ S =

⋃
{U ∈ sh | T ⊆ U ⊆ S }

)
∧ S ∩ V = ∅

⇐⇒ S ∈ ρTSDk
(sh) \ rel

(
V, ρTSDk

(sh)
)
.

Lemma 2
For each sh1, sh2 ∈ SH , each V ∈ ℘(VI ) and each k ∈ N with 1 < k ≤ n,

ρTSDk
(sh1) ⊆ ρTSDk

(sh2) =⇒ rel(V, sh1)? ⊆ rel(V, sh2)?.

Proof
We prove that

sh1 ⊆ ρTSDk
(sh2) =⇒ rel(V, sh1) ⊆ rel(V, sh2)?.

The result then follows from Eqs. (1) and (2).
Suppose S ∈ rel(V, sh1). Then, S ∈ sh1 and V ∩ S 6= ∅. By the hypothesis,

S ∈ ρTSDk
(sh2). Let x ∈ V ∩ S. Then, by Definition 7, we have

S =
⋃{

U ∈ sh2

∣∣ {x} ⊆ U ⊆ S }
=
⋃{

U ∈ rel(V, sh2)
∣∣ {x} ⊆ U ⊆ S }.

Thus S ∈ rel(V, sh2)?.

Lemma 3
For each sh1, sh2 ∈ SH , each σ ∈ Subst and each k ∈ N with 1 ≤ k ≤ n,

ρTSDk
(sh1) = ρTSDk

(sh2) =⇒ ρTSDk

(
amgu

(
sh1, σ

))
= ρTSDk

(
amgu

(
sh2, σ

))
.
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Proof
If σ = ∅, the statement is obvious from the definition of amgu. In the other cases,
the proof is by induction on the size of σ. The inductive step, when σ has more
than one binding, is straightforward. For the base case, when σ = {x 7→ t}, we have
to show that

sh1 ⊆ ρTSDk
(sh2) =⇒ amgu

(
sh1, {x 7→ t}

)
⊆ ρTSDk

(
amgu

(
sh2, {x 7→ t}

))
.

The result then follows from Eq. (1).
Let vx

def= {x}, vt def= vars(t), and vxt
def= vx ∪ vt. Suppose

S ∈ amgu
(
sh1, {x 7→ t}

)
.

Then, by definition of amgu,

S ∈
(
sh1 \ rel(vx ∪ vt, sh1)

)
∪ bin

(
rel(vx, sh1)?, rel(vt, sh1)?

)
.

There are two cases:

1. S ∈ sh1 \ rel(vx ∪ vt, sh1). Then, by hypothesis, S ∈ ρTSDk
(sh2). Hence we

have S ∈ ρTSDk
(sh2) \ rel

(
vx ∪ vt, ρTSDk

(sh2)
)
. Thus, by Lemma 1,

S ∈ ρTSDk

(
sh2 \ rel(vx ∪ vt, sh2)

)
.

2. S ∈ bin
(
rel(vx, sh1)?, rel(vt, sh1)?

)
. Then we must have S = T ∪ R where

T ∈ rel(vx, sh1)? and R ∈ rel(vt, sh1)?.

The proof here splits into two branches, 2a and 2b, depending on whether k > 1
or k = 1.

2a. We first assume that k > 1. Then, by Lemma 2 we have that T ∈ rel(vx, sh2)?

and R ∈ rel(vt, sh2)?. Hence,

S ∈ bin
(
rel(vx, sh2)?, rel(vt, sh2)?

)
.

Combining case 1 and case 2a we obtain

S ∈ ρTSDk

(
sh2 \ rel(vx ∪ vt, sh2)

)
∪ bin

(
rel(vx, sh2)?, rel(vt, sh2)?

)
.

Hence as ρTSDk
is extensive and monotonic

S ∈ ρTSDk

((
sh2 \ rel(vx ∪ vt, sh2)

)
∪ bin

(
rel(vx, sh2)?, rel(vt, sh2)?

))
,

and hence, when k > 1, S ∈ ρTSDk

(
amgu

(
sh2, {x 7→ t}

))
.

