
Abstracting Synchronization in
Concurrent Constraint Programming ?

Enea Zaffanella1 Roberto Giacobazzi2 Giorgio Levi1

1 Dipartimento di Informatica, Università di Pisa
Corso Italia 40, 56125 Pisa
(zaffanel,levi)@di.unipi.it

2 LIX, Laboratoire d’Informatique, École Polytechnique
91128 Palaiseau cedex

giaco@lix.polytechnique.fr

Abstract. Because of synchronization based on blocking ask, some of
the most important techniques for data flow analysis of (sequential) con-
straint logic programs (clp) are no longer applicable to cc languages. In
particular, the generalized approach to the semantics, intended to factor-
ize the (standard) semantics so as to make explicit the domain-dependent
features (i.e. operators and semantic objects which may be influenced by
abstraction) becomes useless for relevant applications. A possible solu-
tion to this problem is based on a more abstract (non-standard) seman-
tics: the success semantics, which models non suspended computations
only. With a program transformation (NoSynch) that simply ignores syn-
chronization, we obtain a clp-like program which allows us to apply stan-
dard techniques for data flow analysis. For suspension-free programs the
success semantics is equivalent to the standard semantics thus justifying
the use of suspension analysis to generate sound approximations. A sec-
ond transformation (Angel) is introduced, applying a different abstrac-
tion of synchronization in possibly suspending programs and resulting in
a framework which is adequate to suspension analysis. Applicability and
accuracy of these solutions are investigated.

1 Introduction

Abstract interpretation is intended to formalize the idea of approximating pro-
gram properties by evaluating them on suitable non-standard domains. The stan-
dard domain of values is replaced by a domain of descriptions of values and the
basic operators are provided with a corresponding non-standard interpretation.
? The work of E. Zaffanella and G. Levi has been supported by the “PARFORCE”

(Parallel Formal Computing Environment) BRA-Esprit II Project n. 6707. The work
of R. Giacobazzi has been partly supported by the EEC Human Capital and Mobility
individual grant: “Semantic Definitions, Abstract Interpretation and Constraint Rea-
soning”, N. ERB4001GT930817, and by the Project inter-PRC: “Langages Logiques
Concurrents avec Contraintes”.

In the classical framework of abstract interpretation [5], the relation between
abstract and concrete semantic objects is provided by a pair of adjoint functions
referred to as abstraction α and concretization γ. The definition of an abstract
interpreter for a language actually corresponds to a semantics abstraction. How-
ever, many aspects of the (concrete) semantic construction are not affected by
the abstraction. The generalized approach to the semantics in [11] has been intro-
duced to factorize the semantics with respect to its domain-dependent features
(i.e. operators and semantic objects). This technique can be naturally applied to
clp programs, where the notion of constraint system provides a uniform frame-
work to deal with semantic objects (constraints) and operators at different levels
of abstraction. In this case, abstract interpretation is obtained simply by eval-
uating the abstract program into an instance of clp, provided with a suitable
abstract constraint system. The key issue here is that both concrete and abstract
computations are instances, at the constraint system level, of the clp paradigm.
In general, the abstraction is characterized by weakening constraints.

In this paper we extend the generalized semantics approach to the abstract
interpretation of cc programs, and show that in general we cannot provide any
correct approximation by evaluating an abstract version of the program. The
ask-tell paradigm [16] is an extension of constraint logic programming: in ad-
dition to satisfiability (tell), entailment (ask) is introduced. This different view
of constraint programming leads to a powerful paradigm for concurrent compu-
tations: concurrent constraint programming (cc) in a shared store [16]. A store
is a constraint representing the global state of the computation. Synchroniza-
tion is achieved through blocking ask. This mechanism introduces some problems
when dealing with abstraction. Intuitively a correct approximation of the pro-
gram meaning generates weaker answers for any possible program behaviour.
Thus, in order to correctly characterize answers associated with suspended com-
putations, we must guarantee that whenever a concrete computation suspends
the corresponding abstract computation suspends too. This can only be ob-
tained by replacing ask constraints with stronger constraints, which is usually
not the case in abstract interpretation. To overcome this “negative” result we
consider a more abstract semantics modeling non suspended computations only.
A transformation which ignores synchronization can be applied to make applica-
ble the generalized semantics approach to the static analysis of cc programs. For
suspension-free programs the standard and the success semantics are equivalent,
thus justifying the use of suspension analysis [2] to generate sound approxima-
tions.

A different schema can be obtained by introducing hybrid primitives to deal
with ask constraints. As before, we use a program transformation (Angel) which
essentially replaces don’t care nondeterminism with don’t know nondeterminism.
Following the semantic characterization of angelic cc processes given in [14], we
obtain the denotational counterpart of the transition system based suspension
analysis in [2] (modulo the absence of the consistency check). Simple results
relate the accuracy of these different solutions when the program is suspension-
free, showing that the first approach is always better than the second one.

