An Efficient and Precise Finite-Tree Analysis
for Constraint Logic-Based Languages'

Roberto Bagnara and Enea Zaffanella
Department of Mathematics
University of Parma, Italy
E-mail: bagnara@cs.unipr.it, zaffanella@cs.unipr.it

and

Roberta Gori
Department of Computer Science
University of Pisa, Italy
E-mail: gori@di.unipi.it

and

Patricia M. Hill
School of Computing
University of Leeds, U.K.
E-mail: hill@comp.leeds.ac.uk

Version: April 10, 2002

Logic languages based on the theory of rational, possibly infinite, trees have much
appeal in that rational trees allow for faster unification (due to the safe omission of the
occurs-check) and increased expressivity (cyclic terms can provide very efficient represen-
tations of grammars and other useful objects). Unfortunately, the use of infinite rational
trees has problems. For instance, many of the built-in and library predicates are ill-defined
for such trees and need to be supplemented by run-time checks whose cost may be sig-
nificant. Moreover, some widely-used program analysis and manipulation techniques are
correct only for those parts of programs working over finite trees. It is thus important to
obtain, automatically, a knowledge of the program variables (the finite variables) that, at
the program points of interest, will always be bound to finite terms. For these reasons, we
propose here a new data-flow analysis that captures such information. We present a para-
metric domain where a simple component for recording finite variables is coupled, in the
style of the open product construction of Cortesi et al., with a generic domain (the param-
eter of the construction) providing sharing information. The sharing domain is abstractly
specified so as to guarantee the correctness of the combined domain and the generality of
the approach. This finite-tree analysis domain is further enhanced by coupling it with a
domain of Boolean functions, called finite-tree dependencies, that precisely captures how
the finiteness of some variables influences the finiteness of other variables. We also sum-
marize our experimental results showing how finite-tree analysis, enhanced with finite-tree
dependencies, is a practical means of obtaining precise finiteness information.

IThis work has been partly supported by MURST projects “Certificazione automatica di pro-
grammi mediante interpretazione astratta” and “Interpretazione astratta, sistemi di tipo e analisi
control-flow”. Some of this work was done during visits of the second author to Leeds, funded by
EPSRC under grant M05645.

1. INTRODUCTION

The intended computation domain of most logic-based languages? includes the
algebra (or structure) of finite trees. Other (constraint) logic-based languages,
such as Prolog II and its successors [18, 20], SICStus Prolog [63], and Oz [59],
refer to a computation domain of rational trees.> A rational tree is a possibly
infinite tree with a finite number of distinct subtrees and where each node has
a finite number of immediate descendants. These properties ensure that rational
trees, even though infinite in the sense that they admit paths of infinite length,
can be finitely represented. One possible representation makes use of connected,
rooted, directed and possibly cyclic graphs where nodes are labeled with variable
and function symbols as is the case of finite trees.

Applications of rational trees in logic programming include graphics [32], parser
generation and grammar manipulation [18, 35], and computing with finite-state
automata [18]. Other applications are described in [34] and [37]. Going from Prolog
to CLP, [53] combines constraints on rational trees and record structures, while the
logic-based language Oz allows constraints over rational and feature trees [59].
The expressive power of rational trees is put to use, for instance, in several areas
of natural language processing. Rational trees are used in implementations of the
HPSG formalism (Head-driven Phrase Structure Grammar) [55], in the ALE system
(Attribute Logic Engine) [12], and in the ProFIT system (Prolog with Features,
Inheritance and Templates) [33].

While rational trees allow for increased expressivity, they also come equipped
with a surprising number of problems. As we will see, some of these problems are
so serious that rational trees must be used in a very controlled way, disallowing
them in any context where they are “dangerous”. This, in turn, causes a secondary
problem: in order to disallow rational trees in selected contexts one must first detect
them, an operation that may be expensive.

The first thing to be aware of is that almost any semantics-based program
manipulation technique developed in the field of logic programming —whether it
be an analysis, a transformation, or an optimization— assumes a computation
domain of finite trees. Some of these techniques might work with the rational trees
but their correctness has only been proved in the case of finite trees. Others are
clearly inapplicable. Let us consider a very simple Prolog program:

list([]1).
list([_IT]) :- 1list(T).

Most automatic and semi-automatic tools for proving program termination* and
for complexity analysis® agree on the fact that 1ist/1 will terminate when invoked
with a ground argument. Consider now the query

?7- X = [alX], list(X).

and note that, after the execution of the first rational unification, the variable X
will be bound to a rational term containing no variables, i.e., the predicate 1ist/1
will be invoked with X ground. However, if such a query is given to, say, SICStus

2That is, ordinary logic languages, (concurrent) constraint logic languages, functional logic
languages and variations of the above.

3Support for rational trees is also provided as an option by the YAP Prolog system [56].

4Such as TerminWeb [16, 17], TermiLog [49], ¢TI [54], and LPTP [61, 62].

5Systems like GAIA [21], CASLOG [31], and the Ciao-Prolog preprocessor [38].

Prolog, then the only way to get the prompt back is by interrupting the program.
The problem stems from the fact that the analysis techniques employed by these
tools are only sound for finite trees: as soon as they are applied to a system where
the creation of cyclic terms is possible, their results are inapplicable. The situation
can be improved by combining these termination and/or complexity analyses with
a finiteness analysis providing the precondition for the applicability of the other
techniques.

The implementation of built-in predicates is another problematic issue. Indeed,
it is widely acknowledged that, for the implementation of a system that provides
real support for the rational trees, the biggest effort concerns proper handling of
built-ins. Of course, the meaning of ‘proper’ depends on the actual built-in. Built-
ins such as copy_term/2 and ==/2 maintain a clear semantics when passing from
finite to rational trees. For others, like sort/2, the extension can be questionable:5
failing, raising an exception, answering Y = [a] (if duplicates are deleted) and
answering Y = [a|Y] (if duplicates are kept) can all be argued to be “the right
reaction” to the query

?7- X = [alX], sort(X, Y).

Other built-ins do not tolerate infinite trees in some argument positions. A good
implementation should check for finiteness of the corresponding arguments and
make sure “the right thing” —failing or raising an appropriate exception— always
happens. However, such behavior appears to be uncommon. A small experiment
we conducted on six Prolog implementations with queries like

7- X = 1+X, Y is X.
?7- X = [971X], name(Y, X).
7- X = [XIX], Y =.. [£fIX].

resulted in infinite loops, memory exhaustion and/or system thrashing, segmen-
tation faults or other fatal errors. Ome of the implementations tested, SICStus
Prolog, is a professional one and implements run-time checks to avoid most cases
where built-ins can have catastrophic effects.” The remaining systems are a bit
more than research prototypes, but will clearly have to do the same if they evolve
to the stage of production tools. Again, a data-flow analysis aimed at the detection
of those variables that are definitely bound to finite terms could be used to avoid
a (possibly significant) fraction of the useless run-time checks. Note that what has
been said for built-in predicates applies to libraries as well. Even though it may
be argued that it is enough for programmers to know that they should not use a
particular library predicate with infinite terms, it is clear that the use of a “safe”
library, including automatic checks ensuring that such a predicate is never called
with an illegal argument, will result in a robuster system. With the appropriate
data-flow analyses, safe libraries do not have to be inefficient libraries.

Another serious problem is the following: the standard term ordering dictated by
ISO Prolog [43] cannot be extended to rational trees [M. Carlsson, Personal com-
munication, October 2000]. Consider the rational trees defined by A = £(B, a)
and B = £(A, b). Clearly, A == B does not hold. Since the standard term or-
dering is total, we must have either A @< B or B @< A. Assume A @< B. Then

SEven though sort/2 is not required to be a built-in by the ISO Prolog standard, it is offered
as such by several implementations.
7SICStus 3.9.0 still loops on ?- X = [971X], name(Y, X).

f(A, b) @< £(B, a), since the ordering of terms having the same principal func-
tor is inherited by the ordering of subterms considered in a left-to-right fashion.
Thus B @< A must hold, which is a contradiction. A dual contradiction is obtained
by assuming B @< A. As a consequence, applying any Prolog term-ordering predi-
cate to terms where one or both of them is infinite may cause inconsistent results,
giving rise to bugs that are exceptionally difficult to diagnose. For this reason, any
system that extends ISO Prolog with rational trees ought to detect such situations
and make sure they are not ignored (e.g., by throwing an exception or aborting exe-
cution with a meaningful message). However, predicates such as the term-ordering
ones are likely to be called a significant number of times, since they are often used
to maintain structures implementing ordered collections of terms. This is another
instance of the efficiency issue mentioned above.

Still on efficiency, it is worth noting that even for built-ins whose definition on
rational trees is not problematic, there is often a performance penalty in catering for
the possibility of infinite trees. Thus, for such predicates, a compile-time knowledge
of term finiteness can also be beneficial. For instance, rational-tree implementa-
tions of the built-ins ground/1, term_variables/2, copy_term/2, subsumes/2,
variant/2 and numbervars/3 need to use some sort of marking to ensure they do
not enter an infinite loop. With finiteness information it is possible to avoid this
overhead.

In this paper, we present a parametric abstract domain for finite-tree analysis,
denoted by H x P. This domain combines a simple component H (written with the
initial of Herbrand and called the finiteness component) recording the set of defi-
nitely finite variables, with a generic domain P (the parameter of the construction)
providing sharing information. The term “sharing information” is to be understood
in its broader meaning, which includes variable aliasing, groundness, linearity, free-
ness and any other kind of information that can improve the precision on these
components, such as explicit structural information. Several domain combinations
and abstract operators, characterized by different precision/complexity trade-offs,
have been proposed to capture these properties (see [6] for an account of some of
them). By giving a generic specification for this parameter component, in the style
of the open product construct proposed in [25], it is possible to define and establish
the correctness of the abstract operators on the finite-tree domain independently
from any particular domain for sharing analysis.

The information encoded by H is attribute independent [27], which means that
each variable is considered in isolation. What this lacks is information about how
finiteness of one variable affects the finiteness of other variables. This kind of in-
formation, usually called relational information, is not captured at all by H and
is only partially captured by the composite domain H x P. Moreover, H x P is
designed to capture the “negative” aspect of term-finiteness, that is, the circum-
stances under which finiteness can be lost. However, term-finiteness has also a
“positive” aspect: there are cases where a variable is granted to be bound to a
finite term and this knowledge can be propagated to other variables. Guarantees
of finiteness are provided by several built-ins like unify_with_occurs_check/2,
var/1, name/2, all the arithmetic predicates, besides those explicitly provided to
test for term-finiteness such as the acyclic_term/1 predicate of SICStus Prolog.
For these reasons H x P is coupled with a domain of Boolean functions that pre-
cisely captures how the finiteness of some variables influences the finiteness of other
variables. This domain of finite-tree dependencies provides relational information
that is important for the precision of the overall finite-tree analysis.

The domain H x P also has obvious similarities, interesting differences and
somewhat unexpected connections with classical domains for groundness dependen-
cies. Finite-tree and groundness dependencies are similar in that they both track
covering information (a term s covers ¢t if all the variables in ¢ also occur in s)
and share several abstract operations. However, they are different because covering
does not tell the whole story. Suppose = and y are free variables before either the
unification z = f(y) or the unification = f(x,y) are executed. In both cases, x
will be ground if and only if y will be so. However, when x = f(y) is the performed
unification, this equivalence will also carry over to finiteness. In contrast, when the
unification is « = f(x,y), = will never be finite and will be totally independent, as
far as finiteness is concerned, from y. Among the unexpected connections is the
fact that finite-tree dependencies can improve the groundness information obtained
by the usual approaches to groundness analysis.

The paper is structured as follows. The required notations and preliminary
concepts are given in Section 2. The concrete domain for the analysis is presented
in Section 3. The finite-tree domain is then introduced in Section 4: Section 4.1
provides the specification of the parameter domain P; Section 4.2 defines some com-
putable operators that extract, from substitutions in rational solved form, proper-
ties of the denoted rational trees; Section 4.3 defines the abstraction function for
the finiteness component H; Section 4.4 defines the abstract unification operator
for H x P. Section 5 introduces the use of Boolean functions for tracking finite-tree
dependencies, whereas Section 6 illustrates the interaction between groundness and
finite-tree dependencies. Our experimental results are presented in Section 7. We
conclude the main body of the paper in Section 8.

Appendix A specifies the sharing domain SFL defined in [41, 64] as a possible
instance of the parameter P. All the results are then proved in Appendix B.

2. PRELIMINARIES

2.1. Infinite Terms and Substitutions

For a set S, p(5) is the powerset of S, whereas p¢(5) is the set of all the finite
subsets of S. Let Sig denote a possibly infinite set of function symbols, ranked over
the set of natural numbers. It is assumed that Sig contains at least one function
symbol having rank 0 and one having rank greater than 0. Let Vars denote a
denumerable set of variables disjoint from Sig and Terms denote the free algebra of
all (possibly infinite) terms in the signature Sig having variables in Vars. Thus a
term can be seen as an ordered labeled tree, possibly having some infinite paths and
possibly containing variables: every non-leaf node is labeled with a function symbol
in Sig with a rank matching the number of the node’s immediate descendants,
whereas every leaf is labeled by either a variable in Vars or a function symbol in
Sig having rank 0 (a constant).

If t € Terms then vars(t) and mvars(t) denote the set and the multiset of
variables occurring in ¢, respectively. We will also write vars(o) to denote the set
of variables occurring in an arbitrary syntactic object o.

Suppose s,t € Terms: s and t are independent if vars(s) Nvars(t) = &; t is said
to be ground if vars(t) = @; t is free if t € Vars; if y € vars(t) occurs exactly once
in ¢, then we say that variable y occurs linearly in t, more briefly written using the
predication occlin(y, t); t is linear if we have occ lin(y, t) for all y € vars(¢); finally,
t is a finite term (or Herbrand term) if it contains a finite number of occurrences

of function symbols. The sets of all ground, linear and finite terms are denoted by
GTerms, LTerms and HTerms, respectively. As we have specified that Sig contains
function symbols of rank 0 and rank greater than 0, GTerms N HTerms # @ and
GTerms \ HTerms # @.

A substitution is a total function o: Vars — HTerms that is the identity almost
everywhere; in other words, the domain of o,

dom(o) of {x € Vars | o(x) #x},

is finite. Given a substitution o: Vars — HTerms, we overload the symbol ‘c’ so
as to denote also the function o: HTerms — HTerms defined as follows, for each
term ¢ € HTerms:

t, if ¢ is a constant symbol;
o(t) ef o(t), if t € Vars;
flo(t),...,o(tn)), ift=f(tr,... tn).

If t € HTerms, we write to to denote o(t) and tor to denote (to)T.

If x € Vars and t € HTerms \ {z}, then x — t is called a binding. The set
of all bindings is denoted by Bind. Substitutions are denoted by the set of their
bindings, thus a substitution o is identified with the (finite) set

{x»—wca‘xedom(a)}.

We denote by vars(o) the set of variables occurring in the bindings of o.
A substitution is said to be circular if, for n > 1, it has the form

{1'1 = Z2,...,Tp—1 > Tn,Tn — 301},

where x1, ..., x, are distinct variables. A substitution is in rational solved form
if it has no circular subset. The set of all substitutions in rational solved form is
denoted by RSubst.

The composition of substitutions is defined in the usual way. Thus 7o ¢ is the
substitution such that, for all terms ¢t € HTerms,

(too)(t) =7(c(t)) =tor
and has the formulation
Too={x azor ’ x € dom(c) Udom(T),z # zoT }.

As usual, 0¥ denotes the identity function (i.e., the empty substitution) and, when
i >0, 0% denotes the substitution (o o o?=1).

Consider an infinite sequence of terms tg,t1,t2,... with t; € HTerms for each
i € N. Suppose there exists t € Terms such that, for each n € N, there exists
mg € N such that, for each m € N with m > my, the trees corresponding to the
terms t and t,, coincide up to the first n levels. Then we say that the sequence
to,t1,ta,... converges to t and we write t = lim;_, ¢; [8].

For each o € RSubst and t € HTerms, the sequence of finite terms

al(t), ot (1), o2(t),. ..
converges [8, 48]. Therefore, the function rt: HTerms x RSubst — Terms such that

rt(t, o) & lim o' (t)

11— 00

is well defined.

2.2. Equations

An equation is a statement of the form s = ¢ where s,t € HTerms. Eqs denotes
the set of all equations. A substitution o may be regarded as a finite set of equations,
that is, as the set {x =t | x — ¢ € o}. We say that a set of equations e is in
rational solved form if { st | (s=t)e e} € RSubst. In the rest of the paper, we
will often write a substitution o € RSubst to denote a set of equations in rational
solved form (and vice versa).

Languages such as Prolog 11, SICStus and Oz are based on R7, the theory of
rational trees [18, 19]. This is a syntactic equality theory (i.e., a theory where the
function symbols are uninterpreted), augmented with a uniqueness aziom for each
substitution in rational solved form. Informally speaking these axioms state that,
after assigning a ground rational tree to each non-domain variable, the substitution
uniquely defines a ground rational tree for each of its domain variables. Thus, any
set of equations in rational solved form is, by definition, satisfiable in R7 . Equality
theories and, in particular, R7 are presented in more detail in Section B.1.1. Note
that being in rational solved form is a very weak property. Indeed, unification
algorithms returning a set of equations in rational solved form are allowed to be
much more “lazy” than one would usually expect. For instance, {z = y,y = 2z} and
{z = f(y),y = f(x)} are in rational solved form. We refer the interested reader to
[46, 47, 50] for details on the subject.

Given a set of equations e € p¢(Eqgs) that is satisfiable in R7, a substitution
o € RSubst is called a solution for e in RT if RT F V(o — e), i.e., if theory RT
entails the first order formula V(o — ¢). If in addition vars(c) C vars(e), then o
is said to be a relevant solution for e. Finally, o is a most general solution for e
in RT if RT V(o < e). In this paper, the set of all the relevant most general
solution for e in R7 will be denoted by mgs(e).

In the sequel, in order to model the constraint accumulation process of logic-
based languages, we will need to characterize those sets of equations that are
stronger than (that can be obtained by adding equations to) a given set of equations.

DEFINITION 1. (|(-)) The function |(-): RSubst — @(RSubst) is defined, for
each o € RSubst, by

Lo {7 € RSubst | 30" € RSubst . 7 € mgs(c Ua’) }.
The next result shows that | (-) corresponds to the closure by entailment in R7 .
PROPOSITION 2. Let 0 € RSubst. Then
lo={7€RSubst | RT -V(r — o) }.

2.3. Boolean Functions

Boolean functions have already been extensively used for data-flow analysis of
logic-based languages. An important class of these functions used for tracking
groundness dependencies is Pos [1]. This domain was introduced in [51] under the
name Prop and further refined and studied in [23, 52].

Boolean functions are based on the notion of Boolean valuation.

DEFINITION 3. (Boolean valuation.) Let VI € p¢(Vars) and Bool o {0,1}.

The set of Boolean valuations over VI is given by

Bual ®® VI — Bool.

For each a € Bual, each x € VI, and each ¢ € Bool the valuation alc/x] € Bual is
given, for each y € VI, by

ale/a)(v) "< { o=y

a(y), otherwise.

If X ={x1,...,2} C VI, then a[c/X] denotes alc/x1] - - [c/xk].
The distinguished elements 0,1 € Bval are given by

0 \ze vI.o0,

1% \e e vra.

DEFINITION 4. (Boolean function.) The set of Boolean functions over VI is

Bfun 4 Byal — Bool.

Bfun is partially ordered by the relation = where, for each ¢, € Bfun,

b= PN (VaGBval:gb(a):l = 7/1(@):1)'

The distinguished elements L, T € Bfun are the functions defined by

1 % \a € Bual. 0,

T def Aa € Bual . 1.

For ¢ € Bfun, x € VI, and ¢ € Bool, the Boolean function ¢[c/x] € Bfun is given,
for each a € Bual, by

def

Plc/x)(a) = d)(a[c/:r]).

When X C VI, ¢[c/X] is defined in the expected way. If ¢ € Bfun and x,y € VI
the function ¢[y/x] € Bfun is given, for each a € Bval, by

Bly/w)(@) < 6(afaly)/2]).

Boolean functions are constructed from the elementary functions corresponding to
variables and by means of the usual logical connectives. Thus, for each x € VI, x
also denotes the Boolean function ¢ such that, for each a € Bval, ¢(a) = 1 if and
only if a(x) = 1. For ¢1, 92 € Bfun, we write ¢1 A ¢2 to denote the function ¢ such
that, for each a € Buwal, ¢(a) = 1 if and only if both ¢1(a) = 1 and ¢2(a) = 1. A
variable is restricted away using Schroder’s elimination principle [57]:

def

5w ¢ gl1/a] v 6[0/a).

Note that existential quantification is both monotonic and extensive on Bfun. The
other Boolean connectives and quantifiers are handled similarly. For notational
convenience, when X C VI, we inductively define

def | T, if X =g
NX= {IA/\(X\{:E}) if z € X.

Pos C Bfun consists precisely of those functions assuming the true value under the
everything-is-true assignment, i.e.,

Pos déf{(berun ’ (1) =1}.

For each ¢ € Bfun, the positive part of ¢, denoted pos(¢), is the strongest Pos
formula that is entailed by ¢. Formally,

pos(¢) € o v \ VI.
For each ¢ € Bfun, the set of variables necessarily true for ¢ and the set of
variables necessarily false for ¢ are given, respectively, by

true(o) %ef {x € VI|Va€ Bual: ¢(a) =1 = a(z) =1
false(¢) ef {x € VI|Vae Bual: ¢(a) =1 = a(z) =0

3. THE CONCRETE DOMAIN

A knowledge of the basic concepts of abstract interpretation theory [26, 28] is
assumed. In this paper, the concrete domain consists of pairs of the form (X,V),
where V' is a finite set of variables of interest and ¥ is a (possibly infinite) set of
substitutions in rational solved form.

DEFINITION 5. (The concrete domain.) Let D° def p(RSubst) x p¢(Vars). If

(B,V) € D, then (X, V) represents the (possibly infinite) set of first-order formulas
{3A 0|0 e, A=vars(c)\V } where o is interpreted as the logical conjunction
of the equations corresponding to its bindings.

The operation of projecting x € Vars away from (X,V) € D’ is defined as
follows:

def

Fx. (B,V) = {a' € RSubst

oceX,V="Vars\V,
RTEY(EV . (0 < Iz .0))

Concrete domains for constraint languages would be similar. If the analyzed
language allows the use of constraints on various domains to restrict the values
of the variable leaves of rational trees, the corresponding concrete domain would
have one or more extra components to account for the constraints (see [3] for an
example).

