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Abstract. A technique for generating invariant polynomial inequalities
of bounded degree is presented using the abstract interpretation frame-
work. It is based on overapproximating basic semi-algebraic sets, i.e.,
sets defined by conjunctions of polynomial inequalities, by means of con-
vex polyhedra. While improving on the existing methods for generating
invariant polynomial equalities, since polynomial inequalities are allowed
in the guards of the transition system, the approach does not suffer from
the prohibitive complexity of methods based on quantifier-elimination.
The application of our implementation to benchmark programs shows
that the method produces non-trivial invariants in reasonable time. In
some cases the generated invariants are essential to verify safety proper-
ties that cannot be proved with just classical linear invariants.

1 Introduction

The discovery of invariant properties is at the core of the analysis and verifica-
tion of infinite state systems such as sequential programs and reactive systems.
For this reason invariant generation has been a major research problem since the
seventies. Abstract interpretation [12] provides a solid foundation for the devel-
opment of techniques automatizing the synthesis of invariants of several classes,
most significantly intervals [11], linear equalities [25] and linear inequalities [15].

For some applications, linear invariants are not enough to get a precise anal-
ysis of numerical programs and non-linear invariants may be needed as well. For
example, the ASTRÉE static analyzer, which has been successfully employed to
verify the absence of run-time errors in flight control software [14], implements
the ellipsoid abstract domain [7], which represents a certain class of quadratic
inequality invariants. Moreover, it has been acknowledged elsewhere [33, 35] that
non-linear invariants are sometimes required to prove program properties.

As a consequence, a remarkable amount of work has been recently directed
to the generation of invariant polynomial equalities. Some of the methods plainly
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ignore all the conditional guards [30, 32]; other methods can only consider the
polynomial equalities in the guards [9, 36], whereas some other proposals [28,
31] can handle polynomial disequalities in guards (i.e., guards of the form p 6= 0
where p is a polynomial). All the techniques previously mentioned cannot handle
the case of polynomial inequalities in the guards: these are ignored to the expense
of precision.

In this paper we present a method for generating conjunctions of polynomial
inequalities as invariants of transition systems, which we have chosen as our
programming model. The transition systems that the approach can handle admit
conjunctions of polynomial inequalities as guards and initial conditions, as well
as polynomial assignments and nondeterministic assignments where the rvalue is
unknown (which may correspond, for instance, to the assignment of expressions
that cannot be modeled by means of polynomials).

Formally, our technique is an abstract interpretation in the lattice of poly-
nomial cones of bounded degree, which are the algebraic structures analogous
to vector spaces in the context of polynomial equality invariants [9]. Intuitively,
the approach is based on considering nonlinear terms as additional independent
variables, and then work with convex polyhedra, which are used to represent
polynomial cones, in this extended set of variables. In order to reduce the loss of
precision induced by this overapproximation, additional linear constraints, relat-
ing the newly added variables with the original ones, are added conservatively
to the polyhedra, so as to enforce some (semantically redundant) nonlinear con-
straints that would be lost in the translation. The strength of the approach is
that, while allowing for a much broader class of programs than linear analysis, it
uses the very same underlying machinery: this permits the adoption of already
existing implementations of convex polyhedra like [4], as well as the possibil-
ity of resorting to further approximations, such as bounded differences [1] or
octagons [27], when facing serious scalability problems.

The rest of the paper is organized as follows. In the next subsection, related
work is briefly reviewed. Section 2 gives background information on algebraic
geometry, transition systems and abstract interpretation. In Section 3 we ar-
gue why the first approach we propose, based on abstract interpretation over
the first-order language of polynomial inequalities, is not feasible. Section 4
presents the main contribution of the paper, where it is shown how polynomial
inequalities can be discovered as invariants by means of polynomial cones, repre-
sented as convex polyhedra. The experimental evaluation of our implementation
of these ideas is described in Section 5. Finally in Section 6 we summarize the
contributions of the paper and sketch some ideas for future work.

1.1 Related Work

To the best of our knowledge, the first contribution towards the generation of
invariant polynomial inequalities is [6]. The authors consider a simple class of
transition systems, where assignments are of the form x := x+ k or x := k with
k ∈ Z. Such a transition system is soundly abstracted into a new one whose
exact reachability set is computable and overapproximates the reachability set
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of the original system. Besides the fact that the programming model is more
restrictive than the one used in this paper, these ideas do not seem to have
undergone experimental evaluation so that, as far as we can tell, their practical
value remains to be assessed.

In [24], Kapur proposes a method based on imposing that a template poly-
nomial inequality with undetermined coefficients is invariant and solving the
resulting constraints over the coefficients by real quantifier elimination. Unfor-
tunately, the great computational complexity of quantifier elimination appears
to make the method impractical: as the author reports, an experimental imple-
mentation performed poorly or did not return any answer for all the analyzed
programs [D. Kapur, personal communication, 2005].

A similar idea is at the core of [10, 33], where, instead of real quantifier elimi-
nation, semidefinite programming is employed. The method, which is reported to
perform rather efficiently for several interesting cases, automatically determines
one solution to the constraint system on the template parameters. This is par-
ticularly appropriate for proving program termination because, once a class of
candidate ranking functions has been chosen, any solution belonging to this class
is good enough. The same approach has also been applied to the computation of
invariant properties. In this case, according to [10], the one above becomes the
main limitation of the method: any invariant property, even a weak one, may
be obtained and it is unclear whether it is possible to drive the solver so as to
produce a more precise invariant in the same class.

In [35], Sankaranarayanan et al. propose a technique for generating linear
invariants by linear programming. It is based on imposing, as invariants, con-
straints where the coefficients of the variables are fixed a priori ; the analysis
then returns, for each such constraint, an independent term for which the con-
straint is indeed an invariant of the system (in the case where this is not possible,
the analysis returns ±∞). A generalization of this approach for the discovery
of invariant polynomial inequalities by means of semidefinite programming is
sketched. Similarly, in [7] the ellipsoid abstract domain is presented, which al-
lows to generate invariant quadratic inequalities with two variables by also fixing
the coefficients of terms and leaving the independent term to be determined by
the analysis. The approach proposed in this paper differs in that we do not need
to fix any of these coefficients in advance, but rather it is the analysis itself that
determines all coefficients.