2b. Secondly suppose that k = 1. In this case, we have, by Proposition 3:

ρTSD1
(sh2) = sh?2

and that

ρTSD1

(
amgu

(
sh2, {x 7→ t}

))
= amgu

(
sh2, {x 7→ t}

)?
.
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Thus, by the hypothesis,

S ∈ bin
(
rel(vx, sh?2)?, rel(vt, sh?2)?

)
,

= bin
(
rel(vx, sh?2), rel(vt, sh?2)

)
.

Therefore we can write

S = T ∪ Tx ∪R ∪Rt
where

T ∪ Tx ∈ rel(vx, sh?2),

R ∪Rt ∈ rel(vt, sh?2),

T , R ∈
(
sh2 \ rel(vxt, sh2)

)?
,

Tx ∈ rel(vx, sh2)? \ ∅,
Rt ∈ rel(vt, sh2)? \ ∅.

Thus

S ∈
((

sh2 \ rel(vxt, sh2)
)
∪ bin

(
rel(vx, sh2)?, rel(vt, sh2)?

))?
= amgu

(
sh2, {x 7→ t}

)?
.

Combining case 1 and case 2b for k = 1, the result follows immediately by the
monotonicity and extensivity of (·)?.
Lemma 4
For each sh1, sh2 ∈ SH ,

ρTSDk
(sh1 ∪ sh2) = ρTSDk

(
ρTSDk

(sh1) ∪ ρTSDk
(sh2)

)
.

Proof
This is a classical property of upper closure operators (Gierz et al. 1980).

Lemma 5
For each sh1, sh2 ∈ SH and each V ⊆ VI ,

ρTSDk
(sh1) = ρTSDk

(sh2) =⇒ ρTSDk

(
proj(sh1, V )

)
= ρTSDk

(
proj(sh2, V )

)
.

Proof
We show that

sh1 ⊆ ρTSDk
(sh2) =⇒ proj(sh1, V ) ⊆ ρTSDk

(
proj(sh2, V )

)
.

The result then follows from Eq. (1).
Suppose sh1 ⊆ ρTSDk

(sh2) and S ∈ proj(sh1, V ). Then, as proj is monotonic, we
have S ∈ proj

(
ρTSDk

(sh2), V
)
. We distinguish two cases.

1. There exists x ∈ V such that S = {x}. Then S ∈ proj(sh2, V ) and hence, by
Definition 7, S ∈ ρTSDk

(
proj(sh2, V )

)
.

2. Otherwise, by definition of proj and Definition 7, there exists S′ ∈ ρTSDk
(sh2)

such that S = S′ ∩ V and

∀T ⊆ S′ :
(

#T < k =⇒ S =
⋃
{U ∈ sh2 | T ⊆ U ⊆ S′ } ∩ V

)
.
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Hence

∀T ⊆ S :
(

#T < k =⇒ S =
⋃{

U ∈ proj(sh2, V )
∣∣ T ⊆ U ⊆ S }),

and thus S ∈ ρTSDk

(
proj(sh2, V )

)
.

Proof of Theorem 3.
Statements 1, 2 and 3 follow from Lemmas 3, 4 and 5, respectively.

The following lemma is also proved in (Bagnara et al. 1997, Bagnara et al. 2001)
but we include it here for completeness.

Lemma 6
Let σ def= {x1 7→ t1, . . . , xn 7→ tn}, where, for each i = 1, . . . , n, ti is a ground
term. Then, for all sh ∈ SH we have

amgu(sh , σ) = sh \ rel
(
{x1, . . . , xn}, sh

)
.

Proof
If n = 0, so that σ = ∅, the statement can be easily verified after having observed
that rel(∅, sh) = ∅. Otherwise, if n > 0, we proceed by induction on n. For the base
case, let n = 1. Then

amgu(sh, x1 7→ t1) = sh \ rel
(
{x1}, sh

)
∪ bin

(
rel
(
{x1}, sh

)?
, rel
(
∅, sh

)?)
= sh \ rel

(
{x1}, sh

)
.

For the inductive step, let n > 1 and let

σ′
def= {x1 7→ t1, . . . , xn−1 7→ tn−1}.