2 Constraint Systems

The algebraic specification (for sequential constraint logic programs) given in
[11] is of major interest for abstract interpretation as it defines the minimal
properties such a structure has to satisfy in order to obtain a suitable base for
the generalized semantic construction. The resulting domains are very weak, al-
lowing non-commutative and non-idempotent constraint composition operators
and a wide range of (possibly non-distributive) constraint disjunction operators,
i.e. widenings. On the other hand, the denotational semantics construction in
[16] for cc languages requires stronger domains (only commutative and idem-
potent constraint composition operators are allowed). In this case constraint
systems are not required to have a disjunction operator. Disjunctions arise only
when considering different execution paths and they are modeled at the pro-
gram semantics level (i.e. outside the constraint system definition) using sets of
possible behaviours or a (fixed) powerdomain construction. As a consequence,
these structures can be seen as specific instances of the previous ones (with mi-
nor modifications). Because of its specificity to the cc case, in the following we
consider the latter approach.

The construction in [16] is an extension of Scott’s partial information systems
[17]. Informally, we have a denumerable set D of elementary assertions (contain-
ing distinct elements 1 and 0 representing the least informative assertion and the
contradiction respectively) and a compact entailment relation `⊆ Pf (D) × D.
By taking the entailment closure3 δ(u) of a set of assertions u we obtain the
equivalence relation ∼ (u ∼ v iff δ(u) = δ(v)). Hence, a simple constraint system
is C = 〈 P(D),a 〉/∼, which is a complete ω-algebraic lattice [17]. An arbitrary
element of C is called a constraint. Compact elements are called finite con-
straints, since they are equivalent to a finite subset of D. Finite constraints form
the base BC of the constraint system. In order to treat the hiding operator, [16]
introduces a family of unary operations called cylindrifications [13]. Intuitively,
given a constraint c, the cylindrification operation ∃x(c) yields the constraint
obtained by “projecting out” information about the variable x from c. Diago-
nal elements [13] are considered as a way to provide parameter passing. Note
that special variables (not accessible to the user) together with a suitable use of
cylindrification and diagonal elements make variable renaming no longer needed.

Definition 1. A (cylindric) constraint system4 〈C,`, false, true,⊗, V,∃x, dxy〉
is an algebraic structure where: 〈C,a〉 is a simple constraint system, true = [1]∼
and false = [0]∼, ⊗ is the glb, V is a denumerable set of variables and
∀x, y ∈ V , ∀c, d ∈ C, the operator ∃x : C → C satisfies
3 The entailment closed representation, when it is finite, is a domain independent

strong normal form for constraints and it is very useful when there are not simpler
ones (e.g. clp(FD)). However, many domains do have a simpler strong normal form
(Herbrand, Prop, Sharing, etc.) which greatly simplifies their representation.

4 In order to have a standard approach when dealing with abstract interpretation,
we order constraints in a dual fashion w.r.t. [17, 16], i.e. lower constraints are the
strongest ones and the constraint composition ⊗ is the glb operator.

1. c ` ∃xc
2. if c ` d then ∃xc ` ∃xd
3. ∃x(c⊗ ∃xd) ∼ ∃xc⊗ ∃xd
4. ∃x(∃yc) ∼ ∃y(∃xc)

∀x, y, z ∈ V , ∀c ∈ C, the diagonal element dxy satisfies

1. dxx ∼ true
2. if z 6= x, y then dxy ∼ ∃z(dxz ⊗ dzy)
3. if x 6= y then dxy ⊗ ∃x(c⊗ dxy) ` c

In the following, we denote by x̂ both a tuple and a set of variables. For syntactic
convenience, given x̂ = (x1, . . . , xn) and ŷ = (y1, . . . , yn), the notation ∃x̂c stands
for ∃x1(. . .∃xn(c) . . .), while dx̂ŷ stands for dx1y1 ⊗ . . .⊗ dxnyn .

Example 1. Let Σ = {a/0, b/0, . . . , f/n, g/n, . . .} be a finite set of function sym-
bols with arity, and V be a finite set of variables. Consider the first order language
defined over the term system induced by Σ, by using syntactic equality as unique
predicate symbol. The Herbrand constraint system CH has atomic propositions
as elementary assertions and an entailment relation satisfying Clark’s equality
axioms. Cylindrification ∃ is the usual existential quantification, while diago-
nal elements are dxy ∼ (x = y). Thus constraints are equivalent to quantified
syntactic equation systems.

Example 2. Let V be a finite set of variables and φ be a property. The elemen-
tary assertions in the constraint system of variable dependencies DEPφ(V) are
pairs of variable’s subsets. Assertion (A,B) means that if all the variables in B
satisfy property φ, then all the variables in A satisfy the property too.
The entailment relation is defined as follows. If A ⊆ B then ∅ ` (A,B); if
R ` (A,B) and R ` (B,C) then R ` (A,C); finally, if R ` (A,C) and R ` (B,D)
then R ` (A ∪ B,C ∪D). ∃xR ∼ δ(R) \ {(A,B) ∈ R |x ∈ A ∪B } is the cylin-
drification operator, while diagonal elements are dxy ∼ {({x}, {y}), ({y}, {x})}.
The disjunctive completion of this constraint system is isomorphic to the con-
straint system Prop. We can easily associate with each dependency relation
R = {(Ai, Bi) | 1 ≤ i ≤ n} the propositional formula

n
∧
i=1

(∧Ai ← ∧Bi). In the

following we will use the simpler Prop representation.