The concrete element ({{z — f(y)}},{z,y}) expresses a dependency between
z and y. In contrast, ({{z — f(y)}},{z}) only constrains z. The same concept
can be expressed by saying that in the first case the variable name ‘y’ matters,
but it does not in the second case. Thus, the set of variables of interest is crucial
for defining the meaning of the concrete and abstract descriptions. Despite this,
always specifying the set of variables of interest would significantly clutter the
presentation. Moreover, most of the needed functions on concrete and abstract
descriptions preserve the set of variables of interest. For these reasons, we assume
the existence of a set VI € pf(Vars) that contains, at each stage of the analysis,
the current variables of interest.® As a consequence, when the context makes it
clear, we will write > € D" as a shorthand for (X, VI) € D°.

8This parallels what happens in the efficient implementation of data-flow analyzers. In fact,
almost all the abstract domains currently in use do not need to represent explicitly the set of
variables of interest. In contrast, this set is maintained externally and in a unique copy, typically
by the fixpoint computation engine.

4. AN ABSTRACT DOMAIN FOR FINITENESS ANALYSIS

Finite-tree analysis applies to logic-based languages computing over a domain
of rational trees where cyclic structures are allowed. In contrast, analyses aimed
at occurs-check reduction [29, 60] apply to programs that are meant to compute
on a domain of finite trees only, but have to be executed over systems that are
either designed for rational trees or intended just for the finite trees but omit the
occurs-check for efficiency reasons. Despite their different objectives, finite-tree
and occurs-check analyses have much in common: in both cases, it is important to
detect all program points where cyclic structures can be generated.

Note however that, when performing occurs-check reduction, one can take ad-
vantage of the following invariant: all data structures generated so far are finite.
This property is maintained by transforming the program so as to force finiteness
whenever it is possible that a cyclic structure could have been built.” In contrast,
a finite-tree analysis has to deal with the more general case when some of the data
structures computed so far may be cyclic. It is therefore natural to consider an
abstract domain made up of two components. The first one simply represents the
set of variables that are guaranteed not to be bound to infinite terms. We will
denote this finiteness component by H (from Herbrand).

DEFINITION 6. (The finiteness component.) The finiteness component s
the set H % p(VI) partially ordered by reverse subset inclusion.

The second component of the finite-tree domain should maintain any kind of
information that may be useful for computing finiteness information.

It is well-known that sharing information as a whole, therefore including pos-
sible variable aliasing, definite linearity, and definite freeness, has a crucial role in
occurs-check reduction so that, as observed before, it can be exploited for finite-
tree analysis too. Thus, a first choice for the second component of the finite-tree
domain would be to consider one of the standard combinations of sharing, freeness
and linearity as defined, e.g., in [6, 9, 36]. However, this would tie our specification
to a particular sharing analysis domain, whereas the overall approach is inherently
more general. For this reason, we will define a finite-tree analysis based on the
abstract domain schema H x P, where the generic sharing component P is a pa-
rameter of the abstract domain construction. This approach can be formalized as
an application of the open product operator [25].

4.1. The parameter Component P

Elements of P can encode any kind of information. We only require that sub-
stitutions that are equivalent in the theory R7 are identified in P.

DEFINITION 7. (The parameter component.) The parameter component P
is an abstract domain related to the concrete domain D° by means of the concretiza-
tion function vp: P — p(RSubst) such that, for all p € P,

(0‘ €vp(p) A (RT FV(o < T))) = 7 € vp(p).

9Such a requirement is typically obtained by replacing the unification with a call to the standard
predicate unify with_occurs_check/2. As an alternative, in some systems based on rational trees
it is possible to insert, after each problematic unification, a finiteness test for the generated term.

10

The interface between H and P is provided by a set of abstract operators that
satisfy suitable correctness criteria. We only specify those that are useful for defin-
ing abstract unification and projection on the combined domain H x P. Other
operations needed for a full description of the analysis, such as renaming and upper
bound, are very simple and, as usual, do not pose any problems.

DEFINITION 8. (Abstract operators on P.) Let s,t € HTerms be finite
terms. For each p € P, we specify the following predicates:
s and t are independent in p if and only if ind,: HTerms*> — Bool holds for (s,1),
where

ind,(s,t) = Vo € yp(p) : vars(rt(s, o)) Nvars(rt(t, o)) = @;

s and t share linearly in p if and only if share_lin,: HTerms®> — Bool holds for
(s,t), where

share lin,(s,t) = VYo € vp(p) :
Vy € vars(rt(s, o)) Nvars(rt(t, o)) :
occ_lin (y, rt(s, 0)) A occ_lin (y7 rt (¢, 0));

t is ground in p if and only if ground,,: HTerms — Bool holds for t, where
ground,(t) = Yo € yp(p) : rt(t,0) € GTerms;
t is ground-or-free in p if and only if gfree,: HTerms — Bool holds for t, where
gfree,(t) = Vo € yp(p) : 1t(t,0) € GTerms Vrt(t,0) € Vars;
s is linear in p if and only if lin,: HTerms — Bool holds for s, where
lin,(s) = Vo € vp(p) : rt(s,0) € LTerms;

s and t are or-linear in p if and only if or_lin,: HTerms®> — Bool holds for (s,1),
where

orlin,(s,t) = VYo € vp(p) : rt(s,0) € LTerms V rt(t, o) € LTerms;

For each p € P, the following functions compute subsets of the set of variables
of interest:
the function share_same_var,: HTerms x HTerms — @(VI) returns a set of vari-
ables that may share with the given terms via the same variable. For each pair of
terms s,t € HTerms,

Jo € vp(p) -
share_same_var,(s,t) 2 < y € VI dz € vars(rt(y, O’)) . ;

z € vars(rt(s, 0)) Nvars(rt(t, o))

11

the function share_with,: HTerms — @(VI) yields a set of variables that may share
with the given term. For each t € HTerms,

share_with,,(t) e {y € VI |y € share_same_var,(y,1) }.

The function amgup: P x Bind — P correctly captures the effects of a binding
on an element of P. For each (x —t) € Bind and p € P, let

P amgup(p, x> t);

for all o € vp(p), if T € mgs(o U{x =t}), then T € vp(p').
The function projp: P x VI — P correctly captures the operation of projecting
away a variable from an element of P. For each x € VI, p € P and o € vp(p), if

T €3z . {o}, then 7 € yp(projp(p, z)).

As it will be shown in Section A, some of these generic operators can be directly
mapped to the corresponding abstract operators defined for well-known sharing
analysis domains. However, the specification given in Definition 8, besides being
more general than a particular implementation, also allows for a modular approach
when proving correctness results.

4.2. Operators on Substitutions in Rational Solved Form

There are cases when an analysis tries to capture properties of the particular
substitutions computed by a specific (ordinary or rational) unification algorithm.
This is the case, for example, when the analysis needs to track structure sharing
for the purpose of compile-time garbage collection, or provide upper bounds on
the amount of memory needed to perform a given computation. More often the
interest is on properties of the (finite or rational) trees that are denoted by such
substitutions.

When the concrete domain is based on the theory of finite trees, idempotent sub-
stitutions provide a finitely computable strong normal form for domain elements,
meaning that different substitutions describe different sets of finite trees (as usual,
this is modulo the possible renaming of variables). In contrast, when working on
a concrete domain based on the theory of rational trees, substitutions in rational
solved form, while being finitely computable, no longer satisfy this property: there
can be an infinite set of substitutions in rational solved form all describing the
same set of rational trees (i.e., the same element in the “intended” semantics). For
instance, the substitutions

on={x— f(-- flz)--)}

forn =1, 2, ..., all map the variable x to the same rational tree (which is usually
denoted by f<).

Ideally, a strong normal form for the set of rational trees described by a substi-
tution o € RSubst can be obtained by computing the limit function

oo def

0% = M € HTerms . rt(t, o),

obtained by fixing the substitution parameter of ‘rt’. The problem is that, in
general, 0°° is not a substitution: while having a finite domain, its “bindings” x —

12

lim; . o(x) can map a domain variable z to an infinite rational term. This poses
a non-trivial problem when trying to define a “good” abstraction function, since
it would be really desirable for this function to map any two equivalent concrete
elements to the same abstract element. Of course, it is important that the properties
under investigation are exactly captured, so as to avoid any unnecessary precision
loss. Pursuing this goal requires an ability to observe properties of (infinite) rational
trees while just dealing with one of their finite representations. This is not always an
easy task since even simple properties can be “hidden” when using non-idempotent
substitutions. For instance, when ¢ maps variable z to an infinite and ground
rational tree (i.e., when rt(z, o) € GTerms\ HTerms), all of its finite representations
in RSubst (i.e., all the 7 € RSubst such that R7T |= V(o < 7)) will map the variable
x into a finite term that is not ground. These are the motivations behind the
introduction of the following computable operators on substitutions.

The groundness operator ‘gvars’ captures the set of variables that are mapped
to ground rational trees by rt. We define it by means of the occurrence operator
‘occ’. This was introduced in [40] as a replacement for the sharing-group operator
‘sg’ of [44]. In [40] the occ operator is used to define a new abstraction function for
set-sharing analysis that, differently from the classical ones [22, 44], maps equivalent
substitutions in rational solved form to the same abstract element.

DEFINITION 9. (Occurrence and groundness operators.) For eachn € N,
the occurrence function occ, : RSubst x Vars — p¢(Vars) is defined, for each o €
RSubst and each v € Vars, by

aet [{v}\ dom(o), ifn=0;
occp(0,v) = {{y c Vars | vars(yo) Nocc,_1(0,v) # @ }, if n > 0.

The occurrence operator occ: RSubst x Vars — gr(Vars) is given, for each substi-

tution o € RSubst and v € Vars, by occ(o,v) def occy(o,v), where L = # 0.
The groundness operator gvars: RSubst — pf(Vars) is given, for each substitu-
tion o € RSubst, by

gvars(o) & {y € dom(o) | Vv € vars(o) : y ¢ occ(a,v) }.
ExaMPLE 10. Let

o={a— fy,2),y— g(z,2),2— f(a)}.

Then gvars(o) = {x,y,z}, although vars(xzc®) # @ and vars(yo') # @, for all
0<1<o00.

The finiteness operator is defined, like occ, by means of a fixpoint construction.

DEeFINITION 11. (Finiteness functions.) For eachn € N, the finiteness func-
tion hvars,,: RSubst — @(Vars) is defined, for each o € RSubst, by

hvarsg (o) L Vars \ dom(o)

and, forn >0, by

hvars, (o) e hvars,_1(c) U {y € dom(c) | vars(yo) C hvars,_1(c) }.

13

For each o € RSubst and each ¢ > 0, we have hvars;(0) C hvars;;1(0) and also
that Vars \ hvars;(o) C dom(o) is a finite set. By these two properties, the chain
hvarsy (o) C hvars; (o) C --- is stationary and finitely computable. In particular, if
¢ = +# 0, then, for all n > ¢, hvarsy(o) = hvars, (o).

DEFINITION 12. (Finiteness operator.) For each o € RSubst, the finiteness

operator hvars: RSubst — p(Vars) is given by hvars(o) def hvars, (o) where ¢ Lf
£(o) € N is such that hvarsy(c) = hvars, (o) for allm > ¢.

The following proposition shows that the hvars operator precisely captures the
intended property.

ProPOSITION 13. If o € RSubst and x € Vars then
x € hvars(o) <= rt(z,0) € HTerms.
ExampLE 14. Consider o € RSubst, where
o= {301 = f(x2), 22 = g(w5), 73 = f(24),74 — 9(553)}-
Then,

hvarsg(o) = Vars \ {z1, 22, x5, 24},
hvarsy (o) = Vars \ {x1, x3, 24},
hvarsy (o) = Vars \ {zs, 24}
= hvars(o).
Thus, x1 € hvars(o), although vars(z10) C dom(o).

The following proposition states how ‘gvars’ and ‘hvars’ behave with respect to
the further instantiation of variables.

PROPOSITION 15. Let 0,7 € RSubst, where T € | 0. Then
hvars(o) 2D hvars(7), (15a)
gvars(o) Nhvars(o) C gvars(t) N hvars(T). (15Db)
4.3. The Abstraction Function for H

A Galois connection between p(RSubst) and H can now be defined naturally.

DEFINITION 16. (The Galois connection between p(RSubst) and H.) The
abstraction function ag: RSubst — H is defined, for each o € RSubst, by

ap(o) Cyrn hvars(o).

The concrete domain D’ is related to H by means of the abstraction function
ag: D* — H such that, for each ¥ € p(RSubst),

defﬂ{aH {JEE}

Since the abstraction function apy is additive, the concretization function is given
by its adjoint [26]: whenever h € H,

v (h def { € RSubst | apg(o h}

Lof { o € RSubst | hvars() Dh}.

14

With these definitions, we have the desired result: equivalent substitutions in
rational solved form have the same finiteness abstraction.

THEOREM 17. If 0,7 € RSubst and RT F V(o < 1), then ag(o) = ap(r).

4.4. Abstract Unification and Projection on H x P

The abstract unification for the combined domain H x P is defined by using
the abstract predicates and functions as specified for P as well as a new finiteness
predicate for the domain H.

DEFINITION 18. (Abstract unification on H x P.) A termt € HTerms is a
finite tree in h € H if and only if the predicate htermy, : HTerms — Bool holds for
t, where

htermy, (t) def (vars(t) C h).

The function amguy : (H x P) x Bind — H captures the effects of a binding on
an H element. Let (h,p) € H x P and (x +— t) € Bind. Then

amguH(<hvp>7 T t) déf hla

where h' is given by the first case that applies in

h U vars(t), if htermy, (z) A ground,, (z);
hu{z}, if htermy, (t) A ground,,(t);
h, if htermy, (x) A htermy, (¢)
Aind,(z,t) Aorling(x,t);
h, if htermyp, (x) A htermy, (¢)
et A gfree,(x) A gfree, (t);
] h\ share_same_var,(z, t), if htermy, (x) A htermy, (¢)

A share_lin, (z, t)
Aorling(z,t);
h \ share_with,(x), if htermy, (x) A liny (z);
h\ share_with,, (¢), if htermy, (¢) A lin, (¢);
h\ (share_with,(z) U share_with,(t)), otherwise.

The abstract unification function amgu: (H X P) x Bind — H x P, for any (h,p) €
H x P and (z —t) € Bind, is given by

amgu((h,p),z — t) o <amguH(<h7P>,x — t),amgup(p, x — t)>

In the computation of ' (the new finiteness component resulting from the ab-
stract evaluation of a binding) there are eight cases based on properties holding for
the concrete terms described by z and t.

1. In the first case, the concrete term described by z is both finite and ground.
Thus, after a successful execution of the binding, any concrete term described
by t will be finite. Note that ¢ could have contained variables which may be
possibly bound to cyclic terms just before the execution of the binding.

15

2. The second case is symmetric to the first one. Note that these are the only
cases when a “positive” propagation of finiteness information is correct. In
contrast, in all the remaining cases, the goal is to limit as much as possible the
propagation of “negative” information, i.e., the possible cyclicity of terms.

3. The third case exploits the classical results proved in research work on occurs-
check reduction [29, 60]. Accordingly, it is required that both x and ¢ describe
finite terms that do not share. The use of the implicitly disjunctive predi-
cate or_lin, allows for the application of this case even when neither x nor
t are known to be definitely linear. For instance, as observed in [29], this
may happen when the component P embeds the domain Pos for groundness
analysis.!?

4. The fourth case exploits the observation that cyclic terms cannot be created
when unifying two finite terms that are either ground or free. Ground-or-
freeness [6] is a safe, more precise and inexpensive replacement for the classical
freeness property when combining sharing analysis domains.

5. The fifth case applies when unifying a linear and finite term with another
finite term possibly sharing with it, provided they can only share linearly
(namely, all the shared variables occur linearly in the considered terms). In
such a context, only the shared variables can introduce cycles.

6. In the sixth case, we drop the assumption about the finiteness of the term
described by t. As a consequence, all variables sharing with x become possi-
bly cyclic. However, provided x describes a finite and linear term, all finite
variables independent from x preserve their finiteness.

7. The seventh case is symmetric to the sixth one.

8. The last case states that term finiteness is preserved for all variables that are
independent from both x and t.

The following result, together with the assumption on amgup as specified in Defini-
tion 8, ensures that abstract unification on the combined domain H x P is correct.

THEOREM 19. Let (h,p) € H x P and (x — t) € Bind, where {x} U vars(t) C
VI. Let also o € yg(h) Nyp(p) and k' = amguy ((h,p),x +— t). Then

remgs(cU{z=t}) = 7€ yu(h).

Abstract projection on the composite domain H x P is much simpler than
abstract unification, because in this case there is no interaction between the two
components of the abstract domain.

DEFINITION 20. (Abstract projection on H x P.) The function projy: H x

VI — H captures the effects, on the H component, of projecting away a variable.
For each h € H and x € VI,

projy (h,) U {z}.

0et t be y. Let also P be Pos. Then, given the Pos formula ¢ def (z V y), both indy(x,y)
and or_ling(x,y) satisfy the conditions in Definition 4. Note that from ¢ we cannot infer that x
is definitely linear and neither that y is definitely linear.

16

The abstract variable projection function proj: (H x P) x VI — H x P, for any
(h,p) € Hx P and x € VI, is given by

ey

proj((h, p), x) = (projp (h, z),projp(p,))-

As a consequence, as far as the H component is concerned, the correctness of
the projection function does not depend on the assumption on projp, as specified
in Definition 8.

THEOREM 21. Let x € VI, h € H and o € yg(h). Then
re€Faz. {o} = 7€yu(projy(h,z)).

Several abstract domains for sharing analysis can be used to implement the
parameter component P. As a basic implementation, one could consider the well-
known set-sharing domain of Jacobs and Langen [44]. In such a case, most of the
required correctness results have already been established in [40]. Note however
that, since no freeness and linearity information is recorded in the plain set-sharing
domain, some of the predicates of Definition 8 need to be grossly approximated.
For instance, the predicate gfree,, will provide useful information only when applied
to an argument that is known to be definitely ground. Another possibility would be
to use the domain based on pair-sharing, definite groundness and definite linearity
described in [48]. A more precise choice is constituted by the SFL domain (an
acronym standing from Set-sharing plus Freeness plus Linearity) introduced in [42,
64]. Even in this case, all the non-trivial correctness results have already been
proved. In particular, in [41, 64] it is shown that the abstraction function satisfies
the requirement of Definition 7 and that the abstract unification operator is correct
with respect to rational-tree unification. In order to better highlight the generality
of our specification of the sharing component P, the instantiation of P to SFL is
presented in Appendix A. Notice that the quest for more precision does not end
with SFL: a number of possible precision improvements are presented and discussed
in [6].

5. FINITE-TREE DEPENDENCIES

The precision of the finite-tree analysis based on H x P is highly dependent on
the precision of the generic component P. As explained before, the information
provided by P on groundness, freeness, linearity, and sharing of variables is ex-
ploited, in the combination H x P, to circumscribe as much as possible the creation
and propagation of cyclic terms. However, finite-tree analysis can also benefit from
other kinds of relational information. In particular, we now show how finite-tree
dependencies allow a positive propagation of finiteness information.

Let us consider the finite terms t1 = f(z), t2 = g(y), and t3 = h(z,y): it is clear
that, for each assignment of rational terms to x and y, t3 is finite if and only if #;
and t, are so. We can capture this by the Boolean formula t3 < (t; At3).}! The
reasoning is based on the following facts:

1. tq, to, and t3 are finite terms, so that the finiteness of their instances depends
only on the finiteness of the terms that take the place of x and y.

HThe introduction of such Boolean formulas, called dependency formulas, is originally due to
P. W. Dart [30].

17

2. vars(ts) D vars(t;) U vars(ta), that is, t3 covers both t; and to; this means
that, if an assignment to the variables of t3 produces a finite instance of
t3, that very assignment will necessarily result in finite instances of ¢; and
to. Conversely, an assignment producing non-finite instances of ¢1 or to will
forcibly result in a non-finite instance of ts.

3. Similarly, ¢; and to, taken together, cover t3.

The important point to notice is that this dependency will keep holding for any fur-
ther simultaneous instantiation of ¢1, to, and t3. In other words, such dependencies
are preserved by forward computations (which proceed by consistently instantiating
program variables).

Consider x +— t € Bind where t € HTerms and vars(t) = {y1,...,yn}. After
this binding has been successfully applied, the destinies of x and ¢ concerning term-
finiteness are tied together: forever. This tie can be described by the dependency
formula

T (Y1 A Ayn), (2)
meaning that x will be bound to a finite term if and only if y; is bound to a finite
term, for each i = 1, ..., n. While the dependency expressed by (2) is a correct

description of any computation state following the application of the binding x +— t,
it is not as precise as it could be. Suppose that = and y; are indeed the same
variable. Then (2) is logically equivalent to

= (YL A AY—1 AYkp1 A AYn). (3)

Although this is correct —whenever x is bound to a finite term, all the other
variables will be bound to finite terms— it misses the point that = has just been
bound, irrevocably, to a non-finite term: no forward computation can change this.
Thus, the implication (3) holds vacuously. A more precise and correct description
for the state of affairs caused by the cyclic binding is, instead, the negated atom
-z, whose intuitive reading is “z is not (and never will be) finite.”

We are building an abstract domain for finite-tree dependencies where we are
making the deliberate choice of including only information that cannot be with-
drawn by forward computations. The reason for this choice is that we want the
concrete constraint accumulation process to be paralleled, at the abstract level, by
another constraint accumulation process: logical conjunction of Boolean formulas.
For this reason, it is important to distinguish between permanent and contingent
information. Permanent information, once established for a program point p, main-
tains its validity in all points that follow p in any forward computation. Contingent
information, instead, does not carry its validity beyond the point where it is estab-
lished. An example of contingent information is given by the h component of H x P:
having = € h in the description of some program point means that x is definitely
bound to a finite term at that point; nothing is claimed about the finiteness of x
at later program points and, in fact, unless x is ground, x can still be bound to a
non-finite term. However, if at some program point z is finite and ground, then
2 will remain finite. In this case we will ensure our Boolean dependency formula
entails the positive atom z.

At this stage, we already know something about the abstract domain we are
designing. In particular, we have positive and negated atoms, the requirement of
describing program predicates of any arity implies that arbitrary conjunctions of
these atomic formulas must be allowed and, finally, it is not difficult to observe

18

that the merge-over-all-paths operation [26] will be logical disjunction, so that the
domain will have to be closed under this operation. This means that the carrier of
our domain must be able to express any Boolean function: Bfun is the carrier.