By definition of amgu we have

amgu(sh , σ) = amgu
(
sh, {xn 7→ tn} ∪ σ′

)
= amgu

(
amgu

(
sh, {xn 7→ tn}

)
, σ′
)

= amgu
(

sh \ rel
(
{xn}, sh

)
, σ′
)

=
(

sh \ rel
(
{xn}, sh

))
\ rel

(
{x1, . . . , xn−1}, sh \ rel

(
{xn}, sh

))
= sh \

(
rel
(
{xn}, sh

)
∪ rel

(
{x1, . . . , xn−1}, sh \ rel

(
{xn}, sh

)))
= sh \ rel

(
{x1, . . . , xn}, sh

)
.

Proof of Theorem 4.
We assume that S ∈ ρTSDk

(sh1) \ ρTSDk
(sh2). (If such an S does not exist we simply

swap sh1 and sh2.)
Let C denote a ground term and let

σ
def= { x 7→ C | x ∈ VI \ S }.
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Then, by Lemma 6, for i = 1, 2, we define amgu(sh i, σ) def= shSi where

shS1
def= {T ⊆ S | T ∈ sh1 },

shS2
def= {T ⊂ S | T ∈ sh2 }.

Now, if #S = j and j ≤ k, then we have S ∈ sh1 \ sh2. Hence S ∈ shS1 \ shS2 and
we can easily observe that S ∈ ρTSj

(shS1 ) but S /∈ ρTSj
(shS2 ).

On the other hand, if #S = j and j > k, then by Definition 7 there exists T
with #T < k such that

S =
⋃
{U ∈ shS1 | T ⊆ U }

but

S ⊃
⋃
{U ∈ shS2 | T ⊆ U }

def= S′.

Let x ∈ S \ S′. We have h def= #
(
T ∪ {x}

)
≤ k and thus we can observe that

T ∪ {x} ∈ ρTSh
(shS1 ) but T ∪ {x} /∈ ρTSh

(shS2 ).

4 The Meet-Irreducible Elements

In Section 5, we will use the method of Filé and Ranzato (Filé and Ranzato 1996) to
decompose the dependency domains TSDk. In preparation for this, in this section,
we identify the meet-irreducible elements for the domains and state some general
results.

We have already observed that TSk and TSDn = SH are dual-atomistic. How-
ever, TSDk, for k < n, is not dual-atomistic and we need to identify the meet-
irreducible elements. In fact, the set of dual-atoms for TSDk is

dAtoms(TSDk) =
{

SG \ {S}
∣∣ S ∈ SG ,#S ≤ k

}
.

Note that # dAtoms(TSDk) =
∑k
j=1

(
n
j

)
. Specializing this for k = 1 and k = 2,

respectively, we have

dAtoms(Def ) =
{

SG \ {{x}}
∣∣ x ∈ VI

}
,

dAtoms(PSD) =
{

SG \ {S}
∣∣ S ∈ pairs(VI )

}
∪ dAtoms(Def ),

and we have # dAtoms(Def ) = n and # dAtoms(PSD) = n(n + 1)/2. We present
as an example of this the dual-atoms for Def and PSD when n = 3.

Example 3
Consider Example 1. Then the 3 dual-atoms for Def are s1, s2, s3 and the 6 dual-
atoms for PSD are s1, . . . , s6. Note that these are not all the meet-irreducible
elements since sets that do not contain the sharing group xyz such as {x} and
⊥ = ρDef (⊥) = ∅ cannot be obtained by the meet (which is set intersection) of a set
of dual-atoms. Thus, unlike Con and PS , neither Def nor PSD are dual-atomistic.

Consider next the set Mk of the meet-irreducible elements of TSDk that are
neither the top element SG nor dual-atoms. Mk has an element for each sharing



Decomposing Non-Redundant Sharing 19

group S ∈ SG such that #S > k and each tuple T ⊂ S with #T = k. Such
an element is obtained from SG by removing all the sharing groups U such that
T ⊆ U ⊆ S. Formally, for 1 ≤ k ≤ n,

Mk
def=
{

SG \ {U ∈ SG | T ⊆ U ⊆ S }
∣∣ T, S ∈ SG , T ⊂ S,#T = k

}
.

Note that, as there are
(
n
k

)
possible choices for T and 2n−k − 1 possible choices for

S, we have #Mk =
(
n
k

)
(2n−k − 1) and # MI(TSDk) =

∑k−1
j=0

(
n
j

)
+
(
n
k

)
2n−k.

