
Domain Independent

Ask Approximation in CCP∗

Enea Zaffanella
Dipartimento di Informatica

Università di Pisa
Corso Italia 40, 56125 Pisa
zaffanel@di.unipi.it

Abstract

The main difficulty in the definition of a static analysis framework for CC programs
is probably related to the correct approximation of the entailment relation between
constraints. This approximation is needed for the abstract evaluation of the ask guards
and directly influences the overall precision of the analysis. In this paper we provide a
solution to this problem by stating reasonable correctness conditions relating the ab-
stract and the concrete domains of computation. The solution is domain independent
in the sense that it can be applied to the class of downward closed observations. Prop-
erties falling in this class (e.g. freeness) have already been studied in the context of
the analysis of sequential logic programs. We believe that the same abstract domains
can be usefully applied to the CC context to provide meaningful ask approximations.

1 Introduction

Concurrent Constraint (CC) programming [16] arises as a generalization of both concurrent
logic programming and constraint logic programming (CLP). In the CC framework processes
are executed concurrently in a shared store, a constraint representing the global state of
the computation. Communication is achieved by ask and tell basic actions. A process
telling a constraint simply adds it to the current store, in a completely asynchronous way.
Synchronization is achieved through blocking asks. Namely the process is suspended when
the store does not entail the ask constraint and it remains suspended until the store entails
it. While being elegant from a theoretical point of view, this synchronization mechanism
turns out to be very difficult to model in the context of static analysis. The reason for such
a problem lies in the anti–monotonic nature of the ask operator wrt the asked constraint:
if we replace this constraint with a weaker one we obtain stronger observations. As a
consequence, the approximation theory developed to correctly characterize upward closed
(i.e. closed wrt entailment) properties becomes useless when we are looking for a domain
independent solution to the ask approximation problem [18].

In this paper we thus consider the downward closed properties and we specify suitable
domain independent correctness conditions that allow to overcome the problem of a safe
∗This work has been supported by the “PARFORCE” (Parallel Formal Computing Environment) BRA-

Esprit II Project n. 6707.

Progr ::= Dec. Agent

Dec ::= ε
| p(x):-Agent. Dec

Agent ::= Stop
| tell(c)
| ∃ x inAgent
| Agent ‖ Agent

|
n∑
i=1

ask(ci)->Agenti

| p(y)

Table 1: The syntax

abstraction of ask constraints. In particular we develop an approximation theory that
correctly detects the definite suspension of an ask guard. This information can be used in
many ways, e.g. debugging of CC programs as well as identifying processes that are defi-
nitely serialized (so that we avoid their harmful parallel execution). However its usefulness
is first of all in the improvement of the precision of the static analysis framework, as it
allows to cut the branches of code that will not be considered in the concrete computation.

This (partial) classification of CC program’s observations is not new. See [12] for an
interesting discussion about safety and liveness properties, being downward closed and
upward closed respectively. As a matter of fact, in the literature there already exist
abstract domains developed for the static analysis of sequential (constraint) logic languages
dealing with downward closed observations, e.g. freeness in the Herbrand as well as in
arithmetic constraint systems [6]. It is our opinion that these same abstract domains can
be usefully applied to the CC context and provide meaningful ask approximations.

2 The language

CC is not a language, it is a class of languages parametric wrt the underlying constraint
system. In [16] constraint systems are defined by enclosing typical cylindric algebra’s
operators (cylindrifications and diagonal elements [10]) in the well known formalization of
partial information systems [17], which model the gathering and the management of a set
of elementary assertions by means of a compact entailment relation. We refer to [16] for
a more detailed presentation.