DEFINITION 22. (yF: Bfun — @(RSubst).) The function hval: RSubst — Bual
is defined, for each o € RSubst and each x € VI, by

hval(o)(z) =1 & qe hvars(o).

The concretization function yp: Bfun — @(RSubst) is defined, for ¢ € Bfun, by

V(o) def {a € RSubst ‘ Vrelo: (b(hval(T)) =1 }

The domain of positive Boolean functions Pos used, among other things, for
groundness analysis is so popular that our use of the domain Bfun deserves some
further comments. For the representation of finite-tree dependencies, the presence
in the domain of negative functions such as —x, meaning that z is bound to an
infinite term, is an important feature. One reason why it is so is that knowing
about definite non-finiteness can improve the information on definite finiteness.
The easiest example goes as follows: if we know that either x or y is finite (i.e.,
x V y) and we know that z is not finite (i.e., —z), then we can deduce that y
must be finite (i.e., y). It is important to observe that this reasoning can be
applied, verbatim, to groundness: a knowledge of non-groundness may improve
groundness information. The big difference is that non-finiteness is information of
the permanent kind while non-groundness is only contingent. As a consequence,
a knowledge of finiteness and non-finiteness can be monotonically accumulated
along computation paths by computing the logical conjunction of Boolean formulae.
An approach where groundness and non-groundness information is represented by
elements of Bfun would need to use a much more complex operation and significant
extra information to correctly model the constraint accumulation process.

The other reason why the presence of negative functions in the domain is bene-
ficial is efficiency. The most efficient implementations of Pos and Bfun, such as the
ones described in [1, 5], are based on Reduced Ordered Binary Decision Diagrams
(ROBDD) [10]. While an ROBDD representing the imprecise information given
by the formula (3) has a worst case complexity that is exponential in n, the more
precise formula —z has constant complexity.

The following theorem shows how most of the operators needed to compute
the concrete semantics of a logic program can be correctly approximated on the
abstract domain Bfun. Notice how the addition of equations is modeled by logical
conjunction and projection of a variable is modeled by existential quantification.

THEOREM 23. Let ¥,%1,%y € p(RSubst) and ¢, d1,d2 € Bfun be such that
Yr(P) 2 X, yr(d1) 2 X1, and vr(p2) 2 Xa. Let also (x — t) € Bind, where
{z} Uvars(t) C VI. Then the following hold:

vF (;v — /\vars(t)) O {{z—t}}; (23a)
vr(—z) 2 {{z — t}}, if v € vars(t); (23b)

vr(x) 2 {0 € RSubst | x € gvars(c) N hvars(o) }; (23c)

Yr(P1 A o) 2 {mgs(01 U o) ’ 01 € 1,09 € Xa }; (23d)
Yr(P1V ¢2) 2 E1 U Xo; (23e)

Yr(3z . $) 2 Iz . X (23f)

19

Cases (23a), (23b), and (23d) of Theorem 23 ensure that the following definition
of amguy provides a correct approximation on Bfun of the concrete unification of
rational trees.

DEFINITION 24. The function amguy: Bfun x Bind — Bfun captures the effects
of a binding on a finite-tree dependency formula. Let ¢ € Bfun and (x — t) € Bind
be such that {x} Uvars(t) C VI. Then

¢ A (z— Avars(t)), if x ¢ vars(t);

def
amgup (¢, — 1) = {¢ A = otherwise

Other semantic operators, such as the consistent renaming of variables, are very
simple and omitted for the sake of brevity.

The next result shows how finite-tree dependencies may improve the finiteness
information encoded in the h component of the domain H x P.

THEOREM 25. Let h € H and ¢ € Bfun. Let also h' 4l e <¢ A /\h) Then

Ya (k) Nyp(9) = vu(R') Nye(P).

EXAMPLE 26. Consider the following program, where it is assumed that the only
“external” query is “7- r(X, Y)”:

pX, ¥) :- X £y, O.
qX, V) - X =£(, V.
rX, V) :- pX, V), q(X, Y), acyclic_term(X).

Then the predicate p/2 in the clause defining r/2 will called with X and Y both un-
bound. Computing on the abstract domain H X P gives us the finiteness description
hy = {x,y}, expressing the fact that both X and Y are bound to finite terms. Com-
puting on the finite-tree dependencies domain Bfun, gives us the Boolean formula
¢p =x —y (Y is finite if X is so).

Considering now the call to the predicate q/2, we note that, since variable X is
already bound to a non-variable term sharing with Y, all the finiteness information
encoded by H will be lost (i.e., hg = @). So, both X and Y are detected as possibly
cyclic. However, the finite-tree dependency information is preserved, since we have
pg=@—=yA@@—y)=z—y.

Finally, consider the effect of the abstract evaluation of acyclic_term(X). On
the H x P domain we can only infer that variable X cannot be bound to an infinite
term, while Y will be still considered as possibly cyclic, so that h, = {x}. On
the domain Bfun we can just confirm that the finite-tree dependency computed so
far still holds, so that ¢, = x — y (no stronger finite-tree dependency can be
inferred, since the finiteness of X is only contingent). Thus, by applying the result
of Theorem 25, we can recover the finiteness of Y:

hl = true(gf)r A /\ hT) = true((z — y) Az) = true(z A y) = {z,y}.

Information encoded in H x P and Bfun is not completely orthogonal and the
following result provides a kind of consistency check.

THEOREM 27. Let h € H and ¢ € Bfun. Then
ya(h)Nyr(¢) #@ = hNfalse(d) = @.

Note however that, provided the abstract operators are correct, the computed
descriptions will always be mutually consistent, unless ¢ = 1.

20

6. GROUNDNESS DEPENDENCIES

Since information about the groundness of variables is crucial for many applica-
tions, it is natural to consider a static analysis domain including both a finite-tree
and a groundness component. In fact, any reasonably precise implementation of the
parameter component P of the abstract domain specified in Section 4 will include
some kind of groundness information.'? We highlight similarities, differences and
connections relating the domain Bfun for finite-tree dependencies to the abstract
domain Pos for groundness dependencies. Note that these results also hold when
considering a combination of Bfun with the groundness domain Def [1].

We first define how elements of Pos represent sets of substitutions in rational
solved form.

DEFINITION 28. (yg: Pos — p(RSubst).) The function gval: RSubst — Bual
is defined as follows, for each o € RSubst and each x € VI:

gval(o)(xz) =1 & qe gvars(o).

The concretization function yg: Pos — p(RSubst) is defined, for each 1 € Pos,

vo(¥) € {0 € RSubst | V7 € Lo : ¢(gval(r)) =1}.

The following is a simple variant of the standard abstract unification operator
for groundness analysis over finite-tree domains: the only difference concerns the
case of cyclic bindings [2].

DEFINITION 29. The function amgug: Pos X Bind — Pos captures the effects
of a binding on a groundness dependency formula. Let) € Pos and (x — t) € Bind
be such that {x} Uvars(t) C VI. Then

amgue (), z — t) & P A (as — /\(Vars(t) \ {:17}))

The next result shows how, by exploiting the finiteness component H, the finite-
tree dependencies (Bfun) component and the groundness dependencies (Pos) com-
ponent can improve each other.

THEOREM 30. Let h € H, ¢ € Bfun and ¢ € Pos. Let also ¢’ € Bfun and
' € Pos be defined as ¢’ =3IVI\ h .y and ' = 3IVI\ h. pos(¢p). Then

i (h) Nye(9) Nva(¥) = ya(h) Nve(d) Nya(AY'); (30a)
v (h) Nyr(9) Ny () = vu(h) Nyr(d A @) Na (). (30b)

Moreover, even without any knowledge of the H component, combining Theo-
rem 25 and Eq. (30a), the groundness dependencies component can be improved.

COROLLARY 31. Let ¢ € Bfun and) € Pos. Then

vr(8) Nya () = vr(9) Nye (¥ A true(¢)).

120ne could define P so that it explicitly contains the abstract domain Pos. Even when this
is not the case, it should be noted that, as soon as the parameter P includes the set-sharing
domain of Jacobs and Langen [45], then it will subsume the groundness information captured by
the domain Def [15, 24].

21

The following example shows that, when computing on rational trees, finite-tree
dependencies may provide groundness information that is not captured by the usual
approaches.

ExampLE 32. Consider the program:

pa, Y).
pX, a).
X, V) - pX, V), X = £(X, 2).

The abstract semantics of p/2, for both finite-tree and groundness dependencies, is
¢p = Yp = xVy. The finite-tree dependency for q/2 is ¢pq = (xVy) A~z = -z Ay.
Using Definition 29, the groundness dependency for q/2 is

Yo=3z. (zVy)A(z—2) =aVy.

This can be improved, using Corollary 31, to

Yy = Pg A /\true(%) =y.

It is worth noticing that the groundness information can be improved regard-
less of whether, like Pos, the groundness domain captures disjunctive information:
groundness information represented by the less expressive domain Def [1] can be
improved as well. The next example illustrates this point.

ExaMPLE 33. Consider the following program:

pla, a).
pX, Y) (- X =£(X, J.
qX, V) - pX, V), X = a.

Consider first the predicate p/2. Concerning finite-tree dependencies, the abstract
semantics of p/2 is expressed by the Boolean formula ¢, = x — y (y is finite if =
is s0). In contrast, the Pos-groundness abstract semantics of p/2 is a plain “don’t
know”: the Boolean formula v, = T. In fact, the groundness of X and Y can be
completely decided by the call-pattern of p/2.

Consider now the predicate q/2. The finiteness semantics of q/2 is given by
¢q = (x — y) ANx =z Ay, whereas the Pos formula expressing groundness depen-
dencies is g = T ANx = x. By applying the reduction process of Theorem 80, we
obtain

1/1; =Yg A /\true(gbq) =x Ay,
therefore recovering the groundness of variable y.

Since better groundness information, besides being useful in itself, may also im-
prove the precision of many other analyses such as sharing [6, 15], the reduction
steps given by Theorem 30 and Corollary 31 can trigger improvements to the pre-
cision of other components. Theorem 30 can also be exploited to recover precision
after the application of a widening operator on either the groundness dependencies
or the finite-tree dependencies component.

22

7. EXPERIMENTAL RESULTS

The work described here has been experimentally evaluated in the framework
provided by the CHINA analyzer [2]. We implemented and compared the three
domains Pattern(P), Pattern(H x P) and Pattern(Bfun x H x P),!3 where the pa-
rameter component P has been instantiated to the domain Pos x SFLo [6, 41, 64]
for tracking groundness, freeness, linearity and (non-redundant) set-sharing infor-
mation. The Pattern(-) operator [3] further upgrades the precision of its argument
by adding explicit structural information.

Concerning the Bfun component, the implementation was straightforward, since
all the techniques described in [5] (and almost all the code, including the widenings)
was reused unchanged, obtaining comparable efficiency. As a consequence, most of
the implementation effort was in the coding of the abstract operators on the H
component and in the reduction processes between the different components. A
key choice, in this sense, is ‘when’ the reduction steps given in Theorems 25 and 30
should be applied. When striving for maximum precision, a trivial strategy is to
perform reductions immediately after any application of any abstract operator.
This is how predicates like acyclic_term/1 should be handled: after adding the
variables of the argument to the H component, the reduction process is applied
to propagate the new information to all domain components. However, such an
approach turns out to be unnecessarily inefficient. In fact, the next result shows
that Theorems 25 and 30 cannot lead to a precision improvement if applied just after
the abstract evaluation of the merge-over-all-paths or the existential quantification
operations (provided the initial descriptions are already reduced).

THEOREM 34. Let x € VI, h,h' € H ¢,¢’ € Bfun and 1,1’ € Pos. Let

def

hi € hnn, o1 LoV, b1 = VY,
def def

hy % proj (h, z), $o = 3z . ¢, Py Iz ap.

def

Let also

h 2 true(p A\ h), o= 3BVI\h.), Y= (3VI\ h.pos(9)),
nD true(¢’A/\h’), ¢ EQVINK .¢), ¢ @BVI\K .pos(¢)).

Then, fori=1, 2,

h; 2D true(e; A /\hi)7 ¢i = (BVIN\ hi), i = (3VI\ h; . pos(¢;)).

A goal-dependent analysis was run for all the programs in our benchmark suite
and the results (with respect to the precision) are summarized in Table 1. Here,
the precision is measured as the percentage of the total number of variables that
the analyser can show to be finite. T'wo alternative views are provided.

In the first view, each column is labeled by an analysis domain and each row
is labeled by a precision interval. For instance, the value ‘31’ at the intersection
of column ‘H’ and row ‘80 < p < 100’ is to be read as “for 31 benchmarks, the
percentage p of the total number of variables that the analyzer can show to be finite
using the domain H is between 80% and 100%.”

13For ease of notation, the domain names are shortened to P, H and Bfun, respectively.

23

[Prec. class ‘[P [H IBfun

» = 100 284 86
80 < p < 100 131 36
60 < p < 80 7126 23
40 < p < 60 6| 41 | 40
20 < p < 40 A7 |47 [46

0<p<20 | 18519 17

[Prec. improvement [P—H [H — Bfun J
1> 20 185 4
10 <+ <20 31 3
5<1<10 11 6
2<1<5 4 10
0<e1<2 2 24
no improvement 15 201

TABLE 1: The precision on finite variables when using P, H and Bfun.

The second view provides a better picture of the precision improvements ob-
tained when moving from P to H (in the column ‘P — H’) and from H to Bfun (in
the column ‘H — Bfun’). For instance, the value ‘10’ at the intersection of column
‘H — Bfun’ and row ‘2 < i < 5’ is to be read as “when moving from H to Bfun, for
10 benchmarks the improvement i in the percentage of the total number of variables
shown to be finite was between 2% and 5%.”

It can be seen from Table 1 that, even though the H domain is remarkably
precise, the inclusion of the Bfun component allows for a further, and sometimes
significant, precision improvement for a number of benchmarks. It is worth noting
that the current implementation of CHINA does not yet fully exploit the finite-tree
dependencies arising when evaluating many of the built-in predicates, therefore
incurring an avoidable precision loss. We are working on this issue and we expect
that the specialized implementation of the abstract evaluation of some built-ins
will result in more and better precision improvements. The experimentation has
also shown that, in practice, the Bfun domain does not improve the groundness
information.

8. CONCLUSION

Several modern logic-based languages offer a computation domain based on
rational trees. On the one hand, the use of such trees is encouraged by the pos-
sibility of using efficient and correct unification algorithms and by an increase in
expressivity. On the other hand, these gains are countered by the extra problems
rational trees bring with themselves and that can be summarized as follows: sev-
eral built-ins, library predicates, program analysis and manipulation techniques are
only well-defined for program fragments working with finite trees.

As a consequence, those applications that exploit rational trees tend to do so in
a very controlled way, that is, most program variables can only be bound to finite
terms. By detecting the program variables that may be bound to infinite terms

24

with a good degree of accuracy, we can significantly reduce the disadvantages of
using rational trees.

In this paper we have proposed an abstract-interpretation based solution to this
problem, where the composite abstract domain H x P allows to track the creation
and propagation of infinite terms. Even though this information is crucial to any
finite-tree analysis, propagating the guarantees of finiteness that come from several
built-ins (including those that are explicitly provided to test term-finiteness) is also
important. Therefore, we have introduced a domain of Boolean functions Bfun for
finite-tree dependencies which, when coupled to the domain H x P, can enhance
its expressive power. Since Bfun has many similarities with the domain Pos used
for groundness analysis, we have investigated how these two domains relate to each
other and, in particular, the synergy arising from their combination in the “global”
domain of analysis.

REFERENCES

[1] T. Armstrong, K. Marriott, P. Schachte, and H. Sgndergaard. Two classes of
Boolean functions for dependency analysis. Science of Computer Programming,
31(1):3-45, 1998.

[2] R. Bagnara. Data-Flow Analysis for Constraint Logic-Based Languages. PhD
thesis, Dipartimento di Informatica, Universita di Pisa, Pisa, Italy, 1997.
Printed as Report TD-1/97.

[3] R. Bagnara, P. M. Hill, and E. Zaffanella. Efficient structural information
analysis for real CLP languages. In M. Parigot and A. Voronkov, editors,
Proceedings of the Tth International Conference on Logic for Programming
and Automated Reasoning (LPAR 2000), volume 1955 of Lecture Notes in
Artificial Intelligence, pages 189-206, Réunion Island, France, 2000. Springer-
Verlag, Berlin.

[4] R. Bagnara, P. M. Hill, and E. Zaffanella. Set-sharing is redundant for pair-
sharing. Theoretical Computer Science, 2002. To appear.

[5] R. Bagnara and P. Schachte. Factorizing equivalent variable pairs in ROBDD-
based implementations of Pos. In A. M. Haeberer, editor, Proceedings of
the “Seventh International Conference on Algebraic Methodology and Software
Technology (AMAST’98)”, volume 1548 of Lecture Notes in Computer Science,
pages 471-485, Amazonia, Brazil, 1999. Springer-Verlag, Berlin.

[6] R. Bagnara, E. Zaffanella, and P. M. Hill. Enhanced sharing analysis tech-
niques: A comprehensive evaluation. In M. Gabbrielli and F. Pfenning, editors,
Proceedings of the 2nd International ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming, pages 103—114, Montreal, Canada,
2000. Association for Computing Machinery.

[7] R. Bagnara, E. Zaffanella, and P. M. Hill. Enhanced sharing analysis tech-
niques: A comprehensive evaluation. Submitted for publication. Available at
http://www.cs.unipr.it/“bagnara/, 2001.

[8] A. Berarducci and M. Venturini Zilli. Generalizations of unification. Journal
of Symbolic Computation, 15:479-491, 1993.

25

[9]

[19]

[20]

[21]

M. Bruynooghe, M. Codish, and A. Mulkers. Abstract unification for a com-
posite domain deriving sharing and freeness properties of program variables.
In F. S. de Boer and M. Gabbrielli, editors, Verification and Analysis of Logic
Languages, Proceedings of the W2 Post-Conference Workshop, International
Conference on Logic Programming, pages 213-230, Santa Margherita Ligure,
Ttaly, 1994.

R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys, 24(3):293-318, 1992.

J. A. Campbell, editor. Implementations of Prolog. Ellis Horwood/Halsted
Press/Wiley, 1984.

B. Carpenter. The Logic of Typed Feature Structures with Applications to
Unification-based Grammars, Logic Programming and Constraint Resolution,
volume 32 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, New York, 1992.

K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic
and Databases, pages 293-322, Toulouse, France, 1978. Plenum Press.

M. Codish, D. Dams, and E. Yardeni. Derivation and safety of an abstract
unification algorithm for groundness and aliasing analysis. In K. Furukawa,
editor, Logic Programming: Proceedings of the Eighth International Conference
on Logic Programming, MIT Press Series in Logic Programming, pages 79-93,
Paris, France, 1991. The MIT Press.

M. Codish, H. Sgndergaard, and P. J. Stuckey. Sharing and groundness de-
pendencies in logic programs. ACM Transactions on Programming Languages
and Systems, 21(5):948-976, 1999.

M. Codish and C. Taboch. A semantic basis for termination analysis of logic
programs and its realization using symbolic norm constraints. In M. Hanus,
J. Heering, and K. Meinke, editors, Algebraic and Logic Programming, G6th
International Joint Conference, volume 1298 of Lecture Notes in Computer
Science, pages 31-45, Southampton, U.K., 1997. Springer-Verlag, Berlin.

M. Codish and C. Taboch. A semantic basis for the termination analysis of
logic programs. Journal of Logic Programming, 41(1):103—-123, 1999.

A. Colmerauer. Prolog and infinite trees. In K. L. Clark and S. A. Térnlund,
editors, Logic Programming, APIC Studies in Data Processing, volume 16,
pages 231-251. Academic Press, New York, 1982.

A. Colmerauer. Equations and inequations on finite and infinite trees. In
Proceedings of the International Conference on Fifth Generation Computer
Systems (FGCS’84), pages 85-99, Tokyo, Japan, 1984. ICOT.

A. Colmerauer. An introduction to Prolog-II1. Communications of the ACM,
33(7):69-90, 1990.

A. Cortesi, B. Le Charlier, and S. Rossi. Specification-based automatic ver-
ification of Prolog programs. In J. P. Gallagher, editor, Logic Programming
Synthesis and Transformation: Proceedings of the 6th International Workshop,

26

[33]

[34]

[35]

volume 1207 of Lecture Notes in Computer Science, pages 3857, Stockholm,
Sweden, 1997. Springer-Verlag, Berlin.

A. Cortesi and G. Filé. Sharing is optimal. Journal of Logic Programming,
38(3):371-386, 1999.

A. Cortesi, G. Filé, and W. Winsborough. Prop revisited: Propositional for-
mula as abstract domain for groundness analysis. In Proceedings, Sixzth Annual
IEEFE Symposium on Logic in Computer Science, pages 322—-327, Amsterdam,
The Netherlands, 1991. IEEE Computer Society Press.

A. Cortesi, G. Filé, and W. Winsborough. The quotient of an abstract in-
terpretation for comparing static analyses. Theoretical Computer Science,
202(1&2):163-192, 1998.

A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Combinations of abstract
domains for logic programming: Open product and generic pattern construc-
tion. Science of Computer Programming, 38(1-3):27-71, 2000.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Proceedings of the Fourth Annual ACM Symposium on Principles of Program-
ming Languages, pages 238-252, 1977.

P. Cousot and R. Cousot. Abstract interpretation and applications to logic
programs. Journal of Logic Programming, 13(2&3):103-179, 1992.

P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of
Logic and Computation, 2(4):511-547, 1992.

L. Crnogorac, A. D. Kelly, and H. Sgndergaard. A comparison of three occur-
check analysers. In R. Cousot and D. A. Schmidt, editors, Static Analysis:
Proceedings of the 3rd International Symposium, volume 1145 of Lecture Notes
in Computer Science, pages 159-173, Aachen, Germany, 1996. Springer-Verlag,
Berlin.

P. W. Dart. On derived dependencies and connected databases. Journal of
Logic Programming, 11(1&2):163-188, 1991.

S. Debray and N.-W. Lin. Cost analysis of logic programs. ACM Transactions
on Programming Languages and Systems, 15(5):826-875, 1993.

P. R. Eggert and K. P. Chow. Logic programming, graphics and infinite terms.
Technical Report UCSB DoCS TR 83-02, Department of Computer Science,
University of California at Santa Barbara, 1983.