2 Preliminaries

2.1 Algebraic Geometry

We denote the real numbers by R, and the nonnegative real numbers by R+. A
term in the tuple of variables x = (x1, . . . , xn) is an expression of the form x

α =
xα1

1 xα2

2 · · ·xαn
n , where α = (α1, . . . , αn) ∈ N

n. A monomial is an expression of
the form c · x

α, simply written as cxα, where c ∈ R and x
α is a term. The

degree of a monomial cxα with c 6= 0 is deg(cxα) := α1 + · · · + αn; the degree
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of 0 is deg(0) := −∞. A polynomial is a finite sum of monomials. The set of
all polynomials in x with coefficients in R is denoted by R[x]. The degree of
a non-null polynomial is the maximum of the degrees of its monomials. We
denote by Rd[x] the set of all polynomials in R[x] having degree at most d. In
particular, the polynomials in R1[x], i.e., having degree at most 1, are called
linear ; similarly, the polynomials in R2[x] are called quadratic.

A polynomial equality (resp., polynomial inequality) is a formula of the form
p = 0 (resp., p ≥ 0), where p ∈ R[x]. Both will be referred to as polynomial
constraints or simply constraints. Given a constraint system ψ, i.e., a finite set
of polynomial constraints, we define

poly(ψ) :=
{

p ∈ R[x]
∣

∣ (p = 0) ∈ ψ or (−p = 0) ∈ ψ or (p ≥ 0) ∈ ψ
}

.

We will sometimes abuse notation by writing the set ψ to denote the finite
conjunction of the constraints occurring in it.

The algebraic set defined by a finite set of polynomials {p1, . . . , pk} ⊆ R[x]
is the set of points that satisfy the corresponding polynomial equalities, i.e.,

{

v ∈ R
n

∣

∣ p1(v) = 0, . . . , pk(v) = 0
}

.

Similarly, the basic semi-algebraic set defined by the same set of polynomials is
the set of points that satisfy all the corresponding polynomial inequalities:

{

v ∈ R
n

∣

∣ p1(v) ≥ 0, . . . , pk(v) ≥ 0
}

.

Finally, semi-algebraic sets are obtained from basic semi-algebraic sets by taking
complements, finite unions and finite intersections.

2.2 Transition Systems

In this section we define our programming model: transition systems.

Definition 1. (Transition system.) A transition system (x,L, T , I) is a tu-
ple that consists of the following components:

– An n-tuple of real-valued variables x = (x1, . . . , xn).
– A finite set L of locations.
– A finite set T ⊂ L×L×℘(Rn)×

(

R
n → ℘(Rn)

)

of transitions. A transition
(`, `′, γ, ρ) ∈ T consists of a source location ` ∈ L, a target location `′ ∈ L,
a guard γ ⊆ R

n that enables the transition, and, finally, an update map
ρ : R

n → ℘(Rn) that relates the values of the variables before and after the
firing of the transition.

– A map I : L → ℘(Rn) from locations to initial conditions.

The guards, the update maps and the initial conditions are all assumed to be
finitely computable.

The state of a transition system is completely characterized by the location
at which control resides and by a valuation for the variables.
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Definition 2. (Local and global state.) A local state (at some unspecified
location) is any real vector v = (v1, . . . , vn) ∈ R

n, interpreted as a valuation for
the variables x = (x1, . . . , xn): in local state v, we have xi = vi for each i = 1,
. . . , n. A global state is a pair (`,v), where ` ∈ L and v is the local state at `.

Definition 3. (Run, initial state.) A run of the transition system (x,L, T , I)
is a sequence of global states (`0,v0), (`1,v1), (`2,v2), . . . such that (1) (`0,v0)
is an initial state, that is v0 ∈ I(`0), and (2) for each pair of consecutive
states, (`i,vi) and (`i+1,vi+1), there exists a transition (`i, `i+1, γ, ρ) ∈ T that
is enabled, i.e., vi ∈ γ, and such that vi+1 ∈ ρ(vi).

The fundamental notion is that of an invariant of a transition system:

Definition 4. (Reachable state, invariant property and map.) A global
state (`,v) is called reachable in the transition system S = (x,L, T , I), if there
exists a run (`0,v0), (`1,v1), . . . , (`m,vm) of S such that (`,v) = (`m,vm). We
denote the set of reachable states of S by reach(S), and the set of (local) reachable
states at location `, i.e., those v such that (`,v) ∈ reach(S), by reach`(S).

If x = (x1, . . . , xn), an invariant property of S at location ` ∈ L (also called
an invariant) is any set I ∈ ℘(Rn) such that reach`(S) ⊆ I. Finally, an invariant
map is a map inv : L → ℘(Rn) such that for any ` ∈ L, inv(`) is an invariant
of S at location `.

In this paper we focus on a particular class of transition systems, basic semi-
algebraic transition systems :

Definition 5. (Basic semi-algebraic transition system.) A transition sys-
tem (x,L, T , I), where x = (x1, . . . , xn), is called basic semi-algebraic if:

1. for all (`, `′, γ, ρ) ∈ T , γ is a basic semi-algebraic set and there exist k ≤ n
polynomials p1, . . . , pk ∈ R[x] and distinct indices i1, . . . , ik ∈ {1, . . . , n}
such that, for each v ∈ R

n,

ρ(v) =
{

(v′1, . . . , v
′

n) ∈ R
n

∣

∣ v′i1 = p1(v), . . . , v′ik
= pk(v)

}

;

2. I(`) is a basic semi-algebraic set, for each ` ∈ L.

Notice that a basic semi-algebraic transition system can also model nonde-
terministic assignments, that is, assignments whose rvalue is unknown.