Definition 2.1
A (cylindric) constraint system C> = 〈C ∪ {false},a, true, false,⊗,u, V,∃x, dxy 〉 is an al-
gebraic structure where

• 〈C,a, true,⊗,u 〉 is a partial information system

• false is the top element

• V is a denumerable set of variables

• ∀x, y ∈ V , ∀c, d ∈ C, the cylindric operator ∃x satisfies

1. ∃xfalse = false

2. ∃xc a c
3. c a d implies ∃xc a ∃xd
4. ∃x(c⊗ ∃xd) = ∃xc⊗ ∃xd
5. ∃x(∃yc) = ∃y(∃xc)

• ∀x, y, z ∈ V , ∀c ∈ C, the diagonal element dxy satisfies

1. dxx = true

2. z 6= x, y implies dxy = ∃z(dxz ⊗ dzy)
3. x 6= y implies c a dxy ⊗ ∃x(c⊗ dxy)

Note that we are distinguishing between the consistent constraints C and the top element
false representing inconsistency. In the following we will write C to denote the subalgebra
of consistent constraints, namely the set C together with the constraint system’s operators
restricted to work on C. We will denote operators and their restrictions in the same way
and we will often refer to C as a “constraint system”.

Tables 1 and 2 introduce the syntax and the operational semantics of CC languages.
For notational convenience, we consider processes having one variable only in the head.
We also assume that for all the procedure names occurring in the program text there is
a corresponding definition. The operational model is described by a transition system
T = (Conf,−→). Elements of Conf (configurations) consist of an agent and a constraint,
representing the residual computation and the global store respectively. −→ is the (mini-
mal) transition relation satisfying axioms R1-R5.

The execution of an elementary tell action simply adds the constraint c to the current
store d (no consistency check). Axiom R2 describes the hiding operator. The syntax is
extended to deal with a local store c holding information about the hidden variable x.
Hence the information about x produced by the external environment does not affect the
process behaviour and conversely the external environment cannot access the local store.
Initially the local store is empty, i.e. ∃ x inA ≡ ∃(x, true) inA. Parallelism is modeled
as interleaving of basic actions. In a guarded choice operator, a branch Ai is enabled
in the current store d iff the corresponding guard constraint ask(ci) is entailed by the
store, i.e. d ` ci. The guarded choice operator nondeterministically selects one enabled
branch Ai and behaves like it. If there is no enabled branch then it suspends, waiting
for other processes to add the desired information to the store. Finally, when executing a
procedure call, rule R5 models parameter passing without variable renaming [16], where
p(x):-A ∈ P and ∆y

xA is defined as follows [5].

∆y
xA =

{
A if x ≡ y
∃ x in (tell(dxy) ‖ A) otherwise

A c-computation s for a program D.A is a possibly infinite and fair sequence of configura-
tions 〈Ai, ci 〉i<ω such that A0 = A and c0 = c and for all i < |s|, 〈Ai, ci 〉−→〈Ai+1, ci+1 〉.

R1 〈 tell(c), d 〉−→〈 Stop, d⊗ c 〉

R2
〈A, c⊗ ∃xd 〉−→〈A′, c′ 〉

〈 ∃(x, c) inA, d 〉−→〈∃(x, c′) inA′, d⊗ ∃xc′ 〉

R3
〈A, c 〉−→〈A′, d 〉

〈A ‖ B, c 〉−→〈A′ ‖ B, d 〉
〈B ‖ A, c 〉−→〈B ‖ A′, d 〉

R4
j ∈ {1, . . . , n} ∧ d ` cj

〈
n∑
i=1

ask(ci)->Ai, d 〉−→〈Aj , d 〉

R5
p(x):-A ∈ P

〈 p(y), d 〉−→〈∆y
xA, d 〉

Table 2: The transition system T

Let /−→ denote the absence of admissible transitions. Computations reaching configura-
tion 〈An, cn 〉 /−→ are called finite computations and cn is the (finite) computed answer
constraint. If the residual agent An contains some choice operators then the correspond-
ing computation is suspended, otherwise it is a successful computation and in this case we
denote An by ε.

Definition 2.2 The semantics for program P = D.A in the store c is

O[[D.A]](c) =
{
d ∈ C

∣∣∣ 〈A , c 〉 ∗−→〈B , d 〉 /−→}
⋃ {

d ∈ C
∣∣∣∣∣ 〈A0 , c0 〉−→ . . .−→〈Ai , ci 〉−→ . . .