We now show that we have identified precisely all the meet-irreducible elements
of TSDk.

Theorem 5
If k ∈ N with 1 ≤ k ≤ n, then

MI(TSDk) = {SG} ∪ dAtoms(TSDk) ∪Mk.

The proof of this theorem is included at the end of this section. Here, we illustrate
the result for the case when n = 3.

Example 4
Consider again Example 3. First, consider the domain Def . The meet-irreducible
elements which are not dual-atoms, besides SG , are the following (see Figure 2):

q1 = { y, z, xz, yz, xyz} ⊂ s1,

q2 = { y, z, xy, yz, xyz} ⊂ s1, r1 = { y, z, yz} ⊂ q1 ∩ q2,

q3 = {x, z, xz, yz, xyz} ⊂ s2,

q4 = {x, z, xy, xz, xyz} ⊂ s2, r2 = {x, z, xz } ⊂ q3 ∩ q4,

q5 = {x, y, xy, yz, xyz} ⊂ s3,

q6 = {x, y, xy, xz, xyz} ⊂ s3, r3 = {x, y, xy } ⊂ q5 ∩ q6.

Next, consider the domain PSD . The only meet-irreducible elements that are not
dual-atoms, beside SG , are the following (see Figure 3):

m1 = {x, y, z, xz, yz } ⊂ s4

m2 = {x, y, z, xy, yz } ⊂ s5

m3 = {x, y, z, xy, xz } ⊂ s6.

Each of these lack a pair and none contains the sharing group xyz.

Looking at Examples 2 and 4, it can be seen that all the dual-atoms of the
domains Con and PS are meet-irreducible elements of the domains Def and PSD ,
respectively. Indeed, the following general result shows that the dual-atoms of the
domain TSk are meet-irreducible elements for the domain TSDk.

Corollary 2
Let k ∈ N with 1 ≤ k ≤ n. Then

dAtoms(TSk) =
{

sh ∈ MI(TSDk)
∣∣ VI /∈ sh

}
.

For the decomposition, we need to identify which meet-irreducible elements of
TSDk are in TSj . Using Corollaries 1 and 2 we have the following result.
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Fig. 2. The meet-irreducible elements of Def for n = 3, with dual-atoms emphasized.

Corollary 3
If j, k ∈ N with 1 ≤ j < k ≤ n, then MI(TSDk) ∩ TSj = {SG}.

By combining Proposition 1 with Theorem 5 we can identify the meet-irreducible
elements of TSDk that are in TSDj , where j < k.

Corollary 4
If j, k ∈ N with 1 ≤ j < k ≤ n, then

MI(TSDk) ∩ TSD j = dAtoms(TSD j).

4.1 Proof of Theorem 5

Proof of Theorem 5.
We prove the two inclusions separately.

1. MI(TSDk) ⊇ {SG} ∪ dAtoms(TSDk) ∪Mk.
Let m be in the right-hand side. If m ∈ {SG} ∪ dAtoms(TSDk) there is
nothing to prove. Therefore we assume m ∈ Mk. We need to prove that if
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Fig. 3. The meet-irreducible elements of PSD for n = 3, with dual-atoms emphasized.

sh1, sh2 ∈ TSDk and

m = sh1 ∧ sh2
def= sh1 ∩ sh2

then m = sh1 or m = sh2. Obviously, we have m ⊆ sh1 and m ⊆ sh2.
Moreover, by definition of Mk, there exist T, S ∈ SG where #T = k and
T ⊂ S such that

m = SG \
{
U ∈ SG

∣∣ T ⊆ U ⊆ S }.
Since S /∈ m, we have S /∈ sh1 or S /∈ sh2. Let us consider the first case (the
other is symmetric). Then, applying the definition of TSDk, there is a T ′ ⊂ S
with #T ′ < k such that⋃

{U ′ ∈ sh1 | T ′ ⊆ U ′ ⊆ S } 6= S.