Example 1. The program shown on the left of Figure 1 is a minor variant of the
program in [18, p. 64], computing the floor of the square root of a natural number
a. The basic semi-algebraic transition system shown on the right of the figure
models the (second loop of the) program. Note that even the original program
in [18], which has the disequality c 6= 1 in the loop guard, can be modeled as a
basic semi-algebraic transition system (by translating c 6= 1 as c ≤ 0∨ c ≥ 2 and
then having four transitions instead of two). The variant in Figure 1 has been
adopted just for presentation purposes: its analysis leads to the same invariants
that are computed when analyzing the original program.
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{ a ≥ 0 }

b := 0; c := 1;

while c2 ≤ a do

c := 2c;
end while

`0 : while c ≥ 2 do

c := c/2;
if (b+ c)2 ≤ a then

b := b+ c;
end if

end while

return b;

I(`0) `0

τ0 := γ0 → ρ0

τ1 := γ1 → ρ1

I(`0) := {a ≥ 0, b = 0, c ≥ 1, c2 ≥ a+ 1}

γ0 :=
˘

c ≥ 2, (2b + c)2 ≤ 4a
¯

ρ0 := (a′, b′, c′) = (a, b+ c/2, c/2)

γ1 :=
˘

c ≥ 2, (2b + c)2 ≥ 4a + 4
¯

ρ1 := (a′, b′, c′) = (a, b, c/2)

Fig. 1. A program and its model as a basic semi-algebraic transition system

2.3 Abstract Interpretation

Abstract interpretation [12] is a general theory of approximation of the behavior
of dynamic discrete systems. One of its classical applications is the inference of
invariant properties of transition systems [13]. This is done by specifying the set
of reachable states of the given transition system as the solution of a system
of fixpoint equations. The concrete behavior of the transition system is then
overapproximated by setting up a corresponding system of equations defined
over an abstract domain, providing computable representations for the abstract
properties that are of interest for the analysis, as well as abstract operations
that are sound approximations of the concrete operations used by the transition
system being analyzed. The solution of the system of abstract equations can
be found iteratively, possibly applying further conservative approximations and
using convergence acceleration methods, such as widenings [12]. One of the main
advantages of this methodology for the inference of invariant properties is that
the correctness of the results thus obtained follows by design.

Given a transition system S = (x,L, T , I), the set of its reachable states
reach(S) can be characterized by means of a system of fixpoint equations where,
for each ` ∈ L, we have the equation

reach`(S) = I(`) ∪
⋃

{

ρ
(

reach`′(S) ∩ γ
)

∣

∣

∣
(`′, `, γ, ρ) ∈ T

}

. (1)

The least fixpoint of this system of equations, with respect to the pointwise
extension of the subset ordering on ℘(Rn), is reach(S); any overapproximation
of reach(S) yields an invariant map for S. Abstract interpretation provides us
with a methodology to constructively obtain an invariant map.

The application of abstract interpretation in this setting involves:
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Choosing an abstract domain A. Each element in the abstract domain over-
approximates a set of local states. The original system of fixpoint equations
Ȳ = F̄ (Ȳ ), expressing the semantics of the transition system, is transformed
into a fixpoint equation Z̄ = Ḡ(Z̄) over the abstract values.3 A convenient
(though, in general, not the most precise) way of obtaining Ḡ from F̄ is to fol-
low the syntactic structure of Equation (1): the sets of local states I(`) and γ
are mapped into corresponding abstract values, and the concrete operations of
union, intersection and update, working on sets of local states, are translated
into corresponding operations on the abstract domain. In both cases, the rela-
tionship between the concrete and the abstract domains, established according
to the theory of abstract interpretation, ensures that the translation is correct
and provides an overapproximation of the concrete behavior of the system.

Computing iteratively a post-fixpoint of Z̄ = Ḡ(Z̄). Any post-fixpoint of the re-
cursive equation Z̄ = Ḡ(Z̄) describes an invariant map for the transition system.
The least of these post-fixpoints can be obtained by computing the increasing se-
quence defined by Z̄0 = ⊥̄ (where ⊥ is the least element of the abstract domain,
which usually describes the empty set of states) and, for k ∈ N, Z̄k+1 = Ḡ(Z̄k).
However, this iterative process may not converge in finite time: termination can
be forced by the adoption of a widening operator ∇ : A × A → A, at the cost
of further overapproximation. If v ⊆ A × A and t : A × A → A are the ab-
stract operators approximating the subset inclusion partial order and the union
of sets of states, respectively, then a widening ∇ overA must satisfy the following
conditions:

1. for each a1, a2 ∈ A such that a1 v a2 we have a2 v a1∇a2;
2. for any increasing chain a0 v a1 v · · · , the new increasing chain defined by
a′0 = a0, a

′

k+1
= a′k∇(a′k t ak+1) is not strictly increasing (that is, it finitely

converges).

By construction, the abstract iteration sequence with widening converges, in
a finite number of steps, to a post-fixpoint of the equation. Notice that the
termination test for this analysis method requires the evaluation of the abstract
inclusion relation ‘v’: iteration can be stopped at the smallest i ∈ N such that
Z̄ ′

i+1 v Z̄ ′

i.

3 A Possible Approach with Real Quantifier Elimination

A first approach to generate polynomial inequalities as invariants would be to use
semi-algebraic sets as abstract values, i.e., as overapproximations of the states of
the system. It is a well-known result by Tarski [38] that the first-order theory of
polynomial inequalities over the reals admits computable quantifier elimination:
that is, given a formula Q1y1 . . . .Qmym . ψ(x1, . . . , xn, y1, . . . , ym) (where the

3 If m is the number of locations of the transition system, Ȳ ranges over
`

℘(Rn)
´m

and F̄ :
`

℘(Rn)
´m

→
`

℘(Rn)
´m

. Similarly, Z̄ ranges over Am and Ḡ : Am → Am.
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Qi’s are first-order quantifiers ∀ and ∃, and ψ is a logical combination using ∧,
∨, ¬ of polynomial inequalities in the variables x1, . . . , xn, y1, . . . , ym), it can
be computed an equivalent quantifier-free formula ψ′(x1, . . . , xn) that depends
only on the free variables. In particular, the first-order theory of polynomial
inequalities over the reals is decidable.