3 The Language

In this section we introduce concurrent constraint languages, as defined in [16].
The syntax and the semantics are parametric with respect to a given constraint
system C. Elementary actions (ask and tell), hiding (∃), parallel composi-
tion (‖), guarded nondeterministic choice (

∑
) and recursion are the syntac-

tic operators (see Table 1). For notational convenience, we write
n
⊕
i=1

Ai to de-

note the pure nondeterministic choice operator (local choice), namely the agent
n∑
i=1

ask(true)→ Ai.

Progr ::= Dec . Agent

Dec ::= ε
| p(x̂) :− Agent . Dec

Agent ::= tell(c)
| ∃x̂.Agent
| Agent ‖ Agent

|
n∑
i=1

(ask(ci)→ Agenti)

| p(ŷ)

Table 1: The syntax

3.1 Operational Semantics

The operational model is described by a transition system T = (Conf,−→). Ele-
ments of Conf (configurations) consist of an agent and a constraint, representing
the residual computation and the global store respectively. −→ is the minimal
relation satisfying axioms R1–R5 of Table 2.

R1 〈 tell(c) , σ 〉−→〈 ε , σ ⊗ c 〉

R2
σ ` ci

〈
n∑
i=1

(ask(ci)→ Ai) , σ 〉−→〈Ai , σ 〉

R3
〈A , d⊗ ∃x̂σ 〉−→〈B , e 〉

〈 ∃(x̂, d).A , σ 〉−→〈∃(x̂, e).B , σ ⊗ ∃x̂e 〉

R4
〈A , σ 〉−→〈A′ , σ′ 〉

〈A‖B , σ 〉−→〈A′‖B , σ′ 〉
〈B‖A , σ 〉−→〈B‖A′ , σ′ 〉

R5
p(x̂) :− A ∈ P

〈 p(ŷ) , σ 〉−→〈∆ŷ
x̂.A , σ 〉

Table 2: The transition system

The execution of an elementary action tell(c) simply adds the constraint c
to the current store σ (no consistency check). A guard gi = ask(ci) in the non-
deterministic choice operator is a global test. It is enabled if the current store
σ is strong enough to entail the constraint c (i.e. when σ ` c). The nondeter-
ministic choice operator selects one enabled guard gi and then behaves like the
agent Ai. If no guards are enabled, then it suspends, waiting for other agents
to add more information to the store. Axiom R3 describes the hiding operator.
The syntax is extended to deal with a local store d holding information about
the hidden variables x̂. Hence the information about x̂ produced by the external
environment does not affect the process behaviour and conversely the exter-
nal environment cannot access the local store. Initially the local store is empty,
i.e. ∃x̂.A ≡ ∃(x̂, true).A. Parallelism is modeled as interleaving of basic actions.
Processes A and B never communicate synchronously in A‖B. Finally, when exe-
cuting a procedure call, ∆ŷ

x̂A denotes the agent ∃ψ̂.(tell(dŷψ̂)‖∃x̂.(tell(dψ̂x̂)‖A))
and models parameter passing without variable renaming (variables in x̂ can oc-
cur in ŷ). Variables ψ̂ are special, meaning that they are not allowed to occur in
user programs.

Let /−→ denote the absence of admissible transitions. Sequences of transitions
reaching configurations 〈An, cn 〉 such that 〈An, cn 〉 /−→ are called terminating
sequences and cn ∈ BC is the answer constraint. If An contains some guarded

choice operators then the corresponding sequence is suspended, otherwise it is a
successful sequence (in the latter case we denote An by ε).

Definition 2. The finite semantics for program P = D.A is

OD[[A]] = λσ.
{
c
∣∣∣ 〈A , σ 〉 ∗−→〈B , c 〉 /−→}

Note that the finite semantics observes answer constraints associated with ter-
minating configurations, regardless of whether the associated computations are
successful or suspended.

3.2 Denotational Semantics

The standard denotational semantics for concurrent constraint languages mod-
els processes as sets of reactive sequences [6] or trace operators [16]. In this
paragraph we consider the simpler denotational semantics modeling the angelic
language [14], i.e. the language obtained by replacing the global choice operator
by the local choice operator. This semantics is a suitable base for reasoning about
synchronization approximation, since it separates the choice operator from the
synchronization operator (while in the standard semantics their interaction gives
the so-called demonic nondeterminism or indeterminism).

The angelic transition system T ′, yelding the operational semantics O′, is
obtained by imposing n = 1 in rule R2 of Table 2 and by adding rule R6:
〈
n
⊕
i=1

Ai , σ 〉 −→〈Ai , σ 〉.
[16] defines the finite semantics of deterministic cc languages (without choice

operator) as a lower closure operator5 (lco) on BC (the set of finite elements
of the constraint system C), mapping divergent computations to false. A lco
on a complete lattice is characterized by its image (i.e. the set of fixpoints).
Furthermore, lco’s form a complete lattice. By using the fixpoint representation,
we have that the pointwise ordering is ⊆, the bottom element is {false} (i.e.
λx.false), the top element is C (i.e. id) and the glb is given by set intersection.