Since #T ′ < #T , there exists x such that x ∈ T \T ′. Thus T ′ ⊂ S \ {x} and
S \{x} ∈ m. Hence, as m ⊆ sh1, we have S \{x} ∈ sh1. Consider an arbitrary
U ∈ SG where T ⊆ U ⊆ S. Then x ∈ U . Thus, since S =

(
S \ {x}

)
∪ U and

S /∈ sh1, U /∈ sh1. Thus, as this is true for all such U , sh1 ⊆ m.
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2. MI(TSDk) ⊆ {SG} ∪ dAtoms(TSDk) ∪Mk.
Let sh ∈ TSDk. We need to show that sh is the meet of elements in the right-
hand side. If sh = SG then there is nothing to prove. Suppose sh 6= SG . For
each S ∈ SG such that S /∈ sh, we will show there is an element mS in the
right-hand side such that S /∈ mS and sh ⊆ mS . Then sh =

⋂
{mS | S /∈ sh }.

There are two cases.

2a. #S ≤ k; Let mS = SG \ {S}. Then mS ∈ dAtoms(TSDk) and sh ⊆ mS .
2b. #S > k; in this case, applying the definition of TSDk, there must exist a

set T ′ ⊂ S with #T ′ < k such that⋃
{U ′ ∈ sh | T ′ ⊂ U ′ ⊆ S } ⊂ S.

However, since T ′ ⊂ S, we have S =
⋃{

T ′ ∪ {x}
∣∣ x ∈ S \ T ′ }. Thus, for

some x ∈ S \ T ′, if U is such that T ′ ∪ {x} ⊆ U ⊆ S then U /∈ sh . Choose
T ∈ SG so that T ′ ∪{x} ⊆ T and #T = k and let mS = SG \ {U ∈ SG |
T ⊆ U ⊆ S }. Then mS ∈Mk, S /∈ mS , and sh ⊆ mS .

5 The Decomposition of the Domains

5.1 Removing the Tuple-Sharing Domains

We first consider the decomposition of TSDk with respect to TSj. It follows from
Theorem 1 and Corollaries 1 and 3 that, for 1 ≤ j < k ≤ n, we have

TSDk ∼ TSj = Moore
(
MI(TSDk) \ ρTSj

(TSDk)
)

= Moore
(
MI(TSDk) \ TSj

)
= TSDk. (3)

Since SH = TSDn, we have, using Eq. (3) and setting k = n, that, if j < n,

SH ∼ TSj = SH . (4)

Thus, in general, TSj is too abstract to be removed from SH by means of comple-
mentation. (Note that here it is required j < n, because we have SH ∼ TSn 6= SH .)
In particular, letting j = 1, 2 (assuming n > 2) in Eq. (4), we have

SH ∼ PS = SH ∼ Con = SH , (5)

showing that Con and PS are too abstract to be removed from SH by means of
complementation. Also, by Eq. (3), letting j = 1 and k = 2 it follows that the
complement of Con in PSD is PSD .

Now consider decomposing TSDk using TSk. It follows from Theorem 1, Propo-
sition 2 and Corollary 2 that, for 1 ≤ k ≤ n, we have

TSDk ∼ TSk = Moore
(
MI(TSDk) \ ρTSk

(TSDk)
)

= Moore
(
MI(TSDk) \ TSk

)
= { sh ∈ TSDk | VI ∈ sh }. (6)
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Thus we have

TSDk ∼ (TSDk ∼ TSk) = TSk. (7)

We have therefore extracted all the domain TSk from TSDk. So by letting k = 1,
2 in Eq. (6), we have found the complements of Con in Def and PS in PSD :

Def ∼ Con = { sh ∈ Def | VI ∈ sh },
PSD ∼ PS = { sh ∈ PSD | VI ∈ sh }.

Thus if we denote the domains induced by these complements as Def ⊕ and PSD⊕,
respectively, we have the following result.

Theorem 6

Def ∼ Con = Def ⊕, Def ∼ Def ⊕ = Con,

PSD ∼ PS = PSD⊕, PSD ∼ PSD⊕ = PS .

Moreover, Con and Def ⊕ form a minimal decomposition for Def and, similarly, PS
and PSD⊕ form a minimal decomposition for PSD .