G. Erbach. ProFIT: Prolog with Features, Inheritance and Templates. In
Proceedings of the 7th Conference of the Furopean Chapter of the Association
for Computational Linguistics, pages 180-187, Dublin, Ireland, 1995.

M. Filgueiras. A Prolog interpreter working with infinite terms. In Campbell
[11], pages 250-258.

F. Giannesini and J. Cohen. Parser generation and grammar manipulation
using Prolog’s infinite trees. Journal of Logic Programming, 3:253—-265, 1984.

27

[36]

[37]

[38]

39]

[43]

[44]

[45]

[46]

[47]

W. Hans and S. Winkler. Aliasing and groundness analysis of logic programs
through abstract interpretation and its safety. Technical Report 92—27, Tech-
nical University of Aachen (RWTH Aachen), 1992.

S. Haridi and D. Sahlin. Efficient implementation of unification of cyclic struc-
tures. In Campbell [11], pages 234-249.

M. Hermenegildo, F. Bueno, G. Puebla, and P. Lépez. Program analysis,
debugging, and optimization using the ciao system preprocessor. In D. De
Schreye, editor, Logic Programming: The 1999 International Conference, MIT
Press Series in Logic Programming, pages 52-66, Las Cruces, New Mexico,
1999. The MIT Press.

P. M. Hill, R. Bagnara, and E. Zaffanella. The correctness of set-sharing. In
G. Levi, editor, Static Analysis: Proceedings of the 5th International Sympo-
stum, volume 1503 of Lecture Notes in Computer Science, pages 99-114, Pisa,
Ttaly, 1998. Springer-Verlag, Berlin.

P. M. Hill, R. Bagnara, and E. Zaffanella. Soundness, idempotence and commu-
tativity of set-sharing. Theory and Practice of Logic Programming, 2(2):155—
201, 2002.

P. M. Hill, E. Zaffanella, and R. Bagnara. A correct, precise and efficient
integration of set-sharing, freeness and linearity for the analysis of finite and
rational tree languages. Submitted for publication. Available at http://www.
cs.unipr.it/“bagnara/.

P. M. Hill, E. Zaffanella, and R. Bagnara. A correct, precise and efficient
integration of set-sharing, freeness and linearity for the analysis of finite and
rational tree languages. Quaderno 273, Dipartimento di Matematica, Univer-
sita di Parma, 2001. Available at http://www.cs.unipr.it/Publications/.
Also published as technical report No. 2001.22, School of Computing, Univer-
sity of Leeds, U.K.

ISO/IEC. ISO/IEC 13211-1: 1995 Information technology — Programming
languages — Prolog — Part 1: General core. International Standard Organi-
zation, 1995.

D. Jacobs and A. Langen. Accurate and efficient approximation of variable
aliasing in logic programs. In E. L. Lusk and R. A. Overbeek, editors, Logic
Programming: Proceedings of the North American Conference, MIT Press Se-
ries in Logic Programming, pages 154-165, Cleveland, Ohio, USA, 1989. The
MIT Press.

D. Jacobs and A. Langen. Static analysis of logic programs for independent
AND parallelism. Journal of Logic Programming, 13(2&3):291-314, 1992.

J. Jaffar, J-L. Lassez, and M. J. Maher. Prolog-II as an instance of the logic
programming scheme. In M. Wirsing, editor, Formal Descriptions of Program-
ming Concepts III, pages 275-299. North-Holland, 1987.

T. Keisu. Tree Constraints. PhD thesis, The Royal Institute of Technology,
Stockholm, Sweden, May 1994. Also available in the SICS Dissertation Series:
SICS/D-16-SE.

28

[48]

[49]

A. King. Pair-sharing over rational trees. Journal of Logic Programming,
46(1-2):139-155, 2000.

N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. TermiLog: A system for check-
ing termination of queries to logic programs. In O. Grumberg, editor, Com-
puter Aided Verification: Proceedings of the 9th International Conference, vol-
ume 1250 of Lecture Notes in Computer Science, pages 444-447, Haifa, Israel,
1997. Springer-Verlag, Berlin.

M. J. Maher. Complete axiomatizations of the algebras of finite, rational and
infinite trees. In Proceedings, Third Annual Symposium on Logic in Computer
Science, pages 348-357, Edinburgh, Scotland, 1988. IEEE Computer Society.

K. Marriott and H. Sgndergaard. Notes for a tutorial on abstract interpreta-
tion of logic programs. North American Conference on Logic Programming,
Cleveland, Ohio, USA, 1989.

K. Marriott and H. Sgndergaard. Precise and eflicient groundness analysis
for logic programs. ACM Letters on Programming Languages and Systems,
2(1-4):181-196, 1993.

K. Mukai. Constraint Logic Programming and the Unification of Information.
PhD thesis, Department of Computer Science, Faculty of Engineering, Tokio
Institute of Technology, 1991.

U. Neumerkel and F. Mesnard. Localizing and explaining reasons for non-
terminating logic programs with failure-slices. In G. Nadathur, editor, Princi-
ples and Practice of Declarative Programming, volume 1702 of Lecture Notes in
Computer Science, pages 328-341, Paris, France, 1999. Springer-Verlag, Berlin.

C. Pollard and 1. A. Sag. Head-Driven Phrase Structure Grammar. University
of Chicago Press, Chicago, 1994.

V. Santos Costa, L. Damas, R. Reis, and R. Azevedo. YAP User’s Manual.
Universidade do Porto, version 4.3.20 edition, 2001.

E. Schroder. Der Operationskreis des Logikkalkuls. B. G. Teubner, Leibzig,
1877.

F. Scozzari. Abstract domains for sharing analysis by optimal semantics. In
J. Palsberg, editor, Static Analysis: 7th International Symposium, SAS 2000,
volume 1824 of Lecture Notes in Computer Science, pages 397-412, Santa
Barbara, CA, USA, 2000. Springer-Verlag, Berlin.

Gert Smolka and Ralf Treinen. Records for logic programming. Journal of
Logic Programming, 18(3):229-258, 1994.

H. Sgndergaard. An application of abstract interpretation of logic programs:
Occur check reduction. In B. Robinet and R. Wilhelm, editors, Proceedings of
the 1986 Furopean Symposium on Programming, volume 213 of Lecture Notes
in Computer Science, pages 327-338. Springer-Verlag, Berlin, 1986.

29

[61] R. F. Stark. Total correctness of pure Prolog programs: A formal approach. In
R. Dyckhoff, H. Herre, and P. Schroeder-Heister, editors, Fxtensions of Logic
Programming: Proceedings of the 5th International Workshop, volume 1050 of
Lecture Notes in Computer Science, pages 237-254, Leipzig, Germany, 1996.
Springer-Verlag, Berlin.

[62] R. F. Stark. The theoretical foundations of LPTP (a Logic Program Theorem
Prover). Journal of Logic Programming, 36(3):241-269, 1998.

[63] Swedish Institute of Computer Science, Intelligent Systems Laboratory. SIC-
Stus Prolog User’s Manual, release 3.9 edition, 2002.

[64] E. Zaffanella. Correctness, Precision and Efficiency in the Sharing Analysis of
Real Logic Languages. PhD thesis, School of Computing, University of Leeds,
Leeds, U.K., 2001. Available at http://www.cs.unipr.it/ zaffanella/.

[65] E. Zaffanella, P. M. Hill, and R. Bagnara. Decomposing non-redundant sharing
by complementation. Theory and Practice of Logic Programming, 2(2):233—
261, 2002.

APPENDIX A: AN INSTANCE OF THE PARAMETER DOMAIN P

As discussed in Section 4, several abstract domains for sharing analysis can
be used to implement the parameter component P. We here consider the abstract
domain SFL [41, 64], integrating the set-sharing domain of Jacobs and Langen with
definite freeness and linearity information.

DEFINITION 35. (The set-sharing domain SH.) The set SH is defined by

sH p(SG), where SG & p(VI)\ {@} is the set of sharing groups. SH is

ordered by subset inclusion.

The information about definite freeness and linearity is encoded by two sets of
variables, one for each property.

DEFINITION 36. (The domain SFL.) Let F % o(VI) and L % o(VI) be par-

tially ordered by reverse subset inclusion. The domain SFL is defined by the Carte-

sian product SFL 4 SH x F x L ordered by <g’, the component-wise extension of

the orderings defined on the sub-domains; the bottom element is 1 g def (@, VI, VI).
In the next definition we introduce a few well-known operations on the set-

sharing domain SH. These will be used to define the operations on the domain
SFL.

DEFINITION 37. (Abstract operators on SH.) For each sh € SH and each
V C VI, the extraction of the relevant component of sh with respect to V' is given
by the function rel: p(VI) x SH — SH defined as

rel(V,sh) € {Sesh| SNV £o}.

For each sh € SH and each V C VI, the function rel: p(VI) x SH — SH gives
the irrelevant component of sh with respect to V. It is defined as
rel(V, sh) % sh\ rel(V, sh).

30

The function (-)*: SH — SH, called star-union, is given, for each sh € SH, by

sh*def{SeSG ‘ In>1.3T,....,T,esh.S= UT}
i=1
For each shy, sho € SH, the function bin: SH x SH — SH, called binary union,
is given by
bin(shy, sha) < { S, U S, | Sy € shy, Ss € shy }.

For each sh € SH and each (z + t) € Bind, the function cyclicl: SH — SH
strengthens the sharing set sh by forcing the coupling of © with t:

€

cyclict, (sh) o rel({z} Uvars(t), sh) Urel(vars(t) \ {z}, sh).

For each sh € SH and each x € VI, the function projgy: SH x VI — SH
projects away variable x from sh:

projgy (sh,z) = {{x}}U{S\{mHSGsh S #{x}}.

It is now possible to define the implementation, on the domain SFL, of all the
predicates and functions specified in Definition 8.

DEFINITION 38. (Abstract operators on SFL.) For each d € SFL and s,t €
HTerms, where d = (sh, f,1) and vars(s) U vars(t) C VI, let sh, = rel(vars(s), sh)
and shy = rel(vars(t), sh). Then

def

indg(s,t) = (sh N shy =)

ground ;(¥) = (Vars) € VI \ vars(sh));

occling(y,t) ef ground ;(y) V <occ,lin(y7t) Ay €l)

AVz € vars(t) : (y #* 2z = indd(y,z)));

share_ling(s, t) = Vy € vars(shs N shy) :
y € vars(s) = occ.ling(y, s)
Ay € vars(t) = occling(y,t);

freeq(t) Ly evr. (y=t)A(y € f);
gfree () dﬁf round ;(¢) V freeq(t);
ling (¢) defy y € vars(t) : occling(y, t);
orling(s,t) M in a(s) Vling(t);
share_same_var (s, t) e va rs(shs N she);
share_with,(t) 4 Ga rs(shy).

The function amgug: SFL x Bind — SFL captures the effects of a binding
on an element of SFL. Let d = (sh, f,1) € SFL and (x — t) € Bind, where
{z} Uvars(t) C VI. Let also

sh! & cyclicl, (sh_ U sh”),

31

where

shy & rel({z}, sh), shy % rel (vars(t), sh),
sht def shy N shy, sh_ rTzl({x} U vars(t), sh),
bin(shy, sht), if freeq(x) V freeq(t);

bin (sh, U bin(shg, shy,),
she Ubin(shy, shy,)), if ling(z) Aling(t);

sh" <!
bin(sh}, shy), if ling(z);
bin(sh,, shy), if ling (t);
bin(sh}, shy), otherwise.

Letting Sy 2 share_with,(x) and St def share_with4(t), we also define

/s if freeq(x) A freeq(t);
s def f\ Sa, if freeq();
) f \ Si, if freeq(t);

F\(SzUSy), otherwise;
= (VI \ vars(sh')) U f/Ul",

where
I\ (Sz NSy, ifling(x) Aling(t);
l// dﬁf l \ S;E7 Zf lind(x);
l \ Sta Zf hnd(t);
I\ (SzUS:), otherwise.
Then

amgug (d, x +— t) s f,0).
The function projg: SFL x VI — SFL correctly captures the operation of pro-
jecting away a variable from an element of SFL. For each d € SFL and xz € VI,

projs(d, z) def ls, ifd=_Llg;
S (projgp (sh,x), fU{z},lU{z}), if d=(sh,f.1) # Ls.

Observe that a set-sharing domain such as SFL is strictly more precise for term
finiteness information than a pair-sharing domain such as SFLy [41, 64] (where
the set-sharing component SH in SFL is replaced by the domain PSD as defined
in [4, 65]). To see this, consider the abstract evaluation of the binding # — y and the
description (h, d) € Hx SFL, where h = {x,y, 2z} and d = (sh, f,1) is such that sh =
{{z, v}, {z, 2}, {y,2}}, f = @ and | = {2,y, z}. Then z ¢ share_same_vary(z,y) so
that we have b’ = {z}. In contrast, when using a pair sharing domain such as SFL
the element d is equivalent to d’ = (sh’, f, 1), where sh’ = shu{{x, Y, z}} Hence we
have z € share_same_vary (x,y) and b’ = &. Thus, in sh the information provided
by the sharing group {z,y,z} is redundant for the pair-sharing and groundness
properties, but not redundant for term finiteness. Note that the above observation

32

holds regardless of the pair-sharing variant considered, so that similar examples can
be obtained for ASub [14, 60] and Sh”*" [58].

Although the domain SFL described here is very precise and used to implement
the parameter component P for computing our experimental results, it is not in-
tended as the target of the generic specification given in Definition 8; more powerful
sharing domains can also satisfy this schema, including all the enhanced combina-
tions considered in [6, 7]. For instance, as the predicate gfree; defined on SFL
does not fully exploit the disjunctive nature of its generic specification gfree,, the
precision of the analysis may be improved by adding a domain component explic-
itly tracking ground-or-freeness, as proposed in [6, 7]. The same argument applies
to the predicate or_ling, with respect to or_lin,, when considering the combination
with the groundness domain Pos.

APPENDIX B: PROOFS OF THE STATED RESULTS

This appendix provides the proofs of the results stated in the paper. Section B.1
introduces the notations and preliminary concepts that are subsequently used in the
proofs. In Section B.2 we recall few general results holding for (syntactic) equality
theories and provide the proof of Proposition 2. The definition of (strongly) variable
idempotent substitutions is given in Section B.3, together with some properties
holding for them; these are then used in Section B.4 to prove some general results
on operators on substitutions in RSubst, Propositions 13 and 15. Section B.4 is
propaedeutic to Section B.5, where we prove Theorem 17 and to Section B.6, where
we provide the proofs of Theorems 19 and 21. Results in Section B.4 are then used
in Section B.7 to prove Theorems 23, 25 and 27, and in Section B.8 to prove
Theorems 30 and 34.

B.1. Notations and Preliminaries for the Proofs

To simplify the expressions in the paper, any variable in a formula that is not
in the scope of an explicit quantifier is assumed to be universally quantified.

A path p € (N\ {O})* is any finite sequence of non-zero natural numbers. The
empty path is denoted by €, whereas i.p denotes the path obtained by concatenating
the sequence formed by the natural number i # 0 with the sequence of the path
p. Given a path p and a (possibly infinite) term ¢ € Terms, we denote by t[p] the
subterm of ¢ found by following path p. Formally,

t[p]:{t if p=ce;

tilg) fp=i.qN(A<i<n)At=f(t1,...,tn).

Note that t[p] is only defined for those paths p actually corresponding to subterms
of t.
The function size: HTerms — N is defined, for each ¢t € HTerms, by

size(t) def {

1, if t € Vars;
1+ >0 size(t;), ift= f(t1,...,t,), where n > 0.

A substitution o is idempotent if, for all t € HTerms, we have too = to. The
set of all idempotent substitutions is denoted by ISubst and ISubst C RSubst.

33

If t € HTerms, we denote the set of variables that occur more than once in ¢
by:
nlvars(t) e {y € vars(t) | ~occlin(y,) }.

If 5= (s1,...,8,) € HTerms" and t = (t1,...,t,) € HTerms" are two tuples of
finite terms, then we let 5 = ¢ denote the set of equations between corresponding
components of 5 and ¢. Namely,

G=D%{si=t;|1<i<n}.

Moreover, we overload the functions mvars, occ_lin and nlvars to work on tuples of
terms; thus, we will say that 5 is linear if and only if nlvars(s) = @.

B.1.1. Equality Theories

Let {s,t,81,---,8n,t1,---,tm} € HTerms. We assume that any equality theory
T over Terms includes the congruence axioms denoted by the following schemata:

s=s, (6)

s=tet=s, (7)
r=sAs=t—r=t, (8)

S1=t1 N ANsp=tn — f(s1,...,80) = f(t1,...,tn). (9)

In logic programming and most implementations of Prolog it is usual to assume
an equality theory based on syntactic identity. This consists of the congruence
axioms together with the identity azioms denoted by the following schemata, where
f and g are distinct function symbols or n # m:

f(Sl,...,Sn) = f(tl,...,tn) — S1 :tl /\"'/\Sn Ztn, (10)
~(f(s1 0 80) = gt tm)). (11)

The axioms characterized by schemata (10) and (11) ensure the equality theory de-
pends only on the syntax. The equality theory for a non-syntactic domain replaces
these axioms by ones that depend instead on the semantics of the domain and, in
particular, on the interpretation given to functor symbols.

The equality theory of Clark [13] on which pure logic programming is based,
usually called the Herbrand equality theory and denoted F7, is given by the con-
gruence axioms, the identity axioms, and the axiom schema

Vz € Vars :Vt € (HTerms \ Vars) : z € vars(t) — —(z = t). (12)

Axioms characterized by the schema (12) are called the occurs-check azioms and
are an essential part of the standard unification procedure in SLD-resolution.

An alternative approach used in some implementations of Prolog, does not re-
quire the occurs-check axioms. This approach is based on the theory of rational
trees R7 [18, 19]. It assumes the congruence axioms and the identity axioms
together with a wuniqueness axiom for each substitution in rational solved form.
Informally speaking these state that, after assigning a ground rational tree to each
parameter variable, the substitution uniquely defines a ground rational tree for each
of its domain variables.

34

In the sequel we will use the expression “equality theory” to denote any con-
sistent, decidable theory T satisfying the congruence axioms. We will also use the
expression “syntactic equality theory” to denote any equality theory T also satis-
fying the identity axioms.'* Note that both F7 and R7 are syntactic equality
theories. When the equality theory T is clear from the context, it is convenient to
adopt the notations 0 = 7 and ¢ <= 7, where o, 7 are sets of equations, to
denote T V(o — 7) and T F V(o < 1), respectively.

Given an equality theory T, and a set of equations in rational solved form o,
we say that o is satisfiable in T if T+ VVars \ dom(o) : 3dom(o) . o.

Given a satisfiable set of equations e € p¢(Fgs) in an equality theory T, then a
substitution ¢ € RSubst is called a solution for e in T if o is satisfiable in T' and
T+ V(o — e). If vars(o) C vars(e), then o is said to be a relevant solution for e.
In addition, o is a most general solution for e in T if T+ V(o < ¢). In this paper,
the set of all the relevant most general solution for e will be denoted by mgs(e).

Observe that, given an arbitrary equality theory T, a set of equations in rational
solved form may not be satisfiable in T'. For example, Jx . {w =f (x)} is false in
the Clark equality theory. However, by the uniqueness axioms, any set of equations
in rational solved form is satisfiable in R7 .

B.2. Properties of Equality Theories

LEMMA 39. Let 0 € RSubst and {x — t} € RSubst be both satisfiable in the

equality theory T, where x ¢ dom(o) and vars(t) N dom(c) = @. Define also

o ¥su {z — t}. Then o’ € RSubst and o' is satisfiable in T.

Proof. Note that o' is a substitution, since o € RSubst and z ¢ dom(o).
Moreover, as vars(t) N dom(o) = @, ¢’ cannot contain circular subsets. Hence,
o’ € RSubst.

Since both ¢ and {x + t} are satisfiable in T, we have

T+ VVars \ dom(o) : 3dom(o) . o,
THVVars\ {z}: 3z . {x =t}.

Letting V = Vars \ (dom(c) U {z}), we can rewrite these as

TFVV :Vz:3dom(o) . o, (13)
TEVV :Vdom(o) : 3z . {z =t}. (14)

Then, as vars(x = t) Ndom(c) = @, it follows from (14) that
THEVV :3z. {z=t}.
Combining this with (13) gives

THYV: ((Vx :ddom(c) . o) A Bz . {z = t}))

14 Note that, as a consequence of axiom (11) and the assumption that there are at least two
distinct function symbols in the language, one of which is a constant, there exist two terms
a1,a2 € GTerms N HTerms such that, for any syntactic equality theory T', we have T F a1 # as.

35

Thus we have

TEYV :3z. (3dom(o) . o A{z =t}),
and hence, as vars(z = t) Ndom(o) = &,

THYV :3z.3dom(o) . (o A{z =t}).
Therefore,

THVYV :3(dom(o) U{z}) .o U{z =1t}
Thus o’ is satisfiable in T.

COROLLARY 40. Suppose T is an equality theory, o € RSubst is satisfiable in

T, x € Vars\dom(o), andt € HTermsNGTerms. Then, T of oU{x — t} € RSubst
and T is satisfiable in T.

LEMMA 41. Assume T is an equality theory and o € RSubst. Then, for each
t € HTerms,
THY(oc— (t=to)).

Proof. Proved in [40, Lemma 2].

LEMMA 42. Assume T is an equality theory and o € RSubst. Then, for each
s,t € HTerms,
THY(cU{s=1t} - oU{s=to}).

Proof. First, note, using the congruence axioms (7) and (8), that, for any terms
p,q,r € HTerms,

TEY(p=qghq=r1)=Yp=rAqg=r). (15)

Secondly note that, using Lemma 41, for any substitution 7 € RSubst and term
r € HTerms, T +V(r — (r = r7)). Thus

THEY(reTU{r=rr}). (16)

Using these results, we obtain

THY(cU{s=1t} > oU{s=tt=to}), [by (16)]
THY(cU{s=1t} < oU{s=to,t=to}), [by (15)]
THY(cU{s=1t} - oU{s=to}). [by (16)]

LEMMA 43. Let o € RSubst and s,t € HTerms, where RT V(o — (s = t)).
Then rt(s,0) = rt(t, o).