Since the local choice operator introduces nondeterminism, we have to con-
sider sets of constraints in order to model the computational behaviour, because
in general the lub of two constraints is weaker than their disjunction. Intuitively,
we want to record the minimal guarantee of a set of constraints, i.e. the pre-order:
S1 v S2 iff ∀c ∈ S1∃ d ∈ S2 . c ` d.

Definition 3. Given a partial order 〈C,≤C〉, the downward closure of S ⊆ C is
defined by down(S) = {d ∈ C | ∃c ∈ S.d ≤C c}. A subset S is downward closed
iff S = down(S). Given a function f : C → P(C ′), the downward closure of f is
the function g = Down(f) : C → P↓(C ′) such that g(c) = down(f(c)).
5 Recall that we are ordering the constraint system in a dual fashion. Lower closure

operators and downward-closed sets of constraints correspond to upper closure op-
erators and upward-closed sets of constraints in [16] and [14].

By identifying sets of constraints that are equivalent with respect to v, we obtain
a domain isomorphic to the complete lattice P↓(C) of downward-closed subsets
of C. The partial order is ≤≡⊆, the lub and the glb are given by set union and
set intersection respectively. Furthermore the immersion function ↓: C → P↓(C)
is given by ↓c = down({c}).

Since for cc programs disjunction arises only when considering alternative
computations, the finite semantics of angelic processes is modeled as a linear lco
(llco) on P↓(C) [14], i.e. a lco f satisfying f(∪Si) = ∪f(Si). A llco f is fully
characterized by the set SF (f) ⊆ C of its singleton fixpoints, i.e. constraints c
such that f(↓c) = ↓c. By using this characterization we easily see that llco(P↓(C))
(the set of llco’s on P↓(C)) is a complete lattice with lub and glb given by set
union and set intersection respectively.

Table 3 shows the angelic semantic functions E , D and N . Env is the set of
environments, i.e. the set of functions from process names to their denotation
in llco(P↓(C)). Note that the denotational semantics actually extends to the cc
paradigm the C-semantics of pure logic programs [10].

Proposition 4. OD[[A]](c) ⊆ O′D[[A]](c) ⊆ Down(O′D[[A]])(c) = N [[D.A]](↓c)

E : Agent× Env → llco(P↓(C))

E [[tell(c)]]e =↓c
E [[ask(c)→ A]]e = {d ∈ C | d ` c ⇒ d ∈ E [[A]]e}
E [[∃x̂.A]]e = {d ∈ C | there exists c ∈ E [[A]]e s.t. ∃x̂c = ∃x̂d}
E [[A ‖B]]e = E [[A]]e ∩ E [[B]]e

E [[
n
⊕
i=1

Ai]]e =
n
∪
i=1
E [[Ai]]e

E [[p(ŷ)]]e =
{
d ∈ C

∣∣ d = ∃ψ̂(dŷψ̂ ⊗ c), c ∈ (e p)
}

D : Dec× Env → Env

D[[ε]]e = e

D[[p(x̂) :− A .D]]e = D[[D]]
(
e
[
p 7→ E [[∃x̂.(tell(dψ̂x̂) ‖A)]]e

])
N : Progr → llco(P↓(C))
N [[D.A]] = E [[A]](lfpD[[D]])

Table 3: The finite angelic semantic operators

4 Program Properties and Approximations

The operational semantics of a cc program associates each initial store c to the
set of all the answer constraints that we obtain by executing P = D.A at c. In

a similar way we define a semantic property φ as a subset of the constraint sys-
tem, namely the set of constraints that satisfy the property φ. Thus, a program
satisfies a semantic property φ iff (for each initial store) the observables of the
program are a subset of the property, i.e. for all c ∈ C .OD[[A]](c) ⊆ φ. Following
this general view, also pursued in [7] in the context of partial correctness proofs
for cc programs, we can formalize the static analysis as a finite construction of
an approximation (a superset) of the program denotation. If the approximation
satisfies the semantic property, then we can safely say that our program satisfies
the property too.

Let us define a program property to be ordering closed iff it is downward
closed or upward closed. Ordering closed properties are easier to verify, as shown
by the following proposition.

Proposition 5. A program P = D.A satisfies a downward closed (upward-
closed) property φ ⊆ C iff the downward closure (upward closure) of OD[[A]]
satisfies φ.

Simplification arises because we can base our abstract interpretation framework
on a semantics that returns ordering closed observables. An example of down-
ward closed property is definiteness. If a variable x is fully instantiated in a
constraint c then it is fully instantiated in all the constraints d such that d ` c.

The adjoint framework of [5] is a powerful tool for the analysis of ordering
closed properties. The best approximations for both concrete objects and seman-
tic functions always exist and we can compare accuracy of different abstract
semantic functions. Consider downward closed properties.