It is therefore possible to express the (abstract) semantics of transition sys-
tems in terms of semi-algebraic sets (described by quantifier-free formulas) as
follows:

Union. Given two formulas ψ and ϕ, the union of the respective semi-
algebraic sets corresponds to the formula ψ ∨ ϕ.

Intersection. Given two formulas ψ and ϕ, the intersection of the respective
semi-algebraic sets corresponds to the formula ψ ∧ ϕ.

Update. Given the formula ψ(x) and the update relation x
′ ∈ ρ(x) that

associates the old values x to the new values x
′, expressed in terms of polynomial

inequalities, the semantics of ρ on ψ is precisely captured by the quantifier-free
formula equivalent to ∃y . ψ(y) ∧

(

x ∈ ρ(y)
)

.

Test for Inclusion. Given the formulas ψ and ϕ, the semi-algebraic set de-
termined by ψ is included in the semi-algebraic set determined by ϕ if and only
if ψ =⇒ ϕ is valid. This can be decided by checking that ∃y . ψ ∧ ¬ϕ is false,
where y is the tuple of all variables occurring in ψ and ϕ.

So, in order to generate polynomial inequalities as invariants, one could ap-
ply abstract interpretation using the operations above for defining the abstract
semantics. However, this approach suffers from very serious limitations:

1. The domain of semi-algebraic sets has infinite ascending chains and termi-
nation can only be guaranteed by using a widening operator. However, as far
as we know, no suitable widening operator has been defined on this domain.
Moreover, the expressive power of the language of polynomial inequalities,
seems to make it difficult to generalize the ideas that are at the basis of
widenings on convex polyhedra [2, 3, 15]. Furthermore, the notion of dimen-
sion (employed in [32] for polynomial equalities) seems not to be useful in
this context.

2. Although there have been major improvements on the original algorithm for
quantifier elimination (whose complexity cannot be bounded by any finite
tower of exponentials), the worst-case complexity of the current techniques
like CAD [8] is doubly exponential in the number of variables. Thus it cannot
be expected that the method scales up to even medium-sized systems.

As a consequence of these limitations, we turn our attention to techniques
that offer a better trade-off between efficiency and precision. The fundamental
ideas we follow in this paper are to restrain ourselves to basic semi-algebraic sets
(i.e., finite conjunctions of polynomial inequalities) and to bound the degree of
the polynomials.
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4 Approximating Basic Semi-algebraic Sets by

Polynomial Cones

The construction of our abstract domain is analogous to that in [9], where
pseudo-ideals of polynomials are introduced to infer polynomial equalities as
invariants, while still reasoning in the framework of linear algebra. Here, we
extend this approach so as to handle polynomial inequalities as invariants.

In [9], the basic underlying definition is that of a vector space of polynomials:

Definition 6. (Vector space.) A set of polynomials V ⊆ R[x] is a vector
space if (1) 0 ∈ V ; and (2) λp + µq ∈ V whenever p, q ∈ V and λ, µ ∈ R. For
each Q ⊆ R[x], the vector space spanned by Q, denoted by V(Q), is the least
vector space containing Q, that is,

V(Q) :=

{ s
∑

i=1

λiqi ∈ R[x]

∣

∣

∣

∣

s ∈ N, ∀i ∈ {1, . . . , s} : λi ∈ R, qi ∈ Q

}

.

Given a vector space V , we associate the constraint p = 0 to any p ∈ V .
Notice that, if p, q ∈ R[x] and v ∈ R

n are such that p(v) = 0 and q(v) = 0, then
(λp+µq)(v) = 0, for any λ, µ ∈ R. Further, for any v ∈ R

n, the zero polynomial
trivially satisfies 0(v) = 0. Thus, the set of polynomials that evaluate to 0 on a
set of states S ⊆ R

n, that is
{

p ∈ R[x]
∣

∣ ∀v ∈ S : p(v) = 0
}

, has the structure
of a vector space. Unfortunately, this vector space has infinite dimension.4 In
order to work with objects of finite dimension, it is necessary to approximate by
bounding the degrees of the polynomials.

Moreover, when considering polynomials as elements of a vector space, the
algebraic relationships between terms such as x1, x2 and x1x2 are lost. For in-
stance, consider the vector space V

(

{x1, x2−x1x2}
)

, generated by the polynomial
equalities x1 = 0 and x2 = x1x2. Then, even though the polynomial equality
x2 = 0 is semantically entailed by the previous ones, x2 /∈ V

(

{x1, x2 − x1x2}
)

.
The reason is that the vector space generated by x1 and x2 −x1x2 only includes
the linear combinations of its generators, whereas in the case above x2 can only
be obtained by a nonlinear combination of the generators, namely x2 = x2 ·
(x1)+1 · (x2−x1x2). This problem can be solved by adding the polynomial x1x2

to the set of generators, so that the polynomial x2 ∈ V
(

{x1, x1x2, x2 − x1x2}
)

can be obtained by the linear combination 0 · (x1) + 1 · (x1x2) + 1 · (x2 − x1x2).
In general, in order to reduce the loss of precision due to the linearization

of the abstraction, additional polynomials are added taking into account that,
when p ∈ R[x] and v ∈ R

n are such that p(v) = 0, we have (pq)(v) = 0 for each
q ∈ R[x]. Therefore, pseudo-ideals are defined as follows:

Definition 7. (Pseudo-ideal.) Given a degree bound d ∈ N, a pseudo-ideal
P ⊆ Rd[x] of degree d is a vector space with the property that pq ∈ P whenever
p ∈ P , q ∈ R[x] and deg(pq) ≤ d. For each Q ⊆ Rd[x], the pseudo-ideal of
degree d spanned by Q, denoted by Pd(Q), is the least pseudo-ideal of degree d
containing Q.