Proof. We suppose, towards a contradiction, that rt(s,o) # rt(t,o). Then,
there must exist a finite path p such that:

a. x =r1t(s,0)[p] € Vars\ dom(o), y = rt(t,0)[p] € Vars\ dom(c) and z # y; or

36

b. x =rt(s,0)[p] € Vars \ dom(o) and r = rt(t,0)[p] ¢ Vars or, symmetrically,
r =rt(s,0)[p] ¢ Vars and = = rt(t,o)[p] € Vars \ dom(c); or

c. . =rt(s,0)[p] ¢ Vars, ro = rt(t,0)[p] ¢ Vars and r; and ro have different
principal functors.

Then, by definition of ‘rt’, there must exists an index ¢ € N such that one of these
holds:

1. z = so'lp] € Vars \ dom(o), y = to'[p] € Vars \ dom(c) and = # y; or

2. x = so'lp] € Vars \ dom(c) and r = toi[p] ¢ Vars or, in a symmetrical way,
r = so'[p] ¢ Vars and x = to'[p] € Vars \ dom(c); or

3. 11 = so'[p] ¢ Vars and ry = to'[p] ¢ Vars have different principal functors.

By Lemma 41, we have R7 + V(o — (so® = to")); from this, since RT is a
syntactic equality theory, we obtain that

RT -V (o — (so'[p] = to’[p])). (17)

We now prove that each case leads to a contradiction.

Consider case 1. Let r1,72 € GTerms N HTerms be two terms having different
principal functors, so that R7 + V(r; # r3). Then, by Lemma 39, we have that
o' = ocU{x — 11,y — o} € RSubst is satisfiable and also RT F V(¢! — o),
RT + V(o' — (z =r1)), RT FVY(o/ — (y = r2)). This is a contradiction, since,
by (17), we have RT -V (o — (z =y)).

Consider case 2. Without loss of generality, consider the first subcase, where
r = sot and r = tolp] ¢ Vars. Let ' € GTerms N HTerms be such that r
and r’ have different principal functors, so that R7 F V(r # 7). By Lemma 39,
o' = o U{x — 1’} € RSubst is satisfiable; we also have that RT + V(¢ — o) and
RT V(o' — (& =1")). This is a contradiction as, by (17), RT bV (o — (z =r)).

Finally, consider case 3. In this case R7 F V(r1 # r2). This immediately leads
to a contradiction, since, by (17), RT V(o — (r1 =73)).

LEMMA 44. Let T be a syntactic equality theory. Let s € HTerms N GTerms
and t € HTerms be such that size(t) > size(s). Then T V(s # t).

Proof. By induction on m = size(s). For the base case, when m = 1, we have
that s is a term functor of arity 0. Since size(t) > 1, then ¢t = f(¢1,...,t,), where
n > 0. Then, by the identity axioms, we have T F V(s # t).

For the inductive case, when m > 1, assume that the result holds for all
m’ < m and let s = f(s1,...,5,), where n > 0. Since size(t) > m, we have
t=f'(t1,...,tn), where n’ > 0. If f # f" or n # n’ then, by the identity axioms,
we have T+ V(s # t). Otherwise, let f = f’ and n = n’. Note that, for all
i € {1,...,n}, we have size(s;) < m. Also, there exists an index j € {1,...,n}
such that size(t;) > size(s;). By the inductive hypothesis, T'F V(s; # ¢;) so that,
by the identity axioms, T F V(s #t).

Proof of Proposition 2 on page 7. We have the following chain of double

37

implications

T€|lo < Jo' € RSubst . T € mgs(c Uo’)
<= 3o’ € RSubst . RT -Y(1 < (0 Ud"))
<= Jo’ € RSubst .

RT + (V(T — o) AY(T — o)
AY((cUd’) —>7'))
< RT FVY(r — o).

Note that the left implication in the last step is obtained by taking o’/ = 7.

B.3. Variable-Idempotence

In [40], (weak) variable-idempotent substitutions were introduced as a subclass
of substitutions in rational solved form in order to allow a more convenient rea-
soning about the sharing of variables for possibly non-idempotent substitutions.
In [39] a stronger definition was used, taking into consideration also the variables
in the domain of the substitution. Strong variable-idempotence is a useful concept
when dealing with the finiteness of a rational term and the multiplicity of variables
occurring in it (e.g., when linearity is a property of interest). In the following we
consider this stronger definition, also adopted in [41, 64].

DEFINITION 45. (Variable-idempotence.) A substitution o € RSubst is said
to be (strongly) variable-idempotent if and only if for all t € HTerms we have

vars(too) = vars(to).
The set of variable-idempotent substitutions is denoted VSubst.

Note that we have ISubst C VSubst C RSubst.

DEFINITION 46. (S-transformation.) The relation +%, C RSubst x RSubst,
called S-step, is defined by

(r—1t)eo (y—s)€o x;éy'
7 S (o \ (g $1) Uy e sl 01}

If we have a finite sequence of S-steps o1 LN on mapping o1 to oy, then

we write o S oy and say that o1 can be rewritten, by S-transformation, to o,.

The following theorems show that considering substitutions in VSubst is not a
restrictive hypothesis.

THEOREM 47. Suppose o € RSubst and o 5% o' Then we have o' € RSubst,
dom(c) = dom(o’), and vars(c) = vars(c’). Moreover, if T is any equality theory,
we have T + V(o < o).

Proof. Proved in [40, Theorem 1].

THEOREM 48. Suppose o € RSubst. Then there exists ' € VSubst such that
oSt g and, for all T C o', 7 € VSubst.

38

Proof. The proof is the same given for [40, Theorem 2], where a weaker result,
using weak variable-idempotence, was stated.

THEOREM 49. Let T be an equality theory and o € RSubst. Then there exists
o’ € VSubst such that dom(o) = dom(c’), vars(c) = vars(c’), T + V(o < ¢’) and
for all T C o', 7 € VSubst.

Proof. The result easily follows from Theorems 47 and 48.

B.4. Some Results on Operators on Substitutions in RSubst

When computing hvars(c) by means of the fixpoint computation given in Defi-
nition 11 on page 13, the fixpoint is reached after a single iteration if o € VSubst.

LEMMA 50. For each o € VSubst we have hvars(o) = hvars; (o).

Proof. We show that hvarsy(o) C hvarsi(c). Let y € hvarsa(o). By Defini-
tion 11, we have two cases:

1. if y € hvarsy (o) then there is nothing to prove;

2. assume now y € dom(c) and vars(yo) C hvars; (o). By Definition 11, we have
two subcases:
(a) vars(yo) C Vars \ dom(o).
Then vars(yo) C hvarsy(o), so that y € hvars; (0);
(b) V = vars(yo) Ndom(o) # & and, for all z € V, vars(zo) Ndom(o) = &.
Let z € V so that z € vars(yo). By hypothesis, we have o € VSubst
so that z € vars(yoo). As z € dom(o) and vars(zo) Ndom(o) = &,

z ¢ vars(zo). This means that z ¢ vars(yoo), which is a contradiction
since o € VSubst.

PROPOSITION 51. For each o € VSubst, we have
hvars(o) = { y € Vars | vars(yo) Ndom(o) = @ }.

Proof. The result is obtained by applying Lemma 50 and then unfolding Defi-
nition 11.

PROPOSITION 52. Let o € VSubst and r € HTerms, where vars(r) C hvars(o).
Then

rt(r, o) = ro,
vars(ro) Ndom(o) = @.

Proof. Suppose y € vars(r). Then, by Proposition 51, vars(yo) N dom(c) = @.
Thus, for any i > 0, we have yo' = yo € HTerms. Thus rt(y,0) = yo. As this
holds for all y € vars(r), it follows that rt(r,o) = ro and vars(ro)Ndom(c) = &. 1

PROPOSITION 53. Let 0 € RSubst andt € HTerms. Then

vars(rt(t,o))Ndom(c) = &, (53a)
1t(t,0) € HTerms <= 3i € N.1t(t,0) = to'. (53b)

39

Proof.

(53a) Let = € dom(o) and, towards a contradiction, suppose x € Vars(rt(t, 0)).
Thus, there exists a finite path p such that = rt(¢,0)[p]. Thus, by definition of
‘rt’, there exists an index i € N such that x = o*(¢)[p]. Since z € dom(o), then
T # xo, so that © # o'T1(¢)[p]. Also note that, being ¢ € RSubst, o contains no
circular subsets, so that we have z # 07 (t)[p], for each index j > i. This implies
x # 1t(t, 0)[p], which is a contradiction. Since no such finite path p can exist, we
can conclude z ¢ vars(rt(t,0)).

(53b) Since substitutions map finite terms into finite terms, a finite number of
applications cannot produce an infinite term, so that the left implication holds.
Proving the right implication by contraposition, suppose that rt(t, o) # to', for all
i € N. Then, by definition of ‘rt’, we have to® # to'*!, for all i € N. Letting
n € N be the number of bindings in ¢ € RSubst, for all i € N we have that
size(to') < size(to'™™), because o has no circular subsets. Thus rt(t, o) ¢ HTerms,
because there is no finite upper bound to the number of function symbols occurring
inrt(t,o).

The following proposition shows that, for a substitution o € VSubst, the finite-
ness operator precisely captures the intended property.

PROPOSITION 54. Let o € VSubst and y € Vars. Then
rt(y,0) € HTerms <= 1y € hvars(o).

Proof. Since o € VSubst, by Proposition 51 we have y € hvars(o) if and only if
vars(yo) Ndom(o) = &.

Let vars(yo) Ndom(c) = @. Then, for any i > 0, we have yo' = yo € HTerms.
Hence rt(y,0) = yo € HTerms.

In order to prove the other inclusion, let now rt(y,o) € HTerms. By Proposi-
tion 53, there exists an i € N such that rt(y, o) = yo! and vars(yo’) Ndom(c) = &.
Since o € V Subst, we have vars(yo') = vars(yo), so that vars(yo)Ndom(c) = @.

The following proposition is proved in [40], and shows that the function ‘gvars’
precisely captures the intended property.

PROPOSITION 55. Let o € RSubst and x € Vars. Then

y € gvars(o) <= rt(y,0) € GTerms.
The following results is a consequence of Proposition 54 and Proposition 55.
COROLLARY 56. Let 0 € RSubst and t € HTerms. Then

vars(t) C gvars(o) < rt(t,0) € GTerms, (56a)

vars(t) C hvars(o) <= rt(t,0) € HTerms. (56b)

Proof of Proposition 15 on page 14. We prove the two statements (15a) and
(15b), one at a time.

(15a). Suppose z € hvars(7) \ hvars(o). Then, by Proposition 54, we have that

rt(x,7) € HTerms. By Proposition 53, there exists i € N such that rt(z,7) = 27
and also vars(x7?) Ndom(7) = @. Let t € GTerms N HTerms and

v {y—tlye vars(z7') }.

40

Then, by Lemma 39, 7/ 4 - Uwv € RSubst is satisfiable. Moreover, we have

that 277’ € GTerms N HTerms. Define now n % size(z7i7'). Note that, since
x ¢ hvars(o), 1t(z,0) ¢ HTerms, then there exists j € N such that size(zo?) > n.
Therefore, by Lemma 44,

RT -V (xr'r’ # x07). (20)
Also, by Lemma 41, R7 + V(a - (z = xaj)) and R7T + V(T - (z = xrz))
By definition, 7/ € | 7 and, by hypothesis, 7 € | o, so that 7 € | 0. Thus, by
Proposition 2 and transitivity, we have R7 F V(T’ — (27° = x07)) Applying
Lemma 41, we obtain RT + V(7 — (a7'7’ = z¢7)), which contradicts (20).

(15b). Suppose x € hvars(o) N gvars(c). Then, by Propositions 54 and 55,
rt(x,0) € GTerms N HTerms. Thus, by case (53b) of Proposition 53, there exists
i € N such that rt(z,0) = xo® and also vars(zo?) = @. Thus rt(zo?,7) = zo'.
Since by hypothesis we have 7 € | o, by Lemma 41 and transitivity we obtain
that RT + V(7 — (z = zo")). Thus, by Lemma 43, rt(z,7) = rt(zo’,7) = zo'.
Therefore, by Propositions 54 and 55, x € gvars(7) N hvars(r).

In order to prove Proposition 13, i.e., to show that the finiteness operator pre-
cisely captures the intended property even for arbitrary substitutions in RSubst,
we now prove that this operator is invariant under the application of S-steps.

LEMMA 57. For each m > 0, we have hvars,,_1(o) C hvars,, (o).

Proof. Straightforward by Definition 11. 1

LEMMA 58. Let 0,0’ € RSubst where o -5 o' Then hvars(o) = hvars(c’).

Proof. Let (x +— t),(y — s) € o, where x # y, such that

o' =(c\{y—s})U{y— s{z—t}}.

If ¢ vars(s) then we have 0 = ¢’ and the result trivially holds. Thus, we assume
x € vars(s). We prove the two inclusions separately.

In order to prove hvars(c) C hvars(o’) we show, by induction on m > 0, that
we have

hvars,, (o) C hvars,,(d").
For the base case, when m = 0, by Theorem 47 we have dom(c) = dom(c”) so that

hvarsg(o) = Vars \ dom(o)
= Vars \ dom(o”")
= hvarsgy(o”).
For the inductive step, when m > 0, assume hvars,,_1(c) C hvars,,_1(c’) and let
z € hvars,, (o). By Definition 11, we have two cases: if z € hvars,,_1(o) then the

result follows by a straight application of the inductive hypothesis; otherwise, we
have

z € dom(o) A vars(zo) C hvars,,—1(0).

41

Now, if z # y we have zo = z0’, so that, by Theorem 47 and the inductive
hypothesis we have

z € dom(a’) A vars(zo') C hvars,, 1(c’),

so that, by Definition 11, z € hvars,,(c’). Otherwise, if z = y, then
vars(zo) = vars(s)
C hvars,,—1(0).
Since, by hypothesis, x € vars(s),
vars(zo') = vars(s{z — t})

= (vars(s) \ {z}) U vars(t),

and we need to show vars(zo’) C hvars,,_1(c’). By the inductive hypothesis we
have

vars(s) C hvars,, _1(o’);

Note that, since x € vars(s), it follows x € hvars,,_1(0’) so that, by Definition 11
and Lemma 57,

vars(t) C hvars,,_2(c”)
C hvars,,_1(0").

In order to prove hvars(c) D hvars(o’) we show, by induction on m > 0, that
we have

hvars,, +1(co) 2 hvars,,(o’).
For the base case, when m = 0, by Lemma 57 and Theorem 47 we have

hvars; (o) 2 hvarsy (o)
= Vars \ dom(o)
= Vars \ dom(o”")

= hvarsy(o”).

For the inductive step, when m > 0, assume hvars,, (o) 2 hvars,,—1(c’) and let
z € hvars,,(o’). By Definition 11, we have two cases: if z € hvars,,_1(¢’) then the
result follows by the inductive hypothesis and Lemma 57; otherwise, we have

z € dom(o’) A vars(zo') C hvars,,_1(o’).

Now, if 2 # y we have zo = zo¢’, so that, by Theorem 47 and the inductive
hypothesis we have

z € dom(o) A vars(zo) C hvars,, (o),

42

so that, by Definition 11, z € hvars,,11(c). Otherwise, if z = y, by definition of ¢,
the inductive hypothesis and Lemma 57, we have
vars(zo') = vars(s{z > t})
= (vars(s) \ {z}) U vars(t)
C hvars,,_1(0")
C hvars,, (o)

C hvars,,+1(0).
Also note that we have

vars(xo) = vars(t)

C hvars,, (o)

so that, by Definition 11 we have
x € hvars,,11(0).
The result follows by observing that

vars(zo) = vars(s) = (vars(s) \ {z}) U {z}.

LEMMA 59. Let 0,0’ € RSubst, where o +°s* o', Then hvars(o) = hvars(o”).

Proof. By induction on the length n > 0 of the derivation. For the base case,
when n = 0, there is nothing to prove. Suppose now that

s S ,
O=0pgF—— "> 0p_1——>0, =0,

where n > 1. By the inductive hypothesis, since the derivation o S On—1
has length n — 1, we have hvars(o) = hvars(o,—1). Then the thesis follows by
Lemma 58. 1

Proof of Proposition 13 on page 14. By Theorem 49, there exists o’ € VSubst
such that o +2* o and, for all equality theories T, T F V(o < o¢’). Thus, by
Lemma 59, we have hvars(c) = hvars(c’). The thesis then follows by applying
Proposition 54.

LEMMA 60. Let o, 7 € VSubst be satisfiable in a syntactic equality theory T and
suppose that T + ¥ (o < 7). Then hvars(c) = hvars(r).

Proof. We assume that the congruence and identity axioms hold. We will prove
the inclusion hvars(o) C hvars(7), while the other inclusion will follow by symmetry.

Let y € hvars(o). Then, by Proposition 51, vars(yo) N dom(o) = @. We will
show that rt(y,7) € HTerms so that, by Proposition 54, y € hvars(r).

Take t € HTerms N GTerms and let

a'(ﬁfaU{ZHt’zEVExrs(ya)}.

43

Note that yoo' € HTerms N GTerms, so that size(yoo’) = n € N. Also, by
Lemma 40, we have ¢’ € RSubst is satisfiable in T

By contraposition, suppose that rt(y,7) ¢ HTerms. Then, there exists an index
i € N such that size(yr?) > n. By Lemma 41, we have 0/ = {y = yoo’} and

o= 0 = 7 = {y=yr'},
so that, by the congruence axioms, o' = {yoo’ = yr'}. However, by Lemma 44,
T FY(yoo' # yt*), therefore obtaining a contradiction. Thus rt(y,7) € HTerms. 1
PROPOSITION 61. Let 0,7 € RSubst. Let also W C Vars, where
RTEYEW.o « IW. 7).

Then hvars(c) \ W = hvars(r) \ W.

Proof. Consider a variable z € hvars(o) \ W. We assume that z ¢ hvars(r) to
obtain a contradiction.

By Proposition 54, rt(z,0) € HTerms. By Proposition 53, there exists i € N
such that rt(z,0) = z0® and vars(zo®) Ndom(o) = @.

Take t € GTerms N HTerms and let

v {y—tlye vars(zo') }.

By Lemma 39, ¢’ ©f suw € | o is satisfiable. Thus, by Proposition 2, we have
RT =V(o' — o). (21)

By the definition of ¢, 20’0’ € GTerms N HTerms. As z ¢ hvars(t), there exists
j € N such that size(z77) > size(zo'c”’). Thus, by Lemma 44,

RT FV(z0'c" # 277). (22)

From the application of Lemma 41, we obtain that R7 + V(a - (z = zai))
and RT V(o' — (20" = z0'0’)). Thus, by (21),

RT FV(o' — (2 = zo'd")). (23)

Using (21), the hypothesis and the logically true statement V(o — IW . o), we

obtain RT + V(¢/ — 3W . 7). By Lemma 41, we have RT + V(1 — (z = 277));

thus, as R7 is a first-order theory, R7 + V(EIW. T—3dW. (2= sz)). Therefore,
by transitivity, we obtain

RT V(o — IW. (2 = 217)). (24)

Observe now that vars(z = zo'c’) = {z} and, as a consequence, we have
vars(z = zo'c’) N W = @. Therefore, by (23) and (24), we obtain

RT V(0! = (z = zo'o’ AW . 2 = 277))
= RT V(o' > IW. (2 =200 Az =277))
< RT V(o' —3IW. (20'0" = 217)).

But this contradicts (22), so that the assumption was false and z € hvars(7). As
the choice of z was arbitrary, we have

hvars(o) \ W C hvars(r) \ W.

The reverse inclusion follows by symmetry.

44

B.5. Abstracting Finiteness

LEMMA 62. Suppose o,7 € RSubst such that T & V(o <) for any syntactic
equality theory T'. Then hvars(c) = hvars(7).

Proof. We assume that the congruence and the identity axioms hold. By The-
orem 48 and Lemma 59, there exists ¢/,7/ € VSubst such that ¢ <= o/,
hvars(c) = hvars(o’), 7 <= 7’ and hvars(t) = hvars(7’). By hypothesis,
o <= 71 so that o/ <= 7/. By Lemma 60, hvars(c’) = hvars(7’). There-
fore hvars(o) = hvars(r). 1

COROLLARY 63. Let e C FEgs be satisfiable in the syntactic equality theory T.
If o,7 € mgs(e), then hvars(o) = hvars(r).

Proof. By definition of mgs, we have 0,7 € RSubst and ¢ <= e <= 7.
Thus, the result follows by Lemma 62.

Proof of Theorem 17 on page 15. By Definition 16, we have ay (o) = hvars(o)n
VI and oy (¢’) = hvars(o’) N VI. The result is a simple consequence of Lemma 62,
since RT is a syntactic equality theory and RT + V(o < ¢').

B.6. Correctness of Abstract Unification on H x P

LEMMA 64. Let o € VSubst be satisfiable in a syntactic equality theory T. Let
s € HTerms N GTerms and t € HTerms and suppose that T +V(oc — s =1t). Then
s=to.

Proof. Since s € GTerms, we must have s = f(s1,...,8,) where m > 0.
Moreover, by the assumption of the existence of two different function symbols
in the signature Sig, there exists a term r € HTerms N GTerms whose top-level
function symbol is distinct from that in s. Thus we have, by the identity axioms,
T F VY(r # s). Note also that, by Lemma 41 and the congruence axioms, we have
THEVY(oc — s=to).

We show that s = to by induction on the size of s.

First we show that to is not a variable. In order to prove this, we suppose that
to = y € Vars and derive a contradiction. If y ¢ dom(o) then, by Lemma 40,
o = ocU{y — r} € RSubst and o’ is satisfiable in T. Therefore, using the
congruence axioms, T + V(¢! — r = s), which is a contradiction. If otherwise
to = y € dom(o) then, since o € VSubst, we have y € vars(yo) so that, for all
i > 0, size(to®*!) > size(to?). Thus, by Lemma 44, there exists an index j > 0
such that T V(s # to?). However, by the hypothesis and Lemma 41, we have
T + V(o — s = to') for all i > 0, therefore obtaining a contradiction. Thus
to ¢ Vars.

Therefore, by the identity axioms, we can assume that to = f(t1,...,tm). If
size(s) = 1, then m = 0 so that, by the congruence axioms, s = to. If size(s) > 1,
then m > 0 and, by the identity axioms, we have that T+ V(o — s; = t;), for each
i =1, ..., m. Note that, for each i = 1, ..., m, we have s; € HTerms N GTerms,
t; € HTerms and size(s;) < size(s), so that we can apply the inductive hypothesis,
obtaining s; = t;o. Thus, by the congruence axioms, s = too. Thus too € GTerms
so that vars(too) = @. As o € VSubst, we have vars(toc) = @ so that too = to.
Hence s =to. 1

45

LEMMA 65. Let § = (81,...,8,) € HTerms" be linear, and suppose the tuple
of terms t = (t1,...,tn,) € HTerms" is such that vars(s) N nlvars(f) = & and
mgs(s = t) # &. Then there erists u € mgs(s = t) such that, for each variable
z € dom(p) \ (vars(s) Nvars(f)), we have vars(zp) N dom(p) = .