Definition 6. Let 〈M,≤,t,u〉 and 〈M ′,≤′,t′,u′〉 be complete lattices. An up-
per Galois connection between M and M ′ is a pair of functions 〈α, γ〉 such that:
∀x ∈ M .∀y ∈ M ′ . α(x) ≤′ y ⇔ x ≤ γ(y). An upper Galois insertion between
M and M ′ (denoted by 〈M,α, γ,M ′〉) is an upper Galois connection such that
α is surjective (equivalently, γ is one-to-one).

Upper Galois insertions are commonly used in abstract interpretation of (con-
straint) logic languages. Here the approximation process returns weaker (w.r.t.
`) semantic objects (an example for the clp case is in [11]).

5 Generalized Abstract Interpretation

Generalized abstract interpretation is intended to perform static analysis using
the same semantic construction for both the concrete and abstract computations.
Given an abstract constraint system A that correctly approximates the concrete
constraint system C, the program P computing on C is syntactically transformed
into a program P ′ computing on A. The static analysis of P is obtained by
computing the semantics of P ′.

Definition 7. A constraint system 〈A,`′, false′, true′,⊗′, V,∃′x, d′xy〉 is upper
correct with respect to the constraint system 〈C,`, false, true,⊗, V,∃x, dxy〉,

using a surjective and monotonic function α : C → A, iff (for each c ∈ C,
x, y ∈ V) α(∃xc) `′ ∃′xα(c) and α(dxy) `′ d′xy.

Proposition 8. If A is upper correct w.r.t. constraint system C using α then
there exists an upper Galois insertion relating P↓(C) and P↓(A).

Example 3. Let CH be the Herbrand constraint system, let DEPg be the de-
pendency relation between variables induced by groundness and let the func-
tion sol map an equational constraint into its (equivalent) solved form. Define
αg : CH → DEPg as follows.

αg(c) =

{
∃ŷ
(
∪
{
{({xi}, var(ti)), (var(ti), {xi}) }

∣∣ xi = ti ∈ E
})

if sol(c) = ∃ŷE
False if sol(c) = false

Proposition 9. DEPg is upper correct w.r.t. CH using αg.

As usual, termination is guaranteed by assuming finite constraint systems.

5.1 The Abstract Synchronization Problem

Consider the angelic cc language and let f be a llco on P↓(C) (the concrete
semantics of an agent). Let A be an abstract constraint system upper correct
w.r.t. C using α and let (α̃, γ) be the induced upper Galois insertion relating
the concrete domain P↓(C) and the abstract domain P↓(A). The best correct
approximation for f on P↓(A) is f] = (α̃ ◦ f ◦ γ). Let f ′ : P↓(A)→ P↓(A) be an
abstract semantic operator. f ′ is a correct upper approximation of f on P↓(A)
iff f] `′ f ′ [5].

Proposition 10. f] = (α̃ ◦ f ◦ γ) is a llco on P↓(A).

The abstract and the concrete semantics of angelic processes can be modeled in
the same way and we can write f] `′ f ′ as f] ⊆ f ′. However, the simple trans-
formation considered in [11] is no longer admissible for cc programs because the
abstract synchronization operator would not be correct. The following theorem
justifies this observation.

Theorem 11.
∀ c ∈ C, ∀ f ∈ llco(P↓(C)), f ′ ∈ llco(P↓(A))

s.t. f] ⊆ f ′

[ask(c)→ f]] ⊆ ask(α(c))→ f ′

⇔ [
α is an isomorphism

]
A “solution” to the abstract synchronization problem can be found by con-

sidering a different (more abstract) concrete semantics which models only some
aspects of the program behaviour.

Definition 12. The success semantics for program P = D.A is

SSD[[A]] = λσ ∈ C .
{
c
∣∣∣ 〈A , σ 〉 ∗−→〈 ε , c 〉}

This semantics does not observe answer constraints associated to suspended
computations. It observes successful computations only.

Proposition 13. If P = D.A is suspension-free then OD[[A]] = SSD[[A]].

Turning our attention to the success semantics, we easily see that correctness
depends on the following condition:

“concrete computation proceeds ⇒ abstract computation proceeds”

Thus, whenever we cannot prove the contrary, we assume that the concrete com-
putation proceeds. The simplest way to satisfy this correctness condition consists
in removing all synchronizations from the program. Consider the transformation
NoSynch : Progr→ Progr, acting on nondeterministic choice operators only.

NoSynch[
n∑
i=1

(ask(ci)→ Ai)] =
n
⊕
i=1

(tell(ci) ‖NoSynch[Ai])

In the following let P1 = D1.A1 = NoSynch[P]. Since we have discarded every
meaningful synchronization test, processes in P1 always proceed, providing a
correct approximation of the success semantics of P .

Proposition 14. SSD[[A]](c) ⊆ SSD1 [[A1]](c)

Transformed programs are very similar to sequential constraint logic programs.
As in [11], their semantics can easily be modeled by a single (disjunctive) con-
straint (see [12]). For space reasons, we omit the presentation of this simpler
semantics and use Table 3 again, where the equation dealing with asks has be-
come useless.