A0 = A , c0 = c , d = c0 ⊗ . . .⊗ ci ⊗ . . .

}

Note that this semantics collects the limit constraints of infinite computations as well as
the answer constraints associated to finite computations, regardless of whether the latter
are successful or suspended. In any case we are considering consistent constraints only,
i.e. we disregard all computations delivering false.

3 Program properties and approximations

As we have seen, the operational semantics of a CC program associates each initial store
c to the set of all the consistent constraints that we obtain by executing P = D.A at
c. In a similar way we define a semantic property φ as a subset of C, namely the set of
consistent constraints that satisfy the property. Therefore a program satisfies a semantic
property φ at c iff the observations of the program are a subset of the property, i.e.
O[[P]](c) ⊆ φ. Following this general view, the static analysis of a CC program can
be formalized as a finite construction of an approximation (a superset) of the program

denotation. If the approximation satisfies the semantic property, then we can correctly
say that our program satisfies the property too. Abstract interpretation [3] formalizes the
approximation construction process by mapping concrete semantic objects and operators
into corresponding abstract semantic objects and operators.

We write ↑(φ) to denote the upward closure of the program property φ, namely the
set {c ∈ C | ∃ d ∈ φ . c ` d}; a property is upward closed iff it is equivalent to its upward
closure, i.e. φ =↑(φ). Downward closed properties are defined dually. As an example,
consider the Herbrand constraint system CH . If the constraint c ∈ CH binds variable x to
a ground term, then all the constraints d ∈ CH such that d ` c will bind x to a ground
term; therefore groundness is an upward closed property. On the other hand, freeness is
a downward closed property. A variable x is free in c ∈ CH iff there does not exist a
term functor f/n such that c ` (∃y1 . . .∃yn x = f(y1, . . . , yn)). Thus, if x is free in c then
it will be free in all the constraints d ∈ CH such that c ` d. However, there obviously
exist properties falling in none of these two classes, e.g. independence. Let us say that
variables x and y share in c ∈ CH iff c binds x and y to the terms tx and ty such that
var(tx) ∩ var(ty) 6= ∅. Variables x and y are independent in c if they do not share in c.
Now, if x and y share in c, we can choose constraints d1, d2 ∈ CH such that d1 ` c ` d2

and such that x and y are independent in both d1 and d2.
Ordering closed properties are very common in the static analysis of logic languages

and furthermore they are easier to verify, because correctness of the abstract interpretation
can be based on a semantics returning ordering closed observations. In [18] entailment
closed1 properties are considered. The main result is that it is impossible to develop a
meaningful generalized semantics for CC languages in the style of [9], namely the only
way to correctly abstract ask constraints in a domain independent fashion is a trivial
approximation.

In this work we turn our interest upon downward closed properties and we show that a
(carefully chosen but natural) notion of correctness of the abstract domain wrt the concrete
one allows to automatically derive a correct approximation of all the asks occurring in the
program. Dealing with such a class of properties, the collecting semantics can be defined
naturally as the downward closure of the operational semantics, as there is no benefit in
considering a stronger one [18].

Remark 3.1 If φ is downward closed then O[[P]](c) ⊆ φ ⇔ ↓(O[[D]](c)) ⊆ φ.

As we are observing infinite computations also, we have to be careful when defining the
downward closed properties that we are interested in. In particular we have to remember
that usually the correctness of our abstract semantic construction is based on the Scott’s
induction principle; this principle is only valid for admissible properties.

Definition 3.1 A property φ ⊆ C is admissible iff φ is closed under directed lub’s.