Proof. We assume that the congruence and identity axioms hold. The proof is
by induction on the number of variables in vars(s) U vars(t).

Suppose first that, for some ¢ = 1, ..., n, we have s; = f(r1,...,rn) and
ti = flui,...,up) (with m > 0). Let

5 = (81,3821, 1y sTms Sidkls -« -5 5n),
g
t = (tl,...,ti,l,ul,...,um7ti+1,...7tn).

Then mvars(s') = mvars(5) and mvars(f’) = mvars(f) so that, as 5 is linear, § is
linear, vars(s') Nnlvars(t') = @ and vars(s") Nvars(t’) = vars(s)ﬁvars(f). Moreover,
by the congruence axiom (9), mgs(s’ = ') = mgs(5 = ¢). We repeat this process
until all terms in § and ¢ can not be decomposed any further. (Note that in the
case that s; and ¢; are identical constants, we can remove them from 5" and #', since
the corresponding equation s; = t; holds vacuously.) Thus, as § and ¢ are finite

sequences of finite terms, we can assume that, for all t =1, ..., n, either s; € Vars
or t; € Vars.
Secondly, suppose that for some i = 1, ..., n, s; = t;. By the previous para-

graph, we can assume that s; € Vars. Let

_ def
S; — (51,...,si_1,8i+1,...,sn),

n f
ti = (th...7ti,1,ti+17...,tn).

Then mvars(s;) U {s;} = mvars(s) and mvars(¢;) U {s;} = mvars(f) so that, as 5 is
linear, §; is linear, vars(s;) N nlvars(f;) = @ and

(vars(s;) Nvars(t;)) U {s;} = vars(5) N vars(f).

As § is linear and vars(5) Nnlvars(t) = @, s; ¢ vars(s;) U vars(f;) and hence, for all
p € mgs(s =t), we have s; ¢ dom(u). Therefore

dom(y) \ (vars(s) N vars(t)) = dom(p) \ (vars(s;) N vars(t;)).

Furthermore, by the congruence axiom (6), mgs(s; = t;) = mgs(s = ¢). Thus, as
5 and t are sequences of finite length n, we can assume that s; # t;, for all ¢ = 1,
., n.

Therefore, for the rest of the proof, we will assume that for each ¢ =1, ..., n,
s; # t; and either s; € Vars or t; € Vars.

For the base case, we have vars(s) U vars(t) = @ and the result holds.

For the inductive step, vars(s) U vars(t) # @ so that n > 0. As the order
of the equations in 5 = ¢ is not relevant to the hypothesis, we assume, without
loss of generality that if, for some i« = 1, ..., n, vars(s;) N vars(t;) = &, then
vars(sy) Nvars(t;) = @. There are three cases we consider separately:

a. foralli=1, ..., n, vars(s;) Nvars(t;) # ;

b. s1 € Vars \ vars(ty);

46

c. t1 € Vars \ vars(sy).

Case a. Forall i =1, ..., n, vars(s;) N vars(t;) # @.
For each ¢ = 1, ..., n, we are assuming that either s; € Vars or t; € Vars,
Therefore, for each i =1, ..., n, s; € vars(t;) or t; € vars(s;) so that, without loss

of generality, we can assume, for some k, where 0 < k <n, s; € Varsif 1 <i <k
and t; € Varsif k+1<i<n.

Let def
€
w={s1=t1,...,8 =tp} U{tht1 = Skt1,---,tn = Sn}-
We now show that p C Fgs is in rational solved form. As 5 is linear, (s1,...,sk)
is linear. As 3 is linear and t; € vars(s;) if k+ 1 < ¢ < n, then (tg41,...,tn) I8
linear and {s1,..., 85} N{tx+1,-..,tn} = &. As we are assuming that, for all i = 1,

...y ny 8; £ t; and vars(s;) Nvars(t;) # &, it follows that ¢; ¢ Vars when 1 <1i <k
and s; ¢ Vars when k + 1 < ¢ < n, so that each equation in p is a binding and
has no circular subsets. Thus u € RSubst and hence, by the congruence axiom (7),
p € mgs(s =1).

As s; € vars(t;) when 1 < ¢ < k and t; € vars(s;) when kK 4+ 1 < i < n,
dom(p) \ (vars(s) Nvars(t)) = @. Therefore the required result holds.

Case b. s; € Vars \ vars(ty).

Let

S1 = (SQ,...,Sn),

7 def (25)
1 = (tQ{Sl I—>t1},...,tn{51 Htl})

As 5 is linear, s; ¢ vars(s1). Also, all occurrences of s; in ¢ are replaced in 1 by ¢
so that, as s1 ¢ vars(t1), s1 ¢ vars(t1). Thus

s1 ¢ vars(51) U vars(fy). (26)

Therefore vars(s;) U vars(t;) C vars(s) U vars(t). Now since § is linear, §; is linear.
Thus, to apply the inductive hypothesis to 5; and #;, we have to show that

vars(s1) Nnlvars(f;) = @. (27)

Suppose that u € vars(51) so that u € vars(s). Now, by hypothesis, we have
vars(5) Nnlvars(f) = @. Thus s1,u ¢ nlvars(f). If u € vars((t2,...,t,)) so that
u ¢ vars(ty), then u ¢ nlvars(¢;). On the other hand, if u ¢ vars((t2,...,tn)),
then, as sy ¢ nlvars((ta,...,%,)) and u ¢ nlvars(ty), u ¢ nlvars(f;). Thus, for
all u € vars(81), u ¢ nlvars(f;). Hence (27) holds. It follows that the inductive
hypothesis for 5; and ¢; holds. Therefore there exists p; € RSubst where

p1 € mgs(5) = t1)

such that, for each z € dom(uq) \ (vars(si) Nvars(f1)), vars(zu1) N dom(u) = @.
Let

p {51 =t} U (28)

We now show that u C Egs is in mgs(s = t). First we show that p is in rational
solved form. By (26),

s1 ¢ vars(p), (29)

47

and, as s1 ¢ vars(t1), we have

s1 € vars(typ). (30)

Thus, as u; € RSubst, p has no identities or circular subsets so that u € RSubst.
By Lemma 42, u € mgs(s = 1).
Let
z € dom(p) \ (vars(s) Nvars(f)). (31)

Then we have to show that
vars(zp) Ndom(u) = &. (32)

It follows from (28) and (31) that either z € dom(u) so that zu = zu; or z = 51
and zp = t1p1. We consider these two cases separately.

Suppose first that z € dom(u1). By (25), we have both vars(s;) C vars(s) and
vars(t1) C vars(t), so that vars(s1) N vars(t;) C vars(5) N vars(#). Hence we have
z € dom(gy) \ (vars(sy) Nvars(t1)). Thus we obtain, by the inductive hypothesis,
vars(zpi) Ndom(py) = @. Now, as z € dom(u1) and (29) holds, s; ¢ vars(zuq).
Thus, as dom(p) = dom(p1) U {s1}, vars(zu1) Ndom(u) = &. Hence, as zp = zp1,
(32) holds.

Secondly suppose that z = s;. Then we have that s; ¢ vars(s) N vars(t).
Hence t; = (tg,...,t,). Let u be any variable in vars(t;). Then we have that
u ¢ vars(s1) N vars(fy), since vars(s) Nnlvars(t) = &, If u € dom(u;), then we
can apply the inductive hypothesis to obtain vars(up;) N dom(p;) = &. On the
other hand, if u ¢ dom(u;), we have u = wupy and vars(upy) N dom(uy) = 2.
Hence vars(tip1) N dom(py) = @. Thus, as dom(u) = dom(ui) U {s1}, by (30),
vars(ti 1) Ndom(u) = @. Therefore, as zpu = typ1, (32) holds.

Case c. t; € Vars \ vars(sy).

Let

o9}
-

51 % (sof{t1 = 1}, su{ts = 51}),

- def

(33)
1 = (tg{tl [51}, e ,tn{tl = 51}).

All occurrences of t; in § and ¢ are replaced in 5; and t; by s; so that, since
t1 ¢ vars(sy),

t1 ¢ vars(s1) U vars(t). (34)
Therefore vars(s;) U vars(t;) C vars(s) U vars(t). Now, 5; is linear since § is linear.
Thus, to apply the inductive hypothesis to 5; and #;, we have to show that

vars(51) Nnlvars(t;) = @. (35)

Suppose u is any variable in vars(5;). Then either u € vars((s2, ..., s,)) or we have
u € vars(s;) and t; € vars((ss,...,s,)). By hypothesis, vars(s) N nlvars(f) = &,
so that u ¢ nlvars(t). If u € vars((sa,...,syn)), then, as 5 is linear, u ¢ vars(s).
Thus, it follows from (33) that u ¢ nlvars(;). If t; € vars((sz,...,sy)), then we
have t; ¢ vars((t2,...,t,)) so that, again by (33), {1 = (t2,...,t,). Thus, for
all u € vars(81), u ¢ nlvars(f1). Hence (35) holds. It follows that the inductive
hypothesis for §; and ¢; holds. Therefore there exists 1 € RSubst where

p1 € mgs(5; = tp)

48

such that, for each z € dom(u;) \ (vars(51) N vars(f1)), we have vars(zup) N
dom(uy) = @.
Let

p (= sy} U (36)

We now show that pu C Fgs is in mgs(s = t). First we show that u is in rational
solved form. By (34),

t1 ¢ vars(uy), (37)

and, as t; ¢ vars(sy), we have

ty ¢ vars(sip1). (38)

Thus, as u; € RSubst, ;1 has no identities or circular subsets so that u € RSubst.
By Lemma 42, ;1 € mgs(s = ?).
Let
z € dom(p) \ (vars(s) Nvars(f)). (39)

Then we have to show that
vars(zp) Ndom(p) = &. (40)

It follows from (36) and (39) that either z € dom(u1) so that zu = zuy or 2 = ¢
and zp = sijp1. We consider these two cases separately.

Suppose first that z € dom(u;). To apply the inductive hypothesis to z, we
need to show that,

vars(s1) Nvars(t;) C vars(s) N vars(t).

To see this, let u € vars(sy) Nvars(f;). Then, by (33), either u € vars((sz, ..., s,))

or u € vars(sy) and t; € vars((sa,...,s,)). If u € vars((s2,...,sn)), then we
have u € vars(s) so that, as 5 is linear, we have also u ¢ vars(s;) and hence
u € vars((t2,...,t,)). Alternatively, if u € vars(sy) and t; € vars((s2,...,sn)),

then u,t; € vars(s). Moreover, by hypothesis, vars(s) N nlvars(f) = @, so that
t1 ¢ vars((t2,...,t,)). Thus ¢; = (t2,...,t,) and hence u € vars(f). Therefore, in
both cases, u € vars(s) Nvars(f). It follows that z € dom(u1)\ (vars(s1) Nvars(t1)).
Thus, by the inductive hypothesis, we have vars(zpi) N dom(u) = &. Now, as
z € dom(pq) and (37) holds, t; ¢ vars(zug). Thus, as dom(u) = dom(p) U {t1},
vars(zpi) Ndom(u) = @. Hence, as zp = zpq, (40) holds.

Secondly, suppose that z = ¢;. Then ¢; ¢ vars(s) N vars(f) and, consequently,
51 = (s2,...,8n). Let u be any variable in vars(s;). Then, as 5 is linear, we
have v ¢ vars(51) so that u ¢ vars(51) N vars(fy). Thus, if v € dom(py), we
can apply the inductive hypothesis to v and obtain vars(up;) N dom(p;) = .
On the other hand, if v ¢ dom(u1), v = upy and vars(upg) N dom(py) = @.
Hence vars(sypy) Ndom(puy) = @. Thus, as dom(u) = dom(uy) U {t1}, by (38),
vars(sip1) Ndom(p) = @. Therefore, as zpu = s11, (40) holds. »

LEMMA 66. Suppose that the tuple of terms 3 def ($1,.--,8n) € HTerms™ is

linear, t < (t1,...,tn) € HTerms" and mgs(s = ¢) # @. Then there exists
p € mgs(s =1t) and, for each z € dom(p) \ vars(s), the following properties hold:

1. vars(zu) C vars(s);

49

2. vars(zu) Ndom(u) = @.

Proof. We assume that the congruence and identity axioms hold. The proof is
by induction on the number of variables in vars(s) U vars(t).
Suppose first that, for some i = 1, ..., n, we have s; = f(r1,...,rn) and
ti = flur,...,um) (m >0). Let
_y def
5 = (81 ey 8im1sT 1y v s Ty Sitls -« Sn)s

def
= (tla' < 7ti—1aula s 7um,ti+17 v >tn)-

]

E/

Then mvars(s’) = mvars(5) and mvars(f’) = mvars(f) so that, as 5 is linear, 5 is
linear. Moreover, by the congruence axiom (9), mgs(s' = ') = mgs(s =). We
repeat this process until all terms in 5" and ¢ can not be decomposed any further.
(Note that in the case that s; and t; are identical constants, we can remove them
from § and #', since the corresponding equation s; = t; holds vacuously.) Thus, as

5 and f are finite sequences of finite terms, we can assume that, foralli =1, ..., n,
either s; € Vars or t; € Vars.
Secondly, suppose that for some i = 1, ..., n, s; = t;. By the previous para-

graph, we can assume that s; € Vars. Let
_ def
i = (S1y+++y8i-1,Si41s-)5n),

f
ti é (tlv'"7ti717ti+17""tn)'

[N

Then mvars(s;) U {s;} = mvars(s) and mvars(#;) U {s;} = mvars(f) so that, as 5 is
linear, §; is linear. Therefore

dom(pu) \ vars(s) C dom(pu) \ vars(s;).

Furthermore, by the congruence axiom (6), mgs(s; = ¢;) = mgs(s = ¢). Thus, as
5 and t are sequences of finite length n, we can assume that s; # t;, for all ¢ = 1,

.y M.
Therefore, for the rest of the proof, we will assume that s; # t; and either
s; € Varsor t; € Vars, foralli =1, ..., n.

For the base case, we have vars(5) U vars(t) = @ and the result holds.

For the inductive step, vars(s) U vars(t) # @ so that n > 0. As the order of
the equations in 5 = t is not relevant to the hypothesis, we assume, without loss
of generality that if, for some i = 1, ..., n, vars(s;) N vars(t;) = & then, we have
vars(sy) Nvars(t;) = @. There are four cases we consider separately:

a. foralli=1, ..., n, vars(s;) Nvars(t;) # &;
b. s1 € Vars \ vars(t1);
c. t; € Vars \ vars(s) and s; ¢ Vars;

d. t; € vars(s) \ vars(sy) and s; ¢ Vars.

Case a. Forall i =1, ..., n, vars(s;) N vars(t;) # @.
For each ¢ = 1, ..., n, we are assuming that either s; € Vars or t; € Vars,
Therefore, for each i =1, ..., n, s; € vars(t;) or ¢; € vars(s;) so that, without loss

of generality, we can assume, for some k, where 0 < k < n, s; € Varsif 1 <i <k
and t; € Varsif k+1<1i<n.

50

Let ot
" = {81Ztl,...,Sthk}U{tk+1ZSkJrl,...,tn:Sn}.

We show that p C Fgs is in mgs(s =). First we must show that p € RSubst. As 5

is linear, (s1,...,sk) is linear. As § is linear and ¢; € vars(s;) if k+1 < i < n, then
(tkt1,---,tn) is linear and {s1,..., 85} N {txt1,...,tn} = F. As we are assuming
that, foralli =1, ..., n, s; # t; and vars(s;)Nvars(t;) # @, it follows that t; ¢ Vars

when 1 < i < k and s; ¢ Vars when k+ 1 < ¢ < n, so that each equation in
is a binding and p has no circular subsets. Thus p € RSubst and hence, by the
congruence axiom (7), u € mgs(s = 7).

As {tpq1,- .. tn} € vars((skq1,-- -, 8n)), we have dom(u) \ vars(s) = @. There-
fore the required result holds.

Case b. s; € Vars \ vars(ty).

Let

S1 = (SQ,...,Sn),

— def
= (tz{sl =ttt '—’tl})-

As 5 is linear, 57 is linear and s; ¢ vars(51). Also, all occurrences of s; in ¢ are
replaced in ?; by t; so that, as s; ¢ vars(t1) (by the assumption for this case),
s1 ¢ vars(t;). Thus

s1 ¢ vars(51) U vars(ty). (41)

It follows that vars(s;)Uvars(¢1) C vars(s)Uvars(%) so that the inductive hypothesis
applies to 5; and £;. Thus there exists p; € RSubst where

p1 € mgs(5; = tp)

such that, for each z € dom(uq) \ vars(sy), properties 1 and 2 hold using y; and 5.
Let

def
p={s1 =t} Up.
We show that p C Fgs is in mgs(s = t). By (41), we have s; ¢ vars(uy) so that
s1 ¢ dom(uqp). Also, since 3 € RSubst, p has no identities or circular subsets.
Thus we have p € RSubst. By Lemma 42, u € mgs(s = 1).
Suppose that z € dom(p) \ vars(s). As

vars(51) U {s1} = vars(s)
and

dom(p1) U {s1} = dom(u),

we have

dom(pq) \ vars(s;) = dom(p) \ vars(s). (42)

Therefore z € dom(uy) \ vars(31) and zp; = zu. Thus the inductive properties 1
and 2 using p1 and §; can be applied to z. We show that properties 1 and 2 using
1 and § can be applied to z.

1. By property 1, vars(zu) C vars(51) and hence, vars(zu) C vars(s).

51

2. By property 2, we have vars(zu) Ndom(u;) = &. Now s1 € vars(zu) because
s1 ¢ vars(31) (since § is linear) and vars(zp) C vars(s;) (by property 1).
Thus, as dom(p) = dom(p1) U {s1}, we have vars(zp) N dom(u) = @.

Case c. Assume that t; € Vars \ vars(s) and s; ¢ Vars.
Let

82,y 8n),
- def
tl ; (tQ{tl — Sl},. .. ,tn{tl [d 81})

As 3 is linear, §; is linear. By the assumption for this case, t; ¢ vars(s;). Also, all
occurrences of ¢1 in ¢ are replaced in t; by s; so that ¢ ¢ vars(t;). Thus

t1 ¢ vars(51) U vars(ty). (43)

It follows that vars(s;) U vars(f;) C vars(s) U vars(t) so that we can apply the
inductive hypothesis to 5; and ;. Thus there exists u; € RSubst where

p1 € mgs(5; = t1)

such that, for each z € dom(p1) \ vars(sy), properties 1 and 2 hold using pq1 and
1. Note that, by (43), 1 ¢ vars(u1) and, in particular, ¢; ¢ dom(uq).

Let

pE = siu} U (44)

As s1 ¢ Vars and py € RSubst, u € Egs has no identities or circular subsets so
that u € RSubst. By Lemma 42, u € mgs(s = t).

Ast; € dom(u) (by (44)) and 1 ¢ vars(s) (by the assumption for this case), we
have

dom(py) \ vars(s1) U {t1} = dom(p) \ vars(s).

Suppose that z € dom(u) \ vars(s). Then either z # ¢; so that zu = zpu; and the
inductive properties 1 and 2 using py and 5; can be applied to z or z = t; and
zp = s1pu1. We show that properties 1 and 2 using o and § can be applied to z.

1. Suppose z # t1 so that zu = zpu;. Using property 1, vars(zpi) C vars(s1). As
vars(§1) C vars(s), it follows that vars(zu) C vars(s).
Suppose that z = t; so that zp = s;pu;. Let u be any variable in s;. As
5 is linear, u ¢ vars(5;). Thus, if v € dom(uy), we can use property 1 to
derive that vars(upq) C vars(sy). If uw ¢ dom(py), then upuy = u so that
vars(up) C vars(sy). Moreover vars(sy) U vars(§;) = vars(s) so that

vars(siu1) C vars(s). (45)
Hence vars(zu) C vars(s).

2. Suppose z # t1 so that zpu = zp;. Then, as property 2 holds, we have
vars(zp) Ndom(uy) = @. Now ty ¢ vars(zu) because vars(zu) C vars(sy) (by
property 1) and ¢, ¢ vars(51) (by (43)). Thus, as dom(u) = dom(pq) U {t1},
we have vars(zp) N dom(u) = @.

Suppose that z = ¢; so that zu = sjuy. Let u be any variable in vars(sy).
Then, as § is linear, u ¢ vars(5;). Then either v € dom(u;), and we can
apply property 2 to u to obtain vars(uu,) N dom(u;) = &, or u = upg, and

52

vars(upy) N dom(uy) = @. Hence we have vars(syp) Ndom(uy) = @. Now
t1 ¢ vars(sipy) because vars(sipug) C vars(s) (by (45)) and t; ¢ vars(s) (by
the assumption for this case). Thus, as dom(u) = dom(uq) U {t1}, we have
vars(zp) Ndom(p) = @.

Case d. Assume that ¢; € vars(s) \ vars(s;) and s; ¢ Vars.

Let
_ def
5 = (32{t1 — S1} . Sa{t — 51}),
- def
tl = (tg{tl = 81}, e ,tn{tl — 81})
As 5 is linear, there is only one occurrence of ¢ in {sa,...,s,}, and, in 51, this

is replaced by s; which is also linear. Thus 5 is linear, 5, C § and ¢; ¢ vars(5;).
Also, all occurrences of t; in ¢ are replaced in #; by s so that ¢; ¢ vars(f1). Thus

t1 ¢ vars(51) U vars(ty). (46)

It follows that vars(s;) U vars(f1) C vars(s) U vars(f) so that we can apply the
inductive hypothesis to 5; and ¢;. Thus, there exists y; € RSubst where

1 € mgs(s; = t1)

such that, for each z € dom(u;) \ vars(3;), properties 1 and 2 hold using p1 and 5;.
Let

def
p= At =siym}yUpm.
By (46), t1 ¢ vars(u1). Moreover uy € RSubst and s1 ¢ Vars so that u € Fgs has

no identities or circular subset. Thus p € RSubst. By Lemma 42, p € mgs(5 = ?).
As vars(51) U {t1} = vars(s) and dom(p) U{t1} = dom(p), we have

dom(pq) \ vars(s;) = dom(u) \ vars(s).