Corollary 15. Down(SSD1 [[A1]]) = N [[D1.A1]]

To obtain the abstract semantics of the transformed program P1 we now
apply the generalized approach of [11]. This amounts to instantiate Table 3 over
the abstract constraint system A and then to compute the semantics of the
abstract program P ′1 corresponding to P1.

Definition 16. Given the program P on C, the corresponding abstract program
P ′ on A = α(C) is obtained by replacing each tell constraint c of P by α(c).

Note that this transformation does not affect ask constraints. Let P ′1 be the
abstract program corresponding to P1.

Theorem 17. (α̃ ◦ N [[P]] ◦ γ) ⊆ N ′[[P ′]]

Example 4. Consider the program P which appends two lists.

app(X,Y,Z) :- ask(X=[]) -> tell(Y=Z)

+ ask(∃H,X1 X=[H|X1]) ->

∃ H,X1,Z1. tell(X=[H|X1],Z=[H|Z1]) || app(X1,Y,Z1).

P1 = NoSynch[P], after a straightforward simplification, is

app(X,Y,Z) :- tell(X=[],Y=Z)

⊕ ∃ H,X1,Z1. tell(X=[H|X1],Z=[H|Z1]) || app(X1,Y,Z1).

Let us consider the abstract constraint system A = Prop. The program P ′1 on
Prop corresponding to P1 is

app(X,Y,Z) :- tell(X∧Y↔Z)

⊕ ∃ H,X1,Z1. tell(X↔(H∧X1)∧Z ↔(H∧Z1)) || app(X1,Y,Z1).

We obtain N ′[[P ′1.app(x, y, z)]](↓a) =↓a∩ ↓ ((x ∧ y) ↔ z) specifying that in
all the answer constraints associated to successful computations of the original
program, the third argument of app is bound to a ground term iff both the first
and the second argument are bound to ground terms.

6 An “Angelic” Solution

To approximate the standard semantics of a program without any suspension
freeness information, e.g. if we are trying to prove suspension-freeness, the pre-
vious approach is no longer applicable. As an alternative, we can consider the
best correct lower approximation of the synchronization operator, that is

[ask(c)→ f]] = λS′ ∈ P↓(A).∪
{
if γ(↓a) ⊆ (↓c) then f](↓a) else ↓a

∣∣ a ∈ S′ }
Note however that in general we cannot statically compute the concrete object
γ(a). In practice, we have to implement a “hybrid” synchronization test which
verifies whether an abstract constraint definitely entails a concrete one,

test : (A× C)→ Bool such that test(a, c) = true ⇒ γ(↓a) ⊆ (↓c).

Informally, this condition means “if the abstract computation proceeds then ev-
ery concrete computation it approximates proceeds too”.
Notice that this approach is not based on generalizing the semantics, as the
abstract program does not perform all computations on the abstract constraint
system. Moreover, this synchronization primitive strongly depends upon the spe-
cific analysis, i.e. upon the specific choice of the abstract domain.

Given a synchronization primitive, we have to choose a suitable approxi-
mation of the nondeterministic operator. In order to get an efficient abstract
interpretation framework, we cannot directly abstract global choice, since the
associated denotational models are too complex [2, 8]. Local choice (i.e. angelic
languages) seems to be a good cost/precision tradeoff.

Consider the transformation Angel, mapping don’t care choice operators into
don’t know choice operators with multiple synchronization.

Angel [
n∑
i=1

(ask(ci)→ Ai)] = ask(c1; . . . ; cn)→
n
⊕
i=1

(tell(ci) ‖Angel [Ai])

The meaning of a multiple synchronization test is to ask the disjunction of all
the guard constraints: ∀σ ∈ S . ∃j ∈ {1, . . . , n} . (↓σ) ⊆ (↓cj) ⇔ S ⊆

n
∪
i=1

(↓ci).

Remark. This is not true when we consider a widening as disjunction operator.
As an example, consider a constraint system dealing with rational intervals with
entailment given by inclusion. Process ask(x ∈ [0, 1];x ∈ [1, 2]) → A and its
widened version ask(x ∈ [0, 2]) → A are not equivalent. Given the initial store
x ∈ [0, 2], the first computation (correctly) suspends, while the latter proceeds,
possibly providing uncorrect results.

The denotational semantics of this kind of programs can be obtained by using
Table 3 and by replacing the equation for the (simple) synchronization operator
with the following equation.