This definition means that whenever an admissible property is satisfied by all the finite
approximations of the semantics, then the semantics will satisfy the property too. As an

1Due to a dual definition of the ordering on the constraint system, in [18] entailment closed properties
are the downward closed ones. The choice of turning the domain upside–down was influenced by the
standard theory of semantic approximation by means of upper Galois insertions [3].

example of a property that is not admissible, consider the following definition of non-
groundness: a variable x is nonground in c ∈ CH iff c binds x to a term t such that
var(t) 6= ∅. Given the infinite chain of constraints ci ≡ (∃y x = f i(y)) ∈ CH , for ev-
ery i < ω we have that x is nonground in ci. However, considering the limit constraint
c ≡ ⊗

i<ω
ci = (x = fω) one observes that x is not nonground in c. In order to grant the

correctness of this analysis, we have to redefine the property, e.g. by stating that if c binds
a x to an infinite term then x is nonground in c.

Hence, in this work we are interested in downward closed and admissible program
properties. The Hoare’s powerdomain [14, 17] construction over the constraint system
characterizes this kind of observations.

Definition 3.2 The Hoare’s powerdomain of the constraint system C is the complete
lattice H(C) = 〈 P↓(C),⊆, {true}, C,],∩ 〉, where P↓(C) is the set of all the nonempty,
downward closed and admissible subsets of C;] is the closure under directed C-lub’s
of the set theoretical union; :{·}: : C → P↓(C) defined as :{c}: = ↓{c} is the singleton
embedding function.

The alert reader would observe that this collecting semantics models nonempty observa-
tions only. From a semantic construction point of view, this is not completely satisfactory
as we cannot describe the behaviour of a program having inconsistent computations only.
However, the alternative choice of considering failed computations also would imply some
negative consequences. Firstly, it would complicate the formalization of the correctness
conditions, requiring a special treatment for inconsistency. Moreover it would degrade
the precision of our static analysis, adding very little to the understanding of the pro-
gram. To see this, observe that when considering downward closed observations a failed
computation has to be interpreted as “the program may fail”, meaning that anything can
happen. Also consider that there are CC languages explicitly designed to statically avoid
the possibility of a failing computation (see [15] for a discussion of this topic in distributed
programming).
From now on ⊗̃ and ∃̃x will denote the extensions of ⊗ and ∃x over H(C).

• ∀S, T ∈ P↓(C) . S ⊗̃T =
⊎{

:{c⊗ d}:
∣∣∣ c ∈ S, d ∈ T, c⊗ d ∈ C }

• ∀S ∈ P↓(C) . ∃̃x S =
⊎{

:{∃xc}:
∣∣∣ c ∈ S }

Note that the merge over all paths operator [3] is provided by the lub of H(C). Also note
that in general ⊗̃ is not idempotent, while being extensive.

4 Correctness

In this section we formalize the notion of correctness of an abstract domain wrt a concrete
constraint system when downward closed properties are observed. As outlined in the previ-
ous section, we have to grant the existence of an upper Galois insertion relating the Hoare’s
powerdomain of the concrete constraint system and the abstract domain of descriptions,
together with suitable correctness conditions regarding the domain’s operators.

Definition 4.1 An abstract domain A = 〈L,v],⊥],>],t],u],⊗], V, ∃]x, d]xy 〉 is down–
correct wrt the constraint system C = 〈C,a, true,⊗,u, V, ∃x, dxy 〉 using α iff ∀S, T ∈
P↓(C), ∀x, y ∈ V

1. L = 〈L,v],⊥],>],t],u] 〉 is a complete lattice

2. there exists γ s.t. (α, γ) is an upper Galois insertion2 relating H(C) and A.

3. α(S ⊗̃T)v] α(S)⊗] α(T)

4. α(∃̃xS)v] ∃]xα(S)

5. α(:{dxy}:)v] d]xy

From now on, we assume that the abstract domain A is down–correct wrt the constraint
system C using α and prove that such a notion of correctness implies the correctness of any
abstract semantic construction based on the abstract interpretation theory. This means
that the proof is valid for any abstract semantics that systematically mimics the basic
concrete semantic operators (], ⊗, ∃x, dxy) and the relation a by using the corresponding
abstract operators (t], ⊗], ∃]x, d]xy) and the relation v]. To this end it is sufficient to
consider the operational semantics.