Suppose z € dom(p)\vars(s). Then z # t1, zu = zpq and the inductive properties 1
and 2 using p; and 57 can be applied to z. We show that the properties 1 and 2
using p and 5 can be applied to z.

1. By property 1, vars(zp) C vars(s1) and hence, as 51 C 5, vars(zu) C vars(s).

2. By property 2, we have vars(zu) Ndom(p;) = @. Now t1 ¢ vars(zu) because
t1 ¢ vars(51) (by (46)) and vars(zp) C vars(Sy) (by property 1). It follows
that vars(zp) N dom(u) = @, since dom(pq) U {t1} = dom(p).

PROPOSITION 67. Let p € P and (z — t) € Bind, where {x} Uvars(t) C VI.
Let also o € vp(p) N VSubst and suppose that {r,r'} = {x,t}, vars(r) C hvars(o)
and rt(r,0) € GTerms. Then, for all T € mgs(c U {z = t}) in a syntactic equality
theory T, we have

hvars(o) U vars(r’) C hvars(7). (47)

Proof. We assume that the congruence and identity axioms hold. If c U {z =t}
is not satisfiable, the result is trivial. We therefore assume, for the rest of the proof,
that o U {x = t} is satisfiable in T'. It follows from Corollary 63 that we just have
to show that

53

1. vars(r’) C hvars(7), for some 7 € mgs(o U {z = t});
2. hvars(c) C hvars(7), for some 7 € mgs(o U {z = t}).

From these, we can then conclude that, for all 7 € mgs(o U {z =t}), (47) holds.

Note that, in both cases, since o € VSubst and vars(r) C hvars(o), by Proposi-
tion 52 we have rt(r,0) = ro, so that ro € HTerms N GTerms.

We first prove statement 1. We must show that there exists 7 € mgs(cU{z = t})
such that vars(r’) C hvars(r).

As Ings(a U{z = t}) # @&, by Theorem 49 and the definition of mgs we can
assume that there exists 7 € VSubst Nmgs(o U {z = t}). Thus

T = (cU{r=1"}).

By Lemma 41 and the congruence axioms, we have 7 = {ro = r'}. Since
T € VSubst and ro € HTerms N GTerms, Lemma 64 applies (with s = ro) so that
ro =r't € HTerms N GTerms. Thus, by Proposition 51, vars(r’) C hvars(7).

We now prove statement 2. In this case, we show that there exists 7 € mgs (a U
{z =t}) such that hvars(c) C hvars(r).

Let
{u1,...,w} % dom(c) Nvars(r'o),
_ def
5= (u,...,u,70),
— def /
t = (wo,...,uyo,ro).

By Lemma 42 and the congruence axioms, c U {x = ¢t} = § = {. Thus,
as o U {zx = t} is satisfiable, mgs(5 = t) # &. Then, by Theorem 49, there
exists pu € VSubst N mgs(5 = t). Therefore, since ro € HTerms N GTerms and
w = {ro = r'o}, Lemma 64 applies (with s = ro) so that we can conclude
ro =r'op € HTerms N GTerms. Hence, for all w € dom(pu),

vars(wp) = @. (48)
Let

v {z=zop| 2 € dom(o) \ vars(r'o) },
T def v U pu.
Then, as o, u € RSubst, it follows from (48) that v,7 € Egs have no identities or
circular subsets so that v,7 € RSubst. By Lemma 42, 7 € mgs(o U {z =t}).
Suppose that y € hvars(c). Then we show that y € hvars(7). Using Proposi-
tion 52, rt(y, o) = yo and

vars(yo) Ndom(o) = @. (49)

We show that vars(y7) N dom(7) = &. Now, if y ¢ dom(7), the result holds
trivially. Suppose that y € dom(v), then yr = you and y € dom(o). Let w
be any variable in vars(yo) so that, by (49), w ¢ dom(o). If w ¢ dom(u), then
w = wp ¢ dom(r). If w € dom(p), then, by (48), vars(wy) = @. Therefore,
vars(wp) N dom(r) = @. It follows that vars(yr) N dom(7) = @. Finally, suppose
y € dom(u). Then, by (48), vars(yu) = &. Therefore vars(yu) N dom(7) = @.

Therefore, using Definition 12, we have that y € hvars(7) as required. 1

54

PROPOSITION 68. Let p € P and (z — t) € Bind, where {z} Uvars(t) C VI.
Let also o € vp(p) N VSubst and suppose that x € hvars(c) and vars(t) C hvars(o).
Suppose also that ind,(z,t) and that orliny,(z,t) hold. Then, for all substitutions
T € mgs(o U{z =t}) in a syntactic equality theory T,

hvars(o) C hvars(7). (50)

Proof. We assume that the congruence and identity axioms hold. If cU{z =t}
is not satisfiable, the result is trivial. We therefore assume, for the rest of the proof,
that o U {x =t} is satisfiable in T'. It follows from Corollary 63 that we just have
to show that there exists 7 € mgs(o U {z = t}) such that (50) holds.

As x € hvars(o) and vars(t) C hvars(o), by using Proposition 52 we obtain
rt(xz,0) = xzo and rt(t,0) = to. Also

vars(zo) N dom(o) = @, (51)
vars(to) Ndom(o) = @.

As ind,(x,t) holds,
vars(zo) Nvars(to) = @. (52)

By hypothesis, or_lin(xz,t) holds so that, by Definition 8, for some r € {z,t}, ro is
linear. Let r' % {z,¢}\ {r}.

By Lemma 42 and the congruence axioms, o U{z =t} = {ro =r'c}. Thus,
as o U {z = t} is satisfiable, mgs(ro = r’o) # &. Thus we can apply Lemma 65
(where § = ro and ¢ = r'0) so that, using (52), there exists u € mgs(zo = to) such

that, for all w € dom(p),
vars(wp) Ndom(p) = @. (53)

Note that, by (51),
dom(o) Nvars(u) = 2. (54)

Let

udg{z:zau | z € dom(o) },
T ef vupu.
Then, as o, u € RSubst, it follows from (54) that v,7 € Egs have no identities or
circular subsets so that v,7 € RSubst. By Lemma 42, 7 € mgs(o U {z =t}).
Suppose y € hvars(o). Then we show that y € hvars(t). As y € HTerms, we
have, using Proposition 52, rt(y, o) = yo and

vars(yo) Ndom(o) = @. (55)

We show that vars(yr) Ndom(r) = @. If y ¢ dom(7), the result holds trivially.
Suppose that y € dom(v), then y7 = you. Let w be any variable in vars(yo). Then,
by (55), w ¢ dom(o). If w ¢ dom(u), then w = wu ¢ dom(r). If w € dom(u),
then vars(wp) C vars(p) so that, by (54), vars(wu) N dom(rv) = &. Moreover (53)
applies so that vars(wp)Ndom(u) = &. Therefore we have vars(wu) Ndom(7) = &.
It follows that vars(yrv) Ndom(7) = @. Finally, suppose y € dom(y). Then yr = yu
and, by (54), we have vars(yu) Ndom(v) = @. Also (53) applies where w is replaced
by y so that vars(yu) N dom(u) = &. Thus vars(yu) N dom(r) = .

Therefore, using Definition 12, we have that y € hvars(7) as required. 1

55

PROPOSITION 69. Let p € P and (z — t) € Bind, where {z} Uvars(t) C VI.
Let also o € vp(p) N VSubst and suppose that x € hvars(c) and vars(t) C hvars(o).
Suppose also that gfree,(x) and gfree,(t) hold. Then, for all T € mgs(o U {z = t})
in a syntactic equality theory T, we have

hvars(o) C hvars(7). (56)

Proof. We assume that the congruence and identity axioms hold. If cU{z =t}
is not satisfiable, the result is trivial. We therefore assume, for the rest of the proof,
that o U {x =t} is satisfiable in T'. It follows from Corollary 63 that we just have
to show that there exists 7 € mgs(o U {z = t}) such that (56) holds.

By Definition 8, gfree,(z) and gfree, () imply that either rt(z,0) € GTerms or
rt(z,0) € Vars, and either rt(t,0) € GTerms or 1t(t,o) € Vars. Since we have
rt(x,0),rt(t,0) € HTerms and o € VSubst, as a consequence of Proposition 52, we
have rt(z,0) = xo, rt(t,0) = to and xo,toc ¢ dom(c). There are three cases:

e vars(xzo) = @ V vars(to) = @. Then the result follows from Proposition 67.
e xo =to € Vars. Then letting 7 = o gives the required result.

e zo,toc € Vars are distinct variables. Let 7 = o U {zoc = to}. Then, as
zo,to ¢ dom(o), T € RSubst. Hence, by Lemma 42, 7 € mgs(o U {z = t}).
Let y be any variable in hvars(c). We show that y € hvars(r).

Suppose first that y # xo. Then yr = yo. Thus using Proposition 52,
rt(y, o) = y7 and vars(yr) Ndom(o) = &. Thus vars(y7) Ndom(r) C {zo}.
However, xor = to ¢ dom(7) so that, by Definition 11, vars(yr) C hvars; (1)
and hence y € hvarsy(7). Therefore, by Lemma 57 and Definition 12, we have
y € hvars(r).

Secondly, suppose that y = zo. Then y7 = to. So that, as to € Vars\dom(o)
and zo # to, vars(yr) Ndom(7) = &. Therefore, using Definition 12, we have
that y € hvars(7) as required.

PROPOSITION 70. Let p € P and (z — t) € Bind, where {z} Uvars(t) C VI.
Let o € vp(p) N VSubst and suppose that x € hvars(o) and vars(t) C hvars(o).
Furthermore, suppose that orlin,(x,t) and share lin,(z,t) hold. Then, for all sub-
stitutions T € mgs (0 U{x = t}) in a syntactic equality theory T, we have

hvars(o) \ share_same_vary(z,t) C hvars(r). (57)

Proof. We assume that the congruence and identity axioms hold. If cU{z =t}
is not satisfiable, the result is trivial. We therefore assume, for the rest of the proof,
that o U {x =t} is satisfiable in T'. It follows from Corollary 63 that we just have
to show that there exists 7 € mgs(o U {z = t}) such that (57) holds.

As x € hvars(o) and vars(t) C hvars(o), by using Proposition 52 we obtain
rt(xz,0) = xzo and rt(t,0) = to. Also

vars(zo) Ndom(o) = @, vars(to) Ndom(c) = @. (58)

By hypothesis, or.lin,(z,t) holds so that, by Definition 8, for some r € {z,t},
ro is linear. Also by hypothesis, share_lin,(x,t) holds so that, by Definition 8, if
' ={xz,t} \ {r}, for all z € vars(ro) Nvars(r’c), occlin(z, r’c) holds. Therefore,

vars(ro) Nulvars(r'o) = 2. (59)

56

By Lemma 42 and the congruence axioms, o U{x =t} = {ro = r’c}. Thus,
as o U {z = t} is satisfiable, mgs(ro = r'c) # @. Thus, as ro is linear and (59)
holds, we can apply Lemma 65 (where 5 = ro and ¢ = r’o) so that there exists
1 € mgs(zo = to) such that, for all w € dom(u) \ (vars(zo) N vars(to)),

vars(wp) Ndom(p) = @. (60)

Note that, by (58),
dom(o) Nvars(p) = @. (61)

Let

Vdéf{z:zou | z € dom(o) },
T def vUpu.
Then, as o, u € RSubst, it follows from (61) that v,7 € Egs have no identities or
circular subsets so that v,7 € RSubst. By Lemma 42, 7 € mgs(o U {z =t}).
Suppose y € hvars(o) \ share_same_var,(z,t). We show that y € hvars(r). As
y € hvars(o), using Proposition 52, rt(y, o) = yo and

vars(yo) Ndom(o) = @. (62)
As y ¢ share_same_vary(z,t), by Definition 8,
vars(yo) N vars(xo) Nvars(to) = . (63)
Therefore, using (63) if y ¢ dom(o) and (58) if y € dom(o), it follows that
y & vars(xzo) N vars(to). (64)

We show that vars(yr) N dom(r) = @. Now, if y ¢ dom(7), the result holds
trivially. Suppose that y € dom(v), then yr = you. Let w be any variable in
vars(yo). Then, by (63), w ¢ (vars(zo) Nvars(to)) and, by (62), w ¢ dom(c). If
w ¢ dom(p), then w = wp ¢ dom(7). If w € dom(u), then vars(wp) C vars(u)
so that, by (61), we also have vars(wy) N dom(r) = @. Moreover (60) applies so
that vars(wp) N dom(u) = @. Therefore, vars(wp) N dom(r) = &. It follows that
vars(yv) Ndom(7) = &. Finally, suppose y € dom(i). Then y7 = yu and, by (61),
vars(yu) Ndom(v) = @. As (64) holds, (60) applies where w is replaced by y so
that vars(yu) Ndom(p) = @. Thus vars(yu) Ndom(7) = @.

Therefore, using Definition 12, we have that y € hvars(r) as required.

PROPOSITION 71. Let p € P and (z — t) € Bind, where {z} Uvars(t) C VI.
Let also o € vp(p) N VSubst and suppose that {r,r'} = {x,t}, vars(r) C hvars(o)
and lin,(r) holds. Then, for all 7 € mgs(o U{x =t}) in a syntactic equality theory
T, we have

hvars(o) \ share_with,(r) C hvars(r). (65)

Proof. We assume that the congruence and identity axioms hold. If cU{z =t}
is not satisfiable, the result is trivial. We therefore assume, for the rest of the proof,
that o U {x =t} is satisfiable in T'. It follows from Corollary 63 that we just have
to show that there exists 7 € mgs(o U {z = t}) such that (65) holds.

By hypothesis, vars(r) C hvars(o). Hence, by Proposition 52, rt(r,o) = ro and

vars(ro) Ndom(o) = @. (66)

o7

By hypothesis, lin,(r) holds, so that, by Definition 8, ro is linear.
Let

{ug,...,u} ECRE m(c) N (vars(zo) U vars(to)),
5 (ug,y...,ug,r0o),
gt (ug ,wo, o).

Since ro is linear, it follows from (66) that § is linear. By Lemma 42 and the
congruence axioms, o U{z =t} = 5 =1¢. Thus, as o U {z = t} is satisfiable,
we have mgs(5 = t) # &. Therefore, we can apply Lemma 66 so that there exists
w € mgs(§ = t) such that, for all w € dom(u) \ vars(s),

vars(wp) Ndom(p) = &. (67)
Note that, since o € VSubst, for each i =1, ..., [, we have
vars(u;o) C vars(xzo) U vars(to).
Thus

vars(u) C vars(xo) U vars(to). (68)

Let

p & {Z = 2o ‘ z € dom(0) \ (vars(zo) U vars(to)) }’

T def vUJpu.
Then, as o, € RSubst, it follows from (68) that v,7 € Egs have no identities or
circular subsets so that v,7 € RSubst. By Lemma 42, 7 € mgs(o U {z =t}).
Suppose y € hvars(o) \ share_with,(r). Then we show that y € hvars(r). As
y € hvars(o), by Proposition 52, rt(y, o) = yo and

vars(yo) Ndom(o) = @. (69)

As y ¢ share_with,(r), by Definition 8, y ¢ share_same_var,(y, r) so that, using the
same definition,

vars(yo) Nvars(ro) = @. (70)
Therefore using (70) if y ¢ dom(o) and (66) if y € dom(o), it follows that
y & vars(ro). (71)

We show that vars(y7) N dom(7) = @. Now, if y ¢ dom(7), the result holds
trivially. Suppose that y € dom(v). Then y7 = you and y € dom(o). It follows
from (69) and (70) that vars(yo) Nvars(s) = @. Let w be any variable in vars(yo)
so that w ¢ vars(5). By (69), we have w ¢ dom(o). If w ¢ dom(u), then we have
w = wu ¢ dom(r). If w € dom(p), then vars(wp) C vars(u) so that, by (68),
vars(wp) N dom(v) = @. Moreover (67) applies so that vars(wp) N dom(u) = &.
Therefore, vars(wp) Ndom(7) = @. It follows that vars(yv) Ndom(7) = @. Finally,
suppose y € dom(p). Then yr = yu and, by (68), vars(yu) Ndom(r) = &. Since
o € VSubst and y € hvars(c), we have y ¢ dom(o) N (vars(ro) U vars(r'c)) and
hence y ¢ vars(s). Therefore (67) applies and vars(yu) N dom(p) = @. Thus
vars(yp) Ndom(r) = @.

Therefore, using Definition 12, we have that y € hvars(7) as required. 1

58

PROPOSITION 72. Let p € P and (z — t) € Bind, where {z} Uvars(t) C VI.
Let also o € yp(p) N VSubst. Then, for all T € mgs(o U {z = t}) in a syntactic
equality theory T,

hvars(c) \ (share_with,(z) U share_with,(t)) C hvars(r). (72)

Proof. We assume that the congruence and identity axioms hold. If c U {z =t}
is not satisfiable, the result is trivial. We therefore assume, for the rest of the proof,
that o U {x = t} is satisfiable in T'. It follows from Corollary 63 that we just have
to show that there exists 7 € mgs(o U {z = t}) such that (72) holds.

Let

{u,...,w} e dom(c) N (vars(zo) U vars(to)),
_ def
5= (u1,...,u;,z0),
gt (uio, ..., uo,to).
Note that, since o € VSubst, for each i =1, ..., [, we have

vars(u;o) C vars(xzo) U vars(to).
Thus, for any p € mgs(s = t), we have

vars(p) C vars(xo) U vars(to). (73)

Let

y f {z = zop ’ z € dom(o) \ (vars(zo) U vars(to)) }7

nguulu.

Then, as o, € RSubst, it follows from (73) that v,7 € Egs have no identities or
circular subsets so that v,7 € RSubst. Thus, using Lemma 42 and the assumption
that o U {z = t} is satisfiable, 7 € mgs(o U {z = t}).

Suppose that y € hvars(o) \ (share_with,(z) U share_with,(t)). We show that
y € hvars(7). As y € hvars(o), by Proposition 52, rt(y, o) = yo and

vars(yo) Ndom(o) = @. (74)
As y ¢ share_with,,(z) U share_with, (¢), it follows from Definition 8 that
y ¢ share_same_var,(y, z) U share_same_var, (y, t)
so that, using the same definition with the result that rt(y, o) = yo, we obtain
vars(yo) N (vars(zo) U vars(to)) = @. (75)

Therefore, using (75) if y ¢ dom(o) and using the fact that o € VSubst, if y €
dom(o), it follows that

y ¢ vars(zo) U vars(to). (76)

We show that vars(y7) N dom(7) = @. Now, if y ¢ dom(7), the result holds
trivially. Suppose that y € dom(7). Then, by (73) and (76), y ¢ vars(u) so that

59

y ¢ dom(u) and vars(yp) N dom(p) = @&. Thus we must have y € dom(v) and
y7 = yo. Then, by (73) and (75), vars(yo) Ndom(p) = @. Moreover, by (74),
vars(yo) N dom(o) = &. It follows that vars(yo) N dom(7) = @ and hence, as
yo = yt, vars(yt) Ndom(r) = @.

Therefore, using Definition 12, we have that y € hvars(r) as required.

Proof of Theorem 19 on page 16. By hypothesis, o € vp(p). By Theorem 49,
there exists ¢/ € VSubst such that ¢ <= o¢/. By Lemma 62, we have that
hvars(o) = hvars(o’). By Definition 7, o € yp(p) if and only if ¢’ € yp(p). We
therefore safely assume that o € VSubst.

By hypothesis, we have o € g (h). Therefore, it follows from Definition 16 that
h C hvars(o). Similarly, by Definition 16, in order to prove 7 € vy (h'), we just
need to show that h’ C hvars(r) where k' is as defined in Definition 18. There are
eight cases that have to be considered.

L. htermy(z) A ground,,(z) holds.

As htermy, (z) holds, by Definition 18, € h. Hence, by Definition 16, we
have z € hvars(c). As ground,(z) holds, by Definition 8, rt(x,0) € GTerms.
Therefore we can apply Proposition 67, where r is replaced by = and 7’ by t,
to conclude that

hvars(o) U vars(t) C hvars(7).

2. htermy,(t) A ground,,(¢) holds.

As htermy(t) holds, by Definition 18, vars(t) C h. Hence, by Definition 16,
vars(t) C hvars(c). As ground, (t) holds, by Definition 8, rt(¢,0) € GTerms.
Therefore we can apply Proposition 67, where r is replaced by t and r’ by =z,
to conclude that
hvars(o) U {z} C hvars(r).
3. htermy,(z) A htermy, (¢) A ind,(x, t) A or_lin,(z,t) holds.

As htermy (x) and htermy(¢) hold, by Definition 18, = € h and vars(t) C h.
Hence, by Definition 16, 2 € hvars(c) and vars(t) C hvars(o). Therefore we
can apply Proposition 68 to conclude that

hvars(o) C hvars(7).

4. htermy (x) A htermy, (t) A gfree,,(x) A gfree, (t) holds.

As htermy, (x) and htermy, (¢) hold, by Definition 18, € h and vars(t) C h.
Hence, by Definition 16, x € hvars(c) and vars(t) C hvars(o). Therefore we
can apply Proposition 69 to conclude that

hvars(o) C hvars(r).

5. htermy () A htermy, (t) A share_lin, (x,t) A or_liny(z, t) holds.

As htermy (x) and htermy(¢) hold, by Definition 18, z € h and vars(t) C h.
Hence, by Definition 16, x € hvars(o) and vars(t) C hvars(c). Therefore we
can apply Proposition 70 to conclude that

hvars(o) \ share_same_var, (x,t) C hvars(7).

60

6. htermy,(z) Alin,(x) holds.

As htermy, (z) holds, by Definition 18, x € h. Hence, by Definition 16, we have
x € hvars(o). Therefore we can apply Proposition 71 where r is replaced by
x and 7’ by t, to conclude that

hvars(o) \ share_with, (z) C hvars(7).

7. htermy(t) A liny(¢) holds.

As htermy (t) holds, by Definition 18, vars(t) C h. Hence, by Definition 16,
vars(t) C hvars(c). Therefore we can apply Proposition 71 where r is replaced
by t and ' by z, to conclude that

hvars(c) \ share_with,(¢) C hvars(r).

8. For all (z — t) € Bind where {z} Uvars(t) C VI, Proposition 72 applies so
that
hvars(o) \ (share_with,,(z) U share_with,,(t)) C hvars(7).