E [[ask(c1; . . . ; cn)→ A]]e = {d ∈ C | ∃ i ∈ {1, . . . , n}.d ` ci ⇒ d ∈ E [[A]]e}

Therefore, given S′ ∈ P↓(A) and c1, . . . , cn ∈ C, the multiple abstract synchro-
nization test has to satisfy

mtest(S′, c1; . . . ; cn) = true ⇒ ∀σ ∈ γ(S′) . ∃i ∈ {1, . . . , n} . σ ` ci

The abstract semantics of a transformed program is computed by using Table
3 (instantiated over A) and by replacing the equation dealing with simple ask
by the following

E ′[[ask(c1; . . . ; cn)→ A]]e =
{
a ∈ A

∣∣mtest(↓a, c1; . . . ; cn) = true ⇒ a ∈ E ′[[A]]e
}

Example 5. The producer pzaff sends messages to consumers cgiaco and clevi
by using a single channel. For each input message, the distributor distr forwards
the text to the appropriate output channel.

pzaff(X) :-

ask(true) -> ∃ Y,M. tell(X=[msg(levi,M)|Y]) || write(M) || pzaff(Y)

+

ask(true) -> ∃ Y,M. tell(X=[msg(giaco,M)|Y]) || write(M) || pzaff(Y)

+

ask(true) -> tell(X=[]).

distr(X,L,G) :-

ask(∃T,X1X=[msg(levi,T)|X1]) ->

∃ T,X1,L1. tell(X=[msg(levi,T)|X1],L=[T|L1]) || distr(X1,L1,G)

+

ask(∃T,X1X=[msg(giaco,T)|X1]) ->

∃ T,X1,G1. tell(X=[msg(giaco,T)|X1],G=[T|G1]) || distr(X1,L,G1)

+

ask(X=[]) -> tell(L=[],G=[]).

g(X,L,G) :- pzaff(X) || distr(X,L,G) || clevi(L) || cgiaco(G).

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
��
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

SS

�

@@R��	

@@R��	

��	

@@R��	

giaco levi

OR

msg

Any

consnil

OR

Fig. 1. The rigid typegraph for X

Assuming that write, clevi and cgiaco are suspension free, the suspension
freeness of g(X,L,G) may only depend on pzaff and distr. By applying the
Angel transformation, we note that the only process that can suspend is distr.
Suspension freeness can be analyzed by evaluating the following multiple ask

(∃T,X1X=[msg(levi,T)|X1]) ; ∃T,X1X=[msg(giaco,T)|X1]) ; X=[])

For this purpose, the rigid types abstraction [15] provides an adequate abstract
domain. Intuitively, the process pzaff binds the variable X to any of the terms
described by the rigid type graph in Figure 1. Therefore, we have to show that all
such terms satisfy the synchronization test. In this case it is an easy task. How-
ever, in other cases it is necessary to extend the abstract domain of rigid types
with some kind of variable dependency information (we are currently working
on a formal solution for the general case).

Given P = D.A, let P ′1, P ′2 be the abstract programs corresponding to P1 =
NoSynch[P] and P2 = Angel [P] respectively.
Next proposition states Angel correctness wrt the standard semantics, provided
that we defined a correct multiple abstract synchronization test.

Proposition 18. N [[P]] ⊆ N [[P2]] and (α̃ ◦ N [[P]] ◦ γ) ⊆ N ′[[P ′2]].

If P is suspension-free, we can compare the accuracy of the two transforma-
tions, showing that NoSynch is always better than Angel.

Proposition 19. N [[P1]] ⊆ N [[P2]] and N ′[[P ′1]] ⊆ N ′[[P ′2]].

The two transformations have the same precision degree only when Angel can
actually “prove” suspension-freeness.

7 Related Works

The initial approaches to the static analysis of concurrent logic languages are
based on the operational semantics [4, 2]. In particular, in order to get inde-
pendence from the scheduling policy, [2] analyze cc programs (with consistency
check) by using a non-standard (operational) semantics that makes the com-
putation confluent. Our program transformation Angel can be seen as the de-
notational translation of this approach (modulo the absence of the consistency
check). To our knowledge, [8] defines the first abstract interpretation framework
for cc programs based on a denotational (and compositional) semantics. Even in
this case there is a two level approximation. The standard semantics is first ab-
stracted by considering a semantics recording the input/output relation between
concrete constraints, and then the constraint system is abstracted, by assuming
the existence of a correct abstract synchronization test. Global choice operators
are simply mapped into local choice operators. This is a heavy approximation,
because one blocked guard causes the suspension of the process, even if there
are other definitely enabled guards in the choice operator (e.g. in a deterministic
choice we always suspend, because there can be only one enabled guard at a
time).

[3] considers the problem of giving a generalized abstract interpretation
framework for cc languages, where only local choice is allowed. In contrast with
Theorem 11, they claim that it is correct to directly abstract the program and
evaluating it on the abstract constraint system. However, simple counterexam-
ples show that in general this approach returns uncorrect results because of the
abstract synchronization problem.

A more recent paper [9] considers the analysis of compositionally confluent cc
programs and defines an abstract interpretation framework which is very similar
to that obtained by our transformation Angel. This approach, based on the
denotational semantics of angelic cc, maps each (non-confluent) guarded choice

operator into the agent ask(
n
∨
i=1

ci) →
n
⊕
i=1

Ai, where ∨ denotes the disjunction

over P↓(C). The difference is that, once the synchronization test is passed, this
transformation does not use the guard constraints to strength each branch of the
computation. On the contrary, Angel tells each branch’s guard before proceeding
in the abstract computation, obtaining better results.