Definition 4.2 Given the concrete agent A, the corresponding abstract agent A] = α(A)
is obtained by replacing all the concrete constraints c ∈ C occurring in A by the corre-
sponding abstractions c] = α(:{c}:) ∈ L.

The following lemma shows that the abstract program correctly mimics each transition
of the concrete one. This also means that if the abstract program suspends, then the
concrete program suspends too. Let A be an agent defined over the constraint system C,
let c ∈ C be a concrete store and let c] ∈ L be a description such that α(:{c}:)v] c].

Lemma 4.1 (correctness)
〈A , c 〉−→〈B , d 〉 implies 〈α(A) , c] 〉−→〈α(B) , d] 〉 and α(:{d}:)v] d].

The following proposition is proved by induction on the number of transitions.

Proposition 4.2 For every concrete c-computation of P yielding the constraint d ∈ C
there exists a corresponding abstract α(:{c}:)-computation of α(P) yielding the description
d] such that α(:{d}:)v] d].

Note that in general the converse of Lemma 4.1 does not hold. In particular the concrete
program may suspend while the abstract one has a transition; as a consequence, a finite
concrete computation can be mapped into a corresponding abstract infinite computation.
Therefore, even in the case that we are interested in finite computations only, the abstract
semantics must consider infinite computations in order to be correct.

2Given two complete lattices 〈L,≤〉 and 〈L′,≤′ 〉, an upper Galois connection between L and L′ is a pair
of adjoint functions (α, γ) such that α : L→ L′ and γ : L′ → L and ∀x ∈ L .∀y ∈ L′ . α(x) ≤′ y ⇔ x ≤ γ(y).
An upper Galois insertion between L and L′ is an upper Galois connection such that α is surjective
(equivalently, γ is one-to-one).

Definition 4.2 does not require that the abstract domain is a constraint system and
neither that it can be obtained as the Hoare’s powerdomain of a constraint system. In the
latter case we are in an ideal situation where a simpler notion of correctness can be used
instead.

Definition 4.3
An abstract constraint system A = 〈L,a],⊥],>],⊗],u], V, ∃]x, d]xy 〉 is correct wrt the
constraint system C = 〈C,a, true,⊗,u, V, ∃x, dxy 〉, using a surjective and monotonic func-
tion α : C → D, iff for each c, d ∈ C, x, y ∈ V

1. α(c⊗ d)a] α(c)⊗]α(d)

2. α(∃xc)a] ∃]xα(c)

3. α(dxy) = d]xy

Let A be an abstract constraint system which is correct wrt the constraint system C using
α. Observe that ⊗] is the lub over A.

Proposition 4.3
1. H(A) is down–correct wrt H(C) using α̃ (the additive extension of α)
2. α is a complete ⊗–morphism between C and L
3. α̃ is a complete ⊗̃–morphism between P↓(C) and P↓(L)

Defining abstract domains based on correct abstract constraint systems is a very difficult
task. The previous proposition gives an explanation of this assertion: these domains have
to satisfy properties that usually are too strong.

4.1 A toy example

As a first example we present the abstract constraint system of untouched variables3 V =
〈 P(V) , ⊆ , ∅ , V , ⊗′ , ∩ , V , ∃′x , d′xy 〉, where

S ⊗′ T = S ∪ T
∃′xS = S\{x} d′xy =

{
{x, y} if x 6≡ y
∅ otw.

Let us assume that C is a concrete constraint system having variables in V and sat-
isfying the following axiom [5]: ∀c, d ∈ C . ∃xc ` d ⇒ ∃xd = d. Note that even if this
axiom is not a consequence of Definition 2.1, it is true in almost all the “real” constraint
systems.

Proposition 4.4 Let α : C → P(V) being defined as α(c) = {x ∈ V | ∃xc 6= c}. The
abstract constraint system V is correct wrt C by using α.