5.2 Removing the Dependency Domains

First we note that, by Theorem 5, Proposition 1, and Corollary 4, the complement
of TSDj in TSDk, where 1 ≤ j < k ≤ n, is given as follows:

TSDk ∼ TSD j = Moore
(
MI(TSDk) \ ρTSDj

(TSDk)
)

= Moore
(
MI(TSDk) \ TSD j

)
=
{

sh ∈ TSDk

∣∣ ∀S ∈ SG : #S ≤ j =⇒ S ∈ sh
}
. (8)

It therefore follows from Eq. (8) and setting k = n that the complement of ρTSDj
in

SH for j < n is:

SH ∼ TSD j =
{

sh ∈ SH
∣∣ ∀S ∈ SG : #S ≤ j =⇒ S ∈ sh

}
(9)

def= SH +
j .

In particular, in Eq. (9) when j = 1, we have the following result for Def , also
proved in (Filé and Ranzato 1996, Lemma 5.4):

SH ∼ Def =
{

sh ∈ SH
∣∣ ∀x ∈ VI : {x} ∈ sh

}
def= SH +

Def .

Also, in Eq. (9) when j = 2, we have the following result for PSD :

SH ∼ PSD =
{

sh ∈ SH
∣∣ ∀S ∈ SG : #S ≤ 2 =⇒ S ∈ sh

}
def= SH +

PSD .
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Def − TS2 = PS PSD‡

PSD+

TSD2 = PSD

Fig. 4. A non-trivial decomposition of PSD.

We next construct the complement of PSD with respect to Def . By Eq. (8),

PSD ∼ Def =
{

sh ∈ PSD
∣∣ ∀x ∈ VI : {x} ∈ sh

}
def= PSD+.

Then the complement factor Def − def= PSD ∼ PSD+ is exactly the same thing as
SH ∼ SH +

Def so that PSD and SH behave similarly for Def .

5.3 Completing the Decomposition

Just as for SH , the complement of SH +
Def using PS (or, more generally, TSj where

1 < j < n) is SH +
Def . By Corollary 2 and Theorem 1, as PS is dual-atomistic, the

complement of PS in PSD+ is given as follows.

Theorem 7

PSD‡ def= PSD+ ∼ PS

=
{

sh ∈ PSD
∣∣ VI ∈ sh, ∀x ∈ VI : {x} ∈ sh

}
,

PSD+ ∼ PSD‡ = PS .

So, we have extracted all the domain PS from PSD+ and we have the following
result (see Figure 4).

Corollary 5
Def −, PS , and PSD‡ form a minimal decomposition for PSD .

6 Discussion

By studying the sharing domain SH in a more general framework, we have been
able to show that the domain PSD has a natural place in a scheme of domains based
on SH . Since the well-known domain Def for groundness analysis is an instance of
this scheme, we have been able to highlight the close relationship between Def and
PSD and the many properties they share. In particular, it was somehow unexpected
that these domains could both be obtained as instances of a single parametric
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construction. As another contribution, we have generalized and strengthened the
results in (Cortesi et al. 1994, Cortesi et al. 1998) and (Bagnara et al. 1997, Bagnara
et al. 2001) stating that

• Def is the quotient of SH with respect to the groundness domain G ≡ Con ;
and

• PSD is the quotient of SH with respect to the reduced product Con uPS of
groundness and pair-sharing.

In the view of recent results on abstract domain completeness (Giacobazzi and
Ranzato 1997), these points can be restated by saying that Def and PSD are the
least fully-complete extensions (lfce’s) of Con and Con u PS with respect to SH ,
respectively.

From a theoretical point of view, the quotient of an abstract domain with respect
to a property of interest and the least fully-complete extension of this same property
with respect to the given abstract domain are not equivalent. While the lfce is
defined for any semantics given by means of continuous operators over complete
lattices, it is known (Cortesi et al. 1994, Cortesi et al. 1998) that the quotient may
not exist. However, it is also known (Giacobazzi, Ranzato and Scozzari 1998b) that
when the quotient exists it is exactly the same as the lfce, so that the latter has also
been called generalized quotient. In particular, for all the domains considered in this
paper, these two approaches to the completeness problem in abstract interpretation
are equivalent.