8 Conclusions

We have shown that the ask operators cannot be safely upper approximated using
the generalized semantics approach. The interest in a solution to this problem
in the context of abstract interpretation is not only related to the analysis of
cc programs. Indeed, the basic problem in the abstraction of synchronization
for cc programs is shared by a number of different semantic constructions, not
necessarily related with the ask-based synchronization of concurrent languages.
As shown in [1], the semantics of (pure) Prolog programs (logic programs with

depth-first search) can be specified in term of implicit ask mappings. A reduction
with a clause can only be applied to a goal provided that there are no infinite
branches on the left-hand side of the proof tree for that goal, by applying any
of the previous clauses in the textual order. A similar behaviour is also shared
by semantic models for builtins in Prolog. While the implicit ask mapping-based
semantic definitions for Prolog’s search or builtins provide a more declarative
model for control features in standard Prolog interpreters, their use as semantic
bases for abstract interpretation may lead to some of the problems discussed in
the previous sections. It is interesting to note that, in the case of Prolog depth-
first search, a NoSynch-like abstraction approximates the program meaning (the
Prolog success set) by its interpretation as a pure logic program (i.e. without
depth-first search). This, indeed, is a common practice in data-flow analysis of
Prolog programs (a discussion on this topic is in [1]).

References

1. R. Barbuti, M. Codish, R. Giacobazzi, and G. Levi. Modelling Prolog Control. In
Proc. Nineteenth Annual ACM Symp. on Principles of Programming Languages,
pages 95–104. ACM Press, 1992.

2. M. Codish, M. Falaschi, K. Marriott, and W. Winsborough. Efficient Analy-
sis of Concurrent Constraint Logic Programs. In A. Lingas, R. Karlsson, and
S. Carlsson, editors, Proc. of the 20th International Colloquium on Automata, Lan-
guages, and Programming, volume 700 of Lecture Notes in Computer Science, pages
633–644, 1993.

3. C. Codognet and P. Codognet. A general semantics for Concurrent Constraint
Languages and their Abstract Interpretation. In M. Meyer, editor, Workshop on
Constraint Processing at the International Congress on Computer Systems and
Applied Mathematics, CSAM’93, 1993.

4. C. Codognet, P. Codognet, and M. Corsini. Abstract Interpretation for Concur-
rent Logic Languages. In S. K. Debray and M. Hermenegildo, editors, Proc. North
American Conf. on Logic Programming’90, pages 215–232. The MIT Press, Cam-
bridge, Mass., 1990.

5. P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks.
In Proc. Sixth ACM Symp. Principles of Programming Languages, pages 269–282,
1979.

6. F. S. de Boer and C. Palamidessi. A Fully Abstract Model for Concurrent Con-
straint Programming. In S. Abramsky and T. Maibaum, editors, Proc. TAP-
SOFT’91, volume 493 of Lecture Notes in Computer Science, pages 296–319.
Springer-Verlag, Berlin, 1991.

7. F.S. de Boer, M. Gabbrielli, E. Marchiori, and C. Palamidessi. Proving Concur-
rent Constraint Programs Correct. In Proc. 21st Annual ACM Symp. on Principles
of Programming Languages, pages 98–108. ACM Press, 1994.

8. M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Compositional Anal-
ysis for Concurrent Constraint Programming. In Proc. of the Eight Annual IEEE
Symposium on Logic in Computer Science, pages 210–221. IEEE Computer Society
Press, 1993.

9. M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Confluence and Con-
current Constraint Programming. Technical report, Dipartimento di Elettronica e
Informatica, University of Padova, 1993.

10. M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative Modeling of
the Operational Behavior of Logic Languages. Theoretical Computer Science,
69(3):289–318, 1989.

11. R. Giacobazzi, S. K. Debray, and G. Levi. A Generalized Semantics for Constraint
Logic Programs. In Proc. of the International Conference on Fifth Generation
Computer Systems 1992, pages 581–591, 1992.

12. R. Giacobazzi, G. Levi, and E. Zaffanella. Abstracting Synchronization in Concur-
rent Constraint Programming. Technical Report TR 25/93, Dip. di Informatica,
Univ. di Pisa, 1993.

13. L. Henkin, J.D. Monk, and A. Tarski. Cylindric Algebras. Part I and II. North-
Holland, Amsterdam, 1971.

14. R. Jagadeesan, V. Shanbhogue, and V. Saraswat. Angelic non-determinism in con-
current constraint programming. Technical report, System Science Lab., Xerox
PARC, 1991.

15. G. Janssens and M. Bruynooghe. Deriving descriptions of possible values of pro-
gram variables by means of abstract interpretation. Journal of Logic Programming,
13(2 & 3):205–258, 1992.

16. V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic Foundation of Con-
current Constraint Programming. In Proc. Eighteenth Annual ACM Symp. on
Principles of Programming Languages, pages 333–353. ACM, 1991.

17. D. Scott. Domains for Denotational Semantics. In M. Nielsen and E. M. Schmidt,
editors, Proc. Ninth Int. Coll. on Automata, Languages and Programming, volume
140 of Lecture Notes in Computer Science, pages 577–613. Springer-Verlag, Berlin,
1982.

This article was processed using the LATEX macro package with LLNCS style