3To our knowledge, this domain has been firstly introduced in [8]. The formal definition of α was given
to me by Catuscia Palamidessi, during an interesting discussion related to other topics.

Therefore, we just are in the ideal situation of Definition 4.3 and we can define our abstract
domain as the Hoare’s powerdomain of V. Having proved correctness, we can approximate
every concrete ask evaluation (i.e. entailment check) by the corresponding abstract ask
evaluation. Let us see the intuition behind this result. Suppose the abstract ask evaluation
does not succeed; this means that there exists a variable x occurring free in the concrete ask
constraint such that x is definitely unbounded in all the concrete constraints described by
the abstract store. As a consequence all the associated concrete computations will suspend
too and we are safe.

4.2 Abstracting the constraint system RLinEq

Previous example seems just a toy. However, the same approach is valid for any admissible
downward closed property of any constraint system. Some examples of this kind of abstract
domains can be found in the literature.

[6] describes an abstract domain for the static analysis of CLP programs that is useful
for the detection of definitely free variables in the presence of both Herbrand constraints
as well as systems of linear equations. Let us consider the latter case. Given a linear
equation system

E =

a11X1 + a12X2 + . . .+ a1nXn = b1
· · · · · · · · · · · · · · ·

am1X1 + am2X2 + . . .+ amnXn = bm

where X1, . . . , Xn are variables and aij and bj are numbers, variable Xi is definitely free
if there does not exist a linear combination of the equations in E having the form Xi = n.
Denoting lc(E) the infinite set of linear combinations of equations in E, they define the
following abstraction function.

α(E) =

{
{X1, . . . , Xk}

∣∣∣∣∣ (a1X1 + . . .+ akXk = b) ∈ lc(E),
ai 6= 0 i = 1, . . . , k

}

We refer to [6] for a complete definition of the domain and of the abstract operators.
Intuitively, the correctness of the analysis ensures that all the possible linear combinations
of concrete equations are described by the computed abstract element. As a particular
case, if the abstract linear combination {Xi} is not a member of the abstract store de-
scription, we can safely say that variable Xi is free. [6] also shows how to correctly deal
with inequalities and disequations (i.e. the constraint system R6=Lin is considered).

5 Toward an abstract semantics

In this section we will informally consider the problems related to the construction of an
abstract semantics that correctly approximates the standard one in the case of downward
closed observations.

In the general case, the observations of a CC program are not invariant wrt different
schedulings of parallel processes, i.e. the operational semantics is not confluent. In princi-
ple, confluence is not needed to correctly define a static analysis framework. However, in
order to be really useful, a static analysis must be correct wrt all the possible scheduling

and must not be too inefficient. Therefore, when considering programs being a little bit
bigger than toy examples, confluence becomes as desirable as correctness [8]. As a matter
of fact, almost all the literature concerning the static analysis of CC languages considers
non–standard semantics that are confluent [1, 2, 7, 8, 18]. These semantics are correct wrt
the standard one, but usually must pay in terms of accuracy of the results.

This is not the case when considering downward closed properties, because we can
base our static analysis on a confluent semantics being as precise as the standard one.
Confluence is easily obtained by reading the CC indeterministic program as if it were an
angelic program [11], that is by interpreting all the don’t care choice operators of the
program as don’t know choice operators. In the angelic case, when considering a choice
operator we split the control and consider all the branches. In the operational semantics
this difference is captured by replacing rule R4 in Table 2 with the following.

R4′
d ` c

〈 ask(c)->A, d 〉−→〈A, d 〉 R4′′
j ∈ {1, . . . , n}

〈
n∑
i=1

Ai, d 〉−→〈Aj , d 〉

Observe that the only difference between the two programs is that the original program
has less suspensions; however, due to the monotonic nature of CC computations, for every
suspended computation of the angelic program there exists a (terminated or suspended or
infinite) computation in the original program that computes a stronger store. Let O′ be
the operational semantics based on the confluent transition system.