In (Bagnara et al. 1997, Bagnara et al. 2001), we wrote that PSD ∼ PS 6= PSD .
This paper now clarifies that statement. We have provided a minimal decomposition
for PSD whose components include Def − and PS . Moreover, we have shown that
Def and PSD are not dual-atomistic and we have completely specified their meet-
irreducible elements. Our starting point was the work of Filé and Ranzato. In (Filé
and Ranzato 1996), they noted, as we have, that SH +

Def ∼ PS = SH +
Def so that

nothing of the domain PS could be extracted from SH +
Def . They observed that ρPS

maps all dual-atoms that contain the sharing group VI to the top element SG
and thus lose all pair-sharing information. To avoid this, they replaced the classical
pair-sharing domain PS with the domain PS ′ where, for all sh ∈ SH +

Def ,

ρPS ′(sh) = ρPS (sh) \
(
{VI} \ sh

)
,

and noted that SH +
Def ∼ PS ′ = { sh ∈ SH +

Def | VI ∈ sh }. To understand the nature
of this new domain PS ′, we first observe that,

PS ′ = PS u TSn.

This is because TSn = MI(TSn) =
{

SG \ {VI}, SG
}

. In addition,

SH +
Def ∼ TSn = { sh ∈ SH +

Def | VI ∈ sh },

which is precisely the same as SH +
Def ∼ PS ′. Thus, since SH +

Def ∼ PS = SH +
Def , it is

not surprising that it is precisely the added component TSn that is removed when
we compute the complement for SH +

Def with respect to PS ′.
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We would like to point out that, in our opinion, the problems outlined above
are not the consequence of the particular domains considered. Rather, they are
mainly related to the methodology for decomposing a domain. As shown here,
complementation alone is not sufficient to obtain truly minimal decompositions of
domains. The reason being that complementation only depends on the domain’s
data (that is, the domain elements and the partial order relation modeling their
intrinsic precision), while it is completely independent from the domain operators
that manipulate that data. In particular, if the concrete domain contains elements
that are redundant with respect to its operators (because the observable behavior
of these elements is exactly the same in all possible program contexts) then any
factorization of the domain obtained by complementation will encode this redun-
dancy. However, the theoretical solution to this problem is well-known (Cortesi et
al. 1994, Cortesi et al. 1998, Giacobazzi and Ranzato 1997, Giacobazzi et al. 1998b)
and it is straightforward to improve the methodology so as to obtain truly minimal
decompositions: first remove all redundancies from the domain (this can be done
by computing the quotient of the domain with respect to the observable behavior)
and only then decompose it by complementation. This is precisely what is done
here.

We conclude our discussion about complementation with a few remarks. It is
our opinion that, from a theoretical point of view, complementation is an excellent
concept to work with: by allowing the splitting of complex domains into simpler
components, avoiding redundancies between them, it really enhances our under-
standing of the domains themselves.

However, as things stand at present, complementation has never been exploited
from a practical point of view. This may be because it is easier to implement a sin-
gle complex domain than to implement several simpler domains and integrate them
together. Note that complementation requires the implementation of a full integra-
tion between components (i.e., the reduced product together with its corresponding
best approximations of the concrete semantic operators), otherwise precision would
be lost and the theoretical results would not apply.

Moreover, complementation appears to have little relevance when trying to design
or evaluate better implementations of a known abstract domain. In particular, this
reasoning applies to the use of complementation as a tool for obtaining space saving
representations for domains. As a notable example, the GER representation for
Pos (Bagnara and Schachte 1999) is a well-known domain decomposition that does
enable significant memory and time savings with no precision loss. This is not (and
could not be) based on complementation. Observe that the complement of G with
respect to Pos is Pos itself. This is because of the isomorphisms Pos ≡ SH (Codish
and Søndergaard 1998) and G ≡ Con def= TS1 so that, by Eq. (5), Pos ∼ G = Pos .
It is not difficult to observe that the same phenomenon happens if one considers
the groundness equivalence component E, that is, Pos ∼ E = Pos . Intuitively,
each element of the domain E defines a partition of the variable of interest VI
into groundness equivalence classes. In fact, it can be shown that two variables
x, y ∈ VI are ground-equivalent in the abstract element sh ∈ SH ≡ Pos if and
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only if rel
(
{x}, sh

)
= rel

(
{y}, sh

)
. In particular, this implies both {x} /∈ sh and

{y} /∈ sh . Thus, it can be easily observed that in all the dual-atoms of Pos no
variable is ground-equivalent to another variable (because each dual-atom lacks
just a single sharing group).