4 Actually it has the algebraic structure of an ideal of polynomials [17].
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Pseudo-ideals are “complete” in the sense that they are closed under the
operations of addition, product by scalars and bounded product by polynomials.
For instance, x1x2 ∈ P2(x1, x2). Pseudo-ideals are the elements of the abstract
domain used in [9].

In order to extend this methodology to the generation of invariant polynomial
inequalities, a first, necessary step is the identification, in the basic semi-algebraic
context, of an adequate algebraic structure playing the same role of vector spaces
for polynomial equalities. It turns out that polynomial cones are the right notion:

Definition 8. (Polynomial cone.) A set of polynomials C ⊆ R[x] is a poly-
nomial cone if (1) 1 ∈ C; and (2) λp + µq ∈ C whenever p, q ∈ C and
λ, µ ∈ R+. For each Q ⊆ R[x], the polynomial cone generated by Q, denoted by
C(Q) ⊆ R[x], is the least polynomial cone containing Q, that is,

C(Q) :=

{

λ+
s

∑

i=1

λiqi ∈ R[x]

∣

∣

∣

∣

λ ∈ R+, s ∈ N, ∀i ∈ {1, . . . , s} : λi ∈ R+, qi ∈ Q

}

.

Mimicking the reasoning done before for vector spaces, we associate the con-
straint p ≥ 0 to any polynomial p in the polynomial cone C. Consider the basic
semi-algebraic set defined by the constraint system

ψ = {f1 = 0, . . . , fh = 0, g1 ≥ 0, . . . , gk ≥ 0} (2)

where, for each i = 1, . . . , h and j = 1, . . . , k, we have fi, gj ∈ R[x]. Then, the set
of polynomial inequalities that are consequences of ψ define a polynomial cone.
Indeed, ψ =⇒ (1 ≥ 0) trivially; and, if ψ =⇒ (p ≥ 0) and ψ =⇒ (q ≥ 0),
clearly ψ =⇒ (λp+ µq ≥ 0) for each λ, µ ∈ R+. As was the case for the vector
space of polynomials, this set of polynomials has infinite dimension. In order to
deal with objects of finite dimension and to mitigate the precision loss due to
linearization, we again fix an upper bound for the degrees of the polynomials and
then complete with respect to bounded product by polynomials. The analog of
pseudo-ideals in the basic semi-algebraic setting are complete polynomial cones :

Definition 9. (Complete polynomial cone.) Given a degree bound d ∈ N, a
complete polynomial cone of degree d is a polynomial cone C ⊆ Rd[x] satisfying:

(1) pq ∈ C whenever p, q ∈ C and deg(pq) ≤ d;
(2) pq ∈ C whenever p,−p ∈ C, q ∈ R[x] and deg(pq) ≤ d.

For each Q ⊆ Rd[x], the complete polynomial cone of degree d generated by
Q, denoted by Cd(Q) ⊆ Rd[x], is the least complete polynomial cone of degree d
containing Q.

Let ψ be a constraint system defining a basic semi-algebraic set. Then, once
the degree bound d ∈ N is fixed, ψ is abstracted by computing the complete
polynomial cone C := Cd

(

poly(ψ) ∩ Rd[x]
)

. The approximation forgets those
polynomials occurring in ψ having a degree greater than d. Also note that the
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precision of the approximation depends on the specific constraint system.5 Con-
sider the constraint system ψ as defined in (2). Let M(g1, . . . , gk) be the mul-
tiplicative monoid generated by the gj ’s, i.e., the set of finite products of gj ’s
including 1 (the empty product). From the definition, it can be seen that the
polynomials p ∈ C = Cd

(

poly(ψ) ∩ Rd[x]
)

can all be obtained as6

p =

h
∑

i=1

rifi +
∑

j

λjqj , (3)

where, for each i = 1, . . . , h, ri ∈ R[x] is such that deg(rifi) ≤ d, and, for each
j, λj ∈ R+ and qj ∈ M(g1, . . . , gk) ∩ Rd[x].

The abstraction is sound, since for each p ∈ C and each v ∈ R
n such that

ψ(v) holds, we have

p(v) =

h
∑

i=1

ri(v)fi(v) +
∑

j

λjqj(v) =
∑

j

λjqj(v) ≥ 0.

The abstraction is also complete for the linear case. In fact, consider any finite
set of linear constraints ϕ = {p1 ≥ 0, . . . , pm ≥ 0}, which we assume to be
satisfiable. Then, the corresponding complete polynomial cone of degree 1 is L =
C1

(

poly(ϕ)
)

, whose elements are linear consequences of ϕ. On the other hand,
if p ∈ R1[x] is a linear polynomial such that ϕ =⇒ (p ≥ 0), then by Farkas’
lemma there exists µ = (µ0, . . . , µm) ∈ R

m+1
+ such that p = µ0 +

∑m

i=1
µipi; in

other words, p ∈ L. In the general nonlinear setting, the abstraction constituted
by complete polynomial cones is not complete. Notice however that the set of
all invariant polynomial inequalities (i.e., invariants of the form p ≥ 0 with
p ∈ R[x]) is not computable in basic semi-algebraic transition systems [29].
Worse, the set of all invariant linear equalities (i.e., invariants of the form p = 0
with p ∈ R1[x]) is not computable in transition systems even if restricted to linear
equality guards. Therefore, a complete abstraction (such as the one sketched in
Section 3) still would not allow to obtain a complete method for generating
invariant polynomial inequalities.