Proposition 5.1 For all c ∈ C . ↓(O[[P]](c)) = ↓(O′[[P]](c)).

Thus a first proposal of an abstract semantic construction can be based on the confluent
transition system operational semantics. Technical problems related to termination can
be solved essentially in the same way as it was done in [1].

In [16] it is shown how to elegantly model a deterministic CC process as an upper closure
operator (uco), i.e. a monotonic, extensive and idempotent function over the constraint
system. The main property of this kind of representation is that any uco is fully determined
by the set of its fixpoints. Moreover all the semantic operators on processes are naturally
mapped into simple set theoretic operators over their representations, e.g. the parallel
composition of two processes is obtained by taking the intersection of their fixpoints’ sets.
[11] study the extension of such a semantics on angelic CC languages, where only local
choice operators are allowed and upward closed observations are considered.

If the abstract domain we are dealing with is based on an abstract constraint system
(see Definition 4.3) we are in a position to develop a semantic construction very similar to
the latter. It is worth noting that, in such a semantic construction, the process restartability
property is assumed. This property holds for deterministic programs [16] and it also holds
for angelic programs when we consider upward closed observations [11], but it does not
hold in the general case. However, when considering downward closed properties, it can
be proved that correctness is still granted, while we pay something in the approximation’s
precision.

Unfortunately, many interesting abstract domains modelling downward closed prop-
erties are not constraint systems. In these cases, if we are interested in a denotational
abstract semantic construction, we can consider a suitable variant of the approach based
on ask/tell traces developed in [4]. Here the first problem to solve is termination, because

a trace can be infinite even if defined over a finite abstract domain. We think that a notion
of canonical form for traces (similar to the one developed in [16]) would suffice.

It is worth pointing out that the approximation theory developed in this work can be
applied to any kind of semantic construction dealing with the basic mechanism of blocking
ask. Therefore, even if all the semantics mentioned above only observe the results of a CC
program, our technique can be also applied to semantics observing the way these results
are actually computed. As an example, if we consider the true concurrency semantics
developed in [13], the definite suspension information could be useful to obtain upper
bounds to the degree of parallelism of a program or to discover undesired data dependencies
between concurrent processes.

6 Conclusions and related works

The static analysis of CC languages is a relatively new but very active area of research.
To our knowledge, this is the first work on this topic in which it is identified a domain
independent correct approximation of ask constraints. Almost all the previous works about
the static analysis of CC programs [1, 7, 8, 18] either consider a specific constraint system
or assume that a correct ask approximation has already been found. In [2] a different kind
of domain independent ask approximation has been considered. In our opinion, however,
this framework requires the satisfaction of too strong correctness conditions and cannot
be widely used.

The approximation described in the current work allows to detect definitely suspended
branches of the computation and it may be therefore useful in the debugging and special-
ization of CC programs. It can be applied to a wide class of program properties, namely
the downward closed ones. Some property falling in this class (e.g. freeness) has already
been studied in the context of the static analysis of sequential (constraint) logic languages.
In our opinion the same abstract domains can be used in the CC case, provided that a suit-
able semantic construction is identified. At the same time, we strongly believe that such
a general result can motivate the study of “new” downward closed properties.

The definition of a suitable abstract semantics for the static analysis of this class of
properties is an open problem. We have shown that if we are interested in downward
closed properties only then we can assume that all the choice operators in our program
are local, achieving the confluence of the computation without any loss of precision. In
our opinion, however, an extensive study of the cost/precision tradeoffs of the different
abstract semantics proposals is strongly needed.

References

[1] M. Codish, M. Falaschi, K. Marriott, and W. Winsborough. Efficient Analysis of Concurrent
Constraint Logic Programs. In A. Lingas, R. Karlsson, and S. Carlsson, editors, Proc. of the
20th International Colloquium on Automata, Languages, and Programming, volume 700 of
Lecture Notes in Computer Science, pages 633–644, 1993.