A new domain for pair-sharing analysis has been defined in (Scozzari 2000) as

ShPSh = PSD+ uA,

where the A component is a strict abstraction of the well-known groundness do-
main Pos. It can be seen from the definition that ShPSh is a close relative of PSD .
This new domain is obtained, just as in the case for PSD , by a construction that
starts from the set-sharing domain SH ≡ Sh and aims at deriving the pair-sharing
information encoded by PS ≡ PSh. However, instead of applying the generalized
quotient operator used to define PSD , the domain ShPSh is obtained by applying a
new domain-theoretic operator that is based on the concept of optimal semantics
(Giacobazzi, Ranzato and Scozzari 1998a).

When comparing ShPSh and PSD , the key point to note is that ShPSh is neither
an abstraction nor a concretization of the starting domain SH . On the one hand
ShPSh is strictly more precise for computing pair-sharing, since it contains formulas
of Pos that are not in the domain SH . On the other hand SH and PSD are strictly
more precise for computing groundness, since ShPSh does not contain all of Def : in
particular, it does not contain any of the elements in Con.

While these differences are correctly stated in (Scozzari 2000), the informal dis-
cussion goes further. For instance, it is argued in (Scozzari 2000, Section 6.1) that

“in [(Bagnara et al. 2001)] the domain PSD is compared to its proper abstractions only,
which is a rather restrictive hypothesis . . . ”

This hypothesis is not one that was made in (Bagnara et al. 2001) but is a distinctive
feature of the generalized quotient approach itself. Moreover, such an observation
is not really appropriate because, when devising the PSD domain, the goal was to
simplify the starting domain SH without losing precision on the observable PS .
This is the objective of the generalized quotient operator and, in such a context,
the “rather restrictive hypothesis” is not restrictive at all.

The choice of the generalized quotient can also provide several advantages that
have been fully exploited in (Bagnara et al. 2001). Since an implementation for SH
was available, the application of this operator resulted in an executable specification
of the simpler domain PSD . By just optimizing this executable specification it was
possible to arrive at a much more efficient implementation: exponential time and
space savings have been achieved by removing the redundant sharing groups from
the computed elements and by replacing the star-union operator with the 2-self-
union operator. Moreover, the executable specification inherited all the correctness
results readily available for that implementation of SH , so that the only new result
that had to be proved was the correctness of the optimizations.

These advantages do not hold for the domain ShPSh. In fact, the definition of a
feasible representation for its elements and, a fortiori, the definition of an executable
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specification of the corresponding abstract operators seem to be open issues.2 Most
importantly, the required correctness results cannot be inherited from those of SH .
All the above reasons indicate that the generalized quotient was a sensible choice
when looking for a domain simpler than SH while preserving precision on PS .

Things are different if the goal is to improve the precision of a given analysis
with respect to the observable, as was the case in (Scozzari 2000). In this context
the generalized quotient would be the wrong choice, since by definition it cannot
help, whereas the operator defined in (Scozzari 2000) could be useful.

7 Conclusion

We have addressed the problem of deriving a non-trivial decomposition for ab-
stract domains tracking groundness and sharing information for logic languages by
means of complementation. To this end, we have defined a general schema of do-
mains approximating the set-sharing domain of Jacobs and Langen and we have
generalized and strengthened known completeness and minimality results. From a
methodological point of view, our investigation has shown that, in order to obtain
truly minimal decompositions of abstract interpretation domains, complementation
should be applied to a reference domain already enjoying a minimality result with
respect to the observable property.
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Logic Programming, APIC Studies in Data Processing, Vol. 16, Academic Press, New
York, pp. 231–251.

Colmerauer, A. (1984). Equations and inequations on finite and infinite trees, Proceedings
of the International Conference on Fifth Generation Computer Systems (FGCS’84),
ICOT, Tokyo, Japan, pp. 85–99.
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complementation, in A. Cortesi and G. Filé (eds), Static Analysis: Proceedings of the 6th
International Symposium, Vol. 1694 of Lecture Notes in Computer Science, Springer-
Verlag, Berlin, Venice, Italy, pp. 69–84.