4.1 Representation

Just as linear algebra is used in [9] to manipulate vector spaces representing
pseudo-ideals of degree d, in this paper we exploit the theory of convex polyhe-
dra to handle (finitely generated) polynomial cones representing complete poly-
nomial cones of degree d.

The linearization in the abstraction process implies that all terms are consid-
ered as different variables. For instance, in Example 1, the terms a, b, c, c2 are

5 For instance, the equivalent constraint systems {x = 0} and {x2 = 0} are abstracted
to different complete polynomial cones of degree 1.

6 It is further necessary that the following non-degeneracy condition is satisfied: there
exists v ∈ R

n such that ψ(v) holds and
Qk

j=1
gj(v) > 0.
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Require: A finite set of polynomial equalities ϕ = {f1 = 0, . . . , fh = 0} and a finite
set of polynomial inequalities ψ = {g1 ≥ 0, . . . , gk ≥ 0}.

Ensure: ϕ′ = {f ′

1 = 0, . . . , f ′

h′ = 0} and ψ′ = {g′1 ≥ 0, . . . , g′k′ ≥ 0} are finite sets
of polynomial equalities and inequalities, respectively, such that C

`

poly(ϕ′ ∪ ψ′)
´

=
Cd

`

poly(ϕ ∪ ψ) ∩ Rd[x]
´

.

ϕ′ := ψ′ := ∅
for all (f = 0) ∈ ϕ do

if deg(f) ≤ d then

for all x
α such that deg(xα) ≤ d− deg(f) do

ϕ′ := ϕ′ ∪ {xαf = 0}
for all finite product g∗ of g’s such that (g ≥ 0) ∈ ψ do

if deg(g∗) ≤ d then

ψ′ := ψ′ ∪ {g∗ ≥ 0}

Fig. 2. Algorithm completed

all regarded as different and potentially independent variables, so that the initial
condition I(`0) = {a ≥ 0, b = 0, c ≥ 1, c2 ≥ a + 1} is interpreted as defining
a convex polyhedron in an ambient space of dimension at least 4. In general,
given a transition system on an n-tuple x of variables and a degree bound d,
the introduction of the auxiliary variables, standing for all the nonlinear terms
of degree at most d, yields an m-tuple y of variables, where each yi corresponds
to one of the m =

(

n+d

d

)

− 1 different terms x
α ∈ Rd[x] \ {1}. In the following,

we will denote each yi by writing the corresponding term. Computation in the
abstract domain of cones of degree d is feasible provided d is small, e.g., 2 or 3.
We have implemented the techniques presented in this paper for the case d = 2;
in Section 5 we show the results obtained with this implementation.

It remains to be seen how the linearized constraint system can be completed
according to Definition 9. Algorithm completed, which is based on Equation (3),
is given in Figure 2.

Example 2. Consider Example 1. The completion of degree 2 of the polynomial
cone corresponding to the initial condition I(`0) yields the system of constraints

C2

(

I(`0)
)

= C2

(

{b = 0} ∪ {a ≥ 0, c ≥ 1, c2 ≥ a+ 1}
)

= {b = 0, ab = 0, b2 = 0, bc = 0}

∪ {a ≥ 0, c ≥ 1, c2 ≥ a+ 1, a2 ≥ 0, c2 ≥ 1, ac ≥ 0}.

4.2 Abstract Semantics

In this section we review the operations required in order to perform abstract
interpretation of transition systems using polynomial cones as abstract values.

Union. Given two (finitely generated) polynomial cones C1 and C2 repre-
senting the polynomial constraint systems ψ1 and ψ2, respectively, we would like
to approximate the union of the corresponding basic semi-algebraic sets using

12



another basic semi-algebraic set. By duality, this amounts to computing the in-
tersection cone C1∩C2: for each p ∈ C1∩C2 and v ∈ R

n such that ψ1(v)∨ψ2(v),
either ψ1(v), so that p(v) ≥ 0 as p ∈ C1; or ψ2(v), so that p(v) ≥ 0 as p ∈ C2.
Thus, the approximation is sound. At the implementation level, using the rep-
resentation of polynomial cones as convex polyhedra, this intersection of cones
corresponds to the convex polyhedral hull operation.

Intersection. Given two (finitely generated) polynomial cones C1 = C(Q1)
and C2 = C(Q2), we would like to compute the intersection of the respective basic
semi-algebraic sets. Then a sound approximation is to compute the cone spanned
by the union of the generators, C(Q1∪Q2). In order to reduce the loss of precision
due to linearization, we complete this cone up to the degree bound d. Thus, the
polynomial cone corresponding to the intersection is completed(Q1 ∪Q2).

Update. Each (basic semi-algebraic) update map ρ : R
n → ℘(Rn), working

on the original n-tuple of variables x, is approximated by an affine update map
ρ′ : R

m → ℘(Rm), where m =
(

n+d

d

)

− 1, working on the extended m-tuple y of
terms. The new update map ρ′ is obtained by composing a sequence of simpler
affine maps, each one approximating the effect of ρ on a single term. For the sake
of notation, if variable yi corresponds to term x

α and p ∈ Rd[x], let x
α 7→ p

denote the update map such that, for each w ∈ R
m,

(xα 7→ p)(w) :=
(

w1, . . . , wi−1, p(w), wi+1, . . . , wm

)

∈ R
m. (4)

Note that the (possibly nonlinear) polynomial p ∈ Rd[x] on the original tuple of
variables is interpreted as a linear polynomial p ∈ R1[y] on the extended ambient
space, so that Equation (4) indeed defines an affine map.

By hypothesis, ρ is defined by k ≤ n polynomials p1, . . . , pk ∈ R[x] and
distinct indices i1, . . . , ik ∈ {1, . . . , n} such that, for each v ∈ R

n,

ρ(v) =
{

(v′1, . . . , v
′

n) ∈ R
n

∣

∣ v′i1 = p1(v), . . . , v′ik
= pk(v)

}

.