[2] C. Codognet and P. Codognet. A general semantics for Concurrent Constraint Languages and
their Abstract Interpretation. In M. Meyer, editor, Workshop on Constraint Processing at the
International Congress on Computer Systems and Applied Mathematics, CSAM’93, 1993.

[3] P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks. In Proc. Sixth
ACM Symp. Principles of Programming Languages, pages 269–282, 1979.

[4] F.S. de Boer and C. Palamidessi. A Fully Abstract Model for Concurrent Constraint Pro-
gramming. In S. Abramsky and T. Maibaum, editors, Proc. TAPSOFT’91, volume 493 of
Lecture Notes in Computer Science, pages 296–319. Springer-Verlag, Berlin, 1991.

[5] F.S. de Boer, C. Palamidessi, and A. Di Pierro. Infinite Computations in Nondeterministic
Constraint Programming. Theoretical Computer Science. To appear.

[6] V. Dumortier, G. Janssens, M. Bruynooghe, and M. Codish. Freeness analysis in the pres-
ence of numerical constraints. In D. S. Warren, editor, Proc. Tenth Int’l Conf. on Logic
Programming, pages 100–115. The MIT Press, Cambridge, Mass., 1993.

[7] M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Compositional Analysis for
Concurrent Constraint Programming. In Proc. of the Eight Annual IEEE Symposium on
Logic in Computer Science, pages 210–221. IEEE Computer Society Press, 1993.

[8] M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Confluence and Concurrent Con-
straint Programming. In Proc. of the Fourth International Conference on Algebraic Method-
ology and Software Technology (AMAST’95), Montreal, Canada, 1995.

[9] R. Giacobazzi, S. K. Debray, and G. Levi. A Generalized Semantics for Constraint Logic
Programs. In Proc. of the International Conference on Fifth Generation Computer Systems
1992, pages 581–591, 1992.

[10] L. Henkin, J.D. Monk, and A. Tarski. Cylindric Algebras. Part I and II. North-Holland,
Amsterdam, 1971.

[11] R. Jagadeesan, V. Shanbhogue, and V. Saraswat. Angelic non-determinism in concurrent
constraint programming. Technical report, System Science Lab., Xerox PARC, 1991.

[12] M. Z. Kwiatkowska. Infinite Behaviour and Fairness in Concurrent Constraint Programming.
In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors, Semantics: Foundations and
Applications, volume 666 of Lecture Notes in Computer Science, pages 348–383, Beekbergen
The Netherlands, 1992. REX Workshop, Springer-Verlag, Berlin.

[13] U. Montanari and F. Rossi. Contextual Occurrence Nets and Concurrent Constraint Program-
ming. In Proc. Dagstuhl Seminar on Graph Transformations in Computer Science, volume
776 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1994.

[14] G.D. Plotkin. Pisa lecture notes. Unpublished notes, 1981-82.

[15] V. A. Saraswat, K. Kahn, and J. Levy. Janus: A step towards distributed constraint pro-
gramming. In S. K. Debray and M. Hermenegildo, editors, Proc. North American Conf. on
Logic Programming’90, pages 431–446. The MIT Press, Cambridge, Mass., 1990.

[16] V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic Foundation of Concurrent Con-
straint Programming. In Proc. Eighteenth Annual ACM Symp. on Principles of Programming
Languages, pages 333–353. ACM, 1991.

[17] D. Scott. Domains for Denotational Semantics. In M. Nielsen and E. M. Schmidt, editors,
Proc. Ninth Int. Coll. on Automata, Languages and Programming, volume 140 of Lecture
Notes in Computer Science, pages 577–613. Springer-Verlag, Berlin, 1982.

[18] E. Zaffanella, G. Levi, and R. Giacobazzi. Abstracting Synchronization in Concurrent Con-
straint Programming. In M. Hermenegildo and J. Penjam, editors, Proc. Sixth Int’l Symp.
on Programming Language Implementation and Logic Programming, volume 844 of Lecture
Notes in Computer Science, pages 57–72. Springer-Verlag, 1994.