Proof of Theorem 21 on page 17. Suppose that 7 € Iz . {o}. We need to
show that 7 € vy (projH(h,x)).
Let V = Vars \ VI. Then, by Definition 5, RT +V(3V . (r < 3z . 0)). Thus

we have

RT Fv((3V . 7) = AV U{z} . 0)). (77)

Suppose v € V \ vars(o). As we assumed that Vars is denumerable and that VI is
finite, such a v will exist. Moreover, as x € VI, we have x # v. Let ¢’ € RSubst be
obtained from ¢ by replacing every occurrence of x by v. Formally, if p = {x — v},
let

o' = {y s yop|yedom(o)\ {x} }Uo”,
where ¢” = {v — zop} if z € dom(c) and & otherwise. Then ¢’ € RSubst and
RT Fv((3V . o) = AV U{z} . 0)).
Thus, by (77), RT = V((3V . 7) < (3V . ¢’)). Therefore, by Proposition 61,
hvars(7) N VI = hvars(¢’) N VI. (78)

As o' € RSubst and x ¢ dom(o’), rt(x,0’) = x so that, by Proposition 12,
x € hvars(o’). Also, as ¢’ is obtained from o by renaming x to the new variable v,
hvars(c’) D hvars(o) \ {v}. Since v ¢ VI, we have

hvars(c’) N VI 2 (hvars(o) U {z}) N VI.
Therefore, by (78),
hvars(r) N VI 2 (hvars(o) U {z}) N VI. (79)

By hypothesis, 0 € yg(h), so that, by Definition 16, hvars(c) 2 h. Therefore,
by (79), hvars(7) N VI D (h U {.73}) N VI. Thus, by applying Definition 16, we can
conclude that 7 € yg (R U {z}).

61

B.7. Finite-Tree Dependencies

PROPOSITION 73. Let 0,7 € RSubst and ¢ € Bfun, where o € vyp($) and
T€lo. Then T € vp(9).

Proof. By the hypothesis, 7 € | g, so that, for each v € | 7, v € | o. Therefore,
as 0 € yp(¢), it follows from Definition 22 that, for all v € | 7, gb(hval(v)) =1 and
hence 7 € vp(¢).

LEMMA 74. Let ¢1,¢2 € Bfun. Then

Yr(P1 A ¢2) = vr(P1) Nyr(d2).
Proof.

Yr(d1 Ad2) = {0 € RSubst | V7 € | o : (¢1 A ¢2)(hval(r)) =1}
—{UERSubst‘VTELU Vie{1,2}: (bz(hval)—1}
—{O'ERSubSt‘VTEJ,O' qbl(hval)—1}

N{o € RSubst | V7 € | o : ¢o(hval(r)) =1}
= vr(¢1) N Vr(P2).

Proof of Theorem 23 on page 19. Assuming the hypothesis of the theorem, we
will prove each relation separately.

(23a). Let 0 = {z + t} and suppose that 7 € | o. Then, by Proposition 2,
RT V(1 — o). It follows from Lemma 43 that rt(z,7) = rt(¢,7) and thus, by
case (56b) of Corollary 56, = € hvars(r) if and only if vars(t) C hvars(r). This
is equivalent to (z « /\vars(t))(0[1/hvars(r)]) = 1 and, by Definition 22, to
(z < Avars(t))(hval()) = 1. As this holds for all 7 € | o, by Definition 22,
o € vr(z & \vars(t)).

(23b). Let 0 = {x + t}, where x € vars(t). By Definition 12, ¢ hvars(c). By
case (15a) of Proposition 15, for all 7 € | o, we have hvars(7) C hvars(c). Thus
z ¢ hvars(7) and (—z)(hval(r)) = 1. Therefore, by Definition 22, o0 € yp(—z).

(23c). Let o € RSubst such that x € gvars(c) N hvars(c). By case (15b)
of Proposition 15, we have x € hvars(t) for all 7 € |o. So (z)(hval(r)) = 1.
Therefore, by Definition 22, o € vp(x).

(23d). Let 01 € X1 and o3 € Xo. Then, by hypothesis o1 € vr(¢1) and
o2 € vr(¢2). Let 7 € mgs(op U oz). By definition of mgs, RT F V(1 — o1) and
RT F VY(r — o2). Thus, by Proposition 2, we have 7 € | 01 N | 05. Therefore, by
Proposition 73, 7 € yr(¢1) N vyr(¢2). The result then follows by Lemma 74.

(23¢). We have

Yr(¢1V ¢2) = {0 € RSubst | V1 € | o : (¢1V ¢2)(hval(r)) =1}
= {0 € RSubst |Vr € | o:3iec{1,2}.¢(hval(r)) =1}
D{UERSUbSt‘VTElO’ qbl(hval)—1}
U{o € RSubst | V7 € | o : ¢pp(hval(r)) =1}

=vr(d1) Uvr(o2)
D ¥ UXs.

62

(23f). Let 0 € ¥ and let 0/ € Fz . {o}. We will show that o’ € vp(Ix . ¢).
Let 7/ € | o’. Then there exists 0} € RSubst such that R7T b V(7' < (o' Uo})).

Let o1 € I . {o}} and let W < (Vars \ VI) U {z}. Then, by Definition 5, it
follows RT - V(3W. (o' < o)) and RT V¥ (3W. (0] < 01)). As a consequence

RT EY(EW. (6’ Uog]) « IW. (0 Uoy)).

Therefore o U o is satisfiable so that, for some 7 € RSubst, RT + V(T (o Ual)).
Thus RT FV(3W . 7« IW . 7'). By Proposition 61, hvars(7') \ W = hvars(r) \ W
so that

(hvars(r") N VI) U {a} = (hvars(t) N VI) U {z}. (80)

Let ¢ & hval(7)(z). Then, since 7 € | o and, by hypothesis, o € vp(¢), we have
the following chain of implications:

¢(hval(r)) =1 [by Defn. 22]

¢(hval(r)[c/z]) =1 [by Defn. 3]

¢(0[1/ hvars(r) N VI|[c/z]) =1 [by Defn. 22]

¢(0[1/ (hvars(T) N VI) U {z}][c/2]) =1 [by Defn. 3]
¢(0[1/(hvars(t') N VI) U {z}][c/a]) =1 [by (80)]
¢(0[1/ hvars(r') N VI] [c/z]) =1 [by Defn. 3]
¢(hval(r')[c/z]) =1 [by Defn. 22]

¢[c/x](hval(7")) = 1 [by Defn. 4]

From this last relation, since ¢[c/z] = 3z . ¢, it follows that (Jz . ¢)(hval(r’)) = 1.
As this holds for all 7/ € | ¢/, by Definition 22, ¢’ € yp(3x . ¢).

Proof of Theorem 25 on page 20. Since h C h'/, by the monotonicity of vy we
have vy (h) 2 v (h'), whence one of the inclusions: vg (h)Nyr(P) 2 vu (A)Nyr(9).

In order to establish the other inclusion, we now prove that o € vy (h’) assuming
o € va(h) N yp(4). To this end, by Definition 16, it is sufficient to prove that
h' C hvars(o).

Let z € b’ and let ¢ = (¢A/\ h), so that, by hypothesis, b’ = true(¢). Therefore,
we have ¢ |= z. Consider now ¢/ = (¢ A Ahvars(o)). Since o € yg(h), by
Definition 16 we have h C hvars(o), so that ¢’ =4 and thus ¢’ |= z.

Since 0 € vr(¢), by Definition 22 we have ¢(hval(c)) = 1. Also note that
(Ahvars(o)) (hval(s)) = 1. From these, by the definition of conjunction for Boolean
formulas, we obtain 1 (hval(¢)) = 1. Thus we can observe that

W (val(0)) =1 <= (' A 2) (hval(o)) =1
= z € hvars(o).

THEOREM 75. Letx € VI, h,W € H and ¢,¢' € Bfun, where h 2 true(¢pA h)
and h' D true((b’ A /\h') Let also

def def

h1 hﬂh/ hQZhU{.T}
def def

¢ = oV, ¢2 = dz . ¢

63

Then, fori=1, 2,
h; 2 true(qﬁi AN /\ hl)

Proof. We assume the hypotheses and prove each statement in turn. For the
case where i = 1 we have:

hi € hnn
D true (¢> A /\h) N true(qs’ A /\h’)
> true(¢ A NN h’)) N true(¢’ A h’))
= true(¢> ANGBAR) VA NRN h’))
= true((qi) vy A Ahn h’))
- true(¢1 AN hl).

For the case where ¢ = 2 we have:

hy ¥ hU {2}

;true<¢A/\h) U {z}

Dtrue((Fz.¢) AN)U{x}
true((3z . 6) A \ (U {z}))

o)

Proof of Theorem 27 on page 20. Suppose that there exists o € yg(h) Nyr(@).
By Definition 22, since o € | o, we have gb(hval(a)) = 1; therefore, we also have

hvars(o) N false(¢) = @

by Definition 16, we have h C hvars(o), so that we can conclude hNfalse(¢) = @. 1

B.8. Relation Between Groundness Dependencies and Finite-Tree
Dependencies

As was the case for finite-tree dependencies, groundness dependencies only cap-
ture permanent information, therefore preserving the equivalence relation induced
by R7. Moreover, the v function is meet-preserving.

PROPOSITION 76. Let o,7 € RSubst and ¢ € Pos, where we have o € ()
and T € L o. Then T € va(v).

Proof. By the hypothesis, 7 € | o, so that, for each v € | 7, v € | 0. Therefore,
as 0 € v6(¢), it follows from Definition 28 that, for all v € | 7, 1 (gval(v)) = 1 and
hence 7 € va ().

COROLLARY 77. Let 0,7 € RSubst and v € Pos, where we have o € yg(v) and
RT FV(o < 7). Then T € ya().

64

LEMMA 78. Let ¥1,vs € Pos. Then

Ya (1 A) = va (V1) Nya(dz).
Proof.

ety Atbs) = {0 € RSubst | vr € Lo« (1 Abo)(gval(r)) = 1}
Vrelo:Vie{l,2}:
¢i(gval(7)) =1 }
= {U € RSubst ’ Vrelo: wl(gval(T)) = 1}
N {0 € RSubst ’ Vrelo: wg(gVal(T)) = 1}
= 7c(¥1) NG (¥2).

= { o € RSubst

Since non-ground terms can be made cyclic by instantiating their variables,
those terms detected as definitely finite on Bfun are also definitely ground.

LEMMA 79. Let x € VI. Then yr(z) C va(x).

Proof. Suppose that o € yp(z). Then, by Definition 22, (z)(hval(7)) = 1 for all
T € | o, so that « € hvars(7); in particular, € hvars(c). We prove = € gvars(o)
by contradiction. That is, we show that if « € hvars(o) \ gvars(o), then there exists
7 € | o for which z ¢ hvars(7).

Suppose that z € hvars(o) \ gvars(c). Then, by Propositions 54 and 55,
rt(z,0) € HTerms \ GTerms. Hence, by Proposition 53, there exists i € N such
that rt(z,0) = xo® and there exists y € vars(zo?) \ dom(c). As we assumed that
Sig contains a function symbol of non-zero arity, there exists t € HTerms \ {y} for
which {y} = vars(t). It follows that o’ = {y — ¢} € RSubst and, by Definition 12,
y ¢ hvars(c’). Since y ¢ dom(o), by Lemma 39, 7 = cUo’ € RSubst. Since 7 € | o’
then, by case (15a) of Proposition 15, we have y ¢ hvars(r).

By Lemma 41, we have R7T + V(o — (z = z¢")). Thus, since we also have
T € | o, we obtain RT F V(T — (z= mai)). By applying Lemma 43, we have that
rt(z, 7) = rt(xo’, 7) and thus, by case (56b) of Corollary 56, we obtain x € hvars(r)
if and only if vars(zo?) C hvars(7). However, as observed before, we know that
y € vars(zo’) \ hvars(t), so that we also have = ¢ hvars(r).

Therefore = € gvars(o) N hvars(o) and, by case (15b) of Proposition 15, for all
T € | o, x € gvars(r)Nhvars(7). As a consequence, for all 7 € | o, (z)(gval(t)) = 1,
so that, by Definition 28, we can conclude that o € vg(z).

THEOREM 80. Let ¢ € Bfun and v € Pos. Let also v € Pos be defined as
y N true(¢p). Then

Vr(8) Nve () = vr(9) Nra(¥ Av).
Proof. Since 9 A v = 1, the inclusion

Yr(®) N6 (¥) 2 vr(d) Nva (P Av)

follows by the monotonicity of v4. To prove the inclusion

Yr (@) Nva (V) C yp(d) Nya (Y Av)

65

we will show that vr(¢) C y¢(v). The thesis will follow as, by Lemma 78, we have
Yo Av) =v6(¥) Nva(v). We have

vr(¢) € vr(v) [since ¢ E v
= ﬂ{ vr(x | x € true(o) } [by Lemma 74]
< ﬂ{ el | T € true(e) } [by Lemma 79]
=6(v). [by Lemma 78]

THEOREM 81. Let ¢,¢' € Bfun and 1,1’ € Pos, where ¢ = A true(d) and
' = N\true(¢’). Let also

def def

(b]—(b\/(b, ¢2—3$ ¢,
v E PV, A=)
Then, fori =1, 2, we have ¥; =)\ true(¢;).

Proof. Let us assume the hypotheses hold and prove each statement in turn.
For the case where i = 1 we have:

def

Y1 =PV
= /\true ®)V /\true(¢’)
= /\true (pV)
def /\true ®1).

Since by hypothesis we have that ¢ = A true(¢) and existential quantification is a
monotonic operation, for the case where i = 2 we have:

def

Yo = Jz . ¢
E 3. /\true
= A\ (true(¢) \ {z})
= /\ true(3z . ¢)
def/\true ().

Proof of Theorem 30 on page 21.
Proof of (30a). Since ¢ A v |= 1, the inclusion

yu(h) Nye(d) Nva(¥) 2 vu(h) Nyr(d) Nya(Av)

follows by the monotonicity of vq.
We now prove the reverse inclusion. Let us assume o € vy (h) Nyr(P) Nya(W).
By Lemma 78 we have that y¢ (¢ A v) = v¢(¢) Nya(v). Therefore it is enough to

66

show that o € vg(v). By hypothesis, v = 3VI \ h . pos(¢). Moreover, by Defini-
tion 22, h C hvars(c). Thus, to prove the result, we will show, by contradiction,
that o € y¢(3VI \ hvars(o) . pos(¢)).

Suppose therefore that o ¢ ~v¢(3VI \ hvars(o) . pos(¢)). Then there exists
T € | o such that

(3VI \ hvars(o) . pos(¢)) (gval(7)) = 0. (81)

Let z € hvars(o) N VI. By Proposition 54, rt(z,0) € HTerms. By Proposi-
tion 53, there exists i € N such that rt(z,0) = zo® and vars(zo®) N dom(o) = @.
Therefore, by Definition 12, vars(zo*) C hvars(c). Thus, we have

vars(zo') C hvars(o) \ dom(o). (82)

By Lemma 41, as 7 € |0, RT F V(T - (z = zai)). By Lemma 43, we have
rt(z,7) = rt(z0?, 7) so that, by case (56a) of Corollary 56,

z € gvars(1) <= vars(zo') C gvars(7). (83)

Take t € GTerms N HTerms and let

T {y —t ‘ y € (hvars(o) N gvars(7)) \ dom(o) }

As we assumed that Sig contains a function symbol of non-zero arity, for each
y € Vars there exists t, € HTerms \ {y} such that vars(¢,) = {y}. Thus let

def
V2 = {y’_’ty

Note that vy, vg € RSubst, vars(vy) Nvars(ve) = @ and vars(v;) Ndom(o) = &, for

i =1, 2. Thus, by Lemma 39, 7/ def (0 Uvy Uwg) € RSubst is satisfiable in RT.
We now show that

y ¢ gvars(7) U dom(o)

y € (VI Uvars(o)) N hvars(o) }

z € gvars(T) <= z € hvars(7'). (84)

First, assume that z € gvars(7). Then, by (83), we have vars(zo*) C gvars(r).
From this, since also (82) holds, we obtain vars(zo?) C dom(v;) so that, by
Definitions 9 and 12, vars(zo®) C gvars(vy) N hvars(vy). Since 7/ € | vy, by
case (15b) of Proposition 15, vars(zo®) C gvars(7') N hvars(7'). Thus, by Corol-
lary 56, rt(z0®,7') € GTerms N HTerms. Now 7' € | o so that, by Lemma 41,
RT bV(7" — (2 = z0%)). By Lemma 43, rt(z0%, 7') = rt(z,7') € GTermsNHTerms
so that, by Proposition 54 and Proposition 55, z € hvars(7’).

We prove the other direction by contraposition, assuming that z ¢ gvars(7).
By (83), there exists y € vars(zo?) \ gvars(7). Also note that y € VI U vars(o)
and, by (82), y ¢ dom(o) so that y € dom(vz). By Definition 12, we have y ¢
hvars(vy) and, since 7/ € | vg, by case (15a) of Proposition 15, y ¢ hvars(7’). Thus,
by case (56b) of Corollary 56, we have that rt(zo?,7') ¢ HTerms. Moreover, as
RT F V(1" — (2 = z0")), by Lemma 43 we have rt(zo", 7') = rt(z,7') ¢ HTerms
and therefore, by Proposition 54, z ¢ hvars(7’).

Since z was an arbitrary variable in hvars(o) N VI, it follows from (81) and (84)
that,

(3VI \ hvars(o) . pos(¢)) (hval(7’)) = 0. (85)

67

We have by hypothesis that o € yr(¢), so that, as 7’ € | o, by Definition 22 we
have ¢ (hval(7’)) = 1. Therefore, as ¢ = 3VI \ hvars(c) . pos(¢), (VI \ hvars(o) .
pos(¢)) (hval(7’)) = 1, which contradicts (85).

Proof of (30b). Since ¢ A v = ¢, the inclusion

i (h) Nve(¢) Nya (W) 2 v (h) Nyr(@ Av) Nya ()

follows by the monotonicity of v¢q.

We now prove the reverse inclusion. Assume that o € vy (h) N yr(P) N ya (V).
By Lemma 74 we have that vp(¢ A v) = vp(¢) Nyp(v). Therefore it is enough to
show that o € yp(v). By hypothesis, v = 3VI \ h . ¢). Moreover, by Definition 16,
h C hvars(c). Thus, to prove the result, we will show, by contradiction, that
o € vp(3VI \ hvars(o) . ¢).

Suppose therefore that o ¢ yp(3VI \ hvars(c) . 1). Then there exists 7 € | o
such that

(3VI \ hvars(o) . ¢) (hval(7)) = 0. (86)
Take t € GTerms N HTerms and let
v {y —t ‘ y € vars(o) N (hvars(7) \ dom(o)) } (87)

By Lemma 39, 7/ f 5 Uv € RSubst is satisfiable in RT.

Let z be any variable in hvars(o). By Proposition 54, we have rt(z,0) € HTerms.
Then, by Proposition 53, there must exists i € N such that rt(z,0) = 2o and
vars(zo?) Ndom(c) = @. Therefore, by Definition 12, vars(zo®) C hvars(c). Thus,
we have

vars(zo') C hvars(c) \ dom(a). (88)

By Lemma 41, as 7 € |o, RT + V(T - (z = zai)). By Lemma 43, we have
rt(z,7) = rt(z0?, 7) so that, by case (56b) of Corollary 56,

z € hvars(1) <= vars(zo’) C hvars(7). (89)
We now show that
hvars(7) = hvars(a) N gvars(7’). (90)

Since T € | o, it follows from case (15a) of Proposition 15 that hvars(r) C hvars(o).
Thus, as z € hvars(o), either z € hvars(7) or z € hvars(o) \ hvars(7). We consider
these cases separately.

First, assume that z € hvars(7). Then, by (89), we have vars(zo®) C hvars(r).
Also, by case (15a) of Proposition 15, we have z € hvars(o), so that we can ap-
ply (88) to derive vars(zo®) Ndom(c) = @. Therefore, vars(zo*) C dom(v) and, by
Definitions 9 and 12, vars(zo*) C gvars(v) Nhvars(v). Since 7/ € | v, by case (15b)
of Proposition 15, we have vars(zo®) C gvars(r’) N hvars(7’). Thus, by Corol-
lary 56, rt(z0',7') € GTerms N HTerms. Now 7' € | o so that, by Lemma 41,
we have RT F V(7' — (z = 20")). Thus, by Lemma 43, rt(zo%,7') = rt(z,7') €
GTerms N HTerms so that, by Propositions 54 and 55, z € hvars(7’) N gvars(7’).
Hence, by case (15a) of Proposition 15, we can conclude z € hvars(o) N gvars(7').
Thus hvars(7) C hvars(o) N gvars(7’).

Secondly, we assume that z € hvars(o) \ hvars(7). Since z ¢ hvars(r), by (89),
there exists y € vars(zo?) \ hvars(t). Also, since 2z € hvars(c), by (88), we have

68

y € hvars(o) \ dom(co) so that, by Definition 9, we have y ¢ gvars(o). By (87),

since y ¢ dom(o) U hvars(7), we have y ¢ dom(v) so that y ¢ gvars(7’). Thus, by

case (56a) of Corollary 56, we have rt(zo?,7') ¢ GTerms. Moreover, since we have

RT FV(7" — (2 = z0%)), we obtain, by Lemma 43, rt(20%,7') = rt(2,7") ¢ GTerms

and thus, by Proposition 55, z ¢ gvars(7’). Thus hvars(r) 2 hvars(o) N gvars(7’).
It follows from (86) and (90) that,

(3VI \ hvars(o) . ¢) (gval(7’)) = 0. (91)

We have by hypothesis that o € vg (%)), so that, as 7/ € | o, by Definition 28 we
have ¢ (gval(7’)) = 1. Therefore, as ¢ = IVI \ hvars(o) . ¢,

(3VI \ hvars(o) . ¢) (gval(7")) = 1.
which contradicts (91).

Proof of Theorem 34 on page 23. Let us assume the hypotheses. For the case
where ¢ = 1 we have:

def

o=V
= @VINh.)V EVI\K)
E@VIN\(hOh') .)V(VI\ (hNh) . ¢
=3VI\(hNh). vy

CEIYT\ by oy

Since by hypothesis we have that ¢ =3 VI \ h . ¢ and existential quantification is
a monotonic operation, for the case where i = 2 we have:

def

¢ = Jx . @
=3z.3VI\h. ¥
—3VI\h.3z.
=3VI\ (hU{z}) .3z . ¢

CEIVT\ hy . 1.

69