Then, for each term x
α ∈ Rd[x] \ {1}, we distinguish the following cases:

– Suppose there exists j ∈ {1, . . . , n} such that αj > 0 and j 6∈ {i1, . . . , ik}.
This means that ρ nondeterministically updates at least one of the relevant
factors of the term x

α. Thus, we conservatively approximate the overall
effect of ρ on x

α as if it was a nondeterministic assignment.

– Suppose now that, for each j = 1, . . . , n, if αj > 0 then j ∈ {i1, . . . , ik}, i.e.,
all the relevant factors of x

α are deterministically updated by ρ. Then:

• if the polynomial pα :=
∏

{

p
αj

h (x)
∣

∣ j ∈ {1, . . . , n}, αj > 0, j = ih
}

is
such that pα ∈ Rd[x], we apply the affine map x

α 7→ pα;

• otherwise, since we cannot represent the effect of ρ on x
α, we (again)

conservatively overapproximate it as a nondeterministic assignment.

Since ρ updates all terms simultaneously, these maps are ordered topologically
according to the dependencies of terms (possibly adding temporary copies of
some term variables, which are eliminated at the end).
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Example 3. Consider the transitions of Example 1. For the transition τ0 we have
ρ0 ≡ (a′, b′, c′) = (a, b, c/2). This update is encoded by the sequence of affine
maps ac 7→ ac/2, bc 7→ bc/2, c2 7→ c2/4 and c 7→ c/2, leading to ρ′0 defined as

(

a′, b′, c′, ab′, ac′, bc′, (a2)′, (b2)′, (c2)′
)

= (a, b, c/2, ab, ac/2, bc/2, a2, b2, c2/4).

Test for inclusion. The test for inclusion can be conservatively overapproxi-
mated by means of the test for inclusion for convex polyhedra.

Widening. Any widening for convex polyhedra, e.g., the standard widen-
ing [15] or the more sophisticated widenings proposed in [2, 3], will serve the
purpose of guaranteeing termination, with different trade-offs between efficiency
and precision.

Example 4. For the transitions of Example 1, using the abstract semantics shown
above, we obtain the invariant

reach`0(S) =⇒
{

(b+ c)2 ≥ a+ 1, a ≥ b2, b ≥ 0, c ≥ 1,

a2 ≥ 0, ab ≥ 0, ac ≥ 0, b2 ≥ bc, bc ≥ b, (c− 1)2 ≥ 0
}

.

Notice that all the constraints appearing on the second line are in fact redun-
dant. Some of these, such as (c− 1)2 ≥ 0 and a2 ≥ 0, are trivially redundant in
themselves. Other ones are made redundant by the constraints appearing on the
first line (for instance, ab ≥ 0 is implied by a ≥ b2 and b ≥ 0). This phenomenon
is due to the interaction of the completion procedure, which adds redundant
constraints to polynomial cones, with the underlying linear inequalities infer-
ence rules, which are treating different terms as independent variables and, as a
consequence, are only able to detect and remove some of the redundancies.

The two constraints (b + c)2 ≥ a + 1 and a ≥ b2 in the invariant above are
essential in a formal proof of the (partial) correctness of the program in Figure 1.
Note that the computed invariant assumes that the integer division c := c/2 is
correctly modeled by rational division. Such an assumption can be validated by
other analyses, e.g., by using a domain of numerical powers [26], which could
infer that c evaluates to a power of 2 at location `0. Since on termination c = 1
holds, the conjunction of these constraints implies (b+ 1)2 > a ≥ b2.

5 Experimental Evaluation

The approach described in this paper has been implemented in a prototype
analyzer that infers polynomial inequalities of degree not greater than d = 2.
The prototype, which is based on the Parma Polyhedra Library (PPL) [4], first
performs a rather standard linear relations analysis, then assumes the linear
invariants so obtained for the analysis of (possibly) nonlinear invariants described
in the previous sections. We have observed that this preliminary linear analysis
improves the results in a significant way. In fact:

1. it ensures that we never obtain less information than is achievable with the
linear analysis alone;
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2. the availability of “trusted” linear invariants increases the precision of the
nonlinear analysis considerably;

3. the time spent in the linear analysis phase is usually recovered in the quadratic
analysis phase.

The prototype uses the sophisticate widening operator proposed in [2] enhanced
with variations of the “widening up to” technique described in [21] and with
the “widening with tokens” technique (a form of delayed widening application)
described in [3].

Considering that, with the chosen degree bound d = 2, we are working on
an ambient space that has a dimension which is quadratic in the number of
variables of the transition system being analyzed, and considering that polyhedra
operations have exponential worst-case complexity, some care has to be taken in
order to analyze systems of realistic complexity. In our prototype, we exploit the
capability of the PPL concerning the support of time-bounded computations.
All polyhedra operations are subject to a timeout (5 seconds of CPU time in
the experimentation we are about to report); when a timeout expires, the PPL
abandons (without leaking memory) the current computation and gives control
back to the analyzer. This situation is handled by the analyzer by using a less
precise operation (such as replacing the precise convex polyhedral hull of two
polyhedra P1 and P2 by the polyhedron obtained by removing, from a system
of constraints defining P1, all constraints that are not satisfied by P2) or by
simplifying the involved polyhedra resorting to a domain of bounded differences.7

With this technique we are able to obtain results that are generally quite precise
in reasonable time (note that the prototype was not coded with speed in mind).

We have run the prototype analyzer on a benchmark suite constituted by
all the programs from the FAST suite [5] (http://www.lsv.ens-cachan.fr/
fast/), programs taken from the StInG suite [34] (http://www.stanford.edu/
~srirams/Software/sting.html), all square root algorithms in [18], programs
from [10, 22, 33, 39], and a program, array, written by the authors. From the
StInG suite we have only omitted those programs with nondeterministic assign-
ments where the rvalue is bounded by linear expressions (like 0 ≥ x′ ≥ x + y),
which do not fall into the programming model used here.

A summary of the experimental results is presented in Table 1. Besides the
program name, its origin and the number of variables, locations and transitions
(columns from 1 to 5, respectively), the table indicates: (1) the CPU time, in
seconds, taken to compute our linear invariants (column 6) and how they com-
pare with the ones computed by StInG (column 7: ‘+’ means ours are better, ‘−’
means ours are worse, ‘=’ means they are equal, ‘6=’ means they are not compa-
rable); and (2) the time taken to generate quadratic invariants (column 8) and
whether these invariants improve upon (that is, are not implied by) the linear
ones, taking into account both our linear invariants as well as those generated
by StInG (column 9: ‘X’ means we improve the precision). The measurements

7 The reason our current prototype does not resort to the more precise domain of
octagons is contingent and only due to the fact that the implementation of octagons
in the PPL is not yet ready for production use.
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Table 1. A summary of the experimental results

Linear analysis Quadratic analysis

Program name Origin n |L| |T | CPU time vs StInG CPU time Improves

array 4 5 6 0.2 + 6=6=6= + 79.8 X

bakery [39] 2 9 24 18.6 = · · · = 0.2 X

barber FAST 8 1 12 18.7 − 2.7 X

berkeley FAST 4 1 3 0.0 + 0.1 X

cars StInG 7 1 2 18.5 6= 45.9 X

centralserver FAST 12 1 8 5.4 + 193.4
consistency FAST 11 1 7 2.5 = 10.0
consprodjava FAST 16 1 14 325.6 + 601.9
consprodjavaN FAST 16 1 14 308.0 + 611.6
cousot05vmcai [10] 4 1 1 0.0 = 0.1 X

csm FAST 14 1 13 29.3 = 219.5
dekker FAST 22 1 22 458.4 = 1218.1
dragon FAST 5 1 12 0.5 − 1.4 X

efm FAST 6 1 5 0.1 = 0.3
rfm05hscc [33] 4 1 2 0.1 6= 38.5
firefly FAST 4 1 8 0.1 = 0.2 X

fms FAST 22 1 20 893.2 = 2795.0
freire [19] 3 1 1 0.0 − 6.4
futurbus FAST 9 1 9 2.8 + 23.2 X

heap StInG 5 1 4 0.1 6= 10.9
illinois FAST 4 1 9 0.1 = 0.3 X

kanban FAST 16 1 16 60.5 = 340.4
lamport FAST 11 1 9 3.1 + 13.4
lifo StInG 7 1 10 1.4 + 14.8 X

lift FAST 4 1 5 0.1 = 22.1
mesi FAST 4 1 4 0.0 = 0.1 X

moesi FAST 5 1 4 0.1 − 0.3 X

multipoll FAST 18 1 17 116.3 = 476.8
peterson FAST 14 1 12 17.6 + 88.5
producer-consumer FAST 5 1 3 0.1 = 15.5
readwrit FAST 13 1 9 7.7 = 2147.3
rtp FAST 9 1 12 2.6 = 8.9
see-saw StInG 2 1 4 0.0 − 5.3
sqroot1 [18] 2 1 1 0.0 = 0.0 X

sqroot2 [18] 3 1 8 0.0 + 15.6 X

sqroot3 [18] 3 2 6 0.0 == 10.3 X

sqroot4 [18] 4 2 6 10.3 =+ 8.2 X

sqroot5 [9] 4 1 1 0.0 + 6.1 X

sqroot6 [22] 5 1 2 0.0 = 15.5 X

swim-pool StInG 9 1 6 1.5 + 46.5
synapse FAST 3 1 3 0.0 + 0.0 X

ticket2i FAST 6 1 6 0.3 + 5.8
ticket3i FAST 8 1 9 9.5 + 82.6
train-beacon StInG 3 4 12 0.1 = −− = 20.5
train-one-loc StInG 3 1 6 0.0 − 0.4
ttp FAST 9 4 17 9.3 ++++ 126.9
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were performed on a PC with an Intel r© XeonTM CPU clocked at 1.80 GHz,
equipped with 1 GB of RAM and running GNU/Linux. Notice that for about
80% of the locations, our linear invariants are at least as strong as the ones
produced by StInG, and that, in fact, for one third ours are stronger. Most
importantly, for about half of the programs, the obtained quadratic invariants
improve the precision of the linear analysis.

6 Conclusion

We have presented a technique for generating invariant polynomial inequalities
of bounded degree. The technique, which is based on the abstract interpretation
framework, consists in overapproximating basic semi-algebraic sets by means of
convex polyhedra, and can thus take advantage of all the work done in that field
(e.g., refined widening operators, devices able to throttle the complexity of the
analysis such as restricted classes of polyhedra, ways of partitioning the vector
space and so forth). The application of our prototype implementation to a num-
ber of benchmark programs shows that the method can produce non-trivial and
useful quadratic invariant inequalities in reasonable time, thus proving the fea-
sibility of the automatic inference of nonlinear invariant inequalities (something
that was previously unclear).

For future work, we want to generalize our definition of basic semi-algebraic
transition system so as to capture a form of nondeterministic assignments where
the rvalue is bounded by means of polynomial inequalities, rather than being
completely unknown. We would also like to increase the precision of the approach
by incorporating, in the completed algorithm, other forms of inference, such as
relational arithmetic [1, 37]. This technique allows to infer constraints on the
qualitative relationship of an expression to its arguments and can be expressed
by a number of axiom schemata such as

(x > 0 ∧ y > 0) =⇒
(

x ./ 1 =⇒ xy ./ y
)

,

which is valid for each ./ ∈ {=, 6=,≤, <,≥, >}. Finally, there is much room for
improving the prototype implementation. To start with, we believe its perfor-
mance can be greatly enhanced (there are a number of well-known techniques
that we are not currently using); this may even bring us to the successful infer-
ence of cubic invariants for simple programs. The simplification of the analysis
results is another natural candidate for this line of work.
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